1
|
Ba-Haddou H, Taoussi O, Ait Lyazidi S, Coquery M, Masson M, Haddad M, El Bakkali A, Margoum C. Identifying sources and distribution of organic pollutants in a Moroccan river: Characterization of dissolved organic matter by absorption, excitation-emission fluorescence and chemometric analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135899. [PMID: 39305588 DOI: 10.1016/j.jhazmat.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
This study investigates surface water contamination of Ben-Kazza River in Morocco, fed by effluents from an adjacent lagoon-based wastewater treatment plant (WWTP) and seasonally by industrial effluents, and which occasionally serves to irrigate agricultural fields. This study has two purpose: i) to track the main sources of contamination through the evolution of dissolved organic matter (DOM) characteristics along the watercourse, and ii) to characterize the WWTP influents and effluents with a focus on the efficiency of the lagoon treatment. We characterized a total of 495 water samples across the watercourse and from the inlet and outlet of the WWTP, using UV-visible absorption and excitation-emission fluorescence coupled with chemometric analyses. Absorption indicators and fluorescence indices were calculated and compared across sampling points. Results highlight spatial shifts together with temporal changes in DOM. PARAFAC identified components that varied between protein-like, humic-like and anthropogenic-like fluorophores along the river, permitted to trace the anthropogenic components and their sources. The lagoon treatment appeared to better remove fresh organic material than humic material: fluorescence intensity decreased by 68 % for peak T1 and by 22 % for peak C. Maximum fluorescence intensities (Fmax) decreased across all PARAFAC components, leading to more than 55 % reduction of ΣFmax.
Collapse
Affiliation(s)
- Hassan Ba-Haddou
- University of Moulay Ismail - Faculty of Sciences, LASMAR, URL-CNRST, No. 7, Meknes, Morocco; INRAE, UR RiverLy, 69625 Villeurbanne, France.
| | - Omar Taoussi
- University of Moulay Ismail - Faculty of Sciences, LASMAR, URL-CNRST, No. 7, Meknes, Morocco; Université de Sherbrooke, Department of Civil and Building Engineering, Environmental Engineering Laboratory, Sherbrooke, QC, Canada
| | - Saadia Ait Lyazidi
- University of Moulay Ismail - Faculty of Sciences, LASMAR, URL-CNRST, No. 7, Meknes, Morocco
| | | | | | - Mustapha Haddad
- University of Moulay Ismail - Faculty of Sciences, LASMAR, URL-CNRST, No. 7, Meknes, Morocco
| | - Abdelmajid El Bakkali
- University of Moulay Ismail - Faculty of Sciences, LASMAR, URL-CNRST, No. 7, Meknes, Morocco
| | | |
Collapse
|
2
|
Morris C, Zulian S, Smith DS, Brauner CJ, Wood CM. Using physicochemical properties to predict the impact of natural dissolved organic carbon on transepithelial potential in the freshwater rainbow trout (Oncorhynchus mykiss) at neutral and acidic pH. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2619-2635. [PMID: 39392539 DOI: 10.1007/s10695-024-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Dissolved organic carbon (DOC) is a complex mixture of molecules that varies in composition based on origin as well as spatial and temporal factors. DOC is an important water quality parameter as it regulates many biological processes in freshwater systems, including the physiological function of the gills in fish. These effects are often beneficial, especially at low pH where DOCs mitigate ion loss and protect active ion uptake. DOCs of different compositions and quality have varied ionoregulatory effects. The molecular variability of DOCs can be characterized using optical and chemical indices, but how these indices relate to the physiological effects exerted by DOCs is not well understood. We tested the effects of five naturally sourced DOCs, at both pH 7 and pH 4, on transepithelial potential (TEP) (a diffusion potential between the blood plasma and the external water) in rainbow trout. The five chosen DOCs have been well characterized and span large differences in physicochemical characteristics. Each of the DOCs significantly influenced TEP, although in a unique manner or magnitude which was likely due to their physicochemical characteristics. These TEP responses were also a function of pH. With the goal of determining which physicochemical indices are predictive of changes in TEP, we evaluated correlations between various indices and TEP at pH 7 and pH 4. The indices included: specific absorbance coefficient at 340 nm, molecular weight index, fluorescence index, octanol-water partition coefficient, molecular charge, proton binding index, % humic acid-like, % fulvic acid-like, and % protein-like components by parallel factor analysis on fluorescence data (PARAFAC). Our results demonstrate the novel finding that there are three particularly important indices that are predictors of changes in TEP across pHs in rainbow trout: specific absorbance coefficient at 340 nm, octanol-water partition coefficient; and proton binding index.
Collapse
Affiliation(s)
- Carolyn Morris
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Samantha Zulian
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W, Waterloo, ON, N2L 3C5, Canada
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W, Waterloo, ON, N2L 3C5, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
3
|
Sanchez AA, Haas K, Jackisch C, Hedrich S, Lau MP. Enrichment of dissolved metal(loid)s and microbial organic matter during transit of a historic mine drainage system. WATER RESEARCH 2024; 266:122336. [PMID: 39216129 DOI: 10.1016/j.watres.2024.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Water quality degradation by decommissioned mining sites is an environmental issue recognized globally. In the Ore mountains of Central Europe, a wide array of contaminants is released by abandoned under- and aboveground mining sites threatening the quantity and quality of surface and groundwater resources. Here, we focus on the less-explored internal pollution processes within these mines involving organic carbon and microorganisms in trace metal(loid)s mobilization processes. Over an 18-month period, we conducted hydrological and biogeochemical monitoring at the Reiche Zeche mine, a former lead-zinc-silver mine, in Germany, reaching 230 meters below ground, well below the critical zone. Our results show strong seasonal fluctuations in water availability, concentrations of metal(loid)s, pH, and dissolved organic matter (DOM) components across multiple depths. Excess metal(loid) presence during high flow conditions indicated mobilization behavior deviating from conservative dilution. Our findings reveal strong positive correlations between metal(loid) variability and pH (0.894), and between metal(loid) variability and the DOM fluorescent component C2 (-0.910), a proxy for microbial activity. Accordingly, the microbial processes may significantly contribute to the observed metal(loid) composition and fluxes. By elucidating the intricate roles of hydrological and biogeochemical factors in trace metal(loid) mobilization, our research offers a comprehensive framework for improving mine water management and remediation, potentially informing global environmental policies and sustainable mining practices.
Collapse
Affiliation(s)
- Anita Alexandra Sanchez
- Institute of Mineralogy, Technische Universität Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Germany.
| | - Karl Haas
- Institute of Drilling Technology and Fluid Mining, Technische Universität Bergakademie Freiberg, Germany
| | - Conrad Jackisch
- Institute of Drilling Technology and Fluid Mining, Technische Universität Bergakademie Freiberg, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, Technische Universität Bergakademie Freiberg, Germany
| | - Maximilian P Lau
- Institute of Mineralogy, Technische Universität Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Germany; Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Germany
| |
Collapse
|
4
|
Stauber JL, Gadd J, Price GAV, Evans A, Holland A, Albert A, Batley GE, Binet MT, Golding LA, Hickey C, Harford A, Jolley D, Koppel D, McKnight KS, Morais LG, Ryan A, Thompson K, Van Genderen E, Van Dam RA, Warne MSJ. Applicability of Chronic Multiple Linear Regression Models for Predicting Zinc Toxicity in Australian and New Zealand Freshwaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2614-2629. [PMID: 37477462 DOI: 10.1002/etc.5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand. Water chemistry data were compiled to guide a selection of waters with different zinc toxicity-modifying factors. Predicted toxicities using several bioavailability models were compared with observed chronic toxicities for the green alga Raphidocelis subcapitata and the native cladocerans Ceriodaphnia cf. dubia and Daphnia thomsoni. The most sensitive species to zinc in five New Zealand freshwaters was R. subcapitata (72-h growth rate), with toxicity ameliorated by high dissolved organic carbon (DOC) or low pH, and hardness having a minimal influence. Zinc toxicity to D. thomsoni (reproduction) was ameliorated by both high DOC and hardness in these same waters. No single trophic level-specific effect concentration, 10% (EC10) MLR was the best predictor of chronic toxicity to the cladocerans, and MLRs based on EC10 values both over- and under-predicted zinc toxicity. The EC50 MLRs better predicted toxicities to both the Australian and New Zealand cladocerans to within a factor of 2 of the observed toxicities in most waters. These findings suggest that existing MLRs may be useful for normalizing local ecotoxicity data to derive water quality criteria for Australia and New Zealand. The final choice of models will depend on their predictive ability, level of protection, and ease of use. Environ Toxicol Chem 2023;42:2614-2629. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jennifer L Stauber
- Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia
- Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia
| | - Jennifer Gadd
- National Institute for Water Research, Auckland, New Zealand
| | - Gwilym A V Price
- Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia
- Faculty of Science, University of Technology, Sydney, New South Wales, Australia
| | - Anthony Evans
- Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia
| | - Aleicia Holland
- Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia
| | - Anathea Albert
- National Institute for Water Research, Auckland, New Zealand
| | - Graeme E Batley
- Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia
| | - Monique T Binet
- Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia
| | - Lisa A Golding
- Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia
| | | | - Andrew Harford
- Environmental Institute of the Supervising Scientist, Darwin, Northern Territory, Australia
| | - Dianne Jolley
- Wollongong Resources, Wollongong, New South Wales, Australia
| | - Darren Koppel
- Australian Institute of Marine Science, Perth, Western Australia, Australia
| | - Kitty S McKnight
- School of Natural Science, Macquarie University, Sydney, New South Wales, Australia
| | - Lucas G Morais
- Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia
| | - Adam Ryan
- International Zinc Association, Syracuse, New York, USA
| | - Karen Thompson
- National Institute for Water Research, Auckland, New Zealand
| | | | | | | |
Collapse
|
5
|
Li Z, Zhang F, Shi J, Chan NW, Tan ML, Kung HT, Liu C, Cheng C, Cai Y, Wang W, Li X. Remote sensing for chromophoric dissolved organic matter (CDOM) monitoring research 2003-2022: A bibliometric analysis based on the web of science core database. MARINE POLLUTION BULLETIN 2023; 196:115653. [PMID: 37879130 DOI: 10.1016/j.marpolbul.2023.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Chromophoric dissolved organic matter (CDOM) occupies a critical part in biogeochemistry and energy flux of aquatic ecosystems. CDOM research spans in many fields, including chemistry, marine environment, biomass cycling, physics, hydrology, and climate change. In recent years, a series of remarkable research milestone have been achieved. On the basis of reviewing the research process of CDOM, combined with a bibliometric analysis, this study aims to provide a comprehensive review of the development and applications of remote sensing in monitoring CDOM from 2003 to 2022. The findings show that remote sensing data plays an important role in CDOM research as proven with the increasing number of publications since 2003, particularly in China and the United States. Primary research areas have gradually changed from studying absorption and fluorescence properties to optimization of remote sensing inversion models in recent years. Since the composition of oceanic and freshwater bodies differs significantly, it is important to choose the appropriate inversion method for different types of water body. At present, the monitoring of CDOM mainly relies on a single sensor, but the fusion of images from different sensors can be considered a major research direction due to the complex characteristics of CDOM. Therefore, in the future, the characteristics of CDOM will be studied in depth inn combination with multi-source data and other application models, where inversion algorithms will be optimized, inversion algorithms with low dependence on measured data will be developed, and a transportable inversion model will be built to break the regional limitations of the model and to promote the development of CDOM research in a deeper and more comprehensive direction.
Collapse
Affiliation(s)
- Zhihui Li
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Fei Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jingchao Shi
- Department of Earth Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Ngai Weng Chan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Mou Leong Tan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Hsiang-Te Kung
- Department of Earth Sciences, The University of Memphis, Memphis, TN 38152, USA
| | | | - Chunyan Cheng
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Yunfei Cai
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Weiwei Wang
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Xingyou Li
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
6
|
Acharya S, Holland A, Rees G, Brooks A, Coleman D, Hepplewhite C, Mika S, Bond N, Silvester E. Relevance of tributary inflows for driving molecular composition of dissolved organic matter (DOM) in a regulated river system. WATER RESEARCH 2023; 237:119975. [PMID: 37104936 DOI: 10.1016/j.watres.2023.119975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
River regulation by dams can alter flow regimes and organic matter dynamics, but less is known about how unregulated tributaries regulate organic matter composition and processing in the regulated river below the confluence. This study reports on water chemistry, especially dissolved organic matter (DOM) concentration and composition (dissolved organic carbon (DOC), organic nitrogen (DON), organic phosphorus (DOP) and combined amino acids (DCAA)) along the regulated Tumut and unregulated Goobarragandra (tributary) rivers under different flow conditions (base flow vs storm event) in south-east Australia. The tributary was significantly different from regulated and downstream sites during base flow conditions with higher temperature, pH, buffering capacity, DOC and nutrient concentrations (DON, DOP, DCAA). DOM characterisation by spectrometry and size exclusion chromatography revealed that the tributary contained a higher proportion of terrestrially derived humic-like and fulvic-like DOM. In contrast, regulated and downstream sites contained higher proportion of microbially derived DOM such as low molecular weight neutrals and protein-like components. Storm pulses of tributary flows into the regulated system, influenced both concentration and composition of DOM at the downstream site, which more strongly resembled the tributary site than the regulated site during the storm event. Additionally, we found that the tributary supplied fresh DOM, including small organic molecules to the regulated system during storm events. The presence of these different types of labile DOM can increase primary productivity and ecological functioning within regulated river reaches downstream of tributary junctions. This has important implications for the protection of unregulated tributary inflows within regulated river basins.
Collapse
Affiliation(s)
- Suman Acharya
- Department of Environment and Genetics, Centre for Freshwater Ecosystems, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, 3690 Wodonga, VIC, Australia.
| | - Aleicia Holland
- Department of Environment and Genetics, Centre for Freshwater Ecosystems, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, 3690 Wodonga, VIC, Australia
| | - Gavin Rees
- CSIRO Land and Water, Institute for Land, Water and Society, Charles Sturt University, 2640 Thurgoona, NSW, Australia
| | - Andrew Brooks
- Department of Planning and Environment, Surface Water Science, NSW, Australia
| | - Daniel Coleman
- Department of Planning and Environment, Surface Water Science, NSW, Australia
| | - Chris Hepplewhite
- Department of Planning and Environment, Surface Water Science, NSW, Australia
| | - Sarah Mika
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Nick Bond
- Department of Environment and Genetics, Centre for Freshwater Ecosystems, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, 3690 Wodonga, VIC, Australia
| | - Ewen Silvester
- Department of Environment and Genetics, Centre for Freshwater Ecosystems, School of Agriculture, Biomedicine and Environment, La Trobe University, Albury/Wodonga Campus, 3690 Wodonga, VIC, Australia
| |
Collapse
|
7
|
Sylvain FÉ, Bouslama S, Holland A, Leroux N, Mercier PL, Val AL, Derome N. Bacterioplankton Communities in Dissolved Organic Carbon-Rich Amazonian Black Water. Microbiol Spectr 2023; 11:e0479322. [PMID: 37199657 PMCID: PMC10269884 DOI: 10.1128/spectrum.04793-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the β-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.
Collapse
Affiliation(s)
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Victoria, Australia
| | - Nicolas Leroux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
8
|
Gong B, Chen W, Sit PHL, Liu XW, Qian C. One-step fluorometric determination of multiple-component dissolved organic matter in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162200. [PMID: 36791859 DOI: 10.1016/j.scitotenv.2023.162200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous in aqueous environments and is composed of different components that play different but important roles in the migration and the fate of pollutants, emergence of the disinfect byproduct, thus requiring quantitative characterization. However, until now, simultaneous quantification of the main contents in DOM, i.e., saccharides, proteins, and humic substances, has been difficult, impeding us from understanding and predicting the environmental behaviors of typical pollutants. In this work, a fluorescence approach based on the excitation emission matrix (EEM), combined with a new algorithm, denoted matrix reconstruction coupled with prior linear decomposition (MR-PLD), was developed to quantify multiple DOM simultaneously. First, a set of simulated water samples consisting of glucose, tryptones, and humic acid (HA) were analyzed using MR-PLD to validate the feasibility of the method. The DOM components could be reliably determined with a higher accuracy than parallel factor analysis (PARAFAC) and Parallel Factor Framework-Linear Regression (PFFLR), also with a more convenient procedure than conventional PLD. Second, both actual simulated and experimental methods were performed to test the anti-interference performance of MR-PLD, indicating that the quantification of DOM would not be significantly impacted by other fluorophores. Finally, several actual water samples from natural waters and wastewater treatment plants were also analyzed to confirm the robustness of this method in actual aqueous environments. This study provides a new approach to characterize DOM with EEM, contributing to its convenient concentration monitoring and the further exploration of the environmental impacts.
Collapse
Affiliation(s)
- Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, China
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
9
|
Price GAV, Stauber JL, Jolley DF, Koppel DJ, Van Genderen EJ, Ryan AC, Holland A. Natural organic matter source, concentration, and pH influences the toxicity of zinc to a freshwater microalga. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120797. [PMID: 36496066 DOI: 10.1016/j.envpol.2022.120797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Zinc is a contaminant of concern in aquatic environments and is a known toxicant to many aquatic organisms. Dissolved organic matter (DOM) is a toxicity modifying factor for zinc and is an important water chemistry parameter. This study investigated the influence of DOM concentration, source, and water pH on the chronic toxicity of zinc to a freshwater microalga, Chlorella sp. The influence of DOM on zinc toxicity was dependent on both concentration and source. In the absence of DOM, the 72-h EC50 was 112 μg Zn.L-1. In the presence of a DOM high in fulvic-like components, zinc toxicity was either slightly decreased (<4-fold increase in EC10s across 15 mg C.L-1 range) or unchanged (minimal difference in EC50s). In the presence of a DOM high in humic-like (aromatic and high molecular weight) components, zinc toxicity was slightly decreased at the EC10 level and strongly increased at the EC50 level. The influence of pH on zinc toxicity was dependent on the source of DOM present in the water. In the presence of DOM high in humic-like components pH did not influence toxicity. In the presence of DOM high in fulvic-like components, pH had a significant effect on EC50 values. Labile zinc (measured by diffusive gradients in thin-films) followed linear relationships with dissolved zinc but could not explain the changes in observed toxicity, with similar DGT-labile zinc relationships shown for the two DOMs despite each DOM influencing toxicity differently. This indicates changes in toxicity may be unrelated to changes in zinc lability. The results suggest that increased toxicity of zinc in the presence of DOM may be due to direct uptake of Zn-DOM complexes. This study highlights the importance of considering DOM source and characteristics when incorporating DOM into water quality guidelines through bioavailability models.
Collapse
Affiliation(s)
- Gwilym A V Price
- Faculty of Science, University of Technology Sydney Broadway, NSW, 2007, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia.
| | - Jenny L Stauber
- CSIRO Land and Water, Lucas Heights, NSW, Australia; La Trobe University, School of Agriculture, Biomedicine & Environment, Department of Environment and Genetics, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic, Australia
| | | | - Darren J Koppel
- Australian Institute of Marine Science, Crawley, WA, Australia
| | | | - Adam C Ryan
- International Zinc Association, Durham, NC, USA
| | - Aleicia Holland
- CSIRO Land and Water, Lucas Heights, NSW, Australia; La Trobe University, School of Agriculture, Biomedicine & Environment, Department of Environment and Genetics, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic, Australia
| |
Collapse
|
10
|
Zhang H, Qian W, Wu L, Yu S, Wei R, Chen W, Ni J. Spectral characteristics of dissolved organic carbon (DOC) derived from biomass pyrolysis: Biochar-derived DOC versus smoke-derived DOC, and their differences from natural DOC. CHEMOSPHERE 2022; 302:134869. [PMID: 35537622 DOI: 10.1016/j.chemosphere.2022.134869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Biochar-derived dissolved organic carbon (BDOC) and smoke-derived dissolved organic carbon (SDOC) are two different biomass-pyrogenic DOCs. They inevitably enter soil and water, then potentially pose different impacts on the chemistry of these media. This study systemically investigated the emissions and spectral characteristics of BDOC and SDOC as well as their differences from natural DOC. The results showed that the emission of SDOC was 1-3 orders of magnitude greater than that of BDOC after biomass pyrolysis. UV-vis spectra indicated that BDOC had higher aromaticity and molecular weight as well as lower polarity than SDOC. The two-dimensional correlation infrared spectrum (2D-PCIS) matrix indicated that BDOC contained more chemical groups with stronger temperature-dependence than SDOC. Fluorescence EEM-PARAFAC analysis showed that BDOC was dominated by macromolecular humic-like substances, while SDOC was primarily composed of small molecules of aromatic protein/polyphenols-like compounds. The fluorescence indicators including humification index (HIX) (0.08-0.76) and biological index (BIX) (1.18-1.72) of SDOC were significantly different from those of BDOC (HIX: 1.64-12.68, and BIX: 0.17-1.62). The higher BIX and more small molecules of aromatic protein/polyphenols-like compounds indicated SDOC had potentially higher bioavailability and turnover rate in the environment than BDOC. Furthermore, the UV-vis spectral indicator (S275-295) and fluorescence spectral indicators (HIX, and BIX) of BDOC were equivalent to those of natural DOC, whereas these indicators of SDOC were significantly different from those of natural DOC. This study demonstrated that BDOC and SDOC had significantly different components and properties and they might present different environmental behaviors and effects.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Liang Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Shuhan Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
11
|
McDonald S, Holland A, Simpson SL, Gadd JB, Bennett WW, Walker GW, Keough MJ, Cresswel T, Hassell KL. Metal forms and dynamics in urban stormwater runoff: New insights from diffusive gradients in thin-films (DGT) measurements. WATER RESEARCH 2022; 209:117967. [PMID: 34936976 DOI: 10.1016/j.watres.2021.117967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Stormwater runoff typically contains significant quantities of metal contaminants that enter urban waterways over short durations and represent a potential risk to water quality. The origin of metals within the catchment and processes that occur over the storm can control the partitioning of metals between a range of different forms. Understanding the fraction of metals present in a form that is potentially bioavailable to aquatic organisms is useful for environmental risk assessment. To help provide this information, the forms and dynamics of metal contaminants in an urban system were assessed across a storm. Temporal patterns in the concentration of metals in dissolved and particulate (total suspended solids; TSS) forms were assessed from water samples, and diffusive gradients in thin-films (DGTs) were deployed to measure the DGT-labile time-integrated metal concentration. Results indicate that the concentrations of dissolved and TSS-associated metals increased during the storm, with the metals Al, Cd, Co, Cu, Pb and Zn representing the greatest concern relative to water quality guideline values (GVs). The portion of labile metal as measured by DGT devices indicated that during the storm a substantial fraction (∼98%) of metals were complexed and pose a lower risk of acute toxicity to aquatic organisms. Comparison of DGT results to GVs indicate that current GVs are likely quite conservative when assessing stormwater pollution risks with regards to metal contaminants. This study provides valuable insight into the forms and dynamics of metals in an urban system receiving stormwater inputs and assists with the development of improved approaches for the assessment of short-term, intermittent discharge events.
Collapse
Affiliation(s)
- Sarah McDonald
- The School of BioSciences, The University of Melbourne, Parkville Campus, Parkville, Victoria 3010, Australia.
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution, School of Life Science, La Trobe University, Albury-Wodonga Campus, Albury-Wodonga, Victoria 3690, Australia
| | - Stuart L Simpson
- CSIRO Land and Water, Centre for Environmental Contaminants Research, Locked Bag 2007 Kirrawee, New South Wales 2232, Australia
| | - Jennifer B Gadd
- National Institute of Water and Atmospheric Research Ltd, Private Bag 99940, Viaduct Harbour, Auckland 1010, New Zealand
| | - William W Bennett
- Coastal and Marine Research Centre, Cities Research Institute, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Glen W Walker
- Australian Government Department of Agriculture, Water and the Environment, Canberra, ACT 2601, Australia
| | - Michael J Keough
- The School of BioSciences, The University of Melbourne, Parkville Campus, Parkville, Victoria 3010, Australia
| | - Tom Cresswel
- ANSTO, Locked Bag 2001 Kirrawee, New South Wales 2232, Australia
| | - Kathryn L Hassell
- The School of BioSciences, The University of Melbourne, Parkville Campus, Parkville, Victoria 3010, Australia; Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
Feng L, Zhang J, Fan J, Wei L, He S, Wu H. Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: Implications for water-quality control. CHEMOSPHERE 2022; 286:131624. [PMID: 34315070 DOI: 10.1016/j.chemosphere.2021.131624] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Quantitative characterization of dissolved organic matter (DOM) in various aquatic ecosystems has become of increasing importance as its transformation plays a key role in inland water carbon, yet few studies have quantified water DOM inputs to storage lakes for water quality control and safety assurance. This study assessed the quantity and quality of DOM in 21 inflow rivers of Nansi Lake as the important storage lake of large-scale water transfer projects by using excitation-emission matrix spectroscopy coupled with parallel factor analysis (EEM-PARAFAC) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that DOM contents varied significantly with an average value of 5.8 mg L-1 in different inflow rivers, and three fluorescence substances (including UVC humic-like, UVA humic-like and tyrosine-like components) were identified by EEM-PARAFAC. The distribution of the DOM components was distinctively different among sampling sites, and UVA humic-like component mainly dominated in Nansi Lake. Meanwhile, DOM components with higher aromaticity and molecular weight were found in the west side of lake. Fluorescence spectral indexes manifested that the source of DOM was mainly from allochthonous or terrestrial input. Moreover, significant correlations between water quality and DOM characteristics were observed in Nansi Lake. These findings would be beneficial to understand the biogeochemical role and impact of DOM in inflowing rivers in the water-quality monitoring and control of storage lakes.
Collapse
Affiliation(s)
- Likui Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jinlin Fan
- Department of Science and Technology Management, Shandong University, Jinan, 250061, PR China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
13
|
Zhang H, Wu L, Qian W, Ni J, Wei R, Qi Z, Chen W. Spectral characteristics of dissolved organic carbon derived from biomass-pyrogenic smoke (SDOC) in the aqueous environment and its solubilization effect on hydrophobic organic pollutants. WATER RESEARCH 2021; 203:117515. [PMID: 34388498 DOI: 10.1016/j.watres.2021.117515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic carbon derived from biomass-pyrogenic smoke (SDOC) can be transported and deposited with atmospheric aerosols, enter aqueous environments, and possibly alter aqueous chemistry and quality. However, the characteristics of SDOC in aqueous environments and their effects on the fate of hydrophobic organic pollutants are poorly understood. In this study, we found that the emitted SDOC is 7.2∼19.6 wt.% of biochar retained in situ after biomass pyrolysis, and the emitted SDOC is approximately 1-3 orders of magnitude greater than dissolved organic carbon (DOC) released from biochar in a short term, which indicates that SDOC is a more important source of DOC in aqueous environments relative to biochar-released DOC after a biomass burning/pyrolysis event. The characteristics of SDOC in aqueous environments are dominated by the <1000 Da fraction, which accounts for >96 wt.% of bulk SDOC. In comparison with DOC in biochar, natural water, and soil, the S275-295 value of SDOC (0.037-0.053) is significantly greater, further indicating that SDOC has a smaller molecular size. Moreover, fluorescence EEM suggests that a fluorescence component located at the Ex/Em of 205/310 nm and the combinational ranges of fluorescence index (1.28-2.28), humification index (0.07-0.80), and biological index (1.16-1.72) can be used to identify SDOC from DOC in other media. Solubilization experiments indicated that SDOC (20 mg/L) improved the solubility of hydrophobic pollutants (pyrene and triclocarban) by 2-6 folds in aqueous environments, which potentially enhances the mobility of pollutants and enlarges the potential risk region. This study indicates that SDOC may cause a severe harm to aqueous environments in addition to the atmosphere. The results have profound implications for comprehensive assessments of the environmental effects of SDOC while promoting its identification and elucidating its behavior in aqueous environments.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-Physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Liang Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-Physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-Physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-Physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-Physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-Physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
14
|
Sadauskas-Henrique H, Smith DS, Val AL, Wood CM. Physicochemical properties of the dissolved organic carbon can lead to different physiological responses of zebrafish (Danio rerio) under neutral and acidic conditions. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:864-878. [PMID: 34435751 DOI: 10.1002/jez.2537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
Previous studies have suggested that the capacity of natural dissolved organic carbon (DOC) molecules to interact with biological membranes is associated with their aromaticity (SAC340 ); origin (allochthonous versus autochthonous, FI); molecular weight (Abs254/365 ); and relative fluorescence of DOC moieties (PARAFAC analysis). These interactions may be especially important when fish are challenged by acidic waters, which are known to inhibit the active uptake of Na+ and Cl- , while stimulating diffusive ion losses in freshwater fishes. Therefore, zebrafish were acclimated (7 days, pH 7.0) to five natural DOC sources (10 mg C/L), two from the Amazon Basin and three from Canada, together with a "no-added DOC" control. After the acclimation, fish were challenged by exposure to acidic water (pH 4.0) for 3 h. Osmoregulatory parameters were measured at pH 7.0 and 4.0. Acclimation to the five DOC sources did not disturb Na+ , Cl- and ammonia net fluxes, but resulted in differential elevations in Na+ , K+ ATPase and v-type H+ ATPase activities in fish at pH 7.0. However, after transfer to pH.4.0, the control fish exhibited rapid increases in both enzymes. In contrast the DOC- acclimated animals exhibited unchanged (Na+ , K+ ATPase) or differentially increased (v-type H+ ATPase) activities. Na+ , Cl- and ammonia net fluxes remained unchanged in the control fish, but were differentially elevated in most of the DOC treatments at pH 4.0, relative to the same DOC treatments at pH 7.0. Correlations between the osmoregulatory data the DOCs properties highlight that the DOC properties drive different effects on gill physiology.
Collapse
Affiliation(s)
- Helen Sadauskas-Henrique
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil.,Universidade Santa Cecília (Unisanta), Santos, SP, Brazil
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - Chris M Wood
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Macoustra GK, Koppel DJ, Jolley DF, Stauber JL, Holland A. Effect of Dissolved Organic Matter Concentration and Source on the Chronic Toxicity of Copper and Nickel Mixtures to Chlorella sp. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1908-1918. [PMID: 33751626 DOI: 10.1002/etc.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
There have been limited studies on the effects of toxicity-modifying factors, such as dissolved organic matter (DOM), on the toxicity of metal mixtures to aquatic biota. The present study investigated the effects of DOM concentration (low, 2.8 ± 0.1 mg C/L; high, 11 ± 1.0 mg C/L) and DOM source (predominantly terrestrial or microbial) on the chronic toxicity of copper (Cu) and nickel (Ni) binary mixtures to the green freshwater microalga Chlorella sp. This was assessed by using a full factorial design of 72-h growth inhibition bioassays. Measured algal growth rate was compared with growth predicted by the concentration addition and independent action reference models. Model predictions were based on concentrations of dissolved metals, labile metals (measured by diffusive gradients in thin films [DGT]), and calculated free metal ions (determined by the Windermere Humic Aqueous Model). Copper/Ni mixture toxicity was synergistic to Chlorella sp. in the absence of added DOM, with evidence of metal concentration-dependent toxicity at low effect concentrations. As DOM concentration increased, the mixture interaction changed from synergism to noninteraction or antagonism depending on the metal speciation method used. The DOM source had no significant effect on mixture interaction when based on dissolved and free metal ion concentrations but was significantly different when based on DGT-labile metal concentrations. Ratio-dependent mixture interaction was observed in all treatments, with increased deviation from the reference model predictions as the mixture changed from Ni- to Cu-dominated. The present study demonstrated that both DOM concentration and source can significantly change metal mixture toxicity interactions and that these interactions can be interpreted differently depending on the metal speciation method used. Environ Toxicol Chem 2021;40:1908-1918. © 2021 SETAC.
Collapse
Affiliation(s)
- Gabriella K Macoustra
- School of Earth, Atmosphere and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia
| | - Darren J Koppel
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
- Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Dianne F Jolley
- School of Earth, Atmosphere and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
| | - Jenny L Stauber
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
| | - Aleicia Holland
- CSIRO Land and Water, Lucas Heights, New South Wales, Australia
- School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, La Trobe University, Albury/Wodonga Campus, Victoria, Australia
| |
Collapse
|
16
|
Macoustra GK, Jolley DF, Stauber JL, Koppel DJ, Holland A. Speciation of nickel and its toxicity to Chlorella sp. in the presence of three distinct dissolved organic matter (DOM). CHEMOSPHERE 2021; 273:128454. [PMID: 33077193 DOI: 10.1016/j.chemosphere.2020.128454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Nickel is often a metal of interest in regulatory settings given its increasing prevalence in disturbed freshwaters and as a known toxicant to fish and algae. Dissolved organic matter (DOM) is a toxicity modifying factor for nickel and a ubiquitous water physicochemical parameter. This study investigated the effect of DOM concentration and source on the chronic toxicity of nickel to Chlorella sp. using three DOM at two concentrations (3.1 ± 1.8 and 12 ± 1.3 mg C/L). Nickel toxicity to Chlorella sp. was not strongly influenced by DOM concentration. In the absence of DOM, the 72-h EC50 for Chlorella sp. was 120 μg Ni/L. In the low DOM treatment, nickel toxicity was either unchanged or slightly increased (87-140 μg Ni/L) and unchanged or slightly decreased in the high DOM treatment (130-240 μg Ni/L). DOM source also had little effect on nickel toxicity, the largest differences in nickel toxicity occurring in the high DOM treatment. Labile nickel (measured by diffusive gradients in thin-films, DGT) followed strong linear relationships with dissolved nickel (R2 > 0.97). DOM concentration and source had limited effect on DGT-labile nickel. DGT-labile nickel decreased with increasing DOM concentration for only one of the three DOM. Modelled labile nickel concentrations (expressed as maximum dynamic concentrations, cdynmax) largely agreed with DGT-labile nickel and suggested that toxicity is explained by free Ni2+ concentrations. This study confirms that nickel toxicity is largely unaffected by DOM concentration or source and that both measured (DGT) and modelled (cdynmax and free Ni2+) nickel concentrations can explain nickel toxicity.
Collapse
Affiliation(s)
- Gabriella K Macoustra
- School of Earth, Atmosphere and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia
| | - Dianne F Jolley
- School of Earth, Atmosphere and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia; CSIRO Land and Water, Lucas Heights, NSW, 2232, Australia
| | | | - Darren J Koppel
- CSIRO Land and Water, Lucas Heights, NSW, 2232, Australia; Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Aleicia Holland
- CSIRO Land and Water, Lucas Heights, NSW, 2232, Australia; La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, VIC, 3690, Australia.
| |
Collapse
|
17
|
Morris C, Val AL, Brauner CJ, Wood CM. The physiology of fish in acidic waters rich in dissolved organic carbon, with specific reference to the Amazon basin: Ionoregulation, acid-base regulation, ammonia excretion, and metal toxicity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:843-863. [PMID: 33970558 DOI: 10.1002/jez.2468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/06/2022]
Abstract
Although blackwaters, named for their rich content of dissolved organic carbon (DOC), are often very poor in ions and very acidic, they support great fish biodiversity. Indeed, about 8% of all freshwater fish species live in the blackwaters of the Rio Negro watershed in the Amazon basin. We review how native fish survive these harsh conditions that would kill most freshwater fish, with a particular focus on the role of DOC, a water quality parameter that has been relatively understudied. DOC, which is functionally defined by its ability to pass through a 0.45-µm filter, comprises a diverse range of compounds formed by the breakdown of organic matter and is quantified by its carbon component that is approximately 50% by mass. Adaptations of fish to acidic blackwaters include minimal acid-base disturbances associated with a unique, largely unknown, high-affinity Na+ uptake system that is resistant to inhibition by low pH in members of the Characiformes, and very tight regulation of Na+ efflux at low pH in the Cichliformes. Allochthonous (terrigenous) DOC, which predominates in blackwaters, consists of larger, more highly colored, reactive molecules than autochthonous DOC. The dissociation of protons from allochthonous components such as humic and fulvic acids is largely responsible for the acidity of these blackwaters, yet at the same time, these components may help protect organisms against the damaging effects of low water pH. DOC lowers the transepithelial potential (TEP), mitigates the inhibition of Na+ uptake and ammonia excretion, and protects against the elevation of diffusive Na+ loss in fish exposed to acidic waters. It also reduces the gill binding and toxicity of metals. At least in part, these actions reflect direct biological effects of DOC on the gills that are beneficial to ionoregulation. After chronic exposure to DOC, some of these protective effects persist even in the absence of DOC. Two characteristics of allochthonous DOC, the specific absorbance coefficient at 340 nm (determined optically) and the PBI (determined by titration), are indicative of both the biological effectiveness of DOC and the ability to protect against metal toxicity. Future research needs are highlighted, including a greater mechanistic understanding of the actions of DOCs on gill ionoregulatory function, morphology, TEP, and metal toxicity. These should be investigated in a wider range of native fish Orders that inhabit one of the world's greatest biodiversity hotspots for freshwater fishes.
Collapse
Affiliation(s)
- Carolyn Morris
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| |
Collapse
|
18
|
Pinheiro JPS, Windsor FM, Wilson RW, Tyler CR. Global variation in freshwater physico-chemistry and its influence on chemical toxicity in aquatic wildlife. Biol Rev Camb Philos Soc 2021; 96:1528-1546. [PMID: 33942490 DOI: 10.1111/brv.12711] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Chemical pollution is one of the major threats to global freshwater biodiversity and will be exacerbated through changes in temperature and rainfall patterns, acid-base chemistry, and reduced freshwater availability due to climate change. In this review we show how physico-chemical features of natural fresh waters, including pH, temperature, oxygen, carbon dioxide, divalent cations, anions, carbonate alkalinity, salinity and dissolved organic matter, can affect the environmental risk to aquatic wildlife of pollutant chemicals. We evidence how these features of freshwater physico-chemistry directly and/or indirectly affect the solubility, speciation, bioavailability and uptake of chemicals [including via alterations in the trans-epithelial electric potential (TEP) across the gills or skin] as well as the internal physiology/biochemistry of the organisms, and hence ultimately toxicity. We also show how toxicity can vary with species and ontogeny. We use a new database of global freshwater chemistry (GLORICH) to demonstrate the huge variability (often >1000-fold) for these physico-chemical variables in natural fresh waters, and hence their importance to ecotoxicology. We emphasise that a better understanding of chemical toxicity and more accurate environmental risk assessment requires greater consideration of the natural water physico-chemistry in which the organisms we seek to protect live.
Collapse
Affiliation(s)
- João Paulo S Pinheiro
- Instituto de Biociências, Universidade de São Paulo, Matão Street, 14 Lane, Number 101, Room 220, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Fredric M Windsor
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, Tyne and Wear, NE1 7RU, U.K
| | - Rod W Wilson
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, U.K
| |
Collapse
|
19
|
Yi Y, Zhong J, Bao H, Mostofa KMG, Xu S, Xiao HY, Li SL. The impacts of reservoirs on the sources and transport of riverine organic carbon in the karst area: A multi-tracer study. WATER RESEARCH 2021; 194:116933. [PMID: 33618106 DOI: 10.1016/j.watres.2021.116933] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Reservoirs have been constructed as clean energy sources in recent decades with various environmental impacts. Karst rivers typically exhibit high dissolved inorganic carbon (DIC) concentrations, whether and how reservoirs affect carbon cycling, especially organic carbon (OC)-related biogeochemical processes in karst rivers, are unclear. To fill this knowledge gap, multiple tracer methods (including fluorescence excitation-emission matrix (EEM), ultraviolet (UV) absorption, and stable carbon (δ13C) and radiocarbon (Δ14C) isotopes) were utilized to track composition and property changes of both particulate OC (POC) and dissolved OC (DOC) along river-transition-reservoir transects in the Southwest China karst area. The changes in chemical properties indicated that from the river to the reservoir, terrestrial POC is largely replaced by phytoplankton-derived OC, while gradual coloured dissolved organic matter (CDOM) removal and addition of phytoplankton-derived OC to the DOC pool occurred as water flowed to the reservoir. Higher primary production in the transition area than that in the reservoir area was observed, which may be caused by nutrient released from suspended particles. Within the reservoir, the production surpassed degradation in the upper 5 m, resulting in a net DIC transformation into DOC and POC and terrestrial DOM degradation. The primary production was then gradually weakened and microbial degradation became more important down the profile. It is estimated that ~3.1-6.3 mg L-1 (~15.5-31.5 mg-C m-2 (~10-21%)) DIC was integrated into the OC pool through the biological carbon pump (BCP) process in the upper 5 m in the transition and reservoir areas. Our results emphasize the reservoir impact on riverine OC transport, and due to their characteristics, karst areas exhibit a higher BCP potential which is sensitive to human activities (more nutrient are provided) than non-karst areas.
Collapse
Affiliation(s)
- Yuanbi Yi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hongyan Bao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hua-Yun Xiao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Chaukura N, Moyo W, Ingwani T, Ndiweni SN, Gwenzi W, Nkambule TI. Comparative removal efficiencies of natural organic matter by conventional drinking water treatment plants in Zimbabwe and South Africa. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:570-581. [PMID: 32954576 DOI: 10.1002/wer.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Natural organic matter (NOM) influences the quality and treatability of drinking water; therefore, its removal is paramount. A few studies exist on NOM removal in developing countries, and comparative studies are even fewer globally. This study compared the removal efficiencies for bulk NOM and biodegradable organic carbon (BDOC) fractions of drinking water treatment plants in Zimbabwe (Z) and South Africa (S). NOM removal efficiency at the coagulation stage of plant Z and plant S was 11% and 13%, respectively. The fluorescence index (FI) for the raw water feeding plant Z (1.66) indicated a mixture of both microbial and terrestrially derived NOM, whereas for plant S the FI (4.08) showed terrestrially derived NOM. Based on the log-transformed absorbance at the disinfection stage, plant S had a 58% greater opportunity to produce disinfection by-products than plant Z. The BDOC results for plant Z showed humic fractions were the major substrates for bacterial assimilation, whereas the heterotrophic bacteria in plant S were not particularly selective toward DOC fractions. Overall, the plants had comparable NOM removal performances. PRACTITIONER POINTS: NOM removal efficiency at the coagulation stage of plant Z and plant S was 11% and 13%, respectively. Plant Z had a mixture of both microbial and terrestrially derived NOM, whereas plant S had terrestrially derived NOM. Plant S had a 58% greater opportunity to produce disinfection by-products than plant Z. Humic fractions were the major substrates for bacterial assimilation for plant Z, whereas the heterotrophic bacteria in plant S were not selective towards DOC fractions.
Collapse
Affiliation(s)
- Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa
| | - Welldone Moyo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| | - Thomas Ingwani
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| | - Sikelelwa N Ndiweni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, Harare, Zimbabwe
| | - Thabo I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
21
|
Lin H, Xia X, Zhang Q, Zhai Y, Wang H. Can the hydrophobic organic contaminants in the filtrate passing through 0.45 μm filter membranes reflect the water quality? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141916. [PMID: 32892049 DOI: 10.1016/j.scitotenv.2020.141916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
In the traditional water quality assessment, the concentration of total dissolved hydrophobic organic compounds (HOCs) passing through 0.45 μm filter membranes is usually used to evaluate the influence of HOCs on water quality. However, the bioavailability of dissolved organic matter (DOM)-associated and particle-associated HOCs is not considered. In the present work, pyrene, fulvic acid, and natural suspended particles (SPS) were used to simulate natural water (raw water). The immobilization and pyrene content in the tissues of D. magna caused by total pyrene in the raw water and those caused by freely dissolved pyrene with the concentration equal to the total dissolved pyrene in the filtrate of raw water were compared to determine whether the total dissolved pyrene concentration can reflect the water quality. The results indicated that when the DOM concentration was 5 mg C L-1 and the SPS concentration was higher than 0.2-0.4 g L-1, the bioavailability of pyrene was underestimated by the traditional water quality assessment because of the SPS-associated pyrene, and it was underestimated by 23.6-63.9% when SPS concentration was higher than 0.6 g L-1 due to the neglection of SPS-associated pyrene. Furthermore, the threshold value of SPS concentration was related to the SPS size and composition, and the effects of SPS and DOM on water quality were influenced by the concentration, size, and composition of SPS as well as the molecular weight of DOM. This study suggests that the traditional water quality assessment should be improved by comprehensively considering concentrations and characteristics of SPS and DOM.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yawei Zhai
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Macoustra GK, Jolley DF, Stauber J, Koppel DJ, Holland A. Amelioration of copper toxicity to a tropical freshwater microalga: Effect of natural DOM source and season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115141. [PMID: 32659625 DOI: 10.1016/j.envpol.2020.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Australian tropical freshwaters can experience extreme seasonal variability in rainfall and run off, particularly due to pulse events such as storms and cyclones. This study investigated how seasonal variability in dissolved organic matter (DOM) quality impacted the chronic toxicity of copper to a tropical green alga (Chlorella sp.) in the presence of two concentrations of DOM (low: ∼2 mg C/L; high: ∼10 mg C/L) collected from three tropical waters. Copper speciation and lability were explored using diffusive gradients in thin-films (DGT) and modelled maximum dynamic concentrations (cdynmax) using data derived from the Windermere Humic Aqueous Model (WHAM VII). Relationships between copper lability and copper toxicity were assessed as potential tools for predicting toxicity. Copper toxicity varied significantly with DOM concentration, source and season. Copper toxicity decreased with increasing concentrations of DOM, with 50% growth inhibition effect concentrations (EC50) increasing from 1.9 μg Cu/L in synthetic test waters with no added DOM (0.34 mg C/L) up to 63 μg Cu/L at DOM concentrations of 9.9 mg C/L. Copper toxicity varied by up to 2-fold between the three DOM sources and EC50 values were generally lower in the presence of wet season DOM compared to dry season DOM. Linear relationships between DGT-labile copper and dissolved copper were significantly different between DOM source, but not concentration or season. Modelled cdynmax consistently under-predicted labile copper in high DOM treatments compared to DGT measurements but performed better in low DOM treatments, indicating that this method is DOM-concentration dependent. Neither speciation method was a good surrogate for copper toxicity in the presence of different sources of natural DOM. Our findings show that DOM source and season, not just DOM concentration, affect copper toxicity to freshwater biota. Therefore, DOM quality should be considered as a toxicity-modifying factor for future derivation of bioavailability-based site-specific water quality guideline values.
Collapse
Affiliation(s)
- Gabriella K Macoustra
- School of Earth, Atmosphere and Life Sciences, University of Wollongong, NSW 2522, Australia
| | - Dianne F Jolley
- School of Earth, Atmosphere and Life Sciences, University of Wollongong, NSW 2522, Australia
| | - Jenny Stauber
- CSIRO Land and Water, Lucas Heights, NSW 2232, Australia
| | - Darren J Koppel
- CSIRO Land and Water, Lucas Heights, NSW 2232, Australia; Faculty of Science, University of Technology Sydney Broadway, NSW 2007 Australia
| | - Aleicia Holland
- Faculty of Science, University of Technology Sydney Broadway, NSW 2007 Australia; La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Freshwater Research Centre, Albury/Wodonga Campus, VIC 3690, Australia.
| |
Collapse
|
23
|
Holland A, McInerney PJ, Shackleton ME, Rees GN, Bond NR, Silvester E. Dissolved organic matter and metabolic dynamics in dryland lowland rivers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117871. [PMID: 31839576 DOI: 10.1016/j.saa.2019.117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) within freshwaters is essential for broad ecosystem function. The concentration and type of DOM within rivers depends on the relative contributions of allochthonous sources and the production and consumption of DOM by microbes. In this work we have examined the temporal patterns in DOM quality and productivity in three lowland rivers in dryland Australia using fluorescence excitation emission scans. We assessed the production and consumption of DOM within light and dark bottle assays to quantify the relative contribution of bacteria and algae to the DOM pool and simultaneously assessed whether the systems were autotrophic or heterotrophic. DOM varied temporally within the three river systems over the course of the study period. Characterisation of DOM within light and dark bottles following a 6-hour incubation revealed microbial consumption of a humic-like component and production of protein-like components similar in nature to the amino acids tryptophan and tyrosine. The lack of a significant difference in DOM quality between the light and dark bottles indicated that the protein-like DOM is likely derived from bacterial activity. Respiration was shown to be higher than gross primary production in both whole river and bottle assays, yielding negative net production values and demonstrating that these rivers were predominately heterotrophic. Our work suggests that bacterial metabolism of DOM may be a significant contributor to the production of protein-like components within heterotrophic freshwater systems.
Collapse
Affiliation(s)
- Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic 3690, Australia.
| | - Paul J McInerney
- La Trobe University, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic 3690, Australia
| | - Michael E Shackleton
- La Trobe University, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic 3690, Australia
| | - Gavin N Rees
- CSIRO Land and Water, Thurgoona, NSW 2640, Australia
| | - Nick R Bond
- La Trobe University, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic 3690, Australia
| | - Ewen Silvester
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic 3690, Australia
| |
Collapse
|
24
|
Gillmore ML, Gissi F, Golding LA, Stauber JL, Reichelt-Brushett AJ, Severati A, Humphrey CA, Jolley DF. Effects of dissolved nickel and nickel-contaminated suspended sediment on the scleractinian coral, Acropora muricata. MARINE POLLUTION BULLETIN 2020; 152:110886. [PMID: 32479277 DOI: 10.1016/j.marpolbul.2020.110886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 06/11/2023]
Abstract
Intensification of lateritic nickel mining in Southeast Asia and Melanesia potentially threatens coastal ecosystems from increased exposure to nickel and suspended sediment. This study investigated the response of Acropora muricata when exposed to either dissolved nickel, clean suspended sediment or nickel-contaminated suspended sediment for 7 days, followed by a 7-d recovery period. Significant bleaching and accumulation of nickel in coral tissue was observed only after exposure to high dissolved nickel concentrations and nickel-spiked suspended sediment. No effect on A. muricata was observed from exposure to a particulate-bound nickel concentration of 60 mg/kg acid-extractable nickel at a suspended sediment concentration of 30 mg/L TSS. This study demonstrates that bioavailability of nickel associated with suspended sediment exposure plays a key role in influencing nickel toxicity to corals. These findings assist in assessments of risk posed by increasing nickel mining activities on tropical marine ecosystems.
Collapse
Affiliation(s)
- Megan L Gillmore
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; CSIRO Land and Water, Lucas Heights, NSW 2234, Australia.
| | - Francesca Gissi
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; CSIRO Oceans and Atmosphere, Lucas Heights, NSW 2234, Australia
| | - Lisa A Golding
- CSIRO Land and Water, Lucas Heights, NSW 2234, Australia
| | | | - Amanda J Reichelt-Brushett
- Marine Ecology Research Centre, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Andrea Severati
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Craig A Humphrey
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Dianne F Jolley
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
25
|
Li Y, Xu C, Zhang W, Lin L, Wang L, Niu L, Zhang H, Wang P, Wang C. Response of bacterial community in composition and function to the various DOM at river confluences in the urban area. WATER RESEARCH 2020; 169:115293. [PMID: 31734394 DOI: 10.1016/j.watres.2019.115293] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/20/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
River confluences result in mixture and transformation of dissolved organic matter (DOM), influencing the phylogeny of microbial community, furthermore, the integrity and function of river systems. The relationship between the microbial community and DOM is complex, especially in the confluence zone. Previous reports focused on shifts in the different bacterial community in response to exposure to the same terrestrial DOM. However, the transformation of bacterial community induced by convergent DOM remains unknown. This study showed the shifts of DOM components at the junction via excitation-emission matrices parallel factor analysis. Metabolic differences were also determined via phylogenetic investigation of communities by reconstruction of unobserved states. The results demonstrated a direct link between the microbial metabolism and DOM biodegradation during the heterotrophic process. In response to diverse DOM conditions, the taxonomic composition and metabolic function of the microbial community presented significant differences. Different taxa may be involved in metabolizing various DOM components. As indicative bacteria that are closely associated with DOM components, Proteobacteria (Sphingomonas) are significant for microbial utilization and were important during the DOM-degrading process. Compared with other conditions, the abundance of carbon metabolism was higher in convergences where urban rivers joined with estuary or source water. Furthermore, humic-like DOM, converging in the confluence zone, induced a more active lipid metabolism. This study applied techniques that capture the diversity and complexity of bacterial communities and DOM, and provides new insight on the basis of the interaction between bacterial communities and DOM in confluence processes of biogeochemical significance.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Chen Xu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
26
|
Zhang Y, Zhang B, He Y, Lev O, Yu G, Shen G, Hu S. DOM as an indicator of occurrence and risks of antibiotics in a city-river-reservoir system with multiple pollution sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:276-289. [PMID: 31181515 DOI: 10.1016/j.scitotenv.2019.05.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Multiple sources contribute to the presence of antibiotic residues in water environments, and the environmental risks caused by antibiotics were paid more and more attention. This work aims to establish a relationship between optical properties of dissolved organic matter (DOM) and sources and risks of antibiotics. Occurrence of antibiotics and DOM in a city-river-reservoir freshwater system containing distinct antibiotic sources was investigated during three seasons using LC-MS and fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC), respectively. The results showed that antibiotics and DOM in the water had trends of increasing levels from the upstream to the midstream in the system. Five classes of antibiotics had statistically significant correlations with the humic-like component (C3) in the water (Pearson, p < 0.05). Especially, norfloxacin (NFX), which was dominant in the aquaculture source, significantly increased the fluorescence of C3 according to the fluorescence titration (R2 = 0.86, p < 0.01). Furthermore, fluorescence signature in the aquaculture pond posed broad humic acid-like peaks with relatively higher abundances compared to other areas. These results suggested that C3 could be recognized as an indicator of NFX from aquaculture sources. Meanwhile, C3 can largely account for ecological risks of tetracyclines according to the results of redundancy analysis. This work highlights the roles of EEM-PARAFAC on tracing the source of antibiotics and the correlations between environmental risks of antibiotics and DOM in the aquatic environment.
Collapse
Affiliation(s)
- Yongpeng Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ovadia Lev
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
27
|
Neale PA, Leusch FDL. Assessing the role of different dissolved organic carbon and bromide concentrations for disinfection by-product formation using chemical analysis and bioanalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17100-17109. [PMID: 31001769 DOI: 10.1007/s11356-019-05017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Concerns regarding disinfection by-product (DBP) formation during drinking water treatment have led water utilities to apply treatment processes to reduce the concentration of DBP precursor natural organic matter (NOM). However, these processes often do not remove bromide, leading to high bromide to dissolved organic carbon (DOC) ratios after treatment, which can increase the formation of more toxic brominated DBPs. In the current study, we investigated the formation and effect of DBPs in a matrix of synthetic water samples containing different concentrations of bromide and DOC after disinfection with chlorine. Trihalomethanes and haloacetic acids were analysed by chemical analysis, while effect was evaluated using in vitro bioassays indicative of the oxidative stress response and bacterial toxicity. While the addition of increasing bromide concentrations did not alter the sum molar concentration of DBPs formed, the speciation changed, with greater bromine incorporation with an increasing Br:DOC ratio. However, the observed effect did not correlate with the Br:DOC ratio, but instead, effect increased with increasing DOC concentration. Water samples with low DOC and high bromide did not exceed the available oxidative stress response effect-based trigger value (EBT), while all samples with high DOC, irrespective of the bromide concentration, exceeded the EBT. This suggests that treatment processes that remove NOM can improve drinking water quality, even if they are unable to remove bromide. Further, iceberg modelling showed that detected DBPs only explained a small fraction of the oxidative stress response, supporting the application of both chemical analysis and bioanalysis for monitoring DBP formation.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
28
|
Long M, Holland A, Planquette H, González Santana D, Whitby H, Soudant P, Sarthou G, Hégaret H, Jolley DF. Effects of copper on the dinoflagellate Alexandrium minutum and its allelochemical potency. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:251-261. [PMID: 30878793 DOI: 10.1016/j.aquatox.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Alexandrium minutum produces toxic compounds, including paralytic shellfish toxins, but also some unknown extracellular toxins. Although copper (Cu) is an essential element, it can impair microalgal physiology and increase their toxic potency. This study investigated the effect of different concentrations of dissolved Cu (7 nM, 79 nM and 164 nM) on A. minutum allelochemical potency, here defined as negative effects of a protist on competing protists through the release of chemicals. This was studied in relation to its physiology. The effects of Cu were assessed on A. minutum growth, reactive oxygen species level, photosynthesis proxies, lipid metabolism, exudation of dissolved organic compounds, allelochemical potency and on the associate free bacterial community of A. minutum. Only the highest Cu exposure (164 nM) inhibited and delayed the growth of A. minutum, and only in this treatment did the allelochemical potency significantly increase, when the dissolved Cu concentration was still toxic. Within the first 7 days of the high Cu treatment, the physiology of A. minutum was severely impaired with decreased growth and photosynthesis, and increased stress responses and free bacterial density per algal cell. After 15 days, A. minutum partially recovered from Cu stress as highlighted by the growth rate, reactive oxygen species level and photosystem II yields. This recovery could be attributed to the apparent decrease in background dissolved Cu concentration to a non-toxic level, suggesting that the release of exudates may have partially decreased the bioavailable Cu fraction. Overall, A. minutum appeared quite tolerant to Cu, and this work suggests that the modifications in the physiology and in the exudates help the algae to cope with Cu exposure. Moreover, this study shows the complex interplay between abiotic and biotic factors that can influence the dynamic of A. minutum blooms. Modulation in allelochemical potency of A. minutum by Cu may have ecological implications with an increased competitiveness of this species in environments contaminated with Cu.
Collapse
Affiliation(s)
- Marc Long
- School of Chemistry, University of Wollongong, NSW, 2522, Australia; Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France.
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, VIC, Australia
| | - Hélène Planquette
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - David González Santana
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Hannah Whitby
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Géraldine Sarthou
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Dianne F Jolley
- School of Chemistry, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
29
|
Analysis of the Mixing Processes in a Shallow Subtropical Reservoir and Their Effects on Dissolved Organic Matter. WATER 2019. [DOI: 10.3390/w11040737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A good understanding of the physical processes of lakes or reservoirs, especially of those providing drinking water to residents, plays a vital role in water management. In this study, the water circulation and mixing processes occurring in the shallow, subtropical Tingalpa Reservoir in Australia have been investigated. Bathymetrical, meteorological, chemical and physical data collected from field measurements, laboratory analysis of water sampling and an in-situ Vertical Profile System (VPS) were analysed. Based on the high-frequency VPS dataset, a 1D model was developed to provide information for vertical transport and mixing processes. The results show that persistent high air temperature and stable reservoir water depth lead to a prolonged thermal stratification. Analysis indicates that heavy rainfalls have a significant impact on water quality when the dam level is low. The peak value of Dissolved Organic Carbon (DOC) concentration occurred in the wet season, while the specific UV absorbance (SUVA) value decreased when solar radiation increased from spring to summer. The study aims to provide a comprehensive approach for understanding and modelling the water mixing processes in similar lakes with high-frequency data from VPS’s or other monitoring systems.
Collapse
|
30
|
Macoustra G, Holland A, Stauber J, Jolley DF. Effect of Various Natural Dissolved Organic Carbon on Copper Lability and Toxicity to the Tropical Freshwater Microalga Chlorella sp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2768-2777. [PMID: 30695643 DOI: 10.1021/acs.est.8b04737] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater systems. The ameliorative ability of five unstudied DOCs on the chronic toxicity of copper to the tropical alga Chlorella sp. was compared. Sensitivity to copper varied dramatically; effect concentrations at the 50 percent effect level (EC50) increased by up to 22-fold in the high DOC treatment compared to controls and more than 2-fold between DOCs at the same concentration. The analytical techniques, diffusive gradients in thin films (DGT) and Chelex column, were used to understand whether differences in copper toxicity could be explained by copper lability. Labile copper mirrored the trends seen in the toxicity tests; lability decreased with increasing DOC concentration and varied between DOCs at the same concentration. The equilibrium model, WHAM VII, was also used to better understand the role of the free copper ion on the toxicity observed. Disagreement between EC50 values derived using the WHAM-predicted free Cu2+ concentrations and agreement between DGT-labile and the maximum dynamic concentration ( cmaxdyn) suggest free copper is not the sole contributor to toxicity and that the source of the specific DOCs also plays a role.
Collapse
Affiliation(s)
- Gabriella Macoustra
- School of Chemistry, Centre for Molecular and Medical Biosciences , University of Wollongong , Wollongong , New South Wales 2252 , Australia
| | - Aleicia Holland
- School of Chemistry, Centre for Molecular and Medical Biosciences , University of Wollongong , Wollongong , New South Wales 2252 , Australia
- School of Life Science, Department of Ecology, Environment and Evolution, Murray Darling Freshwater Research Centre , La Trobe University , Albury/Wodonga Campus, West Wodonga , Victoria 3690 , Australia
- CSIRO Land and Water , Lucas Heights , New South Wales 2234 , Australia
| | - Jenny Stauber
- CSIRO Land and Water , Lucas Heights , New South Wales 2234 , Australia
| | - Dianne F Jolley
- School of Chemistry, Centre for Molecular and Medical Biosciences , University of Wollongong , Wollongong , New South Wales 2252 , Australia
| |
Collapse
|
31
|
Xiaoling Z, Gaofang Y, Nanjing Z, Ruifang Y, Jianguo L, Wenqing L. Chromophoric dissolved organic matter influence correction of algal concentration measurements using three-dimensional fluorescence spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:405-411. [PMID: 30530100 DOI: 10.1016/j.saa.2018.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
In view of the adverse effects of CDOM (chromophoric or colored dissolved organic matter) on in vivo algal pigment concentration measurements in natural water bodies, a CDOM influence correction method for algal concentration measurements based on three-dimensional fluorescence spectra is investigated. The three-dimensional fluorescence spectra of five common species of algae belonging to five categories, HA (humic acid), and natural water sampled from the Dongpu reservoir, Hefei were analyzed, and the spectral similarity of endogenous/exogenous CDOM in the algal fluorescence spectra region was compared. HA was selected to represent the CDOM spectrum group. The CDOM modified algal pigment concentration measurement method was developed using three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that under the presence of CDOM interference factors, the recognition accuracy rate of Pyrrophyta, Bacillariophyta, Cyanophyta, and Chlorophyta increased 100%, 100%, 40%, and 40%, respectively. The average recovery rate of Cryptomonas, Pyrrophyta, Bacillariophyta, and Chlorophyta increased 162.7%, 50.3%, 106.4%, and 19.1%, respectively. In addition, the classification accuracy of Pyrrophyta, Bacillariophyta, Cyanophyta, Chlorophyta increased 83.9%, 100%, 38.2%, and 48%, respectively. This was concluded by comparing these results with the results of the algal pigment concentration measurement method without the CDOM modification. This study provides an experimental basis for the development of accurate phytoplankton fluorescence classification monitoring technology.
Collapse
Affiliation(s)
- Zhang Xiaoling
- Key Laboratory of Environmental Optics and technology, Anhui Institute of Optics and fine mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science & Technology of China, Hefei 230026, China; Anhui Key Laboratory of environmental optical monitoring technology, Hefei 230031, China.
| | - Yin Gaofang
- Key Laboratory of Environmental Optics and technology, Anhui Institute of Optics and fine mechanics, Chinese Academy of Sciences, Hefei 230031, China; Anhui Key Laboratory of environmental optical monitoring technology, Hefei 230031, China
| | - Zhao Nanjing
- Key Laboratory of Environmental Optics and technology, Anhui Institute of Optics and fine mechanics, Chinese Academy of Sciences, Hefei 230031, China; Anhui Key Laboratory of environmental optical monitoring technology, Hefei 230031, China.
| | - Yang Ruifang
- Key Laboratory of Environmental Optics and technology, Anhui Institute of Optics and fine mechanics, Chinese Academy of Sciences, Hefei 230031, China; Anhui Key Laboratory of environmental optical monitoring technology, Hefei 230031, China
| | - Liu Jianguo
- Key Laboratory of Environmental Optics and technology, Anhui Institute of Optics and fine mechanics, Chinese Academy of Sciences, Hefei 230031, China; Anhui Key Laboratory of environmental optical monitoring technology, Hefei 230031, China
| | - Liu Wenqing
- Key Laboratory of Environmental Optics and technology, Anhui Institute of Optics and fine mechanics, Chinese Academy of Sciences, Hefei 230031, China; Anhui Key Laboratory of environmental optical monitoring technology, Hefei 230031, China
| |
Collapse
|