1
|
Fan P, Paugam L, Biard PF, Szymczyk A. Mechanistic study of micropollutants rejection by nanofiltration of a natural water. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39737918 DOI: 10.1080/09593330.2024.2439137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.
Collapse
Affiliation(s)
- Penglin Fan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Lydie Paugam
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Pierre-François Biard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Anthony Szymczyk
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| |
Collapse
|
2
|
Ranjbar E, Baghdadi M, Ruhl AS. Removal of persistent and mobile organic micropollutants from drinking water utilizing a synthesized waste-derived adsorbent. CHEMOSPHERE 2024; 366:143476. [PMID: 39369739 DOI: 10.1016/j.chemosphere.2024.143476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Persistent and mobile (PM) substances refer to a wide range of organic micropollutants (OMPs) with high persistence and mobility in water. So far, only a few methods have been explored for the removal of PM substances from drinking water. In this work, a new adsorbent based on spent coffee grounds and aluminum waste was synthesized and utilized to remove 25 OMPs, including 22 PM substances, from drinking water. Different characterization methods, including powder X-ray diffraction (XRD), analyses according to Brunauer-Emmett-Teller (BET), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), were applied to describe the adsorbent's textural and structural characteristics. The results revealed that the adsorbent is highly effective in removing OMPs. Common OMPs (i.e. carbamazepine, sulfamethoxazole and diclofenac) were completely removed from drinking water. Also, many of the PM substances were removed by more than 80% using an adsorbent dosage of 0.1 g/L. A strong relation between abatement of ultraviolet light absorbance at 254 nm (UV254) and OMP removal was observed. Therefore, UV254 abatement is a useful surrogate for a quick estimation of OMP removals.
Collapse
Affiliation(s)
- Ehsan Ranjbar
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Chair of Water Treatment, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Majid Baghdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Chair of Water Treatment, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Sadia M, Ter Laak TL, Cornelissen ER, van Wezel AP. Exploring Perfluoroalkyl and Polyfluoroalkyl Substance Presence and Potential Leaching from Reverse Osmosis Membranes: Implications for Drinking Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15799-15806. [PMID: 39171677 PMCID: PMC11375775 DOI: 10.1021/acs.est.4c04743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Reverse osmosis (RO) is increasingly used in drinking water production to effectively remove micropollutants, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, RO membranes themselves may contain PFAS, which can potentially leach into treated drinking water. Leaching experiments and direct total oxidizable precursor assays revealed the presence and leaching potential of PFOS (branched and linear), PFBA, PFHxA, PFNA, and PFOA in five selected commercial RO membranes. This resulted in the release of tens of milligrams of ΣPFAS per membrane element used in drinking water production. Depending on assumptions made regarding leaching kinetics and volume of produced water per membrane element, predicted concentrations of ΣPFAS in the produced water ranged from less than one up to hundreds of pg/L. These concentrations are two to four orders of magnitude lower than those currently observed in Dutch drinking waters. The origin of PFAS in the membranes remains unclear. Further research is needed to bridge the gap between the laboratory conditions as used in this study and the real-world conditions and for a full understanding of potential leaching scenarios. Such an understanding is critical for water producers using RO technologies to proactively manage and mitigate potential PFAS contamination.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
| | - Thomas L Ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein, BB 3430, The Netherlands
| | - Emile R Cornelissen
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein, BB 3430, The Netherlands
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Frieda Saeysstraat 1, Gent 9052, Belgium
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
| |
Collapse
|
4
|
Behnami A, Pourakbar M, Ayyar ASR, Lee JW, Gagnon G, Zoroufchi Benis K. Treatment of aqueous per- and poly-fluoroalkyl substances: A review of biochar adsorbent preparation methods. CHEMOSPHERE 2024; 357:142088. [PMID: 38643842 DOI: 10.1016/j.chemosphere.2024.142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ji-Woong Lee
- Department of Chemistry, Nano-Science Centre, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk CO2 Research Center, Aarhus, Denmark
| | - Graham Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Liu L, Lan H, Cui Y, Tang Q, Bai J, An X, Sun M, Liu H, Qu J. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification. SCIENCE ADVANCES 2024; 10:eadn8696. [PMID: 38787943 PMCID: PMC11122666 DOI: 10.1126/sciadv.adn8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Drinking water with micropollutants is a notable environmental concern worldwide. Membrane separation is one of the few methods capable of removing micropollutants from water. However, existing membranes face challenges in the simultaneous and efficient treatment of small-molecular and ionic contaminants because of their limited permselectivity. Here, we propose a high-efficiency water purification method using a low-pressure Janus membrane with electro-induced multi-affinity. By virtue of hydrophobic and electrostatic interactions between the functional interfaces and contaminants, the Janus membrane achieves simultaneous separation of diverse types of organics and heavy metals from water via single-pass filtration, with an approximately 100% removal efficiency, high water flux (>680 liters m-2 hour-1), and 98% lower energy consumption compared with commercial nanofiltration membranes. The electro-induced switching of interfacial affinity enables 100% regeneration of membrane performance; thus, our work paves a sustainable avenue for drinking water purification by regulating the interfacial affinity of membranes.
Collapse
Affiliation(s)
- Lie Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | | | - Yuqi Cui
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Bai
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Meng Sun
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Song Y, Chen D, Liu D, Hu R, Zhang Y, Hu Y, Song X, Gao F, Xie Z, Kang J, Zheng Z, Cao Y, Xiang M. In Situ Interfacial Polymerized Arginine-Doped Polydopamine Thin-Film Nanocomposite Membranes for High-Separation and Antifouling Reverse Osmosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56293-56304. [PMID: 37976105 DOI: 10.1021/acsami.3c13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, we synthesized polydopamine nanoparticles (PDNPs-M, M = I, II, III, and IV) with uniform particle sizes but varying l-arginine (Arg) contents (0%, 0.53%, 3.73%, and 6.62%) through a one-pot synthesis approach. Thin-film nanocomposite (TFN) membranes were fabricated via in situ interfacial polymerization (IP). The effects of the PDNPs-M chemical structure on the IP process and the consequent impacts on the structure and properties of the polyamide (PA) selective layer were investigated. The hydrophilicity and dispersibility of PDNPs-M exhibited an upward trend with the Arg content. Furthermore, Arg doping contributes to a denser and smoother PA layer. Among the TFC and TFN membranes, TFN-PDNPs-IV exhibited a water permeability of 3.89 L·m-2·h-1·bar-1 (55.1% higher than that of TFC-0) with a NaCl rejection rate of 98.8%, signifying superior water/salt selectivity. Additionally, TFN-PDNPs-IV exhibited regular pressure stability, commendable acid/alkali stability, and enhanced antifouling properties. These findings highlight the significant impact of nanoparticle hydrophilic functional groups on the structural and functional attributes of TFN membranes, offering a promising approach for developing advanced reverse osmosis membranes.
Collapse
Affiliation(s)
- Yuchen Song
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dandan Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Demin Liu
- Dongfang Electric Machinery Co., Ltd., Deyang 618000, China
| | - Ran Hu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yue Zhang
- Dongfang Electric Machinery Co., Ltd., Deyang 618000, China
| | - Yiwen Hu
- Key Laboratory of Combustion and Explosion Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Xiuduo Song
- Key Laboratory of Combustion and Explosion Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Feng Gao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhihui Xie
- Dongfang Electric Machinery Co., Ltd., Deyang 618000, China
| | - Jian Kang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
8
|
Farissi S, Abubakar GA, Akhilghosh KA, Muthukumar A, Muthuchamy M. Sustainable application of electrocatalytic and photo-electrocatalytic oxidation systems for water and wastewater treatment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1447. [PMID: 37945768 DOI: 10.1007/s10661-023-12083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Wastewater treatment and reuse have risen as a solution to the water crisis plaguing the world. Global warming-induced climate change, population explosion and fast depletion of groundwater resources are going to exacerbate the present global water problems for the forthcoming future. In this scenario, advanced electrochemical oxidation process (EAOP) utilising electrocatalytic (EC) and photoelectrocatalytic (PEC) technologies have caught hold of the interest of the scientific community. The interest stems from the global water management plans to scale down centralised water and wastewater treatment systems to decentralised and semicentralised treatment systems for better usage efficiency and less resource wastage. In an age of rising water pollution caused by contaminants of emerging concern (CECs), EC and PEC systems were found to be capable of optimal mineralisation of these pollutants rendering them environmentally benign. The present review treads into the conventional electrochemical treatment systems to identify their drawbacks and analyses the scope of the EC and PEC to mitigate them. Probable electrode materials, potential catalysts and optimal operational conditions for such applications were also examined. The review also discusses the possible retrospective application of EC and PEC as point-of-use and point-of-entry treatment systems during the transition from conventional centralised systems to decentralised and semi-centralised water and wastewater treatment systems.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Gado Abubakar Abubakar
- Department of Physics, Kebbi State University of Science and Technology, Aleiro, Kebbi State, Nigeria
| | | | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India.
| |
Collapse
|
9
|
Pang H, Allinson M, Northcott K, Schultz A, Scales PJ. Demonstrating removal credits for contaminants of emerging concern in recycled water through a reverse osmosis barrier-A predictive framework. WATER RESEARCH 2023; 244:120427. [PMID: 37567126 DOI: 10.1016/j.watres.2023.120427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
The performance of individual reverse osmosis (RO) systems varies significantly with different contaminants of emerging concern (CECs). As such, log reduction values (LRVs) of the concentration of these chemicals cannot be arbitrarily credited in water treatment and water recycling. This study looks to present an approach to the management of chemical risks by providing a systematic validation of RO barrier performance with respect to LRV credits for various classes of CECs. In this work, a one-off sampling campaign across five treatment barriers (strainer filtration, ultrafiltration, RO, ion exchange, chlorination) of a full-scale water recycling plant was conducted, followed by a systematic sampling campaign for a period of six weeks across just the RO barrier. The CECs screening methodology used GC-MS for quantification of 948 trace organic chemicals along with specific 44 per- and polyfluoroalkyl substances (PFAS) screening using LC-MS/MS to demonstrate the removal credits of the RO barrier to a wide spectrum of CECs. The work was used to validate an LRV barrier credit framework so as to predict the performance of a polyamide RO membrane for removal of a range of chemical classes, under typical operational conditions. Conductivity was validated as an efficient surrogate for membrane integrity and RO performance, along with specified operational conditions associated with permeate flux and recovery rate. A bioassay method (photobacterium test) showed good potential to be used as a quick measure to indicate the general toxicity of a sample caused by chemical contamination, because of its high detection sensitivity and time and cost efficiency.
Collapse
Affiliation(s)
- Hongjiao Pang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - Mayumi Allinson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Kathy Northcott
- Veolia Australia & New Zealand, Melbourne, VIC 3006, Australia
| | - Aaron Schultz
- Veolia Australia & New Zealand, Brisbane, QLD 4000, Australia
| | - Peter J Scales
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
10
|
Chong C, Tan ZN, Boong SK, Ang ZZ, Leong SX, Lee YH, Li H, Lee HK. Incorporating Chaotropic/Kosmotropic Chemistries onto Plasmonic Nanoheater to Boost Steam Generation Beyond its Photothermal Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300703. [PMID: 37283473 DOI: 10.1002/smll.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Indexed: 06/08/2023]
Abstract
Photothermal steam generation promises decentralized water purification, but current methods suffer from slow water evaporation even at high photothermal efficiency of ≈98%. This drawback arises from the high latent heat of vaporization that is required to overcome the strong and extensive hydrogen bonding network in water for steam generation. Here, light-to-vapor conversion is boosted by incorporating chaotropic/kosmotropic chemistries onto plasmonic nanoheater to manipulate water intermolecular network at the point-of-heating. The chaotropic-plasmonic nanoheater affords rapid light-to-vapor conversion (2.79 kg m-2 h-1 kW-1 ) at ≈83% efficiency, with the steam generation rate up to 6-fold better than kosmotropic platforms or emerging photothermal designs. Notably, the chaotropic-plasmonic nanoheater also lowers the enthalpy of water vaporization by 1.6-fold when compared to bulk water, signifying that a correspondingly higher amount of steam can be generated with the same energy input. Simulation studies unveil chaotropic surface chemistry is crucial to disrupt water hydrogen bonding network and suppress the energy barrier for water evaporation. Using the chaotropic-plasmonic nanoheater, organic-polluted water is purified at ≈100% efficiency, a feat otherwise challenging in conventional treatments. This study offers a unique chemistry approach to boost light-driven steam generation beyond a material photothermal property.
Collapse
Affiliation(s)
- Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zher Nin Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Siew Kheng Boong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, Singapore, 117580, Singapore
| |
Collapse
|
11
|
Li H, Guo L, Li Y, Chen M, Bai C, Song A, Cheng L, Chen X, Chen Y. Catalytic polymerization of bisphenol A using a horseradish peroxidase immobilized microporous membrane reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1428-1437. [PMID: 37768746 PMCID: wst_2023_282 DOI: 10.2166/wst.2023.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA) is one of the most widely used chemical products, which is discharged into rivers and oceans, posing great hazards to organisms such as reproductive toxicity, hormone imbalance and cardiopathy induction. With the expansion harm of BPA, people have paid more attention to the environmental effects. In this paper, the degradation of BPA from the synthetic wastewater using the immobilization of horseradish peroxidase membrane reactor (HPR) was investigated. The immobilized HRP microporous membrane was prepared by the porous calcium alginate method. In addition, the reuse of the immobilized HPR membrane and the measurement of membrane flux showed that the membrane has good activity and stability. Finally, the experimental parameters including reaction time, pH, the concentration of BPA and the dosage of H2O2 were optimized to remove the BPA, and about 78% degradation efficiency of BPA was achieved at the optimal condition as follows: H2O2 to BPA molar ratio of 1.50 with an initial BPA concentration of 0.1 mol/L, the HPR dosage of 3.84 u/mL, the initial solution pH of 7.0, a temperature of 20 °C and a contact time of 10 min.
Collapse
Affiliation(s)
- Haitao Li
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; Yingying Li, Linfeng Guo and Haitao Li were the first authors. E-mail:
| | - Linfeng Guo
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; Yingying Li, Linfeng Guo and Haitao Li were the first authors
| | - Yingying Li
- Semiconductor Manufacturing North China (Beijing) Co., Ltd, Beijing, China; Yingying Li, Linfeng Guo and Haitao Li were the first authors
| | - Min Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Chunlu Bai
- Beijing Changzheng Mechanical Equipment Manufacture Co., Ltd, Beijing, China
| | - Aolei Song
- Beijing Changzheng Mechanical Equipment Manufacture Co., Ltd, Beijing, China
| | - Linxiu Cheng
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xueli Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yonglin Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
12
|
Tan B, He Z, Fang Y, Zhu L. Removal of organic pollutants in shale gas fracturing flowback and produced water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163478. [PMID: 37062313 DOI: 10.1016/j.scitotenv.2023.163478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 06/03/2023]
Abstract
Shale gas has been developed as an alternative to conventional energy worldwide, resulting in a large amount of shale gas fracturing flowback and produced water (FPW). Previous studies focus on total dissolved solids reduction using membrane desalination. However, there is a lack of efficient and stable techniques to remove organic pollutants, resulting in severe membrane fouling in downstream processes. This review focuses on the concentration and chemical composition of organic matter in shale gas FPW in China, as well as the hazards of organic pollutants. Organic removal techniques, including advanced oxidation processes, coagulation, sorption, microbial degradation, and membrane treatment are systematically reviewed. In particular, the influences of high salt on each technique are highlighted. Finally, different treatment techniques are evaluated in terms of energy consumption, cost, and organic removal efficiency. It is concluded that integrated coagulation-sorption-Fenton-membrane filtration represents a promising treatment process for FPW. This review provides valuable information for the feasible design, practical operation, and optimization of FPW treatment.
Collapse
Affiliation(s)
- Bin Tan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hangzhou Shangtuo Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Zhengming He
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Yuchun Fang
- Hangzhou Shangtuo Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Matin A, Jillani SMS, Baig U, Ihsanullah I, Alhooshani K. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117682. [PMID: 37003228 DOI: 10.1016/j.jenvman.2023.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Trace organic compounds from effluent streams are not completely removed by conventional purification techniques and hence, contaminating groundwater sources. Herein, we report the removal efficiency and rejection mechanisms of three common pharmaceutically active compounds (PhACs); caffeine (CFN), omeprazole (OMZ), and sulfamethoxazole (SMX), using commercial nanofiltration (NF) and reverse osmosis (RO) membranes with different surface characteristics. The RO membranes showed near-complete removal of all PhACs with rejection rates >99%. On the other hand, retention capabilities for the NF membranes varied and were influenced by the characteristics of the PhACs, membranes, and the feed solution. In general, during long-term testing, the rejection did not show much variation and followed a trend compatible with the size exclusion (steric hindrance) mechanism. When a real matrix was used, the rejection of CFN by the more tight NF membranes, HL TFC and NFW decreased by ∼10%, whereas the removal of SMX by the loose NF membrane, XN45, increased by the same ratio. In short-term testing, the rejection of negatively charged SMX increased significantly (∼20-40%) at a higher pH of ∼8 and in the presence of salts. Fouling by the PhACs was more severe on the high-flux NF membranes, HL TFC and XN45, as witnessed by the significant change in Contact angle (CA) values (∼25-50°) as well as the flux decline (∼15%) during long-term testing. To summarize, the removal of PhACs by membranes is a complex phenomenon and depends upon a combination of several factors.
Collapse
Affiliation(s)
- Asif Matin
- IRC Membranes & Water Security, King Fahd University of Petroleum and Minerals Dhahran, 31261, Saudi Arabia.
| | | | - Umair Baig
- IRC Membranes & Water Security, King Fahd University of Petroleum and Minerals Dhahran, 31261, Saudi Arabia
| | - I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Khalid Alhooshani
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
14
|
Anang E, Tei M, Antwi AB, Aduboffour VK, Anang B. Assessment of groundwater and surface water quality in a typical mining community: application of water quality indices and hierarchical cluster analyses. JOURNAL OF WATER AND HEALTH 2023; 21:925-938. [PMID: 37515563 PMCID: wh_2023_063 DOI: 10.2166/wh.2023.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The rate at which freshwater sources are being contaminated by mining operations in the South-Western part of Ghana is alarming. However, no study has quantified the degree of contamination of the freshwater in such areas, leaving a gap in the literature that requires immediate attention. This study assessed the quality of the surface and groundwater in the Tarkwa Nsuaem Municipality. Even though the physical parameters such as pH and electrical conductivity were indicative of safe freshwater, other parameters such as turbidity, total suspended solids (TSS), dissolved oxygen (DO), and heavy metals in the water sources were high; thus, confirming possible leaching, runoff, and dissolution of the hazardous substances employed in the manganese mining operations. The water quality of 82% of the water sources along the Kawere Stream was low (Classes III and IV). Therefore, the local people are at risk of contracting water-related diseases, and health problems associated with the ingestion of Fe, As, and Mn. The findings in this study are important in establishing the rate at which mining operations are reducing the quality of freshwater in developing countries, and potentially affecting human health.
Collapse
Affiliation(s)
- Emmanuella Anang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Meshack Tei
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Anthony Boakye Antwi
- Department of Civil Engineering, Regional Water Environmental Sanitation Center-Kumasi, Kwame Nkrumah University of Science and Technology, UPO, PMB, Kumasi, Ghana
| | | | - Benjamin Anang
- Department of Environmental Resource Management, Kwame Nkrumah University of Science and Technology, UPO, PMB, Kumasi, Ghana
| |
Collapse
|
15
|
Schumann P, Muschket M, Dittmann D, Rabe L, Reemtsma T, Jekel M, Ruhl AS. Is adsorption onto activated carbon a feasible drinking water treatment option for persistent and mobile substances? WATER RESEARCH 2023; 235:119861. [PMID: 36958222 DOI: 10.1016/j.watres.2023.119861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Persistent and mobile (PM) substances among the organic micropollutants have gained increasing interest since their inherent properties enable them to enrich in water cycles. This study set out to investigate the potential of adsorption onto activated carbon as a drinking water treatment option for 19 PM candidates in batch experiments in a drinking water matrix using a microporous and a mesoporous activated carbon. Overall, adsorption of PM candidates proved to be very variable and the extent of removal could not be directly related to molecular properties. At an activated carbon dose of 10 mg/L and 48 h contact time, five (out of 19) substances were readily removed (≥ 80%), among them N-(3-(dimethylamino)-propyl)methacrylamide, which was investigated for the first time. For five other substances, no or negligible removal (< 20%) was observed, including 2-methyl-2-propene-1-sulfonic acid and 4‑hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine. For the former, current state of the art adsorption processes may pose a sufficient barrier. Additionally, substance specific surrogate correlations between removals and UVA254 abatements were established to provide a cheap and fast estimate for PM candidate elimination. Adsorption onto activated carbon could contribute significantly to PM substance elimination as part of multi barrier approaches, but assessments for individual substances still require clarification, as demonstrated for the investigated PM candidates.
Collapse
Affiliation(s)
- Pia Schumann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel Dittmann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Luisa Rabe
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Jekel
- Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
16
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
17
|
A novel single-scan printing approach for polyamide membranes by electrospray technique on polydopamine pre-coated substrate. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Ates N, Uzal N, Yetis U, Dilek FB. Removal of pesticides from secondary treated urban wastewater by reverse osmosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8732-8745. [PMID: 35404035 DOI: 10.1007/s11356-022-20077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiments were conducted using pesticide-spiked wastewater samples under 10 and 20 bar transmembrane pressures (TMP) and membrane performances were evaluated. Overall, all the membranes tested exhibited over 95% rejection performances for all pesticides at both TMPs. The highest rejections for tributyl phosphate (99.0%) and irgarol (98.3%) were obtained with the BW30-LE membrane, while for flutriafol (99.9%) and dicofol (99.1%) with the GE-AD membrane. The increase in TMP from 10 to 20 bar did not significantly affect the rejections of all pesticides. The rejection performances of RO membranes were found to be governed by projection area as well as molecular weight and hydrophobicity/hydrophilicity of pesticides. Among the membranes tested, the SW30-XLE membrane was the most prone to fouling due to the higher roughness.
Collapse
Affiliation(s)
- Nuray Ates
- Department of Environmental Engineering, Erciyes University, Kayseri, Turkey.
| | - Nigmet Uzal
- Department of Civil Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Filiz B Dilek
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
19
|
Chan WN, Harrison RG. Separation of perfluoroalkyl substances by ion chromatography with a resorcinarene stationary phase. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wai Ning Chan
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - Roger G. Harrison
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| |
Collapse
|
20
|
Guimarães RN, Moreira VR, Amaral MCS. Membrane technology as an emergency response against drinking water shortage in scenarios of dam failure. CHEMOSPHERE 2022; 309:136618. [PMID: 36181845 DOI: 10.1016/j.chemosphere.2022.136618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
With dam failure events, there can be changes in water quality and difficulties in the operation of water treatment plants (WTPs) since they were not designed for water treatment under severe pollution conditions. To avoid that, it was investigated two strategies based on pre-oxidation, ultrafiltration (UF) and reverse osmosis (RO) integrated into a conventional treatment process (coagulation, flocculation, and sand filtration) or with each other, with the potential to reduce the risks of drinking water shortage and guarantee a safe drinking water supply. The study considered the context of the Velhas river basin (Brazil), where water quality is compromised by high turbidities (500-3000 NTU) and excessive arsenic (∼0.4 mg/L), iron (∼50 mg/L), and manganese (∼3 mg/L) levels. They were only partially removed by conventional treatments (removals: 74 ± 21%) and potability standards were only achieved after the membrane separation processes were considered (As: <0.01 mg/L, Mn: <0.1 mg/L, and Fe: <0.3 mg/L). The high water quality after RO enables its blend with the stream obtained after sand filters and would allow for greater flexibility during the operation of WTPs operation. Despite the susceptibility to fouling and most frequent maintenance, the pre-oxidation-UF-RO system would also guarantee a safe drinking water supply. The decision for the most adequate strategy was then based on a multicriteria analysis. A retrofit of conventional WTPs by their integration with UF-RO was classified as the best strategy for centralized facilities, whereas pre-oxidation-UF-RO better fits the reality of decentralized treatments given the lower costs and deployment time. The methodology based on multicriteria analysis and water treatment technologies, exemplified by membranes in this study, presented satisfactory results for different scenarios of critical treatment.
Collapse
Affiliation(s)
- Roberta N Guimarães
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil.
| | - Victor R Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil.
| | - Míriam C S Amaral
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil.
| |
Collapse
|
21
|
Narain-Ford DM, van Wezel AP, Helmus R, Dekker SC, Bartholomeus RP. Soil self-cleaning capacity: Removal of organic compounds during sub-surface irrigation with sewage effluent. WATER RESEARCH 2022; 226:119303. [PMID: 36323222 DOI: 10.1016/j.watres.2022.119303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Globally, the reuse of treated sewage effluent for irrigation purposes is increasingly encouraged as a practical solution against the mismatch between the demand for and availability of freshwater resources. The reuse of sewage effluent for sub-surface irrigation (SSI) in agriculture serves the dual purpose of supplying water to crops and diminishing emissions of contaminants of emerging concern (CoECs) into surface water. To investigate such reuse, in a real scale cropland with SSI using sewage effluent, from September 2017 to March 2019 including the extremely dry year 2018, residues were followed of 133 CoECs as related to their physicochemical properties and quantified by liquid chromatography coupled to high-resolution mass spectrometry. Of the 133 target CoECs, 89 were retrieved in the field, most non-detect CoECs have low persistency. During the growing season with sub-surface irrigation, CoECs spread to the shallow groundwater and rhizosphere. Significantly lower concentrations are found between infiltration pipes as compared to directly next to the pipes in shallow groundwater for all persistency-mobility classes. CoECs belonging to the class pm (low persistency and low mobility) or class PM (high persistency and high mobility) class show no change amongst their removal in the rhizosphere and groundwater in a dry versus normal year. CoECs belonging to the class pM (low persistency and high mobility) show high seasonal dynamics in the rhizosphere and shallow groundwater, indicating that these CoECs break down. CoECs of the class Pm (high persistency and low mobility) only significantly build up in the rhizosphere next to infiltration pipes. Climatic conditions with dry summers and precipitation surplus and drainage in winter strongly affect the fate of CoECs. During the dry summer of 2018 infiltrated effluent is hardly diluted, resulting in significantly higher concentrations for the CoECs belonging to the classes pM and Pm. After the extremely dry year of 2018, cumulative concentrations are still significantly higher, while after a normal year during winter precipitation surplus removes CoECs. For all persistency-mobility classes in the shallow groundwater between the pipes, we find significant removal efficiencies. For the rhizosphere between the pipes, we find the same except for Pm. Next to the pipes however we find no significant removal for all classes in both the rhizosphere and shallow groundwater and even significant accumulation for Pm. For this group of persistent moderately hydrophobic CoECs risk characterization ratio's were calculated for the period of time with the highest normalized concentration. None of the single-chemical RCRs are above one and the ΣRCR is also far below one, implying sufficiently safe ambient exposures. Overall the deeper groundwater (7.0-11.8 m below soil surface) has the lowest response to the sub-surface irrigation for all persistency-mobility. When adopting a SSI STP effluent reuse system care must be taken to monitor the CoECs that are (moderately) hydrophobic as these can build up in the SSI system. For the deeper groundwater and for the discharge to the surface water, we find significant removal for the pM and the PM class but not for other classes. In conclusion, relatively high removal efficiencies are shown benefiting the surface waters that would otherwise receive the STP effluent directly.
Collapse
Affiliation(s)
- D M Narain-Ford
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands.
| | - A P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - R Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - S C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - R P Bartholomeus
- KWR Water Research Institute, Nieuwegein, the Netherlands; Soil Physics and Land Management, Wageningen UR, Wageningen, the Netherlands
| |
Collapse
|
22
|
Hydrophilic modified polydopamine tailored heterogeneous polyamide in thin-film nanocomposite membranes for enhanced separation performance and anti-fouling properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
24
|
Castaño Osorio S, Biesheuvel PM, Spruijt E, Dykstra JE, van der Wal A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. WATER RESEARCH 2022; 225:119130. [PMID: 36240724 DOI: 10.1016/j.watres.2022.119130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Organic micropollutants (OMPs) in drinking water constitute a potential risk to human health; therefore, effective removal of these pollutants is required. Nanofiltration (NF) and reverse osmosis (RO) are promising membrane-based technologies to remove OMPs. In NF and RO, the rejection of OMPs depends on the properties and characteristics of the membrane, the solute, and the solution. In this review, we discuss how these properties can be included in models to study and predict the rejection of OMPs. Initially, an OMP classification is proposed to capture the relevant properties of 58 OMPs. Following the methodology described in this study, more and new OMPs can be easily included in this classification. The classification aims to increase the comprehension and mechanistic understanding of OMP removal. Based on the physicochemical principles used to classify the 58 OMPs, it is expected that other OMPs in the same groups will be similarly rejected. From this classification, we present an overview of the rejection mechanisms involved in the removal of specific OMP groups. For instance, we discuss the removal of OMPs classified as perfluoroalkyl substances (e.g., perfluorooctanoic acid, PFOA). These substances are highly relevant due to their human toxicity at extremely low concentration as well as their persistence and omnipresence in the environment. Finally, we discuss how the rejection of OMPs can be predicted by describing both the membrane-solution interface and calculating the transport of solutes inside the membrane. We illustrate the importance and impact of different rejection mechanisms and interfacial phenomena on OMP removal and propose an extended Nernst-Plank equation to calculate the transport of solutes across the membrane due to convection, diffusion, and electromigration. Finally, we show how the theory discussed in this review leads to improved predictions of OMP rejection by the membranes.
Collapse
Affiliation(s)
- S Castaño Osorio
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911 MA, the Netherlands
| | - E Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - J E Dykstra
- Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands.
| | - A van der Wal
- Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, the Netherlands; Evides Water Company, P.O. Box 4472, Rotterdam 3006 AL, the Netherlands.
| |
Collapse
|
25
|
Glienke J, Stelter M, Braeutigam P. Influence of chemical structure of organic micropollutants on the degradability with ozonation. WATER RESEARCH 2022; 222:118866. [PMID: 35872520 DOI: 10.1016/j.watres.2022.118866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The increasing environmental problems due to various organic micropollutants in water cause the search of suitable additional water treatment methods. Gaining experimental data for the large amount and variety of pollutants would consume a lot of time as well as economic and ecologic resources. An alternative approach is predictive quantitative structure-property relationship (QSPR) modeling, which establishes a correlation between the structural properties of a molecules with a biological, physical, or chemical property. Therefore, in this study, QSPR modeling has been conducted using extensive validation techniques and statistical test to investigate the structural influence on the degradability of organic micropollutants with ozonation. In contrast to most of the other studies, the underlying dataset - rate constants for 92 organic molecules - were obtained under standardized conditions with defined experimental parameters. QSPR modeling was executed using a combination of the software PaDEL for descriptor calculation and QSARINS for the modeling process respecting all five OECD-requirements for applicable QSAR/QSPR-models. The final model was selected using a multi-criteria decision-making tool to evaluate the model quality based on all calculated statistical quality parameters. The model included 10 selected descriptors and fingerprints and showed good regression abilities, predictive power, and stability (R² = 0.8221, CCCtr = 0.9024, Q²loo = 0.7436, R²ext = 0.8420, Q²F1 = 0.8104). The applicability domain of the QSPR model was defined and an interpretation of selected model descriptors has been connected to previous experimental studies. A significant influence of the interpretable descriptors was put into experimental context and compared with previous studies and models. For example, the molar refractivity as a measure of size and polarizability of a molecule and the occurrence of important substructures such as a formamide group seem to decrease the removal rate constant. The contribution of lone electrons entering into resonance as well as the occurrence of fused rings were identified as influences for the increase of the degradability of micropollutants by ozonation.
Collapse
Affiliation(s)
- Judith Glienke
- Institute of Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany; Center of Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany
| | - Michael Stelter
- Institute of Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany; Center of Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany; Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Michael-Faraday-Straße 1, Hermsdorf 07629, Germany
| | - Patrick Braeutigam
- Institute of Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany; Center of Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany; Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Michael-Faraday-Straße 1, Hermsdorf 07629, Germany.
| |
Collapse
|
26
|
Yan M, Fei H, Zhen J, Jiang F, Wu Y. New Insights into High-Performance Nanocomposite Membranes with Threefold-Imprinted Layers for Selective Recognition and Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9321-9334. [PMID: 35855516 DOI: 10.1021/acs.langmuir.2c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we reported on mixed-matrix membranes with polydopamine (PDA)-based threefold-imprinted layers (MMMs-PTIs), in which the dopamine molecules were simultaneously regarded as functional monomers and cross-linking agents during the first-in-class ternary-PDA-based imprinted method. Threefold-ibuprofen-imprinted layers were constructed into and onto the MMMs-PTIs through the phase inversion process, followed by suction filtration strategy, in which the PDA-based ibuprofen-imprinted activated carbon (AC)/SiO2 and TiO2/GO were chosen as fillers. Based on the threefold-imprinted SiO2/AC and polymer and TiO2/GO-loaded structure, rebinding capacities and permselectivity of MMMs-PTIs had been successfully enhanced, and the selective recognition and separation mechanism had been finally evaluated based on the static adsorption/permeation results. Both high rebinding capacity (53.22 mg/g) and adsorption selectivity (α > 2.0) had been achieved. Importantly, as to the permselectivity performance of MMMs-PTIs toward different compounds, the ibuprofen-permeation efficiencies (β value) of MMMs-PTIs reached 4.07, 4.08, and 3.77, respectively. That is to say, remarkable and stable permselectivity performance could be obtained, which demonstrated the successful preparation of good recognizability and permeability toward ibuprofen.
Collapse
Affiliation(s)
- Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hangtao Fei
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingjing Zhen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Jiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Kim E, Cardosa GB, Stanley KE, Williams TJ, McCurry DL. Out of Thin Air? Catalytic Oxidation of Trace Aqueous Aldehydes with Ambient Dissolved Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8756-8764. [PMID: 35671187 DOI: 10.1021/acs.est.2c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater effluent to a very high purity level, typically resulting in a product water that is essentially deionized water, often containing less than 100 μg/L organic carbon. However, recent research has found that low-molecular-weight aldehydes, which are toxic electrophiles, comprise a significant fraction of the final organic carbon pool in recycled wastewater in certain treatment configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen serving as the terminal electron acceptor. Mass balances are essentially quantitative across a range of aldehydes, and pseudo-first-order reaction kinetics are observed in batch reactors, with kobs varying from 0.6 h-1 for acetaldehyde to 4.6 h-1 for hexanal, while they are low for unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step, and the reaction appears to proceed primarily through a base-promoted β-hydride elimination mechanism from the hydrated gem-diol form of the corresponding aldehyde. This is the first report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant using dissolved oxygen.
Collapse
Affiliation(s)
- Euna Kim
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Georgia B Cardosa
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Katarina E Stanley
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Travis J Williams
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Kern M, Škulj S, Rožman M. Adsorption of a wide variety of antibiotics on graphene-based nanomaterials: A modelling study. CHEMOSPHERE 2022; 296:134010. [PMID: 35181425 DOI: 10.1016/j.chemosphere.2022.134010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The knowledge on the sorption behaviour of antibiotics on nanomaterials is limited, especially regarding the reaction mechanism on the surface of carbon nanomaterials, which may determine both the adsorptive capacity and regeneration efficiency of graphene adsorbers. In this work, we used molecular modelling to generate the most comprehensive (to date) adsorption dataset for pristine and functionalised graphene interacting with 8 β-lactams, 3 macrolide, 12 quinolone, 4 tetracycline, 15 sulphonamide, trimethoprim, 2 lincosamide, 2 phenicole and 4 nitroimidazole antibiotics, and their transformation products in water and n-octanol. Results show that various non-covalent interactions that operate simultaneously, including van der Waals dispersion forces, π-interactions, hydrophobic interaction and hydrogen bonding, facilitate adsorption. The molecular properties of antibiotics and graphene/graphene oxide, as well as the composition of the background solution regulate the magnitude of these interactions. Our findings demonstrate that the most efficient method for the removal of antibiotics from aquatic environments is the use of graphene at environmental pH. The subsequent regeneration of the sorbent is best achieved through washing with slightly basic (pH 8-10) non-polar solvents. The obtained theoretical insights expand and complement experimental observations and provide important information that can contribute to further exploration into the adsorbent properties of graphene-based materials, and towards the development of predictive adsorption models.
Collapse
Affiliation(s)
- Matej Kern
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Sanja Škulj
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Marko Rožman
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
29
|
Mahlangu OT, Motsa MM, Nkambule TI, Mamba BB. Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.
Collapse
Affiliation(s)
- Oranso T. Mahlangu
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Machawe M. Motsa
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Thabo I. Nkambule
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Bhekie B. Mamba
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| |
Collapse
|
30
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
31
|
Yan M, Jiang F, Fei H, Ma F, Yan J, Wu Y. Polydopamine-based multilevel molecularly imprinted nanocomposite membranes comprising metal organic frameworks for selective recognition and separation. J Colloid Interface Sci 2022; 606:696-708. [PMID: 34416459 DOI: 10.1016/j.jcis.2021.08.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Molecularly imprinted nanocomposite membranes with three-dimensional metal-organic frameworks (MOFs)-based structure (MINMs-TM) were successfully prepared by using propranolol as template molecule. Importantly, for the first time, polycarbonate track etch membranes had been used as the supporting surfaces to construct the polydopamine (PDA)-induced MOFs composite structure, in which the as-prepared PDA-modified surface would promote the crystallization and nucleation of ZIF-8-based composite layer. Based on the entire preparation processes of our design, the as-prepared PDA-induced ZIF-8-modified surfaces could be regarded as the imprinted-initiated units of sol-gel imprinting polymerization. Abundant recognition sits of propranolol were achieved in MINMs-TM, which showed characteristic properties of permeability and selectivity. Therefore, high adsorption capacity (41.31 mg/g) and fast adsorption equilibrium rate (within 30 min) had been successfully achieved. Meanwhile, excellent permselectivity rates (β) of MINMs-TM toward propranolol were also obtained as 5.04, 4.79 and 5.14, which MINMs-TM the successful synthesis of high-affinity and high-density propranolol-imprinted sites. Overall, for the practical selective separation and scalability, we had successfully MINMs-TM the preparation of MINMs-TM-based to selective rebinding and separation of propranolol from complex solution system and mimetic water sample, which had further confirmed the desired and potential applications of many environmental pollutants.
Collapse
Affiliation(s)
- Ming Yan
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Jiang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hangtao Fei
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Faguang Ma
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Yan
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
32
|
Román Santiago A, Baldaguez Medina P, Su X. Electrochemical remediation of perfluoroalkyl substances from water. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Wu Y, Zhang K, Lin R, Ma F, Gao J. Dual-imprinted organic/inorganic nanocomposite membranes with highly selective polydopamine-intimated nanostructures for pharmaceutically active compound separation. J Colloid Interface Sci 2021; 604:691-704. [PMID: 34280767 DOI: 10.1016/j.jcis.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022]
Abstract
Here, the graphene oxide (GO)/SiO2-loaded dual-imprinted membranes (GS-DIMs) were constructed based on the self-polymerization imprinting technique of dopamine, in which a twice polydopamine (PDA)-based imprinting strategy had been successfully developed to obtain the three-dimensional nanocomposite membrane-based separation system. Meanwhile, the pollution-intensive antibiotics of tetracycline (TC) was used as template molecule throughout the GS-DIMs synthesis, and the dopamine molecules were simultaneously used as functional monomer and cross-linking agent during the twice polydopamine (PDA)-based imprinting processes. Therefore, dual-TC-imprinted sites had been prepared based on the as-designed dual imprinting processes, the as-prepared GS-DIMs-based separation system with dual-TC-imprinted structures could not only allow for the largely enhanced rebinding result of 65.61 mg/g and faster adsorption equilibrium rate within 20 min, but also facilitate the permselectivity performance from TC-based complex separation system and mimetic water sample. Importantly, we demonstrated the applications and effects of the dual-imprinted membrane-based separation materials to selective rebinding and separation of TC from complex solution systems and mimetic water samples. The as-obtained permselectivity factors (β) around 4.0 strongly illustrated the efficiently selective separation ability and high-intensitive recognizability of TC than any other non-template molecules based on our GS-DIMs-based separation system. Overall, the as-designed GS-DIMs had great potential for selective separation applications and provided critical comparisons based on the as-achieved excellent rebinding and permselectivity performance, which encompassed innovative GO/SiO2-loaded nanocomposite and PDA-based dual-TC-imprinted system.
Collapse
Affiliation(s)
- Yilin Wu
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kaicheng Zhang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongxin Lin
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Faguang Ma
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Gao
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
34
|
Wang H, Lu K, Shen C, Song X, Hu B, Liu G. Human health risk assessment of groundwater nitrate at a two geomorphic units transition zone in northern China. J Environ Sci (China) 2021; 110:38-47. [PMID: 34593193 DOI: 10.1016/j.jes.2021.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
To assess groundwater nitrate contamination and its human health risks, 489 unconfined groundwater samples were collected and analyzed from Zhangjiakou, northern China. The spatial distribution of principle hydrogeochemical results showed that the average concentrations of ions in descend order was HCO3-, SO42-, Na+, Ca2+, Cl-, NO3-, Mg2+ and K+, among which the NO3- concentrations were between 0.25 and 536.73 mg/L with an average of 29.72 mg/L. In total, 167 out of 489 samples (~ 34%) exceeded the recommended concentration of 20 mg/L in Quality Standard for Groundwater of China. The high NO3- concentration groundwater mainly located in the northern part and near the boundary of the two geomorphic units. As revealed by statistical analysis, the groundwater chemistry was more significantly affected by anthropogenic sources than by the geogenic sources. Moreover, human health risks of groundwater nitrate through oral and dermal exposure pathways were assessed by model, the results showed that about 60%, 50%, 32% and 26% of the area exceeded the acceptable level (total health index>1) for infants, children, adult males and females, respectively. The health risks for different groups of people varied significantly, ranked: infants> children> adult males>adult females, suggesting that younger people are more susceptible to nitrate contamination, while females are more resistant to nitrate contamination than males. To ensure the drinking water safety in Zhangjiakou and its downstream areas, proper management and treatment of groundwater will be necessary to avoid the health risks associated with nitrate contamination.
Collapse
Affiliation(s)
- Huiliang Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science Chinese Academy of Sciences, Beijing 100085, China; College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, Henan 450001, China
| | - Keyu Lu
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chenyang Shen
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaoguang Song
- Land and Resources Exploration Center of Hebei Bureau of Geology and Mineral Resources Exploration, Shijiazhuang 050081, China
| | - Bin Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Golgoli M, Khiadani M, Shafieian A, Sen TK, Hartanto Y, Johns ML, Zargar M. Microplastics fouling and interaction with polymeric membranes: A review. CHEMOSPHERE 2021; 283:131185. [PMID: 34144295 DOI: 10.1016/j.chemosphere.2021.131185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 05/23/2023]
Abstract
The emergence and accumulation of microplastics (MPs) in various aquatic environments have recently raised significant concerns. Wastewater treatment plants (WWTPs) have been identified as one of the major sources of MPs discharge to the environment, implying a substantial need to improve advanced techniques for more efficient removal of MPs. Polymeric membranes have been proven effective in MPs removal. However, fouling is the main drawback of membrane processes and MPs can foul the membranes due to their small size and specific surface properties. Hence, it is important to investigate the impacts of MPs on membrane fouling to develop efficient membrane-based techniques for MPs removal. Although membrane technologies have a high potential for MPs removal, the interaction of MPs with membranes and their fouling effects have not been critically reviewed. The purpose of this paper is to provide a state-of-the-art review of MPs interaction with membranes and facilitate a better understanding of the relevant limitations and prospects of the membrane technologies. The first section of this paper is dedicated to a review of recent studies on MPs occurrence in WWTPs aiming to determine the most frequent MPs. This is followed by a summary of recent studies on MPs removal using membranes and discussions on the impact of MPs on membrane fouling and other probable issues (abrasion, concentration polarisation, biofouling, etc.). Finally, some recommendations for further research in this area are highlighted. This study serves as a valuable reference for future research on the development of anti-fouling membranes considering these new emerging contaminates.
Collapse
Affiliation(s)
- M Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - M Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - A Shafieian
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - T K Sen
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Y Hartanto
- Materials and Process Engineering (iMMC-IMAP), UC Louvain, Place Sainte Barbe 2, 1348, Louvain-la-Neuve, Belgium
| | - M L Johns
- Department of Chemical Engineering, School of Engineering, University of Western Australia, Crawley, WA, 6009, Australia
| | - M Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| |
Collapse
|
36
|
McCormack PM, Koenig GM, Geise GM. Thermodynamic Interactions as a Descriptor of Cross-Over in Nonaqueous Redox Flow Battery Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49331-49339. [PMID: 34609838 DOI: 10.1021/acsami.1c14845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Grid-scale energy storage is increasingly needed as wind, solar, and other intermittent renewable energy sources become more prevalent. Redox flow batteries (RFBs) are well suited to this application because of the advantages in scalability and modularity over competing technologies. Commercial aqueous flow batteries often have low energy density, but nonaqueous RFBs can offer higher energy density. Nonaqueous RFBs have not been studied as extensively as aqueous RFBs, and the use of organic solvents and organic active materials in nonaqueous RFBs presents unique membrane separator challenges compared to aqueous systems. Specifically, organic active material cross-over, which degrades battery performance, may be affected by membrane/active material thermodynamic interactions in a fundamentally different way than ionic active material cross-over in aqueous RFB membranes. Hansen solubility parameters (HSPs) were used to quantify these interactions and explain differences in organic active material permeability properties. Probe molecules with a more unfavorable HSP-determined enthalpy of mixing with the membrane polymer exhibited lower permeability or cross-over properties. The HSP approach, which accounts for the uncharged polymer backbone and the charged side chain, revealed that interactions between the uncharged organic probe molecule and the hydrophobic polymer backbone were more important for determining permeability or cross-over properties than interactions between the probe molecule and the hydrophilic side chain. This result is significant for nonaqueous RFBs because it suggests a decoupling of ionic conduction expected to predominantly occur in charged polymer regions and cross-over of organic molecules via hydrophobic or uncharged polymer regions. Such decoupling is not expected in aqueous systems where active materials are often polar or ionic and both cross-over and conduction occur predominantly in charged polymer regions. For nonaqueous RFBs, or other membrane applications where selective organic molecule transport is important, HSP analysis can guide the co-design of the polymer separator materials and soluble organic molecules.
Collapse
Affiliation(s)
- Patrick M McCormack
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, P.O. Box 400741, Charlottesville, Virginia 22904, United States
| | - Gary M Koenig
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, P.O. Box 400741, Charlottesville, Virginia 22904, United States
| | - Geoffrey M Geise
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, P.O. Box 400741, Charlottesville, Virginia 22904, United States
| |
Collapse
|
37
|
Immobiling enzyme-like ligand in the ultrafiltration membrane to remove the micropollutant for the ultrafast water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Sanahuja-Embuena V, Frauholz J, Oruc T, Trzaskus K, Hélix-Nielsen C. Transport mechanisms behind enhanced solute rejection in forward osmosis compared to reverse osmosis mode. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Huang S, McDonald JA, Kuchel RP, Khan SJ, Leslie G, Tang CY, Mansouri J, Fane AG. Surface modification of nanofiltration membranes to improve the removal of organic micropollutants: Linking membrane characteristics to solute transmission. WATER RESEARCH 2021; 203:117520. [PMID: 34392040 DOI: 10.1016/j.watres.2021.117520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Surface modification of nanofiltration (NF) membranes has great potential to improve the removal of organic micropollutants (OMs) by NF membranes. This study used polydopamine (PDA) as a model coating to comprehensively link the changes in membrane properties with the changes in transmission of 34 OMs. The membrane characterization demonstrated that a thicker, denser, and more hydrophilic PDA coating can be achieved by increasing the PDA deposition time from 0.5 to 4 hours. Overall, the transmissions of target OMs were reduced by PDA-coated NF membranes compared to unmodified NF membranes. The neutral hydrophobic compounds showed lower transmissions for longer PDA coating (PDA4), while the neutral hydrophilic compounds tended to show lower transmissions for shorter PDA coating (PDA0.5). To explain this, competing effects provided by the PDA coatings are proposed including sealing defects, inducing cake-enhanced concentration polarization in the coating layer for neutral hydrophilic compounds, and weakened hydrophobic adsorption for neutral hydrophobic compounds. For charged compounds, PDA4 with the greatest negative charge among the PDA-coated membranes showed the lowest transmission. Depending on the molecular size and hydrophilicity of the compounds, the transmission of OMs by the PDA4 coating could be reduced by 70% with only a 26.4% decline in water permeance. The correlations and mechanistic insights provided by this work are highly useful for designing membranes with specific surface properties via surface modification to improve the removal of OMs without compromising water production.
Collapse
Affiliation(s)
- Shiyang Huang
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Greg Leslie
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jaleh Mansouri
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
40
|
Peleyeju MG, Mgedle N, Viljoen EL, Scurrel MS, Ray SC. Irradiation of Fe–Mn@SiO2 with microwave energy enhanced its Fenton-like catalytic activity for the degradation of methylene blue. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04526-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Imbrogno A, Schäfer AI. Micropollutants breakthrough curve phenomena in nanofiltration: Impact of operational parameters. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Blankert B, Van der Bruggen B, Childress AE, Ghaffour N, Vrouwenvelder JS. Potential Pitfalls in Membrane Fouling Evaluation: Merits of Data Representation as Resistance Instead of Flux Decline in Membrane Filtration. MEMBRANES 2021; 11:membranes11070460. [PMID: 34206467 PMCID: PMC8304183 DOI: 10.3390/membranes11070460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
The manner in which membrane-fouling experiments are conducted and how fouling performance data are represented have a strong impact on both how the data are interpreted and on the conclusions that may be drawn. We provide a couple of examples to prove that it is possible to obtain misleading conclusions from commonly used representations of fouling data. Although the illustrative example revolves around dead-end ultrafiltration, the underlying principles are applicable to a wider range of membrane processes. When choosing the experimental conditions and how to represent fouling data, there are three main factors that should be considered: (I) the foulant mass is principally related to the filtered volume; (II) the filtration flux can exacerbate fouling effects (e.g., concentration polarization and cake compression); and (III) the practice of normalization, as in dividing by an initial value, disregards the difference in driving force and divides the fouling effect by different numbers. Thus, a bias may occur that favors the experimental condition with the lower filtration flux and the less-permeable membrane. It is recommended to: (I) avoid relative fouling performance indicators, such as relative flux decline (J/J0); (II) use resistance vs. specific volume; and (III) use flux-controlled experiments for fouling performance evaluation.
Collapse
Affiliation(s)
- Bastiaan Blankert
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (N.G.)
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium;
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Amy E. Childress
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (N.G.)
| | - Johannes S. Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (N.G.)
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Correspondence:
| |
Collapse
|
43
|
A New Method for a Polyethersulfone-Based Dopamine-Graphene (xGnP-DA/PES) Nanocomposite Membrane in Low/Ultra-Low Pressure Reverse Osmosis (L/ULPRO) Desalination. MEMBRANES 2020; 10:membranes10120439. [PMID: 33352893 PMCID: PMC7766060 DOI: 10.3390/membranes10120439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
Herein we present a two-stage phase inversion method for the preparation of nanocomposite membranes for application in ultra-low-pressure reverse osmosis (ULPRO). The membranes containing DA-stabilized xGnP (xGnP-DA-) were then prepared via dry phase inversion at room temperature, varying the drying time, followed by quenching in water. The membranes were characterized for chemical changes utilizing attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results indicated the presence of new chemical species and thus, the inclusion of xGnP-DA in the polyethersulfone (PES) membrane matrix. Atomic force microscopy (AFM) showed increasing surface roughness (Ra) with increased drying time. Scanning electron microscopy (SEM) revealed the cross-sectional morphology of the membranes. Water uptake, porosity and pore size were observed to decrease due to this new synthetic approach. Salt rejection using simulated seawater (containing Na, K, Ca, and Mg salts) was found to be up to stable at <99.99% between 1–8 bars operating pressure. After ten fouling and cleaning cycles, flux recoveries of <99.5% were recorded, while the salt rejection was <99.95%. As such, ULPRO membranes can be successfully prepared through altered phase inversion and used for successful desalination of seawater.
Collapse
|
44
|
Fujioka T, Osako M, Tanabe S, Kodamatani H, Shintani T. Plugging nonporous polyamide membranes for enhanced rejection of small contaminants during advanced wastewater treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VVT, Mokhtari B, Varma RS, Tay FR, Sillanpaa M. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. CHEMOSPHERE 2020; 258:127324. [PMID: 32544812 DOI: 10.1016/j.chemosphere.2020.127324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Water is an extremely essential compound for human life and, hence, accessing drinking water is very important all over the world. Nowadays, due to the urbanization and industrialization, several noxious pollutants are discharged into water. Water pollution by various cytotoxic contaminants, e.g. heavy metal ions, drugs, pesticides, dyes, residues a drastic public health issue for human beings; hence, this topic has been receiving much attention for the specific approaches and technologies to remove hazardous contaminants from water and wastewater. In the current review, the cytotoxicity of different sorts of aquatic pollutants for mammalian is presented. In addition, we will overview the recent advances in various nanocomposite-based adsorbents and different approaches of pollutants removal from water/wastewater with several examples to provide a backdrop for future research.
Collapse
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University (B.H.U), Varasani 221005, India
| | | | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran; Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Xuan-Qi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic
| | - Babak Mokhtari
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA
| | - Mika Sillanpaa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
46
|
Xia J, Liu X, Gao Y, Bai L. Green synthesis of Ag/ZnO microplates by doping Ag ions on basic zinc carbonate for fast photocatalytic degradation of dyes. ENVIRONMENTAL TECHNOLOGY 2020; 41:3584-3590. [PMID: 31046643 DOI: 10.1080/09593330.2019.1615135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The Ag/ZnO microplates, composed by various nanoparticles, were facilely synthesized by calcination of the precursor obtained by ion exchanging between zinc carbonate hydroxide [Zn2(OH)2CO3] and silver nitrate (AgNO3) in a short time. The structures of ZnO and Ag/ZnO were characterized carefully by a series of methods and so on. Especially, the results from the UV-Vis-NIR diffuse reflectance and PL spectra confirmed that the presence of metallic Ag led to the fact that the adsorption of visible light and an increase of separation of electrons and holes in the Ag/ZnO composite. The photocatalytic activities of the Ag/ZnO were 1.5 and nearly 5 times higher that of ZnO for removal of RhB and MB, respectively. We proposed a possible mechanism to explain the enhanced photocatalytic degradation over Ag/ZnO under UV light irradiation. Finally, this work could provide a simple example for the synthesis of metal-semiconductor composite as well as their applications.
Collapse
Affiliation(s)
- Juan Xia
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, People's Republic of China
| | - Xiaopin Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, People's Republic of China
| | - Yunhong Gao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, People's Republic of China
| | - Lei Bai
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, People's Republic of China
| |
Collapse
|
47
|
Fujioka T, Osako M, Oda K, Shintani T, Kodamatani H. Impact of heat modification conditions on the removal of N-nitrosodimethylamine by polyamide reverse osmosis membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Zhao C, Zhang T, Hu G, Ma J, Song R, Li J. Efficient removal of perfluorooctane sulphonate by nanofiltration: Insights into the effect and mechanism of coexisting inorganic ions and humic acid. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Trace analysis of artificial sweeteners in environmental waters, wastewater and river sediments by liquid chromatography–tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review. Adv Colloid Interface Sci 2020; 282:102204. [PMID: 32650145 DOI: 10.1016/j.cis.2020.102204] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
Thin-film composite (TFC) structured membranes based on polyamide (PA) chemistry is the gold standard of nanofiltration and reverse osmosis-based technologies for water purification and desalination. Constructing interlayer between porous substrate and PA layer is a promising strategy to address the ubiquitous trade-off between permeability and selectivity, which is typically encountered by conventional TFC PA membranes. The progress in the interlayer benefits the precise control of interfacial polymerization process, which therefore can tailor the structure and performance of advanced TFC PA membranes. This review critically summarizes the recent advances in TFC PA membranes mediated by interlayer. The mechanisms of interlayer regulating the IP process and PA structure are first discussed based on available literature. Structure and performance of novel TFC PA membranes based on three kinds of interlayers, i.e., organic coatings, nanomaterial and nanocomposite interlayers, are systematically reviewed. Finally, perspectives and future efforts needed are proposed for interlayer based TFC PA membranes. This review offers comprehensive understanding and useful guidance on the rational design of advanced membranes mediated by interlayers for desalination and water purification.
Collapse
Affiliation(s)
- Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiayi Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|