1
|
Molaey R, Appels L, Yesil H, Tugtas AE, Çalli B. Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177020. [PMID: 39427892 DOI: 10.1016/j.scitotenv.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
By 2050, global sewage sludge production is expected to increase by 51 %, rising from its current level of over 45 million tons of dry solids to nearly 68 million tons. This growth is primarily driven by population growth and the implementation of increasingly stringent environmental regulations. This increase in sewage sludge volume poses substantial challenges for sustainable management due to its complex composition. While sewage sludge contains valuable nutrients such as nitrogen (N), phosphorus (P), and potassium (K) that make it suitable for agriculture use, the presence of heavy metals (HMs), including cadmium (Cd), lead (Pb), mercury (Hg), chrome (Cr), copper (Cu), nickel (Ni) and zinc (Zn) creates significant barriers to its safe reuse. Inadequately treated sewage sludge, when repeatedly applied to agricultural soils, can lead to the accumulation of HMs, posing risks to long-term soil fertility, crop productivity, and broader environmental health. This review discusses various techniques for de-metallization of sewage sludge, including aerobic- and anaerobic bioleaching, chemical leaching, electrokinetic treatment, and supercritical fluid extraction. Among these techniques, anaerobic bioleaching is identified as the most environmentally sustainable option, as it offers a lower-energy, less chemically intensive approach to decrease HM content in the solid fraction of sewage sludge. This approach utilizes microbial activity under anaerobic conditions to solubilize and remove HMs, while minimizing nutrient loss and preserving the ecological integrity of the treated sewage sludge. Future research should prioritize the optimizing of anaerobic bioleaching processes to enhance both HM removal efficiency and nutrient retention. Additionally, integrating anaerobic bioleaching with air-assisted ultrasonication as a post treatment technology could further improve metal removal efficiency. This review aims to provide a comprehensive reference for researchers and practitioners seeking environmentally friendly solutions for HM removal from sewage sludge, ensuring its safe reuse in land applications and contributing to a circular agro-economy.
Collapse
Affiliation(s)
- Rahim Molaey
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Hatice Yesil
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - A Evren Tugtas
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - Bariş Çalli
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| |
Collapse
|
2
|
Ye J, Liu X, Khalid M, Li X, Romantschuk M, Bian Y, Li C, Zhang J, Zhao C, Wu J, Hua Y, Chen W, Hui N. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting. ENVIRONMENTAL RESEARCH 2024; 263:120109. [PMID: 39369780 DOI: 10.1016/j.envres.2024.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days. Our results showed that the simultaneous addition of chitosan and peat extended the high-temperature period, and increased the highest temperature to 74 °C and germination index. These effects could be attributed to the presence of thermophilic cellulose-decomposing genera (Thermomyces and Thermobifida). Although the microbial communities differed compositionally among temperature stages, their dissimilarity drastically reduced at final stage, indicating that the impact of different treatments on microbial community composition decreases at the end of composting. Peat had a greater impact on aerobic genera capable of cellulose degradation at thermophilic stage than chitosan. Surprisingly, despite the total copy number of ARGs significantly decreased during composting, especially in the treatment with both chitosan and peat, intI1 gene abundance significantly increased 2 logs at thermophilic stage and maintained high level in the final compost, suggesting there is still a potential risk of transmission and proliferation of ARGs. Our work shed some lights on the development of waste resource utilization and emerging contaminants removal technology.
Collapse
Affiliation(s)
- Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Jian Wu
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Weihua Chen
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland.
| |
Collapse
|
3
|
Jiang Z, Ao Z, Qiu L, Li W, Yu J, Xia Z, Qi L, Liu G, Wang H. Enhanced wastewater treatment with an AnF-AAO system for improved internal carbon source utilization. CHEMOSPHERE 2024; 363:142836. [PMID: 39004146 DOI: 10.1016/j.chemosphere.2024.142836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The main challenge in removing nutrients from municipal wastewater in China is the lack of available carbon sources. While hydrolysis acidification tanks can improve wastewater biodegradability by effectively utilizing internal carbon sources, high sludge concentrations are difficult to control in traditional tank variants. In this study, an innovative anaerobic filter (AnF) hydrolysis acidification reactor composed of a continuously stirred tank reactor (CSTR) and cloth media filter was designed to regulate and maintain high sludge concentrations in the hydrolysis acidifier. The reactor was used as a pretreatment unit for the anaerobic/anoxic/oxic (AAO) units and combined into an AnF-AAO system to explore the effectiveness of internal carbon source utilization in wastewater. The results indicate that as the sludge concentration in the hydrolysis acidifier increased, the hydrolysis and acidification processes became more efficient. The optimal sludge concentration was 40 g/L, which significantly increased the production of soluble chemical oxygen demand and volatile fatty acids. Above this concentration, the efficiency decreased. Compared to traditional AAO processes, the AnF-AAO system achieved superior total nitrogen and phosphorus removal with shorter hydraulic retention times and reduced sludge production by a significant amount of 35%. Due to its capacity for enhancing internal carbon source utilization, the AnF-AAO system constitutes a promising approach for sustainable urban wastewater treatment.
Collapse
Affiliation(s)
- Zhao Jiang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - ZiDing Ao
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Linqing Qiu
- Dongguan Water Group Co., Ltd, Dongguan, 523000, China
| | - Wei Li
- Dongguan Water Group Co., Ltd, Dongguan, 523000, China
| | - Jie Yu
- Dongguan Water Group Co., Ltd, Dongguan, 523000, China
| | - Zhiheng Xia
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Guohua Liu
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
4
|
Zhang S, Huang X, Dong W, Li Z, Gao J, Zhou G, Teng X, Cao K, Zheng Z. Unraveling the effects and mechanisms of microplastics on anaerobic fermentation: Exploring microbial communities and metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173518. [PMID: 38815824 DOI: 10.1016/j.scitotenv.2024.173518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control group, the addition of polyvinyl chloride (PVC)-MPs exhibited the least inhibition on volatile fatty acids (VFAs), reducing them by 13.49 %. Conversely, polyethylene (PE)-MPs resulted in the greatest inhibition, with a reduction of 29.57 %. MPs, while accelerated the dissolution of WAS that evidenced by an increase of lactate dehydrogenase (LDH) release, concurrently inhibited the activities of relevant hydrolytic enzymes (α-Glucosidase, protease). For microbial mechanisms, MPs addition affected the proliferation of key microorganisms (norank_f_Bacteroidetes_vadinHA17, Ottowia, and Propioniclava) and reduced the abundance of genes associated with hydrolysis and acidification (pfkb, gpmI, ilvE, and aces). Additionally, MPs decreased the levels of key hydrolytic and acidogenic enzymes to inhibit hydrolysis and acidification processes. This research provides a basis for understanding and unveils impact mechanisms of the impact of MPs on sludge anaerobic fermentation.
Collapse
Affiliation(s)
- Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - JingSi Gao
- Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Guorun Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xindong Teng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kai Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhihao Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Saket P, Joshi A, Yadav AK, Bala K. Exploring the potential of graphite material in an unplanted electroactive wetland for the remediation of synthetic wastewater containing azo dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34408-1. [PMID: 39042190 DOI: 10.1007/s11356-024-34408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
The current study was conducted to understand the sole role of graphite as a substrate material in a dual-chambered baffled electroactive wetland (EW) in the treatment of Methyl red dye-containing wastewater. The results obtained were compared with conventional gravel-based unplanted dual-chambered constructed wetlands (CW) at a lab scale. The highest dye decolorisation and COD removal efficiency achieved was 92.88 ± 1.6% and 95.78 ± 4.1%, respectively, in the electro-active wetland. Dissolved oxygen (DO) and pH conditions were appropriately maintained in both the microcosms because of separated aerobic and anaerobic chambers. UV-vis and gas chromatography-mass spectroscopy analysis revealed the production of by-products like 4-amino benzoic and N- N dimethyl phenyl-diamine of MR in microcosms and revealed further mineralisation of by-products in the aerobic zone of electroactive-wetland. Higher root growth of Cicer aerietinum and Vigna radiata was observed in the presence of effluents of baffled electroactive wetlands compared to constructed wetland, indicating a decrease in phytotoxicity. Metagenomic analysis revealed the abundance of potential microbes for MR and organic matter removal from phylum Proteobacteria, Firmicutes, Bacteroidetes, and Euryarchaeota. A batch adsorption study revealed a higher adsorption capability of graphite material in comparison to gravel. Hence, this study demonstrated that graphite is an appropriate substrate in electroactive wetland in facilitating microbial attachments and enhancing dye degradation, in addition to exhibiting superior adsorption quality.
Collapse
Affiliation(s)
- Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, Madhya Pradesh, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, Madhya Pradesh, India
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
6
|
Lu J, Lu Q, Hu Q, Qiu B. Recovery of organic matters by activated sludge from municipal wastewater: Performance and characterization. ENVIRONMENTAL RESEARCH 2024; 252:118829. [PMID: 38582424 DOI: 10.1016/j.envres.2024.118829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Municipal wastewater treatment processes consume a significant amount of energy and generate substantial carbon emissions. However, organic matters existing in municipal wastewater hold the potential as a valuable carbon source. Activated sludge has the potential to capture and recover the organic matters, thereby enriching carbon sources and facilitating subsequent sludge anaerobic digestion as well as in line with the concept of sustainable development. Based on above, this study investigated the enrichment and recovery characteristics and mechanisms of activated sludge adsorption on carbon sources in municipal wastewater, while optimizing the recovery conditions. The results indicated that insoluble organic matters, as well as a fraction of dissolved organic matters, can be effective recovered within approximately 40 min. Specifically, 74.1% of insoluble organic matters and 25.8% of soluble organic matters were successfully captured by the activated sludge, resulting in a 5.0% increase in sludge organic matter content. Moreover, activated sludge demonstrated remarkable recovery of particulate organic matters across various particle sizes, particularly larger particles (>5 μm) with high protein content. Notably, the dissolved biodegradable organics such as tryptophan and tyrosine protein-like substances according to 3D-EEM and lipids, proteins/amino sugars, and carbohydrates according to FT-ICR MS can be effectively recovered. Finally, the study revealed that the recovery of organic matters from the wastewater by activated sludge followed the pseudo-second-order kinetics model, with surface binding, hydrogen bonding and interparticle diffusion in sludge flocs as the primary adsorption mechanisms. This approach had abroad application prospects for improving the profitability of wastewater treatment plants.
Collapse
Affiliation(s)
- Junyan Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qiaoling Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qian Hu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Guo T, Zhang S, Song C, Zhao R, Jia L, Wei Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121145. [PMID: 38788406 DOI: 10.1016/j.jenvman.2024.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.
Collapse
Affiliation(s)
- Tong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Ran Zhao
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Liming Jia
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
8
|
Zhang Z, Zeng M, Li Z, Liu T, Gao X, Yu Y, Xi H, Zhou Y, Guo H, Song G. The synergistic role of ozonation and hydrolysis acidification on the enhanced pre-treatment of high-strength refractory 2-butenal manufacture wastewater: Performance, metabolism, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132829. [PMID: 37898086 DOI: 10.1016/j.jhazmat.2023.132829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Targeted removal of three key refractory toxic organic compounds (TOMs) in 2-butenal manufacturing wastewater (2-BMW) is critical for enhancing pre-treatment by hydrolysis acidification (HA). We investigated the pre-treatment of 2-BMW with HA, coupled with ozonation in this study. Our results indicated that the removal rate of these key TOMs and the detoxification rate reached almost 100% and 46.3%, respectively, by ozonation under only 0.099 mg O3/mg chemical oxygen demand (COD). The organic load rate (OLR) reached 10.25 ± 0.43 kg COD/m3·d, and the acidification degree (AD) and detoxification efficiency reached 56.0% and 98.3%, respectively, with enhancements of 35.1% and 55.2%, respectively, compared with HA alone. The removal rate of the three key TOMs was improved by > 75%. The degradation pathways of these key TOMs were ring cleavage and ester formation by ozonation, followed by fermentation and acid production by HA. Ultimately, the synergistic role of ozonation and HA was revealed. The preferential cleavage of these key TOMs by ozonation was achieved because of their high electron cloud density and multiple reaction sites, which generated more fermentation-friendly products. The fermentation and acid production reactions may be directly involved in these products. Functional bacteria and key metabolic pathways were also enhanced by ozonation.
Collapse
Affiliation(s)
- Zhuowei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingxiao Zeng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Tao Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoyi Gao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yin Yu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Xi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuexi Zhou
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hao Guo
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Guangqing Song
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
9
|
Chen J, Xue Y, Yang D, Ma S, Lin Y, Wang H, Wang Y, Ren H, Xu K. Optimizing waste molasses utilization to enhance electron transfer via micromagnetic carriers: Mechanisms and high-nitrate wastewater denitrification performance. ENVIRONMENTAL RESEARCH 2024; 242:117709. [PMID: 37993049 DOI: 10.1016/j.envres.2023.117709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The biological denitrification of high-nitrate wastewater (HNW) is primarily hindered by insufficient carbon sources and excessive nitrite accumulation. In this study, micromagnetic carriers with varying micromagnetic field (MMF) strengths (0.0, 0.3, 0.6, 0.9 mT) were employed to enhance the denitrification of HNW using waste molasses (WMs) as a carbon source. The results revealed that 0.6 mT MMF significantly improved the total nitrogen removal (TN) efficiency at 96.3%. A high nitrate (NO3--N) removal efficiency at 99.3% with a low nitrite (NO2--N) accumulation at 25.5 mg/L was achieved at 0.6 mT MMF. The application of MMF facilitated the synthesis of adenosine triphosphate (ATP) and stimulated denitrifying enzymes (e.g., nitrate reductase (NAR), nitrite reductase (NIR), and nitric oxide reductase (NOR)), which thereby promoting denitrification. Moreover, the effluent chemical oxygen demand (COD), tryptophan and fulvic-like substances exhibited their lowest levels at 0.6 mT MMF. Analysis through 16S ribosomal ribonucleic acid gene sequencing indicated a significant enrichment of denitrifying bacteria including Castellaniella Klebsiella under the influence of MMF. Besides, the proliferation of Acholeplasma, Klebsiella and Proteiniphilum at 0.6 mT MMF promoted the hydrolysis and acidification of WMs. This study offers new insights into the enhanced utilization of WMs and the denitrification of HNW through the application of MMF.
Collapse
Affiliation(s)
- Jiahui Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yi Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
10
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
11
|
Rocha ME, Lazarino TC, Oliveira G, Teixeira L, Marques M, Mangiavacchi N. Analysis of biogas production from sewage sludge combining BMP experimental assays and the ADM1 model. PeerJ 2024; 12:e16720. [PMID: 38239297 PMCID: PMC10795531 DOI: 10.7717/peerj.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The Anaerobic Digestion Model No. 1 (ADM1) was employed to simulate methane (CH4) production in an anaerobic reactor (AR), and the associated bench-scale biochemical methane potential (BMP) assay, having sewage sludge (SWS) from a municipal wastewater treatment plant (WWTP) as feedstock. The SWS presented the following physical-chemical characteristics: pH (7.4-7.6), alkalinity (2,382 ± 100 mg CaCO3 L-1), tCOD (21,903 ± 1,000 mg L-1), TOC (895 ± 100 mg L-1), TS, TVS, and VSS (2.0%, 1.1%, and 0.8%, respectively). The BMP assay was conducted in six replicates under anaerobic mesophilic conditions (37 ± 0.1°C) for 11 days with a CH4 yield registered of 137.6 ± 6.39 NmL CH4 or 124 ± 6.72 CH4 g-1 VS-1. When the results obtained with the BMP bench-scale reactors were compared to the output generated with computational data by the ADM1 model having as input data the same initial sewage tCOD, similar cumulative CH4 production curves were obtained, indicating the accuracy of the ADM1 model. This approach allowed the characterization of the sludge and estimation of its biogas production potential. The combination of BMP assays, experimental data, and ADM1 model simulations provided a framework for studying anaerobic digestion (AD) processes.
Collapse
Affiliation(s)
- Mariana Erthal Rocha
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Thais Carvalho Lazarino
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Gabriel Oliveira
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Lia Teixeira
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Norberto Mangiavacchi
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Wang Z, Li X, Liu H, Zhou T, Li J, Siddiqui MA, Lin CSK, Rafe Hatshan M, Huang S, Cairney JM, Wang Q. Enhancing methane production from anaerobic digestion of secondary sludge through lignosulfonate addition: Feasibility, mechanisms, and implications. BIORESOURCE TECHNOLOGY 2023; 390:129868. [PMID: 37844805 DOI: 10.1016/j.biortech.2023.129868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
This study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control. One substrate model demonstrated that 60 mg/g VS lignosulfonate boosted the hydrolysis rate, biochemical methane potential, and degradation extent of secondary sludge by 19.12 %, 21.87 %, and 21.11 %, respectively, compared to the control. Mechanisms unveiled that lignosulfonate destroyed sludge stability, promoted organic matter release, and enhanced subsequent hydrolysis, acidification, and methanogenesis by up to 31.30 %, 74.42 % and 28.16 %, respectively. Phytotoxicity assays confirmed that lignosulfonate promoted seed germination and root development of lettuce and Chinese cabbage, with seed germination index reaching 170 ± 10 % and 220 ± 22 %, respectively. The findings suggest that lignosulfonate addition offers a sustainable approach to sludge treatment, guiding effective management practices.
Collapse
Affiliation(s)
- Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Siyu Huang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
13
|
Gao P, Ming X, Wang X, Chen Z, Liu Y, Li X, Zhang D. Effects of ozone on activated sludge: performance of anaerobic digestion and structure of the microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2826-2836. [PMID: 38096071 PMCID: wst_2023_378 DOI: 10.2166/wst.2023.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The treatment and disposal of activated sludge are currently challenging tasks in the world. As a common biological engineering technology, biological fermentation exists with disadvantages such as low efficiency and complex process. Ozone pretreatments are commonly applied to improve this problem due to their high efficiency and low cost. In this study, the significant function of ozone in anaerobic fermentation gas production was verified with excess sludge. Compared with other untreated sludge, ozone pretreatment can effectively degrade activated sludge. After ozone treatment and mixing with primary sludge, the methane production of excess sludge increased by 49.30 and 50.78%, and the methanogenic activity increased by 69.99 and 73.83%, respectively. The results indicated that the mixing of primary sludge with excess sludge possessed synergistic effects, which contributed to the anaerobic fermentation of excess sludge. The results of microbial community structure exhibited that methanogenic processes mainly involve hydrogenogens, acidogens and methanogens. The relative abundance of both bacteria and microorganisms changed significantly in the early stage of hydraulic retention time, which coincided exactly with the gas production stage. This study provided a feasible pretreatment strategy to improve sludge biodegradability and revealed the role of microorganisms during anaerobic digestion.
Collapse
Affiliation(s)
- Pei Gao
- P.G. and X.M. contributed equally to this work. E-mail:
| | - Xujia Ming
- P.G. and X.M. contributed equally to this work
| | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Wang H, Chen H, Dai X. Metatranscriptome analysis unveils the mechanisms of zero-valent iron enhancing reactivation of starvation hydrolysis acidification sludge by inducing high-level gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165696. [PMID: 37482355 DOI: 10.1016/j.scitotenv.2023.165696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Hydrolysis acidification (HA) is a promising method for wastewater treatment and resource recovery. However, the extended time required for bacterial reactivation after starvation or a change in living conditions often poses a challenge to the efficient operation of the system. Although the addition of zero-valent iron (ZVI) could enhance HA performance, its effects on sludge reactivation in the HA process are not fully understood. In this study, ZVI was employed to accelerate sludge reactivation and its involved genetic mechanisms were unveiled. The results demonstrated that ZVI addition activated the sludge within 35 days with stable HA performance. Sludge characteristics revealed that ZVI improved active biomass, enzyme activity (by 11.4 % ∼ 26.7 %), ETS activity (by 566 %), and cell viability, with a higher concentration of MLVSS, live cells, more microbial byproducts in EPS, and relative abundance of HA bacteria (63.41 %). Moreover, metatranscriptome analysis showed that ZVI upregulated the expression of genes related to key enzymes in carbohydrate degradation metabolism, biosynthesis of electron transfer media such as heme and ubiquinone, and biosynthesis of vital cofactors like vitamin B12 and folate during microbial growth and metabolism. These findings suggest that ZVI enhanced electron transfer, bacterial growth, and metabolism, resulting in effective starch conversion and VFAs generation. Overall, these results deepen our understanding of the mechanism by which ZVI enhanced HA sludge reactivation, providing valuable information for addressing sludge starvation issues in HA systems.
Collapse
Affiliation(s)
- Yanqiong Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongwu Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Ma S, Xu K, Ren H. Effect of mixing intensity on volatile fatty acids production in sludge alkaline fermentation: Insights from dissolved organic matter characteristics and functional microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118801. [PMID: 37591099 DOI: 10.1016/j.jenvman.2023.118801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Alkaline fermentation for volatile fatty acids (VFAs) production has shown potential as a viable approach to treat sewage sludge. The hydrolysis and acidogenesis of sludge are greatly influenced by mixing. However, the effects of mixing intensity on VFAs production in sludge alkaline fermentation (SAF) remain poorly understood. This study investigated the impacts of mixing intensity (30, 90 and 150 rpm continuous mixing, and 150 rpm intermittent mixing) on VFAs production, dissolved organic matter (DOM) characteristics, phospholipid fatty acid profiles and microbial population distribution in SAF. Results showed that 150 rpm continuous and intermittent mixing enhanced the hydrolysis of sludge, while 150 rpm intermittent mixing resulted in the highest VFAs production (3886 ± 266.1 mg COD/L). Analysis of fluorescent and molecular characteristics of DOM revealed that 150 rpm intermittent mixing facilitated the conversion of released DOM, especially proteins-like substances, into VFAs. The abundance of unsaturated and branched fatty acids of microbes increased under 150 rpm intermittent mixing, which could aid in DOM degradation and VFAs production. Firmicutes and Tissierella were enriched at 150 rpm intermittent mixing, which favored the maximum VFAs yield. Moreover, Firmicutes were found to be the key functional microorganisms influencing the yield of VFAs during SAF. This study provides an understanding about the mixing intensity effects on VFAs production during SAF, which could be helpful to improve the yield of VFAs.
Collapse
Affiliation(s)
- Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
16
|
Wen ZH, Zhang SS, Zhao P, Hang ZY, He ZW, Yu HQ, Li ZH. Roles of high/low nucleic acid bacteria in flocs and probing their dynamic migrations with respirogram. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165108. [PMID: 37356771 DOI: 10.1016/j.scitotenv.2023.165108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Bacterial migration is crucial for the stability of activated sludge but rarely reported. The static distribution was explored by changes in bacteria concentration with extracellular polymeric substances (EPS) extractions. Next, denitrification and aeration were conducted as normal running conditions for examining the bacterial migration between floc-attached and dispersed growth. Above observations were further explored by conducting copper ion (Cu2+) shock as an extreme running condition. After extracting EPS, low nucleic acid (LNA) bacteria migrated from the sludge to the supernatant primarily, and high nucleic acid (HNA) bacteria remained in the residual sludge, suggesting that HNA bacteria mainly distributed inside the sludge while LNA bacteria outside the sludge. During the denitrification process, LNA bacteria migrated out of flocs, which increased by 6.94 × 106 events/mL in the supernatant. During the feast phase of aeration, LNA bacteria grew attached to flocs, causing the increased flocs diameter from 45.60 to 47.40 μm. During the following aerobic famine phase, LNA bacteria grew dispersedly, but HNA bacteria remained unchanged. However, a further severe famine phase drove HNA bacteria to be dispersed, breaking flocs with the decreased diameter from 48.10 to 46.50 μm. When the Cu2+ shock was employed, LNA and HNA bacteria increased but the LNA/HNA ratio decreased in the supernatant, indicating more HNA bacteria migrating to the dispersed phase. From a structural perspective, HNA bacteria distributed inside the sludge and functioned as the backbone of flocs, undertaking the maintenance of flocs stability primarily; while LNA bacteria distributed outside the sludge and functioned as filling materials, having a secondary influence on flocs stability. These processes were also probed by respirogram exactly, correlating the system-scale measurement and microscale migrations and providing an early warning signal under abnormal circumstances. The processed HNA-backbone theory is promising for regulating the stability of activated sludge based on bacterial migrations.
Collapse
Affiliation(s)
- Zheng-Hong Wen
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuang-Shuang Zhang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen-Yu Hang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
17
|
Zhao Q, Wu QL, Wang HZ, Si QS, Sun LS, Li DN, Ren NQ, Guo WQ. Attenuation effects of ZVI/PDS pretreatment on propagation of antibiotic resistance genes in bioreactors: Driven by antibiotic residues and sulfate assimilation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132054. [PMID: 37473569 DOI: 10.1016/j.jhazmat.2023.132054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi-Shi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Shi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - De-Nian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
18
|
Liang M, Qin X, Chang Q, Wang C, Guo G, Lu X, Wu X, Zan F. Achieving efficient methane production from protein-rich organic waste in anaerobic digestion: Using conductive materials or regulating inoculum-to-substrate ratios? BIORESOURCE TECHNOLOGY 2023; 385:129473. [PMID: 37429550 DOI: 10.1016/j.biortech.2023.129473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The contribution of inoculum-to-substrate ratios (ISRs) and conductive materials (CMs) on the productivity of anaerobic digestion (AD) remains unclear, particularly for protein-rich organic waste. This study investigated whether the addition of CMs, i.e., biochar and iron powder, can overcome the limitations imposed by varying ISRs for the AD of protein as the sole substrate. Results indicate the ISR plays a decisive role in hydrolysis, acidification, and methanogenesis for protein conversion, irrespective of CMs addition. Methane production increased stepwise as the ISR escalated to 3:1. The addition of CMs provided limited improvement, and iron powder even inhibited methanogenesis at a low ISR. Bacterial community variations were contingent on the ISR, while iron powder supplementation significantly elevates the proportion of hydrogenotrophic methanogen. This study demonstrates that the addition of CMs could affect methanogenic efficiency but can not overcome the limitation of ISRs for the AD of protein.
Collapse
Affiliation(s)
- Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohai Qin
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Guo
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Wang Y, Gao Y, Lu X, Gadow SI, Zhuo G, Hu W, Song Y, Zhen G. Bioelectrochemical anaerobic membrane bioreactor enables high methane production from methanolic wastewater: Roles of microbial ecology and microstructural integrity of anaerobic biomass. CHEMOSPHERE 2023; 339:139676. [PMID: 37527740 DOI: 10.1016/j.chemosphere.2023.139676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
The disintegration of anaerobic sludge and blockage of membrane pores has impeded the practical application of anaerobic membrane bioreactor (AnMBR) in treating methanolic wastewater. In this study, bioelectrochemical system (BES) was integrated into AnMBR to alleviate sludge dispersion and membrane fouling as well as enhance bioconversion of methanol. Bioelectrochemical regulation effect induced by BES enhanced methane production rate from 4.94 ± 0.52 to 5.39 ± 0.37 L/Lreactor/d by accelerating the enrichment of electroactive microorganisms and the agglomeration of anaerobic sludge via the adhesive and chemical bonding force. 16 S rRNA gene high-throughput sequencing demonstrated that bioelectrochemical stimulation had modified the metabolic pathways by regulating the key functional microbial communities. Methanogenesis via the common methylotrophic Methanomethylovorans was partially substituted by the hydrogenotrophic Candidatus_Methanofastidiosum, etc. The metabolic behaviors of methanol are bioelectrochemistry-dependent, and controlling external voltage is thus an effective strategy for ensuring robust electron transfer, low membrane fouling, and long-term process stability.
Collapse
Affiliation(s)
- Yue Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai, 200062, PR China
| | | | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350003, China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, PR China
| | - Yu Song
- Shanghai Techase Environment Protection Co., Ltd., 1121 North Zhongshan No. 2 Road, Shanghai, 200092, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
20
|
Fu Y, Xu R, Yang B, Wu Y, Xia L, Tawfik A, Meng F. Mediation of Bacterial Interactions via a Novel Membrane-Based Segregator to Enhance Biological Nitrogen Removal. Appl Environ Microbiol 2023; 89:e0070923. [PMID: 37404187 PMCID: PMC10370321 DOI: 10.1128/aem.00709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The regulation of microbial subpopulations in wastewater treatment plants (WWTPs) with desired functions can guarantee nutrient removal. In nature, "good fences make good neighbors," which can be applied to engineering microbial consortia. Herein, a membrane-based segregator (MBSR) was proposed, where porous membranes not only promote the diffusion of metabolic products but also isolate incompatible microbes. The MBSR was integrated with an anoxic/aerobic membrane bioreactor (i.e., an experimental MBR). The long-term operation showed that the experimental MBR exhibited higher nitrogen removal (10.45 ± 2.73 mg/L total nitrogen) than the control MBR (21.68 ± 4.23 mg/L) in the effluent. The MBSR resulted in much lower oxygen reduction potential in the anoxic tank of the experimental MBR (-82.00 mV) compared to that of the control MBR (83.25 mV). The lower oxygen reduction potential can inevitably aid in the occurrence of denitrification. The 16S rRNA sequencing showed that the MBSR significantly enriched acidogenic consortia, which yielded considerable volatile fatty acids by fermenting the added carbon sources and allowed efficient transfer of these small molecules to the denitrifying community. Moreover, the sludge communities of the experimental MBR harbored a higher abundance of denitrifying bacteria than those of the control MBR. Metagenomic analysis further corroborated these sequencing results. The spatially structured microbial communities in the experimental MBR system demonstrate the practicability of the MBSR, achieving nitrogen removal efficiency superior to that of mixed populations. Our study provides an engineering method for modulating the assembly and metabolic division of labor of subpopulations in WWTPs. IMPORTANCE This study provides an innovative and applicable method for regulating subpopulations (activated sludge and acidogenic consortia), which contributes to the precise control of the metabolic division of labor in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Lichao Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Cairo, Egypt
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
21
|
Diaz R, Goswami A, Clark HC, Michelson R, Goel R. Volatile fatty acid production from primary and secondary sludges to support efficient nutrient management. CHEMOSPHERE 2023:138984. [PMID: 37315862 DOI: 10.1016/j.chemosphere.2023.138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Enhanced hydrolysis of sludges during fermentation is an important factor to achieve solubilization of complex carbon sources and increase the amount of soluble COD that microorganisms could use as food during biological nutrient removal processes. This research shows that a combination of mixing, bioaugmentation, and co-fermentation can be used to increase the hydrolysis of sludges and enhanced the production of volatile fatty acids (VFA). Mixing of primary sludge (PS) at 350 revolutions per minute (RPM) during fermentation increased the hydrolysis of the sludge and increased the soluble chemical oxygen demand (sCOD) by 72% compared to no mixing. Mixing also increased the production of VFA by 60% compared to no mixing conditions. PS hydrolysis was also evaluated using bioaugmentation with the bacteria Bacillus amyloliquefacients, a known producer of the biosurfactant surfactin. Results showed that bioaugmentation enhanced the hydrolysis of the PS by increasing the amount of soluble carbohydrates and soluble proteins present in the form of sCOD. Methanogenesis experiments performed with co-fermentation of decanted primary sludge (PS) and raw waste-activated sludge (WAS) at 75:25 and 50:50 ratios displayed a decreased in production of total biogas by 25.58% and 20.95% and a reduction on methane production by 20.00% and 28.76% respectively, compared to co-fermentation of raw sludges. Compared to fermentation of the sludges separately, co-fermentation of PS and WAS increased the production of VFA and it was determined that 50:50 was the optimum co-fermentation ratio for production of VFA while reducing the reintroduction of nutrients produced during the fermentation process to BNR processes.
Collapse
Affiliation(s)
- Ruby Diaz
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA
| | - Anjan Goswami
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA
| | - Herald C Clark
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA
| | | | - Ramesh Goel
- Civil & Environmental Engineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|
22
|
Li H, Wang H, Yang X, Zhang Q, Wang Y. Effect of exogenous CaO addition on H 2S production from waste activated sludge and its influence mechanism. WATER RESEARCH 2023; 241:120171. [PMID: 37295227 DOI: 10.1016/j.watres.2023.120171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) production from waste activated sludge (WAS) is the main reason for odor emission during anaerobic fermentation system. CaO has been reported to effectively improve the resources recovery of WAS, but its potential effect on H2S production in anaerobic fermentation process remains unrecognized. In present study, it was found that the addition of 60 mg/g VSS CaO greatly inhibited H2S production and the maximum yield of H2S was 60.1 ± 1.8% lower than the control. Mechanism investigation demonstrated that CaO destroyed sludge structure and increased the release of intracellular organic matter with hydrogen bonding networks destroying, but had a mild effect on the transformation of sulfur containing organic matters and inorganic sulfate reduction. Additionally, the enhancement in H+ and S2- consumption by alkaline condition and metal ions release was another reason for the inhibition of H2S production in CaO addition reactors. Furthermore, microbial analysis showed that CaO addition importantly reduced the hydrolysis microorganism, particularly denitrification hydrolytic bacterias (e.g., unclassified_f_Chitinophagaceae and Dechloromonas), sulfate reducing bacterias (SRBs) (e.g., unclassified_c_Deltaproteobacteria and Desulfosarcina) and genes (e.g., PepD, cysN/D, CysH/C and Sir) involved in organic sulfur hydrolysis and sulfate reduction. Results from this study provides theoretical insights into the practical applications of CaO.
Collapse
Affiliation(s)
- Hang Li
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjie Wang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; School of life science, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xianglong Yang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yali Wang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; School of life science, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
23
|
Zhou Y, Huang X, Ma S, He J. Thermo-alkaline pretreatment of excess sludge: Effects of temperature on volatile fatty acids accumulation and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118244. [PMID: 37269730 DOI: 10.1016/j.jenvman.2023.118244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
In order to explore the role of thermal-alkaline pretreatment temperatures (TAPT) in sludge fermentation and the microbial characteristics, five groups (100, 120, 140, 160 °C and control group) were set up and the results showed that the increasing TAPT promoted the dissolution of soluble chemical oxygen demand (SCOD) and VFAs, but had slight influence on the release of NH4+-N and PO43--P. What's more, when it was 120 °C, the SCOD dissolution was comparable to that at 160 °C. Overall, 120 °C was the optimal condition, corresponding to the fact that the maximum release of SCOD was 8788.74 mg/L (2.63 times of the control group), the maximum dissolution of VFAs was 4596 mg/L (about 1.28 times of the control group). The trend of C/N was not significant. High-throughput sequencing showed that Firmicutes and Actinobacteriota were enriched with the temperature increasing, while Proteobacteria and Chloroflexi did not change significantly. Firmicutes was in a stable dominant position. Temperature conditions brought about significant changes in microbial interspecific interaction. Carbohydrate and amino acids had the highest metabolic abundance, especially at 120 °C group. The change rule of amino acid metabolism was similar to that of lipid metabolism, and the abundance of energy metabolism gradually increased with temperature. The protein metabolism was greatly affected by temperature. This study revealed the effect of microbial mechanism of TAPT on the sludge acid production efficiency.
Collapse
Affiliation(s)
- Yuqi Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Silan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianghao He
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
24
|
Yuan D, Bai M, He L, Zhou Q, Kou Y, Li J. Removal performance and dissolved organic matter biodegradation characteristics in advection ecological permeable dam reactor. ENVIRONMENTAL TECHNOLOGY 2023; 44:2288-2299. [PMID: 34989328 DOI: 10.1080/09593330.2022.2026489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/11/2021] [Indexed: 06/04/2023]
Abstract
In this present study, an advection ecological permeable dam (AEPD) based on a biofilm reactor was established to investigate pollution control performance and dissolved organic matter (DOM) bio-degradation. The AEPD achieved optimal efficiency-chemical oxygen demand, 6-53 mg/L; total nitrogen concentration, 1.47-6.89 mg/L; total phosphorus concentration, 0.53-3.93 mg/L, and increases in values for ultraviolet-visible parameters-SUVA254, from 0.392 to 0.673-1.438; E4/E6, from 1.09 to 1.11-1.26; A240-400, from 12.06 to 13.09-19.95; and A253-203, from 0.03 to 0.04-0.23. This showed that DOM degradation promoted its humification, aromatisation, and unsaturation as well as increased the number of polar functional groups in the organic aromatic rings of DOM. Synchronous fluorescence and parallel factor analyses indicated that AEPD could effectively degrade tyrosine-like and tryptophan-like compounds, which showed the most significant decrease in fluorescence intensity. Additionally, AEPD displayed some stable dominant bacterial genera (e.g. Proteobacteria_unclassified, Bacteroidetes_unclassified, Gemmobacter, Pseudofulvimonas, Flavobacterium, Pseudomonas, and Nitrospira), although their relative abundance differed under variable hydraulic loading rates. This research provided further technical support for the application of AEPD in the treatment of water environment pollution.
Collapse
Affiliation(s)
- Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Minghui Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Liansheng He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Qiang Zhou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yingying Kou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
25
|
Zhang T, Chen Z, Zhang Z, Zhou S, Meng J, Chen Z, Zhang J, Cui J, Chai B. Spatial and temporal dynamic response of abundant and rare aerobic denitrifying bacteria to dissolved organic matter in natural water: A case study of Lake Baiyangdian, China. ENVIRONMENTAL RESEARCH 2023; 224:115524. [PMID: 36813068 DOI: 10.1016/j.envres.2023.115524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Revealing the responses of abundant and rare aerobic denitrifying bacteria to dissolved organic matter (DOM) composition is essential for understanding the aquatic N cycle ecosystems. In this study, fluorescence region integration and high-throughput sequencing techniques were used to investigate the spatiotemporal characteristics and dynamic response of DOM and aerobic denitrifying bacteria. The DOM compositions were significantly different among the four seasons (P < 0.001) without spatial differences. Tryptophan-like substances (P2, 27.89-42.67%) and microbial metabolites (P4, 14.62-42.03%) were the dominant components, and DOM exhibited strong autogenous characteristics. Abundant (AT), moderate (MT), and rare taxa (RT) of aerobic denitrifying bacteria showed significant and spatiotemporal differences (P < 0.05). The responses of α-diversity and niche breadth of AT and RT to DOM differed. The DOM explanation proportion for aerobic denitrifying bacteria exhibited spatiotemporal differences based on redundancy analysis. Foliate-like substances (P3) had the highest interpretation rate of AT in spring and summer, while humic-like substances (P5) had the highest interpretation rate of RT in spring and winter. Network analysis showed that RT networks were more complex than AT networks. Pseudomonas was the main genus associated with DOM in AT on a temporal scale, and was more strongly correlated with tyrosine-like substances (P1), P2, and P5. Aeromonas was the main genus associated with DOM in AT on a spatial scale and was more strongly correlated with P1 and P5. Magnetospirillum was the main genus associated with DOM in RT on a spatiotemporal scale, which was more sensitive to P3 and P4. Special operational taxonomic units were transformed between AT and RT with seasonal changes, but not between the two regions. To summarize, our results revealed that bacteria with different abundances utilized DOM components differently, and provides new insight on the spatiotemporal response of DOM and aerobic denitrifying bacteria in aquatic ecosystems of biogeochemical significance.
Collapse
Affiliation(s)
- Tianna Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Zhaoying Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Jiajing Meng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Zhe Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Beibei Chai
- Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan, 056038, PR China
| |
Collapse
|
26
|
Li X, Huang X, Zhao C, Wang X, Dong B, Goonetilleke A, Kim KH. Characterizing molecular transformation of dissolved organic matter during high-solid anaerobic digestion of dewatered sludge using ESI FT-ICR MS. CHEMOSPHERE 2023; 320:138101. [PMID: 36764615 DOI: 10.1016/j.chemosphere.2023.138101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of anaerobic digestion (AD) on molecular characteristics of dissolved organic matter (DOM) in the dewatered sludge has been described by advanced electrospray ionization combined with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) technology. With the progress of AD, molecular amounts in DOM samples increased with the lowering in the carbon atom number of average molecular formula and average double bond equivalent (DBE). CHON and CHONS groups are the two main organic substances in sludge with their relative DOM proportions of 29.64% and 32.56%, respectively. The resistants (i.e., refractory organic matter) mainly consist of the proteins regions of CHO groups as well as the proteins/lignin regions of CHON groups. The contrasting temporal trends in protein contents (e.g., decrease (CHO and CHON) vs. increase (CHONS)) may imply differences in their degradation characteristics. Likewise, the multi-N (N3, N4) and S2 organic groups in the sludge are converted to N2 and S1 molecules, while the relative abundance of O atoms (in Ox molecules) tends to increase. In addition, the resistants in sludge DOM contain high oxidizing C and low unsaturation. The overall results of this research are expected to provide the theoretical basis for further optimization of the sludge AD process.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xiang Huang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Chuyun Zhao
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xuan Wang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
27
|
Ahmad A, Senaidi AS. Sustainability for wastewater treatment: bioelectricity generation and emission reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48703-48720. [PMID: 36862299 DOI: 10.1007/s11356-023-26063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/16/2023] [Indexed: 04/16/2023]
Abstract
This review covers the technological measures of a self-sustainable anaerobic up-flow sludge blanket (UASB) system compared with an aerobic activated sludge process (ASP) for wastewater treatment plants (WWTPs). The ASP requires a huge amount of electricity and chemicals and also results in the emission of carbon. The UASB system, instead, is based on greenhouse gas (GHG) emission reduction and is associated with biogas production for cleaner electricity. WWTPs including the ASP system are not sustainable due to the massive financial power required for clean wastewater. When the ASP system was used, the amount of production was estimated to be 10658.98 tonnes CO2eq-d- of carbon dioxide. Whereas it was 239.19 tonnes CO2eq-d-1 with the UASB. The UASB system is advantageous over the ASP system as it has a high production of biogas, needs low maintenance, yields a low amount of sludge, and is also a source of electricity that can be used as a power source for the WWTPs. Also, the UASB system produces less biomass, and this helps in reducing costs and maintaining work. Moreover, the aeration tank of the ASP needs 60% of energy distribution; on the other hand, the UASB consumes less energy, approximately 3-11%.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33 Postal Code 616, Nizwa, Sultanate of Oman.
| | - Alaya Said Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33 Postal Code 616, Nizwa, Sultanate of Oman
| |
Collapse
|
28
|
Hu Y, Liu S, Wang X, Zhang S, Hu T, Wang X, Wang C, Wu J, Xu L, Xu G, Hu F. Enhanced anaerobic digestion of kitchen waste at different solids content by alkali pretreatment and bentonite addition: Methane production enhancement and microbial mechanism. BIORESOURCE TECHNOLOGY 2023; 369:128369. [PMID: 36423763 DOI: 10.1016/j.biortech.2022.128369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
High solid anaerobic digestion (AD) has been considered as a promising and sustainable technology for treating kitchen waste. To enhance AD of kitchen waste, alkali pretreatment and bentonite addition treatment (AP/Be) was performed on kitchen waste, and microbial community was investigated at different total solids (TS) content (10%, 13%, 19%, 22% and 25%). The results indicated that after AP/Be treatment, methane yield was as high as 198 mL CH4/g volatile solid (VS), which increased by 236% as the control. Moreover, microbial community analysis revealed that AP/Be treatment enriched bacterial microbial diversity. At TS of 10%, AP/Be treatment enhanced the hydrogenotrophic methanogens (Methanobacterium) significantly. In addition, the dominant methanogenic pathways changed at different TS content. These results demonstrated AP/Be treatment had a positive effect on methanogenesis during kitchen waste anaerobic digestion process. This study threw new insights towards enhancing kitchen waste anaerobic digestion, as well as the microbial mechanism.
Collapse
Affiliation(s)
- Yuying Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China.
| | - Susu Liu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Xiaofan Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Shihao Zhang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Tengfang Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Xin Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Chuqiao Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Xu
- Jiangxi Water Science Detecting and Researching Co., Ltd., Jingdezhen 333000, China
| | - Gaoping Xu
- Jiangxi Water Science Detecting and Researching Co., Ltd., Jingdezhen 333000, China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Zeng Y, Dong W, Wang H, Huang X, Li J. A novel strategy and mechanism for high-quality volatile fatty acids production from primary sludge: Peroxymonosulfate pretreatment combined with alkaline fermentation. ENVIRONMENTAL RESEARCH 2023; 217:114939. [PMID: 36435490 DOI: 10.1016/j.envres.2022.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
To obtain high-quality VFAs production from primary sludge, a novel strategy that combined peroxymonosulfate (PMS) pretreatment and alkaline fermentation (i.e., PMS & pH9) was proposed in the study. The results showed that PMS & pH9 was efficient in sludge solubilization and hydrolysis, resulting in a maximal VFAs yield of 401.2 mg COD/g VSS, which was 7.3-, 2.1-, and 8.8-fold higher than the sole PMS, sole pH9, and control, respectively. Acetate comprised 87.6% of VFAs in this integration system. Mechanism investigations revealed that sulfate and free radicals produced by PMS play roles in improving VFAs yield under alkaline conditions. Besides, sulfate also aided in C3∼C5 VFAs converting to acetate under alkaline conditions depending on the increase of incomplete-oxidative sulfate-reducing bacteria (iso-SRB) (i.e., Desulfobulbus and Desulfobotulus). Moreover, the relative abundances of acid-forming characteristic genera (i.e., Proteiniborus, Proteinilcasticum, and Acetoanaerobium) were higher in PMS & pH9.
Collapse
Affiliation(s)
- Yuanxin Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China
| | - Xiao Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Laboratory of Urban High Concentration Wastewater Treatment and Resource Utilization, Shenzhen, 518055, PR China
| |
Collapse
|
30
|
Bioleaching of uranium from low-grade uranium ore with a high fluorine content by indigenous microorganisms and their community structure analysis. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Wang Y, Li W, Wang Y, Turap Y, Wang Z, Zhang Z, Xia Z, Wang W. Anaerobic co-digestion of food waste and sewage sludge in anaerobic sequencing batch reactors with application of co-hydrothermal pretreatment of sewage sludge and biogas residue. BIORESOURCE TECHNOLOGY 2022; 364:128006. [PMID: 36155815 DOI: 10.1016/j.biortech.2022.128006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The effect of pretreatment technologies and reactor types on conversion efficiency and operating costs of anaerobic co-digestion of food waste and sewage sludge were investigated by 300-day continuous experiments. The volatile solids (VS) removal efficiency increased from 61% to 77% with the application of co-hydrothermal pretreatment of sewage sludge and biogas residue. Deep dewatering reduced the volume of hydrothermally pretreated biogas residue by 85%. When continuous stirred tank reactors (CSTRs) were converted to anaerobic sequencing batch reactors (ASBRs), vS removal efficiencies increased by 6%, attributed to a 1.4-1.6-fold increase in solids retention time (SRT). The bottom drainage of mineralized sludge every 40 days increased ASBR stability. Firmicutes and Methanosphaera dominated the bacterial and archaeal communities, respectively. Operating costs decreased by 14.9 US$/metric ton feedstock by applying ASBRs. Compared to CSTRs, ASBRs achieved higher organic matter conversion efficiency, smaller volume of biogas residue, and lower operating costs.
Collapse
Affiliation(s)
- Yidi Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Beijing Da Bei Nong Technology Group Co., LTD, Beijing 100080, China
| | - Yongkang Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yusan Turap
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhentong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhou Xia
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Li L, Wang K, Sun Z, Zhao Q, Zhou H, Gao Q, Jiang J, Mei W. Effect of optimized intermittent mixing during high-solids anaerobic co-digestion of food waste and sewage sludge: Simulation, performance, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156882. [PMID: 35753448 DOI: 10.1016/j.scitotenv.2022.156882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Inadequate mixing has been proven to be a major cause of anaerobic digester failure. This study revealed the mechanism of mixing intervals on high-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and sewage sludge (SS). Optimized intermittent mixing time (15 min/h) was determined through computational fluid dynamics (CFD) simulation. Experimental results indicated that the simulated intermittent mixing could shorten digestion time and increase cumulative methane output (366.8 mL/gVS) compared with continuous mixing and unmixing. Mixing could considerably accelerate substrate solubilization and hydrolysis. Maximum rates of acidogenesis (53.35 %) and methanogenesis (49.41 %) were observed with an optimized intermittent mixing (15 min/h). Vigorous mixing induced apoptosis and disrupted syntrophic metabolism, whereas intermittent mixing promoted the syntrophic metabolism between Syntrophomonas and Methanobacterium, and led to an enrichment of genes involved in acidogenic and methanogenic pathways. These findings have important implications for the development of an optimized intermittent mixing strategy for maximizing HS-AcoD efficiency of FW and SS.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhijian Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wangyang Mei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
33
|
Zhao Q, Guo W, Luo H, Wang H, Yu T, Liu B, Si Q, Ren N. Dissecting the roles of conductive materials in attenuating antibiotic resistance genes: Evolution of physiological features and bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129411. [PMID: 35780739 DOI: 10.1016/j.jhazmat.2022.129411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Supplying conductive materials (CMs) into anaerobic bioreactors is considered as a promising technology for antibiotic wastewater treatment. However, whether and how CMs influence antibiotic resistance genes (ARGs) spread remains poorly known. Here, we investigated the effects of three CMs, i.e., magnetite, activated carbon (AC), and zero valent iron (ZVI), on ARGs dissemination during treating sulfamethoxazole wastewater, by dissecting the shifts of physiological features and microbial community. With the addition of magnetite, AC, and ZVI, the SMX removal was improved from 49.05 to 71.56-92.27 %, while the absolute abundance of ARGs reducing by 26.48 %, 61.95 %, 48.45 %, respectively. The reduced mobile genetic elements and antibiotic resistant bacteria suggested the inhibition of horizontal and vertical transfer of ARGs. The physiological features, including oxidative stress response, quorum sensing, and secretion system may regulate horizontal transfer of ARGs. The addition of all CMs relieved oxidative stress compared with no CMs, but ZVI may cause additional free radicals that needs to be concerned. Further, ZVI and AC also interfered with cell communication and secretion system. This research deepens the insights about the underlying mechanisms of CMs in regulating ARGs, and is expected to propose practical ways for mitigating ARGs proliferation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan 430062, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
34
|
Li D, Guo W, Liang D, Zhang J, Li J, Li P, Wu Y, Bian X, Ding F. Rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification and phosphorus removal aerobic granular sequence batch reactor for treating low C/N domestic wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113464. [PMID: 35623442 DOI: 10.1016/j.envres.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification, and phosphorus (P) removal aerobic granular sequence batch reactor (SNEDPR-AGSBR) is a challenge in the treatment of low carbon/nitrogen (C/N) domestic sewage. In this study, the feasibility of the SNEDPR-AGSBR process was examined in an exceedingly single-stage anaerobic/aerobic/anoxic sequencing batch reactor for treating low C/N ratio (3.3-5.0) domestic sewage. The initial results showed that accompanied by the rapid formation of the mature aerobic granular sludge based on the selection for slow-growing organisms, the rapid start-up (38 d) of the SNEDPR-AGSBR process was successfully realized. The formed mature aerobic granules had a dense structure with an average diameter of 667.7 μm and SVI30 of 30.0 mL/g. Two conditions for achieving the competitive balance between phosphorus-accumulating organisms/denitrifying phosphorus-accumulating organisms (PAOs/DPAOs) and glycogen accumulating organisms/denitrifying glycogen accumulating organisms (GAOs/DGAOs) were revealed by the long-term operation results. First, the dissolved oxygen (DO) concentration needed to be decreased to 3.0 mg/L in the aerobic phase, and then, the aerobic and anoxic phase hydraulic retention time (HRT) should be increased to 3.0 h. Notably, high removal efficiencies for NH4+-N (100%), total nitrogen (84.3%), and P (91.8%) of the SNEDPR-AGSBR process were stably obtained with a low C/N ratio of 3.9 domestic sewage. Simultaneous nitrification and endogenous denitrification (SNED) efficiency of 61.6% was achieved during a long-term operation of 142 days. Finally, microbial community analysis confirmed that GAOs (Defluviicoccus)/DGAOs (Candidatus_Competibacter) were responsible for the removal N, and PAOs (Acinetobacter, Candidatus_Accumulibacter, Hypomicrobinm)/DPAOs (Pseudomonas and Dechloromonas) ensured P removal.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Dongbo Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jing Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Peilin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xueying Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Fan Ding
- SDIC Xinkai Water Environment Investment Co., Ltd, Beijing, 101100, China
| |
Collapse
|
35
|
Song K, Li Z, Li L, Zhao X, Deng M, Zhou X, Xu Y, Peng L, Li R, Wang Q. Methane production from peroxymonosulfate pretreated algae biomass: Insights into microbial mechanisms, microcystin detoxification and heavy metal partitioning behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155500. [PMID: 35472358 DOI: 10.1016/j.scitotenv.2022.155500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the methane production potential of algal biomass by anerobic digestion with the addition of peroxymonosulfate (PMS), the removal of microcystin were analyzed and discussed. The microcystin concentration in the collected algal sludge was 1.20 μg/L in the liquid phase and 1393 μg/g in the algal sludge before anaerobic fermentation. The microcystin concentration decreased to 0.20-0.35 μg/L in the liquid phase and 4.16-11.51 μg/g in the sludge phase after 60 days of digestion. The initial PMS dose and residue microcystin concentration could be simulated with a logarithmic decay model (R2 > 0.87). Anaerobic digestion could recover energy from algal source in the form of methane gas, which was not affected in the presence of microcystin, and the microcystin removal rate was >99%. Digestion decreased the total contents of Cd and Zn in the liquid phase and increased the total contents of Cr and Pb in the liquid phase. The microbial community and function prediction results indicated that the PMS0.1 system had the highest methane production, which was attributed to the high abundance of Mechanosaeta (40.52%). This study provides insights into microbial mechanisms, microcystin detoxification and the heavy metal partitioning behavior of the algal biomass during methane production.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhouyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Renhui Li
- College of life and Environmental Sciences, Wenzhou University, Zhejiang 325035, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
36
|
Li Y, Chen Z, Peng Y, Huang W, Liu J, Mironov V, Zhang S. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. WATER RESEARCH 2022; 217:118440. [PMID: 35429887 DOI: 10.1016/j.watres.2022.118440] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/23/2023]
Abstract
The substrate to inoculum ratio (S/I) is a crucial factor that affects not only the stability of the anaerobic digestion (AD) of food waste (FW) but also the methanogenic capacity of the substrate. This is of great significance for the start-up of small-scale batch reactors and the directional regulation of methanogenesi and organic acid production. Most studies have merely clarified the optimal S/I ratio for methane production and revealed the basic composition of microbial communities. However, the mechanism of microbial interactions and the metabolic pathways behind the optimal S/I ratio still remain unclear. Herein, the effects of different S/I ratios (VS basis) on the relationship of kinetic parameters, microbial communities, and metabolic pathways during the AD process of FW were holistically explored. The results revealed that high S/I ratios (4:1, 3:1, 2:1, and 1:1) were prone to irreversible acidification, while low S/I ratios (1:2, 1:3, and 1:4) were favorable for methanogenesis. Moreover, a kinetic analysis demonstrated that the methane yield of S/I = 1:3 were the highest. A bioinformatics analysis found that the diversity of bacteria and archaea of S/I = 1:3 were the most abundant, and the enrichment of Bacteroides and Synergistetes could help to establish a syntrophic relationship with hydrogenotrophic methanogens, which could aid in the fulfillment of a unique niche in the system. In contrast to the findings with the other S/I ratios, the cooperation among microbes in S/I = 1:3 was more apparent. Notably, the abundances of genes encoding key enzymes involved in the methanogenesis pathway under S/I = 1:3 were all the highest. This knowledge will be helpful for revealing the influence mechanism of the ratio relationship between microorganisms and substrates on the biochemical metabolic process of anaerobic digestion, thereby providing effective guidance for the directional regulation of FW batch anaerobic reactors.
Collapse
Affiliation(s)
- Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yanyan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weizhao Huang
- Lianyijiyuan Environmental Protection Engineering Co. Ltd, Xiamen 361021, China
| | - Junxiao Liu
- Lianyijiyuan Environmental Protection Engineering Co. Ltd, Xiamen 361021, China
| | - Vladimir Mironov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
37
|
Swain G, Lal Maurya K, Kumar Sonwani R, Sharan Singh R, Prakash Jaiswal R, Rai BN. Effect of mixing intensity on biodegradation of phenol in a moving bed biofilm reactor: Process optimization and external mass transfer study. BIORESOURCE TECHNOLOGY 2022; 351:126921. [PMID: 35240275 DOI: 10.1016/j.biortech.2022.126921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this work, an effort has been made to design the process variables and to analyse the impact of mixing intensity on mass transfer diffusion in a moving bed biofilm reactor (MBBR). A lab-scale MBBR, filled with Bacillus cereus GS2 IIT (BHU) immobilized-polyethylene biocarriers, was employed to optimize the process variables, including mixing intensity (60-140 rpm), phenol concentration (50-200 mg/L), and hydraulic retention time (HRT) (4-24 h) using response surface methodology. The optimum phenol removal of 87.64 % was found at 100 rpm of mixing intensity, 200 mg/L of phenol concentration, and 24 h of HRT. The higher mixing intensity improved the substrate diffusion between the liquid phase and the surface of the biofilm. The external mass transfer coefficients were found in the range of 1.431 × 10-5-1.845 × 10-5 m/s. Moreover, the detection of catechol and 2-hydroxymuconic semialdehyde revealed that the Bacillus sp. followed the meta-cleavage pathway during the biodegradation of phenol.
Collapse
Affiliation(s)
- Ganesh Swain
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kanhaiya Lal Maurya
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam 530003, Andhra Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - B N Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
38
|
Zhang X, Li J, Yang W, Chen J, Wang X, Xing D, Dong W, Wang H, Wang J. The combination of aerobic digestion and bioleaching for heavy metal removal from excess sludge. CHEMOSPHERE 2022; 290:133231. [PMID: 34902386 DOI: 10.1016/j.chemosphere.2021.133231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, bioleaching is employed for removing heavy metals from excess sludge generated during municipal wastewater treatment. To avoid organic matter impact on bioleaching, aerobic digestion was performed as pretreatment of the bioleaching or accompanied with the bioleaching. The results showed that the leaching amounts of heavy metals from the process of aerobic digestion accompanied with bioleaching was 2.3 times more than that of the process of aerobic digestion followed by bioleaching. The stable-state proportions of Zn, Cu, Ni and Mn increased by 83%, 94%, 96% and 91%, respectively, in the process of aerobic digestion accompanied with bioleaching, and moreover, the reduction rate of MLSS increased by 22.7%. Although the content of ammonia nitrogen and total phosphorus in sludge decreased after bioleaching treatment, they were still much higher than the soil background value. It indicates that the treated sludge still has agricultural value. High throughput sequencing analysis showed that the relative abundance of acid-producing bacteria (Romboutsia, Clostridium, Tricibacter, and Intestinibacter) significantly increased from 0% to 28.6%, 6.9%, 3.9%, and 2.4%. The enrichment of these acidogenic bacteria was the main reason for the pH decrease, which was conducive to the removal of heavy metals from sludge.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Wei Yang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Xiaochun Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| | - Dingyu Xing
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Hongjie Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Jiawen Wang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, PR China
| |
Collapse
|
39
|
Zhou Q, Sun H, Jia L, Wu W. Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species. BIORESOURCE TECHNOLOGY 2022; 347:126724. [PMID: 35065223 DOI: 10.1016/j.biortech.2022.126724] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, a biofilter was developed with a ZVI/PHBV/sawdust (ZPS) composite for treating simulative secondary effluent from wastewater treatment plants. Results showed that effluent concentrations of NO3--N and TP in the ZPS biofilter were stable below 2.0 mg/L and 0.1 mg/L, corresponding to 95% NO3--N removal and 99% TP removal, respectively. Microbial community analysis revealed that the transformation of dominant taxa from Dechloromonas to Clostridium sensu stricto_7 from 30 d to 120 d suggested that the ZVI-induced succession of dominant fermentation bacteria ensured the stable carbon supply for denitrification. Co-occurrence network analysis showed that the ZVI directly enhanced the interaction of microbial community. Fe-related bacteria occupied a key position in the rare species, which might maintain the function of iron-mediated organic matter decomposition and denitrification. These findings provide an alternative for advanced removal of nitrogen and phosphorus in biofilters packed with ZPS composites.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, China.
| |
Collapse
|
40
|
Comparative Metagenomics of Anaerobic Digester Communities Reveals Sulfidogenic and Methanogenic Microbial Subgroups in Conventional and Plug Flow Residential Septic Tank Systems. Processes (Basel) 2022. [DOI: 10.3390/pr10030436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
On-site wastewater treatment systems (OWTS) are primarily monitored using physiochemical factors, including chemical oxygen demand (COD) and residual total suspended solids (TSS), which are indirect measures of the microbial action during the anaerobic digestion process. Changes in anaerobic digester microbial communities can alter the digester performance, but this information cannot be directly obtained from traditional physicochemical indicators. The potential of metagenomic DNA sequencing as a tool for taxonomic and functional profiling of microbial communities was examined in both common conventional and plug flow-type anaerobic digesters (single-pass and recirculating). Compared to conventional digesters, plug flow-type digesters had higher relative levels of sulfate-reducing bacteria (Desulfovibrio spp.) and hydrogenotrophic methanogens (Methanospirillum spp.). In contrast, recirculating anaerobic digesters were enriched with denitrifier bacteria and hydrogenotrophic methanogens, and both were significantly correlated with physicochemical factors such as COD and TSS. Stratification of microbial communities was observed along the digester treatment process according to hydrolytic, acidogenic, acetogenic, and methanogenic subgroups. These results indicate that the high-throughput DNA sequencing may be useful as a monitoring tool to characterize the changes in bacterial communities and the functional profile due to differences in digester design in on-site systems.
Collapse
|
41
|
Feng D, Xia A, Huang Y, Zhu X, Zhu X, Liao Q. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127100. [PMID: 34523483 DOI: 10.1016/j.jhazmat.2021.127100] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) has been considered an energy efficient strategy in treating high concentration organic wastewater rich in volatile fatty acids (VFAs). Continuous stirred tank reactors (CSTRs) have been widely applied in the AD process; however, they may suffer from low efficiency with a relatively short hydraulic retention time (HRT) in wastewater treatment. In this study, carbon cloth was supplemented to investigate the effects on syntrophic degradation of VFA wastewater by increasing organic loading rates (OLRs) under various mixing conditions in CSTRs operating at an HRT of 10 days. The results demonstrated that the methane production rate could be increased by 10.1-23.0% and the chemical oxygen demand (COD) removal efficiency was enhanced up to 14.6% with carbon cloth addition in the unmixed reactor at OLRs between 2.1 and 4.2 g COD/L-d. In contrast, the enhancement effect was only observed under a high OLR of 4.2 g COD/L-d in well-mixed anaerobic digester. Cyclic voltammetry results indicated that an electroactive biofilm was formed on the surface of carbon cloth. The microbial communities revealed that the electroactive biofilms had the highest abundances of exoelectrogen Sedimentibacter and electrotrophic methanogen Methanosaeta species, which were 5.5 and 4.2 times higher than the suspension, respectively.
Collapse
Affiliation(s)
- Dong Feng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
42
|
Tonanzi B, Crognale S, Gianico A, Della Sala S, Miana P, Zaccone MC, Rossetti S. Microbial Community Successional Changes in a Full-Scale Mesophilic Anaerobic Digester from the Start-Up to the Steady-State Conditions. Microorganisms 2021; 9:2581. [PMID: 34946180 PMCID: PMC8704592 DOI: 10.3390/microorganisms9122581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023] Open
Abstract
Anaerobic digestion is a widely used technology for sewage sludge stabilization and biogas production. Although the structure and composition of the microbial communities responsible for the process in full-scale anaerobic digesters have been investigated, little is known about the microbial successional dynamics during the start-up phase and the response to variations occurring in such systems under real operating conditions. In this study, bacterial and archaeal population dynamics of a full-scale mesophilic digester treating activated sludge were investigated for the first time from the start-up, performed without adding external inoculum, to steady-state operation. High-throughput 16S rRNA gene sequencing was used to describe the microbiome evolution. The large majority of the reads were affiliated to fermentative bacteria. Bacteroidetes increased over time, reaching 22% of the total sequences. Furthermore, Methanosaeta represented the most abundant methanogenic component. The specific quantitative data generated by real-time PCR indicated an enrichment of bacteria and methanogens once the steady state was reached. The analysis allowed evaluation of the microbial components more susceptible to the shift from aerobic to anaerobic conditions and estimation of the microbial components growing or declining in the system. Additionally, activated sludge was investigated to evaluate the microbial core selected by the WWTP operative conditions.
Collapse
Affiliation(s)
- Barbara Tonanzi
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| | - Simona Crognale
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| | - Andrea Gianico
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| | | | - Paola Miana
- Veritas S.p.a., 30135 Venezia, Italy; (S.D.S.); (P.M.); (M.C.Z.)
| | | | - Simona Rossetti
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| |
Collapse
|
43
|
Shekhar Bose R, Chowdhury B, Zakaria BS, Kumar Tiwari M, Ranjan Dhar B. Significance of different mixing conditions on performance and microbial communities in anaerobic digester amended with granular and powdered activated carbon. BIORESOURCE TECHNOLOGY 2021; 341:125768. [PMID: 34469818 DOI: 10.1016/j.biortech.2021.125768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Conductive materials amendment in anaerobic digestion (AD) is a promising strategy for boosting the methanogenesis process. Despite mixing is a critical parameter, the behavior of digesters amended with conductive additives upon different mixing conditions has rarely been investigated. This study investigated continuous mixing, intermittent mixing (10 min in every 12 h), and non-mixing conditions for digesters amended with granular activated carbon (GAC) and powdered activated carbon (PAC). The non-mixed GAC digester provided the highest methane yield (318 ± 28 mL/g COD) from synthetic blackwater, while intermittently mixed GAC and control exhibited similar methane yields (290-294 mL/g COD). For non-mixed systems, microbial richness and diversity increased with GAC and PAC amendment. In contrast, continuous and intermittent mixing increased microbial diversity and richness in control reactors while reduced the same in GAC and PAC amended reactors. Overall, various mixing conditions distinctly changed the degree of enrichment/retention of microbes and consequently influenced methane recovery.
Collapse
Affiliation(s)
- Raj Shekhar Bose
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada; School of Water Resources, Indian Institute of Technology Kharagpur, WB, India
| | - Bappi Chowdhury
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada
| | - Manoj Kumar Tiwari
- School of Water Resources, Indian Institute of Technology Kharagpur, WB, India
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada.
| |
Collapse
|
44
|
Martinez-Burgos WJ, Bittencourt Sydney E, Bianchi Pedroni Medeiros A, Magalhães AI, de Carvalho JC, Karp SG, Porto de Souza Vandenberghe L, Junior Letti LA, Thomaz Soccol V, de Melo Pereira GV, Rodrigues C, Lorenci Woiciechowski A, Soccol CR. Agro-industrial wastewater in a circular economy: Characteristics, impacts and applications for bioenergy and biochemicals. BIORESOURCE TECHNOLOGY 2021; 341:125795. [PMID: 34523570 DOI: 10.1016/j.biortech.2021.125795] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The generation of agroindustrial byproducts is rising fast worldwide. The slaughter of animals, the production of bioethanol, and the processing of oil palm, cassava, and milk are industrial activities that, in 2019, generated huge amounts of wastewaters, around 2448, 1650, 256, 85, and 0.143 billion liters, respectively. Thus, it is urgent to reduce the environmental impact of these effluents through new integrated processes applying biorefinery and circular economy concepts to produce energy or new products. This review provides the characteristics of some of the most important agro-industrial wastes, including their physicochemical composition, worldwide average production, and possible environmental impacts. In addition, some alternatives for reusing these materials are addressed, focusing mainly on energy savings and the possibilities of generating value-added products. Finally, this review considers recent research and technological innovations and perspectives for the future.
Collapse
Affiliation(s)
- Walter José Martinez-Burgos
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210, Ponta Grossa Paraná, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Antonio Irineudo Magalhães
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Júlio Cesar de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil; Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210, Ponta Grossa Paraná, Brazil
| | - Luiz Alberto Junior Letti
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Vanete Thomaz Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Gilberto Vinícius de Melo Pereira
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Cristine Rodrigues
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Adenise Lorenci Woiciechowski
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil.
| |
Collapse
|
45
|
Du X, Gu LP, Wang TT, Kou HJ, Sun Y. The relationship between the molecular composition of dissolved organic matter and bioavailability of digestate during anaerobic digestion process: Characteristics, transformation and the key molecular interval. BIORESOURCE TECHNOLOGY 2021; 342:125958. [PMID: 34560433 DOI: 10.1016/j.biortech.2021.125958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, swine wastewater (SW) and cow wastewater (CW) were used for anaerobic digestion (AD). We found the bioavailability of dissolved organic matter (DOM) was affected by the molecular weight ranges and molecular composition during the AD process. The organic substance in the small molecular range (0-5 kDa) accumulated due to a larger molecular fraction (>10 kDa) degradation, which enhanced the bioavailability of the DOM. Moreover, based on the excitation emission matrix-parallel factor (EEM-PARAFAC) analysis, the protein-like component in 0-5 kDa molecular size and humic-like component over 5 kDa are significantly positively correlated with DOM bioavailability. This study indicated that increasing the hydrolysis of larger organic matter and humification degree of molecular weights>5 kDa are critical solutions to improving the bioavailability of DOM. These conclusions can help explain the molecular mechanisms of DOM transformation and the AD process of livestock wastewater.
Collapse
Affiliation(s)
- Xian Du
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Li-Peng Gu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ting-Ting Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Hui-Juan Kou
- Ulanqab animal husbandry station of Inner Mongolia Autonomous Region, Inner Mongolia 012000, PR China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
46
|
Kim GB, Cayetano RDA, Park J, Jo Y, Jeong SY, Lee MY, Kim SH. Effect of low-thermal pretreatment on the methanogenic performance and microbiome population of continuous high-solid anaerobic digester treating dewatered sludge. BIORESOURCE TECHNOLOGY 2021; 341:125756. [PMID: 34419881 DOI: 10.1016/j.biortech.2021.125756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Undigested and dewatered sludge at 10% total solids was pretreated at 60 °C for 3 h and fed to a lab-scale horizontal anaerobic bioreactor for 130 days with solids retention time (SRTs) from 25 to 16 d. The low-thermal pretreatment enabled higher net energy production, improved sludge treatment efficiency, and enhanced digestion stability. The highest average biomethane yield and production rate were 138.5 mL/g VS and 0.43 L/L.d, respectively, and the economic benefit was expected to be the maximum at SRT 16 d. Pretreatment did not increase the specific methanogenic activity per unit methanogen, but resulted in higher abundance of methanogenic archaea and hydrolytic bacteria. Methanogenic population shifted from hydrogenotrophic to acetoclastic, consistent with predicted gene expression at SRT equal or below 20 d. Anaerobic digestion along with low-thermal could be a feasible management strategy for undigested dewatered sludge from small WWTPs.
Collapse
Affiliation(s)
- Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yura Jo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Yeob Jeong
- Environment N Energy O&M Inc, Gyeonggi-do 17970, Republic of Korea
| | - Myung Yeol Lee
- Environment N Energy O&M Inc, Gyeonggi-do 17970, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
47
|
Liu C, Huang H, Duan X, Chen Y. Integrated Metagenomic and Metaproteomic Analyses Unravel Ammonia Toxicity to Active Methanogens and Syntrophs, Enzyme Synthesis, and Key Enzymes in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14817-14827. [PMID: 34657430 DOI: 10.1021/acs.est.1c00797] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During anaerobic digestion, the active microbiome synthesizes enzymes by transcription and translation, and then enzymes catalyze multistep bioconversions of substrates before methane being produced. However, little information is available on how ammonia affects truly active microbes containing the expressed enzymes, enzyme synthesis, and key enzymes. In this study, an integrated metagenomic and metaproteomic investigation showed that ammonia suppressed not only the obligate acetotrophic methanogens but also the syntrophic propionate and butyrate oxidation taxa and their assistant bacteria (genus Desulfovibrio), which declined the biotransformations of propionate and butyrate → acetate → methane. Although the total population of the hydrolyzing and acidifying bacteria was not affected by ammonia, the bacteria with ammonia resistance increased. Our study also revealed that ammonia restrained the enzyme synthesis process by inhibiting the RNA polymerase (subunits A' and D) during transcription and the ribosome (large (L3, L12, L13, L22, and L25) and small (S3, S3Ae, and S7) ribosomal subunits) and aminoacyl-tRNA synthesis (aspartate-tRNA synthetase) in translation. Further investigation suggested that methylmalonyl-CoA mutase, acetyl-CoA C-acetyltransferase, and CH3-CoM reductase, which regulate propionate and butyrate oxidation and acetoclastic methanation, were significantly downregulated by ammonia. This study provides intrinsic insights into the fundamental mechanisms of how ammonia inhibits anaerobic digestion.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
48
|
Ma S, Yang D, Xu K, Li K, Ren H. Bacterial survival strategies in sludge alkaline fermentation for volatile fatty acids production: Study on the physiological properties, temporal evolution and spatial distribution of bacterial community. BIORESOURCE TECHNOLOGY 2021; 340:125701. [PMID: 34352644 DOI: 10.1016/j.biortech.2021.125701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the dynamics of ATP synthase activity, phospholipid fatty acid (PLFA) profile, and temporal evolution and spatial distribution of bacterial community to analyze bacterial survival strategies in sludge alkaline fermentation (SAF) for volatile fatty acids (VFAs) production. The results revealed a significant increase in ATP synthase activity at pH 9 and 10 (p < 0.05), which could contribute to proton entry into cells and benefit bacterial survival. PLFA analysis indicated that the unsaturated fatty acids content increased with the increase of pH. Firmicutes were the dominant microorganisms in the running stage of the pH 10 reactor (35.81-62.34%) and might have been the key microbes that influenced VFAs production. Further analysis of the spatial distribution of microbial community suggested that Firmicutes mainly lived inside flocs during SAF. These findings provide an understanding for bacterial survival strategies in SAF, which could help to develop methods to further improve VFAs yield.
Collapse
Affiliation(s)
- Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
49
|
Bai S, Xi B, Li X, Wang Y, Yang J, Li S, Zhao X. Anaerobic digestion of chicken manure: Sequences of chemical structures in dissolved organic matter and its effect on acetic acid production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113245. [PMID: 34265661 DOI: 10.1016/j.jenvman.2021.113245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The use of chicken manure (CM) leads to serious environmental pollution due to the existence of bacteria and insect pests. Anaerobic digestion (AD) is one of the important technologies of CM treatment. However, methane production is limited by the accumulation of short-chain fatty acids (SCFAs) from AD. Therefore, the study explored the possible formation mechanism of acetic acid by understanding the effect of sequences of chemical structure variation in DOM on acetic acid production. The chemical structures of DOM were observed. The tyrosine-like substances (C1, 53.53-29.99%) and humic-like substances (C3, 18.38-5.96%) showed a tendency to decrease. Tryptophan-like substances (C2, 28.09-64.04%) showed the increasing trend. The results indicated that C2 was unwilling to biodegrade. In DOM, the order of biodegradability was C2< C1< C3. AD resulted in the enrichment of N-H in-plane (0-22.75%) and COO- stretch (7.53-18.57%) and the loss of O-H stretch (19.39-13.72%), C-H stretch (4.56%-0), CC stretch (12.04-9.61%) and C-O stretch (10.02-5.03%). Two-dimensional correlation spectroscopy is applied to investigate the sequences of chemical structures in DOM, the order is as follows: CC stretch > COO- stretch > N-H in-plane > C-O stretch. The result confirmed that protein was rapidly decomposed and utilized, which would result in the increase of microorganism metabolism and hydrolysis rate, polysaccharide was hydrolyzed to form phenol and carboxylic acid. Four possible pathways were identified in AD by the structural equation model. C1and hydroxyl can promote propionic and butyric acid formation by the pathway of valeric or iso-butyric acid production and further effected acetic acid production. This study proposed the possible formative mechanisms of acetic acid according to sequences of chemical structures variation in DOM during AD, which can provide the theoretical basis for directional regulating the conversion of different chemical structures of DOM into acetic acid in AD.
Collapse
Affiliation(s)
- Sicong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yihan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemistry, Tianjin Normal University, 300387, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
50
|
Wang X, Zhu H, Yan B, Shutes B, Bañuelos G, Wen H, Cheng R. Improving denitrification efficiency in constructed wetlands integrated with immobilized bacteria under high saline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117592. [PMID: 34171725 DOI: 10.1016/j.envpol.2021.117592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C-F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO3--N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Huiyang Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|