1
|
Fu M, Xue P, Du Z, Chen J, Liang X, Li J. Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis. TOXICS 2025; 13:60. [PMID: 39853058 PMCID: PMC11768473 DOI: 10.3390/toxics13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
The control of waterborne diseases through water disinfection is a significant advancement in public health. However, the disinfection process generates disinfection by-products (DBPs), including trihalomethanes (THMs), which are considered to influence the occurrence of cancer. This analysis aims to quantitatively evaluate the relationship between blood concentrations of THMs and cancer. Additionally, the relationship between blood chloroform concentration and cancer is analyzed separately. Following PRISMA guidelines, we conducted a thorough search in the PubMed, Web of Science, and CNKI databases. Statistical analysis was performed using Review Manager 5.4 software. After screening, seven studies meeting the evaluation criteria were included. A total of 1027 blood samples from patients with cancer and 7351 blood samples from the control group were collected. The average concentration of THMs in the blood of the experimental group was 46.71 pg/mL, while it was 36.406 pg/mL in the control group. The difference between the two groups was statistically significant (SMD = -0.36, 95% CI: -0.45 to -0.27, p < 0.00001). However, due to the limited research data on the relationship between blood THMs and cancer, the conclusions drawn exhibit high heterogeneity. Additionally, we discussed the carcinogenic mechanisms of THMs, which involve multiple biological pathways such as oxidative stress, DNA adduct formation, and endocrine disruption, with variations in accumulation and target sites potentially leading to different cancer types, for which evidence is currently lacking. In the future, further epidemiological and animal model studies on THMs should be conducted to obtain more accurate conclusions.
Collapse
Affiliation(s)
- Miaomiao Fu
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China; (M.F.); (P.X.); (Z.D.); (J.C.)
| | - Pengyu Xue
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China; (M.F.); (P.X.); (Z.D.); (J.C.)
| | - Zhuorong Du
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China; (M.F.); (P.X.); (Z.D.); (J.C.)
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China; (M.F.); (P.X.); (Z.D.); (J.C.)
| | - Xiaojun Liang
- Kunshan Center for Disease Control and Prevention, Suzhou 215301, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China; (M.F.); (P.X.); (Z.D.); (J.C.)
| |
Collapse
|
2
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
3
|
Moazeni M, Ebrahimpour K, Mohammadi F, Heidari Z, Ebrahimi A. Human health risk assessment of Triclosan in water: spatial analysis of a drinking water system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1171. [PMID: 37682384 DOI: 10.1007/s10661-023-11789-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Triclosan (TCS) has been increased in the water during the COVID-19 pandemic because it cannot remove by conventional water treatment. In addition, it can accumulate in the human body over time through long-term exposure. Therefore, the occurrence of TCS in the water treatment plant (WTP) and tap water, and its human health risk assessment through tap water ingestion, dermal absorption, and inhalation routes in Isfahan, Iran, were investigated. Moreover, spatial regression methods were used for the prediction of water quality parameters, TCS concentration, and total hazard quotient (HQ). The average TCS concentration in the influent and effluent of WTP and tap water was 1.6, 1.4, and 0.4 μg/L, respectively. Conventional WTP has low efficiency in the removal of TCS (12.6%) from water. The average values of total HQ for males were 7.79×10-5, 4.97×10-4, and 4.97×10-5 and for females were 3.31×10-5, 2.11×10-4, and 2.11×10-5 based on RfDEPA, RfDMDH, and RfDRodricks, respectively that were in the low-risk levels (HQ<1). Furthermore, TCS concentration in tap water and the ingestion rate of drinking water had the highest effect on the risk of TCS exposure from tap water. The non-carcinogenic health risk of TCS in water was low. The results of this study may be useful for promoting WTP processes to remove emerging pollutants.
Collapse
Affiliation(s)
- Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Zhao S, Gong Y, Yang S, Chen S, Huang D, Yang K, Cheng H. Health risk assessment of heavy metals and disinfection by-products in drinking water in megacities in China: A study based on age groups and Monte Carlo simulations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115330. [PMID: 37572625 DOI: 10.1016/j.ecoenv.2023.115330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Heavy metal(loid)s (HMs) and disinfection by-products (DBPs) in drinking water pose risks to human health and jeopardize drinking water. Water-related behaviors vary significantly among different age groups and regions. In this study, the carcinogenic and non-carcinogenic risks of HMs (As, Cd, Cr6+, Cu, Pb, and Zn) and DBPs (bromodichloromethane (BDCM), bromoform, chloroform, dibromochloromethane (DBCM), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA)) in drinking water in two Chinese megacities (Beijing in North China and Guangzhou in South China) via multiple exposure pathways were assessed. The results showed that children aged 9 months to 2 years had a total carcinogenic risk (TCR) and hazard index (HI) above acceptable levels, indicating that despite the drinking water quality in the selected megacities meeting the current Chinese national standards (GB 5749-2022), the health risks of exposure to HMs and DBPs in drinking water for local young children should not be neglected. Specifically, the carcinogenic risk (CR) of exposure to As in drinking water for children < 18-years-old, who were divided into different age groups, was 1.5-2.0- and 4.5-5.9-times higher than the TCR of exposure to DBPs in Beijing and Guangzhou, respectively. Regarding children aged 9 months to 2 years, the exposure to TCAA accounted for the largest proportion (35.6 %) of the TCR of exposure to DBPs in Beijing drinking water, 5.4-times higher than that in Guangzhou; whereas, the TCR of exposure to DBPs in Guangzhou drinking water was predominantly caused by exposure to chloroform, accounting for 40.6 % of the TCR and 1.5-times higher than that in Beijing. In addition, the CR of exposure to DCAA in drinking water in both megacities accounted for a large proportion of the TCR for children aged 9 months to 2 years. Monte Carlo simulations showed that 62.2 % and 42.6 % of the TCR of simultaneous exposure to As and DBPs in drinking water exceeded the acceptable level for sensitive populations, that is, children aged 1-2 years in Beijing (95th percentile = 4.2 × 10-4) and children aged 9-12 months in Guangzhou (95th percentile = 5.2 × 10-4), respectively. This elaborate health risk assessment sheds light on improving the water quality indices to guarantee drinking water safety in China.
Collapse
Affiliation(s)
- Shoudao Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C8
| | - Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuwen Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaoyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C8
| | - Di Huang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Chen X, Huang S, Chen X, Du L, Wang Z, Liang Y, Zhang W, Feng J. Novel insights into impacts of the "7.20" extreme rainstorm event on water supply security of Henan Province, China: Levels and health risks of tap water disinfection by-products. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131323. [PMID: 37004439 DOI: 10.1016/j.jhazmat.2023.131323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Spatial distributions, levels, and comprehensive assessments of post-flood tap water disinfection by-products (DBPs) were first studied in Henan Province after the "7.20" Extreme Rainstorm Event in 2021. DBPs levels and health risks in tap water were higher in areas flooded (waterlogged) by storm or upstream flood discharge (WA) and rainstorm-affected areas (RA) compared with other areas (OA), suggesting that extreme rainstorm and flooding events may somehow exacerbate DBPs contamination of tap water through disinfection. WA sites were characterized as contamination hotspots. The results revealed high haloacetic acids (HAAs) levels in WA (Avg: 57.79 μg·L-1) and RA (Avg: 32.63 μg·L-1) sites. Compared with normal period, DBPs-caused cancer risk increased by 3 times, exceeding the negligible risk level. Cancer risk came primarily from the ingestion of trihalomethanes (THMs) (>80%), children were the sensitive group. Those between 30 and 69 showed approximately 1.7 times higher disability-adjusted life yearsper person-yearthan other age groups. Apart from regulated DBPs, bromochloracetic acid (BCAA) and dibromoacetonitrile (DBAN) appear to be the main toxicity contributors in these samples. Our results provide a scientific basis for preventing and controlling health risks from tap water DBPs and for assessing the social benefits and burdens of emergency disinfection.
Collapse
Affiliation(s)
- Xing Chen
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Shuai Huang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Xing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lingnan Du
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Zongwu Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Yingying Liang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Wan Zhang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Key Laboratory of Food Compositionand Quality Assessment, Kaifeng, Henan 475000, PR China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
6
|
Liu K, Lin T, Zhong T, Ge X, Jiang F, Zhang X. New methods based on a genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting the occurrence of trihalomethanes in tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161976. [PMID: 36740065 DOI: 10.1016/j.scitotenv.2023.161976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Monitoring trihalomethanes (THMs) levels in water supply systems is of great significance in ensuring drinking water safety. However, THMs detection is a time-consuming task. Developing predictive THMs models using parameters that are easier to obtain is an alternative. To date, there is still no application of optimization algorithms and general regression neural networks in predicting disinfection by-products levels. This study was to explore the feasibility of back propagation neural network (BPNN), genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting THMs occurrence in real water supply systems. The results showed that the BPNN models' prediction ability was limited (test rp = 0.571-0.857, N25 = 61.5 %-91.5 %). Optimized by the genetic algorithm (GA), GABP models were generated and exhibited better prediction performance (test rp = 0.573 and 0.696-0.863, N25 = 68.2 %-93.6 %). However, GABP models took a lot of time and their prediction performance was unstable. A GRNN was then used to generate simpler neural network models, and the resulting prediction performance was excellent (total trihalomethanes and bromodichloromethane: test rp = 0.657-0.824, N25 = 81.8 %-100 %). In general, GRNN was the best at predicting THMs concentrations among the three models. However, it is worth noting that the prediction accuracy of bromodichloromethane (BDCM) was not high, which may be due to the absence of key parameters affecting BDCM formation. Accurate predictions of THMs by GRNN with these nine water parameters made THMs monitoring in real water supply systems possible and practical.
Collapse
Affiliation(s)
- Kangle Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Tingting Zhong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinran Ge
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, PR China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, PR China
| |
Collapse
|
7
|
Cai H, Shen C, Xu H, Qian H, Pei S, Cai P, Song J, Zhang Y. Seasonal variability, predictive modeling and health risks of N-nitrosamines in drinking water of Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159530. [PMID: 36270378 DOI: 10.1016/j.scitotenv.2022.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of carcinogenic N-nitrosamines in drinking water is of significant concern. In the present study, eight N-nitrosamines from three representative drinking water treatment plants (DWTPs) in Shanghai, China were monitored for an entire year to evaluate their seasonal variability, probabilistic cancer risk and the resulting disease burden. The possibility of employing routinely monitored water quality parameters as predictors of N-nitrosamines was also examined. The results showed that the Taipu River-fed reservoir suffered more serious N-nitrosamine contamination than the Yangtze River-fed reservoirs. Winter witnessed higher levels of N-nitrosamines in both source and finished water. N-nitrosamine concentrations increased from source water to finished water in autumn or winter, but no spatial variations were observed in summer. The total lifetime cancer risk (LCR) posed by N-nitrosamines in finished water was within the acceptable range (1.00 × 10-6 to 1.00 × 10-4), with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) being the main contributors. Winter and autumn were found to have higher total LCR values. The average individual disability-adjusted life years (DALYs) lost was 4.43 × 10-6 per person-year (ppy), exceeding the reference risk level (1.00 × 10-6 ppy). Liver cancer accounted for 97.1 % of the total disease burden, while bladder and esophagus cancers made a little contribution (2.9 %). A multiple regression model was developed to estimate the total N-nitrosamines in finished water as a function of water quality parameters, and the R2 value was 0.735. This study not only provides fundamental data for public health policy development, but also reveals the necessity to incorporate a seasonal control strategy in DWTPs to minimize the associated health risks induced by N-nitrosamines.
Collapse
Affiliation(s)
- Hongquan Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chaoye Shen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Huihui Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hailei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Saifeng Pei
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ping Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jun Song
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yun Zhang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China.
| |
Collapse
|
8
|
Abtahi M, Dobaradaran S, Koolivand A, Jorfi S, Saeedi R. Assessment of cause-specific mortality and disability-adjusted life years (DALYs) induced by exposure to inorganic arsenic through drinking water and foodstuffs in Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159118. [PMID: 36181805 DOI: 10.1016/j.scitotenv.2022.159118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The health risk and burden of disease induced by exposure to inorganic arsenic (iAs) through drinking water and foodstuffs in Iran were assessed. The iAs levels in drinking water and foodstuffs (15 food groups) in the country were determined through systematic review of three international databases (PubMed, Scopus, and Web of Science) and meta-analysis. Based on the results of the systematic review and meta-analysis, the average iAs levels in drinking water and all the food groups at the national level were lower than the maximum permissible levels. The total average non-carcinogenic risk of dietary exposure to iAs in terms of hazard index (HI) was 3.4. The average incremental lifetime cancer risk (ILCR) values of dietary exposure to iAs were determined to be 1.5 × 10-3 for skin cancer, 1.0 × 10-3 for lung cancer, and 4.0 × 10-4 for bladder cancer. Over two-thirds of the non-carcinogenic and carcinogenic risk of dietary exposure to iAs was attributed to bread and cereals, drinking water, and rice. The total annual cancer incidence, deaths, disability-adjusted life years (DALYs), death rate, and DALY rate (per 100,000 people) were assessed to be 3347 (95 % uncertainty interval: 1791 to 5999), 1302 (697 to 2336), 72,606 (38,833 to 130,228), 1.6 (0.87 to 2.9), and 91 (49 to 160). The contribution of mortality in the attributable burden of disease was 95.1 %. The contributions of the causes in the attributable burden of disease were 72 % for lung cancer, 16 % for bladder cancer, and 12 % for skin cancer. Due to the significant attributable burden of disease, national and subnational action plans consisting of multi-disciplinary approaches for risk management of dietary exposure to iAs, especially for the higher arsenic-affected areas and high-risk population groups in the country are recommended.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang L, Li J, Zheng J, Liang J, Li R, Gong Z. Source tracing and health risk assessment of phthalate esters in household tap-water: A case study of the urban area of Quanzhou, Southeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114277. [PMID: 36371886 DOI: 10.1016/j.ecoenv.2022.114277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of phthalate esters (PAEs) in household tap water has been investigated via the presence of their geochemical characteristics in the pretreatment and transfer processes of water plants in the urban and suburban areas of the subtropical medium-sized city of Quanzhou, southeast China. The results for all approximately 300 tap water samples collected from 6 sampling stations at household kitchens from Nov. 30, 2017, to Dec. 6, 2018, showed that dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutylphthaate (DIBP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP) could be identified and quantified among the 16 PAE congeners with the developed gas chromatographymass spectrometry method. The levels of the sum of 5 PAE congeners (Σ5PAEs) for all tap water ranged from 780.0 ng/L to 9180 ng/L, while DIBP and DEHP were the most abundant congeners, accounting for 82.2% in the dry season, 89.9% in the normal season, and 89.3% in the wet season. Factors of the transferring process, such as the spatial distance from the sampling station to the water plant, the material of pipelines, and the storage time of tap water in the pipeline, affected the levels of PAE congeners in tap water from the correlation of Σ5PAEs levels and transferring distance according to hierarchical cluster analysis. The seasonal variations in Σ5PAEs and each congener had good agreement with the temperature, suggesting that PAEs in tap water mainly come from raw water, which should be further explored in future work. Health risk assessment of PAEs in tap water with the HQ method showed that the occurrence of DEP and DBP has no noncarcinogenic risk for adults and children, while the concentration of DEHP might cause potential noncarcinogenic risk for adults and children, which should be given considerably more attention.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Jianyong Li
- Fujian PFI Fareast Testing & Technology Services Co., Ltd, Quanzhou 362000, PR China.
| | - Jiazuo Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Jing Liang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Rongli Li
- Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
10
|
Chen L, Su B, Yu J, Wang J, Hu H, Ren HQ, Wu B. Combined effects of arsenic and 2,2-dichloroacetamide on different cell populations of zebrafish liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152961. [PMID: 35031379 DOI: 10.1016/j.scitotenv.2022.152961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and disinfection by-products are important health risk factors in the water environment. However, their combined effects on different cell populations in the liver are not well known. Here, zebrafish were exposed to 100 μg/L As, 300 μg/L 2,2-dichloroacetamide (DCAcAm), and their combination for 23 days. Then transcriptome profiles of cell populations in zebrafish liver were analyzed by single-cell RNA sequencing (scRNA-seq). A total of 13,563 cells were obtained, which were identified as hepatocytes, hepatic duct cells, endothelial cells and macrophages. Hepatocytes were the main target cell subtype of As and DCAcAm exposures. DCAcAm exposure induced higher toxicity in male hepatocytes, which specifically changed amino acid metabolism, response to hormone and cofactor metabolism. However, As exposure caused higher toxicity in female hepatocytes, which altered lipid metabolism, carbon metabolism, and peroxisome. Combined exposure to As and DCAcAm decreased toxicities in hepatocytes compared to each one alone. Female hepatocytes had higher tolerance to co-exposure of As and DCAcAm than male hepatocytes. Further, combined exposure to As and DCAcAm induced functional changes in macrophages similar to As alone groups, which mainly altered the transfer of sterol and cholesterol. Hepatic duct cells and endothelial cells were not influenced by exposures to As and DCAcAm. This study for the first time highlights the cell-specific combined responses of As and DCAcAm in zebrafish liver, which provide useful information for their health risk assessment in a co-exposure environment.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bei Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Shokoohi R, Khazaei M, Karami M, Seid-Mohammadi A, Khazaei S, Torkshavand Z. Application of fingernail samples as a biomarker for human exposure to arsenic-contaminated drinking waters. Sci Rep 2022; 12:4733. [PMID: 35304571 PMCID: PMC8933471 DOI: 10.1038/s41598-022-08845-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
This study evaluated the relationship between arsenic uptake via drinking water ingestion and arsenic concentration in fingernails as a biomarker for human exposure. For this purpose, we collected fingernail samples from 40 healthy participants of arsenic-affected rural regions of Kaboudrahang County, the west of Iran. A total of 49 fingernail samples were also collected from individuals who lived in areas where contamination of drinking water sources with arsenic had not been reported. It was found that the fingernails arsenic contents in 50 and 4.08% of the samples collected from arsenic-contaminated and reference villages were higher than the normal arsenic values of nails (0.43-1.08 µg/g), respectively. Based on the results of adjusted multiple linear regression, a significant association was found between groundwater and fingernails arsenic concentration (p < 0.001). Moreover, a statistically significant association was shown between arsenic in the fingernail samples and gender (p = 0.037). Fingernails arsenic contents were not significantly affected by other variables including age, smoking habits, and BMI (p > 0.05). In light of the results of this study, the use of biological indicators such as fingernail tissues due to easier sampling and less risk of external contamination is suitable for assessing exposure to heavy metals in contaminated areas.
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Khazaei
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolmotaleb Seid-Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Torkshavand
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Naddafi K, Mesdaghinia A, Abtahi M, Hassanvand MS, Beiki A, Shaghaghi G, Shamsipour M, Mohammadi F, Saeedi R. Assessment of burden of disease induced by exposure to heavy metals through drinking water at national and subnational levels in Iran, 2019. ENVIRONMENTAL RESEARCH 2022; 204:112057. [PMID: 34529973 DOI: 10.1016/j.envres.2021.112057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The burden of disease attributable to exposure to heavy metals via drinking water in Iran (2019) was assessed at the national and regional levels. The non-carcinogenic risk, carcinogenic risk, and attributable burden of disease of heavy metals in drinking water were estimated in terms of hazard quotient (HQ), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average drinking water concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in Iran were determined to be 2.3, 0.4, 12.1, 2.5, 0.7, and 19.7 μg/L, respectively, which were much lower than the standard values. The total average HQs of heavy metals in drinking water in the entire country, rural, and urban communities were 0.48, 0.65 and 0.45, respectively. At the national level, the average ILCRs of heavy metal in the entire country were in the following order: 1.06 × 10-4 for As, 5.89 × 10-5 for Cd, 2.05 × 10-5 for Cr, and 3.76 × 10-7 for Pb. The cancer cases, deaths, death rate (per 100,000 people), DALYs, and DALY rate (per 100,000 people) attributed to exposure to heavy metals in drinking water at the national level were estimated to be 213 (95% uncertainty interval: 180 to 254), 87 (73-104), 0.11 (0.09-0.13), 4642 (3793-5489), and 5.81 (4.75-6.87), respectively. The contributions of exposure to As, Cd, Cr, and Pb in the attributable burden of disease were 14.7%, 65.7%, 19.3%, and 0.2%, respectively. The regional distribution of the total attributable DALY rate for all heavy metals was as follows: Region 5> Region 4> Region 1> Region 3> Region 2. The investigation and improvement of relatively high exceedance of As levels in drinking water from the standard value, especially in Regions 5 and 3 as well as biomonitoring of heavy metals throughout the country were recommended.
Collapse
Affiliation(s)
- Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayoub Beiki
- Center of Environmental and Occupational Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Gholamreza Shaghaghi
- Center of Environmental and Occupational Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Lu Z, Qi X, Zhu X, Li X, Li K, Wang H. Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO 4@silicate precipitate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117484. [PMID: 34153609 DOI: 10.1016/j.envpol.2021.117484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO4@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 μg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al3+ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.
Collapse
Affiliation(s)
- Zhixu Lu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xianjin Qi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xing Zhu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Xuezhu Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
14
|
Xue P, Zhao Y, Zhao D, Chi M, Yin Y, Xuan Y, Wang X. Mutagenicity, health risk, and disease burden of exposure to organic micropollutants in water from a drinking water treatment plant in the Yangtze River Delta, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112421. [PMID: 34147865 DOI: 10.1016/j.ecoenv.2021.112421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
A wide variety of organic micropollutants in drinking water pose a serious threat to human health. This study was aimed to reveal the characteristics of organic micropollution profiles in water from a drinking water treatment plant (DWTP) in the Yangtze River Delta, China and investigate the mutagenicity, health risk and disease burden through mixed exposure to micropollutants in water. The presence of organic micropollutants in seven categories in organic extracts (OEs) of water from the DWTP was determined, and Ames test was conducted to test the mutagenic effect of OEs. Meanwhile, health risk of exposure to organic micropollutants in finished water through three exposure routes (ingestion, dermal absorption and inhalation) was assessed with the method proposed by U.S. EPA, and disability-adjusted life years (DALYs) were combined to estimate the disease burden of cancer based on the carcinogenic risk (CR) assessment. The results showed that 28 organic micropollutants were detected in the raw and finished water at total concentrations of 967.28 ng/L and 1073.45 ng/L, respectively, of which phthalate esters (PAEs) were the dominant category (95.79% in the raw water and 96.61% in the finished water). Although the results of the Ames test for OEs were negative and the non-carcinogenic hazard index of the organic micropollutants in the finished water was less than 1 in all age groups, the total CR was 2.17 × 10-5, higher than the negligible risk level (1.00 × 10-6). The total DALYs caused by the organic micropollutants in the finished water was 2945.59 person-years, and the average individual DALYs was 2.21 × 10-6 per person-year (ppy), which was 2.21 times the reference risk level (1.00 × 10-6 ppy) defined by the WHO. Exposure to nitrosamines (NAms) was the major contributor to the total CR (92.06%) and average individual DALYs (94.58%). This study demonstrated that despite the negative result of the mutagenicity test with TA98 and TA100 strains, the health risk of exposure to organic micropollutants in drinking water should not be neglected.
Collapse
Affiliation(s)
- Panqi Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yameng Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Disease Control and Prevention of Minhang District, Shanghai 201101, China
| | - Danyang Zhao
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Meina Chi
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai 200041, China
| | - Yuanyuan Yin
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanan Xuan
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Ren C, Zhou Y, Liu W, Wang Q. Paradoxical effects of arsenic in the lungs. Environ Health Prev Med 2021; 26:80. [PMID: 34388980 PMCID: PMC8364060 DOI: 10.1186/s12199-021-00998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
High levels (> 100 ug/L) of arsenic are known to cause lung cancer; however, whether low (≤ 10 ug/L) and medium (10 to 100 ug/L) doses of arsenic will cause lung cancer or other lung diseases, and whether arsenic has dose-dependent or threshold effects, remains unknown. Summarizing the results of previous studies, we infer that low- and medium-concentration arsenic cause lung diseases in a dose-dependent manner. Arsenic trioxide (ATO) is recognized as a chemotherapeutic drug for acute promyelocytic leukemia (APL), also having a significant effect on lung cancer. The anti-lung cancer mechanisms of ATO include inhibition of proliferation, promotion of apoptosis, anti-angiogenesis, and inhibition of tumor metastasis. In this review, we summarized the role of arsenic in lung disease from both pathogenic and therapeutic perspectives. Understanding the paradoxical effects of arsenic in the lungs may provide some ideas for further research on the occurrence and treatment of lung diseases.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
16
|
Wang C, Huang P, Qiu C, Li J, Hu S, Sun L, Bai Y, Gao F, Li C, Liu N, Wang D, Wang S. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124891. [PMID: 33360700 DOI: 10.1016/j.jhazmat.2020.124891] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study was to investigate the occurrence, migration and health risk of phthalic acid esters (PAEs) in tap water, barreled water and bottled water in Tianjin, China. Six priority controlled PAEs were measured, among which the detection frequency of butyl benzyl phthalate (BBP), dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) was 100%, while the others were not detected. The concentration of DEHP was higher than BBP and DBP in all the samples. The initial ∑3PAEs concentrations in tap water, barreled water and bottled water were 2.409 ± 0.391 μg/L, 1.495 ± 0.213 μg/L and 1.963 ± 0.160 μg/L, respectively. Boiling tap water could reduce the PAEs content to an extent, but they increased significantly in hot tap water contacting with disposable plastic cups. The migration of PAEs in barreled water and bottled water were positively correlated with storage time and temperature, which could be described by exponential models. The hazard indexes of PAEs in different types of drinking water were very low. However, the human carcinogenic risks of DEHP will reach the maximum acceptable risk level of 10-6 when bottled water is stored for 8.8 days at 40 °C, 7.7 days at 50 °C, or 6.1 days at 60 °C.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Panpan Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jing Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shuailong Hu
- China design Digital Technology Co., LTD, Beijing 100043, China
| | - Liping Sun
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fu Gao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Rapid economic growth and its huge population are putting tremendous pressure on water sustainability in China. Ensuring clean drinking water is a great challenge for public health due to water shortage and pollution. This article reviews current scientific findings on health-related issues on drinking water and discusses the challenges for safe and healthy drinking water in China. RECENT FINDINGS From literature published since 2010, a variety of emerging contaminants were detected in drinking water, including disinfection byproducts (DBPs), pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), antibiotic resistance genes, and pathogens. Arsenic and fluoride are still the two major contaminants in groundwater. Microcystins, toxins produced by cyanobacteria, were also frequently detected in surface water for drinking. Health effects of exposure to arsenic, fluoride, nitrates, DBPs, and noroviruses in drinking water have been reported in several epidemiological studies. According to literature, water scarcity is still a severe ongoing issue, and regional disparity affects the access to safe and healthy drinking water. In addition, urbanization and climate change have strong influences on drinking water quality and water quantity. Multiple classes of contaminants of emerging concern have been detected in drinking water, while epidemiological studies on their health effects are still inadequate. Water scarcity, regional disparity, urbanization, and climate change are the major challenges for safe and healthy drinking water in China.
Collapse
Affiliation(s)
- Jianyong Wu
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Ates N, Kaplan-Bekaroglu SS, Dadaser-Celik F. Spatial/temporal distribution and multi-pathway cancer risk assessment of trihalomethanes in low TOC and high bromide groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2276-2290. [PMID: 33103680 DOI: 10.1039/d0em00239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aims (1) to determine the seasonal and spatial distribution of THMs formed in chlorinated groundwater containing low levels of organic matter (0.4-0.8 mg L-1) and low to high levels of bromine (40-380 μg L-1), and (2) to evaluate the multi-route cancer risks associated with them. The study was conducted in Kayseri (Turkey), where drinking water is supplied from groundwater after chlorination only. THM formation in 50 water samples from 18 storage tanks and 32 distribution points was investigated to evaluate the spatial and temporal changes in THM concentrations for 12 months. The lifetime cancer risk associated with exposure to THMs through multiple pathways (i.e., oral ingestion, dermal absorption, and inhalation) was estimated for males and females. For a 12 month sampling period, the minimum and maximum THM concentrations varied from 2 μg L-1 to 17 μg L-1 and from 2 μg L-1 to 29 μg L-1 in storage tanks and distribution points, respectively. The ranges of median concentrations of THM were 5 μg L-1 to 9 μg L-1 in storage tanks and 5 μg L-1 to 12 μg L-1 in distribution points. In all samples dibromochloromethane was the dominant species, followed by bromoform, chloroform, and bromodichloromethane. The average values of total cancer risk associated with exposure to THMs via oral ingestion, dermal absorption, and inhalation for females and males were 1.31 × 10-5 and 1.25 × 10-5 in storage tanks, and 1.46 × 10-5 and 1.39 × 10-5 in distribution points, respectively. Although THM concentrations were very low, cancer risk values are 1.0 × 10-6 < CR < 1.0 × 10-4, which are higher than the negligible risk level (1.0 × 10-6).
Collapse
Affiliation(s)
- Nuray Ates
- Environmental Engineering Dept., Erciyes University, Kayseri, Turkey.
| | | | | |
Collapse
|
19
|
Xue B, Dai K, Zhang X, Wang S, Li C, Zhao C, Yang X, Xi Z, Qiu Z, Shen Z, Wang J. Low-concentration of dichloroacetonitrile (DCAN) in drinking water perturbs the health-associated gut microbiome and metabolic profile in rats. CHEMOSPHERE 2020; 258:127067. [PMID: 32544817 DOI: 10.1016/j.chemosphere.2020.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Dichloroacetonitrile (DCAN) is one of the emerging nitrogenous disinfection by-products (DBPs) in drinking water. However, its potential toxicological effects remain poorly understood, especially at a low concentration found in the environment. In the present study, we investigated whether the consumption of low-concentration DCAN through drinking water would produce significant effects in male SD rats, with particular focus on their physiological traits and changes in their gut microbiome and metabolite profiles. After a 4-weeks DCAN intervention, significant changes were observed in the body weight, blood indices, and histology in DCAN-treated (100 μg/L) group. Proteobacteria was relatively less abundant in 20 and 100 μg/L DCAN-treated groups compared with that in the control group at phylum level. At genus level, Parasutterella and Anaerotruncus were significantly less abundant in both 20 and 100 μg/L DCAN-treated groups than that in the control group. Furthermore, the gut microbiota-related metabolites were dramatically perturbed after DCAN consumption. In the 20 and 100 μg/L DCAN-treated groups, there were 48 and 95 altered metabolites, respectively, and were found to be involved in sphingolipid signaling pathway, fatty acid biosynthesis, and cGMP-PKG signaling pathway. In summary, we demonstrated that consumption of low-concentration DCAN through drinking water could impair host health and induce gut microbiota dysbiosis and gut microflora-related metabolic disorders in male SD rats. Our findings highlight the potential toxicity of low-concentration DBPs and provide new insight into potential causal relationship between low concentration DBPs found in the drinking water and the host health.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Kun Dai
- Tianjin Rehabilitation Center, Tianjin, 300191, China
| | - Xi Zhang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| | - Jingfeng Wang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
20
|
Kargaki S, Iakovides M, Stephanou EG. Study of the occurrence and multi-pathway health risk assessment of regulated and unregulated disinfection by-products in drinking and swimming pool waters of Mediterranean cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139890. [PMID: 32554116 DOI: 10.1016/j.scitotenv.2020.139890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of a wide variety of regulated (four trihalomethanes (THM(4)), five haloacetic acids (HAA(5))) and unregulated (haloacetonitriles (HANs), halogenated ketones, chloropicrin, carbon tetrachloride, and other haloacetic acids) disinfection by-products (DBPs) was studied, in two hundred twenty-six finished drinking water samples collected in Barcelona (Spain, between 2008 and 2009), Athens (Greece, 2009-2010), Heraklion (Greece, 2009-2010), Nicosia (Cyprus, 2012-2013), and Limassol (Cyprus, 2011). The samples were analyzed by using liquid-liquid extraction, gas chromatography coupled with an electron capture detector or negative chemical ionization mass spectrometry. In addition, fourteen swimming pool water samples (from Heraklion and Athens) were also investigated regarding their DBPs content. The studied DBPs were determined concurrently with pH, total organic carbon (TOC), and bromide. Spearman's statistical analysis has shown statistically significant (p < 0.001) weak correlations between TOC, THM(4), HANs and HAA(5) but a strong correlation between THM(4) and HANs. Principal component analysis (PCA) on THM(4), HANs and HAA(5) provided a clear differentiation between the examined drinking waters, on the basis of their DBPs content. In the drinking water of coastal cities, the brominated DBPs dominated over the chlorinated ones, due to the higher bromide concentrations occurring in the corresponding raw waters. Lifetime cancer risk and hazard quotient by exposure to four THMs, dichlorocetic acid and trichloroacetic acid in drinking water and indoor swimming pools through multiple pathways were estimated. Total cancer unit risks in drinking water for Nicosia, Barcelona, Limassol and Athens exceeded in most cases the US EPA's regulatory threshold (1.0E-06). The total lifetime cancer risk evaluated for the studied indoor swimming pools was above the US EPA's negligible level for male, female, and junior swimmers.
Collapse
Affiliation(s)
- Sophia Kargaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Panepistimioupoli Voutes, 70013 Heraklion, Greece
| | | | - Euripides G Stephanou
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Panepistimioupoli Voutes, 70013 Heraklion, Greece.
| |
Collapse
|
21
|
Dobaradaran S, Shabankareh Fard E, Tekle-Röttering A, Keshtkar M, Karbasdehi VN, Abtahi M, Gholamnia R, Saeedi R. Age-sex specific and cause-specific health risk and burden of disease induced by exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) from drinking water: An assessment in four urban communities of Bushehr Province, Iran, 2017. ENVIRONMENTAL RESEARCH 2020; 182:109062. [PMID: 31883495 DOI: 10.1016/j.envres.2019.109062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/18/2019] [Indexed: 05/15/2023]
Abstract
Health risk and burden of disease induced by exposure to trihalomethanes (THMs, four compounds) and haloacetic acids (HAAs, 5 compounds) from drinking water through ingestion, dermal absorption, and inhalation routes were assessed based on one-year water quality monitoring in four urban communities (Bandar Deylam, Borazjan, Bushehr, and Choghadak) of Bushehr Province, Iran. The total average concentrations of THMs and HAAs at all the communities level were determined to be 92.9 ± 43.7 and 70.6 ± 26.5 μg/L, respectively. The dominant components of the THMs and HAAs were determined to be tribromomethane (TBM, 41.6%) and monobromoacetic acid (MBAA, 60.8%), respectively. The average contributions of ingestion, dermal absorption, and inhalation routes in exposure to the chlorination by-products (CBPs) were respectively 65.0, 15.4, and 19.6%. The total average non-carcinogenic risk as the hazard index (HI) and incremental lifetime cancer risk (ILCR) of the CBPs at all the communities level were found to be 4.03 × 10-1 and 3.16 × 10-4, respectively. The total attributable deaths, death rate (per 100,000 people), age-weighted disability-adjusted life years (DALYs), and age-weighted DALY rate for all ages both sexes combined at all the communities level were estimated to be 1.0 (uncertainty interval: UI 95% 0.3 to 2.8), 0.27 (0.08-0.75), 30.8 (11.3-100.1), and 8.1 (3.0-26.4), respectively. The average contribution of mortality (years of life lost due to premature mortality: YLLs) in the attributable burden of disease was 94.7% (94.4-95.6). Although in most of cases the average levels of the CBPs were in the permissible range of Iranian standards for drinking water quality, the average values of ILCRs as well as attributable burden of disease were not acceptable (the ILCRs were higher than the boundary limit of 10-5); therefore, implementation of interventions for reducing exposure to CBPs through drinking water especially in Kowsar Dam Water Treatment Plant is strictly recommended.
Collapse
Affiliation(s)
- Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elham Shabankareh Fard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, Gelsenkirchen, 45877, Germany
| | - Mozhgan Keshtkar
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Vahid Noroozi Karbasdehi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Gholamnia
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Zhang H, Wang L, Wang Y, Chang S. Using disability-adjusted life years to estimate the cancer risks of low-level arsenic in drinking water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:63-70. [PMID: 31538532 DOI: 10.1080/10934529.2019.1667167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Recent studies have shown that long-term exposure to low-level arsenic (<10 μg/L) may cause human health problems. However, the induced cancer risks and differences among multisite cancers have not been well-understood. In this study, the concentrations of low-level arsenic in drinking water in XP city, Northwest China were investigated. A health risk assessment was carried out for different age groups and exposure pathways based on Monte Carlo simulations and disability-adjusted life years (DALYs). The measured arsenic levels were in the range of 7.61-9.25 μg/L with a mean of 8.23 μg/L. For the public, the average total lifetime cancer risk was 3.87 × 10-4, and the total DALYs estimation for all age groups was 20.58 person-year. The average individual DALYs lost was 3.35 × 10-5 per person-year (ppy), which was 33.5 times the reference value (1.00 × 10-6 ppy). The mortality burden had a considerably larger contribution (97.31%) to the total disease burden, and the 60-65-year age group exhibited the largest DALYs lost. Skin cancer exhibited the largest burden of 2.15 × 10-5 ppy, followed by lung cancer (1.20 × 10-5 ppy). This study might be useful for potential strategies of risk control and management in XP drinking water.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Luobin Wang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yiyi Wang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shan Chang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
23
|
Sun X, Chen M, Wei D, Du Y. Research progress of disinfection and disinfection by-products in China. J Environ Sci (China) 2019; 81:52-67. [PMID: 30975330 DOI: 10.1016/j.jes.2019.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfection by-products (DBPs). Lots of studies on disinfection and DBPs have been performed in the world since 1974. Although related studies in China started in 1980s, a great progress has been achieved during the last three decades. Therefore, this review summarized the main achievements on disinfection and DPBs studies in China, which included: (1) the occurrence of DBPs in water of China, (2) the identification and detection methods of DBPs, (3) the formation mechanisms of DBPs during disinfection process, (4) the toxicological effects and epidemiological surveys of DBPs, (5) the control and management countermeasures of DBPs in water disinfection, and (6) the challenges and chances of DBPs studies in future. It is expected that this review would provide useful information and reference for optimizing disinfection process, reducing DBPs formation and protecting human health.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Abtahi M, Dobaradaran S, Jorfi S, Koolivand A, Khaloo SS, Spitz J, Saeedi H, Golchinpour N, Saeedi R. Age-sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017. WATER RESEARCH 2019; 157:94-105. [PMID: 30953859 DOI: 10.1016/j.watres.2019.03.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 05/15/2023]
Abstract
National and subnational burden of disease attributable to elevated fluoride levels in drinking water apportioned by sex, age group, province, and community type in Iran, 2017 were quantified based on disability-adjusted life years (DALYs). The attributable burden of disease was estimated using four input data: (1) effect size of elevated drinking water fluoride levels for dental and skeletal fluorosis, (2) population distribution of drinking water fluoride levels, (3) the threshold levels of fluoride in drinking water for contribution in dental and skeletal fluorosis, and (4) age-sex distribution of population. The attributable burden of disease was only related to dental fluorosis, because the fluoride levels were lower than the threshold value for skeletal fluorosis (4.0 mg/L) in all of the cases. The national attributable prevalence (per 100,000 people), DALYs, and DALY rate in 2017 were calculated to be 60 (95% uncertainty interval 48-69), 3443 (1034-6940), and 4.31 (1.29-8.68), respectively. The national attributable burden of disease was not significantly different by sex, but was affected by age and community type in a manner that the highest DALY rate was related to the age group 10-14 y (6.06 [1.82-12.21]) and over 66% of the national attributable DALYs occurred in rural communities. The attributable burden of disease occurred only in 10 out of 31 provinces and about 94% of the attributable DALYs were concentrated in four provinces Fars (1967 [592-3964]), Bushehr (414 [124-836]), West Azarbaijan (400 [120-808]), and Hormozgan (377 [113-761]). Implementation of fluoride-safe drinking water supply schemes in the four leading provinces can prevent most of the national health losses and partly compensate the increasing trend of disease burden from oral conditions at the national level.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| | - Hanieh Saeedi
- Department of Statistics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Najmeh Golchinpour
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Abtahi M, Dobaradaran S, Torabbeigi M, Jorfi S, Gholamnia R, Koolivand A, Darabi H, Kavousi A, Saeedi R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. ENVIRONMENTAL RESEARCH 2019; 173:469-479. [PMID: 30981118 DOI: 10.1016/j.envres.2019.03.071] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 05/25/2023]
Abstract
Occurrence of phthalates in water resources, bottled water, and tap water, and health risk of exposure to the phthalates through drinking water in Tehran, Iran, 2018 were studied. The six phthalates with the most health and environmental concerns, including di-(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and di-n-octyl phthalate (DNOP) were monitored in drinking water and water resources. The average levels (±standard deviation: SD) of the total phthalates in drinking water from the water distribution system, bottled water, surface waters, and ground waters were determined to be 0.76 ± 0.19, 0.96 ± 0.10, 1.06 ± 0.23, and 0.77 ± 0.06 μg/L, respectively. The dominant compounds in the phthalates were DMP and DEHP causing a contribution to the total phthalate levels higher than 60% in all the water sources. The phthalate levels of drinking water significantly increased by contact of hot water with disposable plastic and paper cups and by sunlight exposure of bottled water (p value < 0.05). The hazard quotients (HQs) of DEHP, BBP, DBP, and DEP for all ages both sexes combined were determined to be 1.56 × 10-4, 1.01 × 10-5, 1.80 × 10-5, and 1.29 × 10-6, respectively that were much lower than the boundary value of 1.0. The disability-adjusted life years (DALYs) and DALY rate (per 100,000 people) attributable to DEHP intake through drinking water for all ages both sexes combined were estimated to be 6.385 (uncertainty interval: UI 95% 1.892 to 22.133), and 0.073 (0.022-0.255), respectively. The proportion of mortality in the attributable DALYs was over 96%. The attributable DALY rate exhibited no significant difference by sex, but was considerably affected by age in a manner that the DALY rates ranged from 0.052 (0.015-0.175) in the age group 65 y plus to 0.099 (0.026-0.304) in the age group 5 to 9 y. Both the carcinogenic and non-carcinogenic health risks of the phthalates in drinking water were considered to be very low. The results can also be of importance in terms of developing frameworks to expand the domain of burden of disease study to the other environmental risks.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marzieh Torabbeigi
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Gholamnia
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Darabi
- The Persian Gulf Tropical Medicine Research, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Kavousi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|