1
|
Zhang M, Lin K. Unintended polyhalogenated carbazole production during advanced oxidation of coking wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134649. [PMID: 38772108 DOI: 10.1016/j.jhazmat.2024.134649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging as dioxin-like global pollutants, yet their environmental origins are not fully understood. This study investigates the application of the Fenton process in coking wastewater treatment, focusing on its dual role in carbazole removal and unintended PHCZ formation. The common halide ions (Cl- and Br-) in coking wastewater, especially Br- ions, exerted a notable impact on carbazole removal. Particularly, the influence of Br- ions was more significant, not only enhancing carbazole removal but also shaping the congener composition of PHCZ formation. Elevated halide ion concentrations were associated with the heightened formation of higher halogenated carbazoles. The Fenton reagent dosage ratio was identified as a crucial factor affecting the congener composition of PHCZs and their toxic equivalency value. The coexisting organic substance (i.e., phenol) in coking wastewater was observed to inhibit PHCZ formation, likely through competitive reactions with carbazole. Intriguingly, ammonium (NH4+) facilitated the generation of higher and mixed halogenated carbazoles, possibly due to the generation of nitrogen-containing brominating agents with stronger bromination capacity. This study underscores the importance of a comprehensive assessment, considering both substrate removal and potential byproduct formation, when employing the Fenton process for saline wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Xu W, Ni C, Deng N, Huang X. Underestimated role of hydroxyl radicals for bromate formation in persulfate-based advanced oxidation processes. ENVIRONMENTAL RESEARCH 2024; 252:118870. [PMID: 38579994 DOI: 10.1016/j.envres.2024.118870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In persulfate-based advanced oxidation processes (PS-AOPs), sulfate radicals (SO4•-) have been recognized to play more important roles in inducing bromate (BrO3-) formation rather than hydroxyl radicals (HO•) because of the stronger oxidation capacity of the former. However, this study reported an opposite result that HO• indeed dominated the formation of bromate instead of SO4•-. Quenching experiments were coupled with electron paramagnetic resonance (EPR) detection and chemical probe identification to elucidate the contributions of each radical species. The comparison of different thermal activated persulfates (PDS and PMS) demonstrated that the significant higher bromate formation in HEAT/PMS ([BrO3-]/[Br-]0 = 0.8), as compared to HEAT/PDS ([BrO3-]/[Br-]0 = 0.2), was attributable to the higher concentration of HO• radicals in HEAT/PMS. Similarly, the bromate formation in UV/PDS ([BrO3-]/[Br-]0 = 1.0), with a high concentration of HO•, further underscored the dominant role of HO•. As a result, we quantified that HO• and SO4•- radicals accounted 66.7% and 33.3% for bromate formation. This controversial result can be reconciled by considering the critical intermediate, hypobromic acid/hypobromate (HOBr/BrO-), involved in the transformation of Br- to BrO3-. HO• radicals have the chemical preference to induce the formation of HOBr/BrO- intermediates (contributing ∼ 60%) relative to SO4•- radicals (contributing ∼ 40%). This study highlighted the dominant role of HO• in the formation of bromate rather than SO4•- in PS-AOPs and potentially offered novel insights for reducing disinfection byproduct formation by controlling the radical species in AOPs.
Collapse
Affiliation(s)
- Wanqi Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Congcong Ni
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Ning Deng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Dündar OA, Arar Ö, Arda M. Removal of bromate ions from aqueous solutions via electrodeionization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122726. [PMID: 37844860 DOI: 10.1016/j.envpol.2023.122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Bromate (BrO3-) is a disinfection byproduct formed during the chemical oxidation of water containing bromide. Due to the carcinogenic effect of bromate, its maximum permissible concentration in drinking water has been set to 10 μg/L by the World Health Organization. In this study, the removal of BrO3- ions from aqueous solutions via electrodeionization (EDI) was investigated. The removal rate of BrO3- varied with the applied potential, and at 10 V, a removal rate of 99% was achieved. However, further increasing the applied potential to 30 V had a negative effect on the removal rate. Additionally, a low bromate concentration in the product water was achieved by reducing Na2SO4 conductivity in the electrode compartment. The removal of BrO3- is pH dependent, and at pH 1, only 17.5% was removed. However, increasing the pH of the solution to 5 increased the removal rate to 99.6%. Increasing the operating time and number of cells in the EDI stack improved the removal rate of BrO3-, and its concentration decreased from 5 mg/L to 1.4 μg/L. The calculated flux for BrO3- was 2.17 × 10-5 mol/m2s, specific power consumption was 89.98-W/hg KBrO3, and mass-transfer coefficient was 5.4 × 10-4 m/s at 10 V.
Collapse
Affiliation(s)
| | - Özgür Arar
- Chemistry Department of Ege University, Izmir, Turkey.
| | - Müşerref Arda
- Chemistry Department of Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Chen W, Lei L, Zhu K, He D, He H, Li X, Wang Y, Huang J, Ai Y. Peroxymonosulfate activation by Fe-N-S co-doped tremella-like carbocatalyst for degradation of bisphenol A: Synergistic effect of pyridine N, Fe-N x, thiophene S. J Environ Sci (China) 2023; 129:213-228. [PMID: 36804237 DOI: 10.1016/j.jes.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) has received increasing attention due to its long-term industrial application and persistence in environmental pollution. Iron-based carbon catalyst activation of peroxymonosulfate (PMS) shows a good prospect for effective elimination of recalcitrant contaminants in water. Herein, considering the problem about the leaching of iron ions and the optimization of heteroatoms doping, the iron, nitrogen and sulfur co-doped tremella-like carbon catalyst (Fe-NS@C) was rationally designed using very little iron, S-C3N4 and low-cost chitosan (CS) via the impregnation-calcination method. The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA (20 mg/L) by activating PMS with the high kinetic constant (1.492 min-1) in 15 min. Besides, the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference, but also maintained an excellent degradation efficiency on different pollutants. Impressively, increased S-C3N4 doping amount modulated the contents of different N species in Fe-NS@C, and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing S-C3N4 contents, verifying pyridine N and Fe-Nx as main active sites in the system. Meanwhile, thiophene sulfur (C-S-C) as active sites played an auxiliary role. Furthermore, quenching experiment, EPR analysis and electrochemical test proved that surface-bound radicals (·OH and SO4⋅-) and non-radical pathways worked in the BPA degradation (the former played a dominant role). Finally, possible BPA degradation route were proposed. This work provided a promising way to synthesize the novel Fe, N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.
Collapse
Affiliation(s)
- Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China.
| | - Lele Lei
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Dongdong He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Hongmei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiulan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Yumeng Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Yushi Ai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| |
Collapse
|
5
|
Zhang Z, Li Z, Bai X, Shi J, Hu M, Chai J, Li K, Jin P. Photosensitive Dye as an Ideal Peroxymonosulfate Activator for Efficient Self-Degradation: A Novel Idea of Using Waste to Treat Waste. Molecules 2023; 28:molecules28104237. [PMID: 37241979 DOI: 10.3390/molecules28104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Commonly used peroxydisulfate (PS) or peroxymonosulfate (PMS) activation methods have been limited in their practical application due to certain drawbacks, such as high cost, high energy consumption and secondary pollution. In this study, a catalyst-free alizarin green (AG) self-activating PMS catalytic system was constructed based on photosensitization properties of dye, which ultimately achieved efficient degradation of the dye activator, also the target pollutant. Here, 52.5% of the 100 mL mixture of 10 mg/L AG decomposed within 60 min with 1 mM PMS under visible-light irradiation, thereby showing a strong pH adaptation. Mechanism of AG self-activating PMS was revealed that the photo-excited AG can effectively transfer photo-induced electrons to PMS for its activation, which generates reactive oxidizing species dominated by singlet oxygen (1O2), and supplemented by hydroxyl radical (•OH), superoxide radical (O2•-) and sulfate radical (SO4•-) to realize the efficient self-degradation of the dye pollutants. Moreover, such self-catalytic system operated well under natural sunlight irradiation, indicating the great application potential in the actual wastewater treatment. Herein, photosensitive dye acted as an ideal PMS activator realizing its efficient self-degradation, which provides a novel idea of "using waste to treat waste" for developing wastewater treatment process in a high-efficiency and low-consumption way.
Collapse
Affiliation(s)
- Zhiyao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhaolin Li
- Oil and Gas Technology Research Institute, Petrochina Changqing Oilfield Company, Xi'an 710018, China
| | - Xue Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Chai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Keqian Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Jing J, Wang X, Zhou M. Electro-enhanced activation of peroxymonosulfate by a novel perovskite-Ti 4O 7 composite anode with ultra-high efficiency and low energy consumption: The generation and dominant role of singlet oxygen. WATER RESEARCH 2023; 232:119682. [PMID: 36746031 DOI: 10.1016/j.watres.2023.119682] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Traditional free radicals-dominated electrochemical advanced oxidation processes (EAOPs) and sulfate radical-based advanced oxidation processes (SR-AOPs) are limited by pH dependence and weak reusability, respectively. To overcome these shortcomings, electro-enhanced activation of peroxymonosulfate (PMS) on a novel perovskite-Ti4O7 composite anode (E-PTi-PMS system) was proposed. It achieved an ultra-efficient removal rate (k = 0.467 min-1) of carbamazepine (CBZ), approximately 36 and 8 times of the E-PTi and PTi-PMS systems. Singlet oxygen (1O2) played a dominant role in the E-PTi-PMS system and transformed from SO4•-, O2•-, •OH and oxygen vacancy (Vo••). The electric field expedited the decomposition and utilization of PMS, promoting the generation of radicals and expanding the formation pathway of 1O2. The E-PTi-PMS system presented superiorities over wide pH (3-10) and less dosage of PMS (1 mM), expanding the pH adaptability and reducing the cost of EAOPs. Simultaneously, the excellent reusability (30 cycles) solved the bottleneck of recycling catalysts in SR-AOPs via an ultra-low energy (0.025 kWh/m3-log). This work provides a promising alternative towards high-efficiency and low-cost treatment of polluted waters.
Collapse
Affiliation(s)
- Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Liu Y, Dai J, Li C, Wang Y, Zhao J, Li B, Ye J. 3D variable Co species carbon foam enhanced reactive oxygen species generation and ensured long-term stability for water purification. J Colloid Interface Sci 2023; 641:737-746. [PMID: 36965344 DOI: 10.1016/j.jcis.2023.03.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Cobalt (Co) and oxides are the most common catalysts for activating peroxymonosulfate (PMS). However, practical applications of Co-based PMS-advanced oxidation processes are difficult to realize the degradation of the targeted pollutants due to poor yield of reactive oxygen species (ROS) and inaccessible active sites. Here, we designed 3D oxygen vacancy-rich (Vo-rich) variable Co species@carbon foam (CoxOy@CF) via coupling solvent-free and pyrolysis strategies for degrading tetracycline by PMS activation. The kinetic rate of optimized (Co@CoO) CoxOy@CF-1.0 (1.0 presented the molar ratio of Co2+ and 2-methylimidazole) enhanced by an order of magnitude compared to that of ZIFs derivatives (ZIFs-500) (0.073 vs 0.155 min-1) due to the special structure. The flow-through unit maintained over 90% removal within 12 h, which was far better than that of ZIFs-500/PMS system. We used electrochemical analysis, quenching experiment, in-situ FTIR and Raman spectra to further investigate the possible mechanism of the 3D CoxOy@CF-1.0/PMS system. 3D CoxOy@CF-1.0 stimulated the production of the metastable catalyst-PMS* complex obtained O2- as intermediates accompanied by the redox cycling of Co2+/Co3+, which created the dominant ROS (more 1O2) in the presence of Vo, which was completely different for ZIFs-500/PMS with coordinated and dominant radical and non-radical pathways. This study could large-scale generate variable cobalt-based catalysts for enhanced ROS generation, leading the new insight for boosting practical applications.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Agrochem Laboratory Co., Ltd, Chang Zhou, Jiangsu 213022, China
| | - ChunXiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Binrong Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Du Y, Wang WL, Wang ZW, Yuan CJ, Ye MQ, Wu QY. Overlooked Cytotoxicity and Genotoxicity to Mammalian Cells Caused by the Oxidant Peroxymonosulfate during Wastewater Treatment Compared with the Sulfate Radical-Based Ultraviolet/Peroxymonosulfate Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3311-3322. [PMID: 36787277 DOI: 10.1021/acs.est.2c06965] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Byproduct formation (chlorate, bromate, organic halogen, etc.) during sulfate radical (SO4•-)-based processes like ultraviolet/peroxymonosulfate (UV/PMS) has aroused widespread concern. However, hypohalous acid (HOCl and HOBr) can form via two-electron transfer directly from PMS, thus leading to the formation of organic halogenated byproducts as well. This study found both PMS alone and UV/PMS can increase the toxicity to mammalian cells of wastewater, while the UV/H2O2 decreased the toxicity. Cytotoxicity of two wastewater samples increased from 5.6-8.3 to 15.7-29.9 mg-phenol/L, and genotoxicity increased from 2.8-3.1 to 5.8-12.8 μg 4-NQO/L after PMS treatment because of organic halogen formation. Organic halogen formation from bromide rather than chloride was found to dominate the toxicity increase. The SO4•--based process UV/PMS led to the formation of both organic halogen and inorganic bromate and chlorate. However, because of the very low concentration (<20 μg/L) and relatively low toxicity of bromate and chlorate, contributions of inorganic byproducts to toxicity increase were negligible. PMS would not form chlorate and bromate, but it generated a higher concentration of total organic halogen, thus leading to a more toxic treated wastewater than UV/PMS. UV/PMS formed less organic halogen and toxicity because of the destruction of byproducts by UV irradiation and the removal of byproduct precursors. Currently, many studies focused on the byproducts bromate and chlorate during SO4•--based oxidation processes. This work revealed that the oxidant PMS even needs more attention because it caused higher toxicity due to more organic halogen formation.
Collapse
Affiliation(s)
- Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Wei Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ming-Qi Ye
- Everbright Water (Shenzhen) Limited, Shenzhen 518000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
9
|
Ma X, Yuan H, Qiao Q, Zhang S, Tao H. Enhanced catalysis for degradation of rhodamine B by amino-functionalized Fe-MOFs with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Lan Y, Zhou D, Lai L, Qi H, Xia L, Depuydt S, Van der Bruggen B, Zhao Y. A monovalent selective anion exchange membrane made by poly(2,6-dimethyl-1,4-phenyl oxide) for bromide recovery. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Li J, Zhang Z, Xiang Y, Jiang J, Yin R. Role of UV-based advanced oxidation processes on NOM alteration and DBP formation in drinking water treatment: A state-of-the-art review. CHEMOSPHERE 2023; 311:136870. [PMID: 36252895 DOI: 10.1016/j.chemosphere.2022.136870] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Oxidative treatment of drinking water has been practiced for more than a century. UV-based advanced oxidation processes (UV-AOPs) have emerged as promising oxidative treatment technologies to eliminate recalcitrant chemicals and biological contaminants in drinking water. UV-AOPs inevitably alter the properties of natural organic matter (NOM) and affect the disinfection byproduct (DBP) formation in the post-disinfection. This paper provides a state-of-the-art review on the effects of UV-AOPs on the changes of NOM properties and the consequent impacts on DBP formation in the post-chlorination process. A tutorial review to the connotations of NOM properties (e.g., bulk properties, fractional constituents, and molecular structures) and the associated state-of-the-art analytical methods are firstly presented. The impacts of different radical-based AOPs on the changes of NOM properties together with the underlying NOM-radical reaction mechanisms are discussed. The impacts of alteration of NOM properties on DBP formation in the post-chlorination process are then reviewed. The current knowledge gaps and future research needs are finally presented, with emphases on the needs to strengthen the comparability of research data in literature, the accuracy in quantifying the reactive moieties of NOM, and the awareness of unknown DBPs in oxidative water treatment processes. The review and discussion improve the fundamental understanding of NOM-radical and NOM-chlorine chemistry. They also provide useful implications on the engineering design and operation of next-generation drinking water treatment plants.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| |
Collapse
|
12
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Bai J, Li Y, Song B, Wang Q. Activation of peroxymonosulfate by modified coagulation sludge for bisphenol A degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78832-78847. [PMID: 35699880 DOI: 10.1007/s11356-022-21419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
This study used coagulation sludge from a landfill leachate treatment to prepare a modified coagulation sludge (MCS) catalyst by the limited oxygen pyrolysis method, and the adsorption, degradation efficiency, and reaction mechanism of bisphenol A (BPA) in the MCS activated peroxymonosulfate (MCS/PMS) process were investigated. The pyrolysis temperature determined the adsorption capacity and the activation ability of MCS. At a pyrolysis temperature of 300 °C for 2 h, the MCS300-2 test material had the best adsorption capacity for BPA, while MCS450-2 prepared at a pyrolysis temperature of 450 °C for 2 h had a better catalytic performance towards PMS. In the MCS/PMS process, BPA (20 mg/L) could be completely degraded at 120 min under room temperature when the initial pH = 7, PMS dosage = 3 g/L, and MCS dosage = 0.3 g/L. Radical quenching experiments indicated that both hydroxyl radical (·OH) and sulfate radical (SO4-·) existed in the MCS/PMS process, and ·OH played a major role in BPA degradation. The changes in morphology, functional groups, components, and surface element valence state of MCS catalysts before and after the reaction were investigated. It was found that the BPA degradation reaction was a coupled adsorption and oxidation process, in which homogenous in situ and heterogeneous effects were included in the reactions. In addition, the stability of the MCS/PMS process was verified in different environmental scenarios, including ultrapure water, tap water, and municipal wastewater. Furthermore, the degradation intermediates (such as p-hydroxyl phenol and p-hydroxybenzoic acid) of BPA were determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and the reaction mechanisms in the MCS/PMS process were investigated.
Collapse
Affiliation(s)
- Jie Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yihui Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qing Wang
- Xingrong Renewable Energy Co., Ltd., Chengdu, 610000, China.
| |
Collapse
|
14
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
15
|
Zhao ZY, Xiong J, Wang Y, Cui C. Peroxymonosulfate activation using heterogeneous catalyst Sr 2FeO 4 coated on SBA-15 for efficient degradation of antibiotic sulfapyridine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61446-61456. [PMID: 35441998 DOI: 10.1007/s11356-022-20277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
It is significant to explore the advanced oxidation process (AOP) for antibiotic degradation. Herein, a peroxymonosulfate (PMS) activator, Sr2FeO4/SBA-15 (SFS) heterogeneous catalyst, was synthesized by in situ growth of Sr2FeO4 on the surface of SBA-15. In SFS/PMS catalytic system, Sr atom provided electrons to Fe(II) ↔Fe(III) ↔Fe(II) redox cycle through Sr-O-Fe bonds for PMS activation. The SFS catalyst could activate PMS to generate a free radical coexistence system, including sulfate radical (SO4∙-) and hydroxyl radicals (∙OH). The catalyst possessed high catalytic activity and high stability. The degradation efficiency of sulfapyridine (SAD) over the SFS/PMS catalytic system could reach 99.0% after 90 min reaction. After the 5th reuse, the degradation efficiency of SAD was still more than 94.0%, and the phase structure of the catalyst did not alter. The low ion leaching concentration would be more conducive to reuse and avoiding secondary pollution, in comparison to homogeneous catalysts. This catalyst can be widely applied to organic wastewater treatment.-->.
Collapse
Affiliation(s)
- Zheng-Yin Zhao
- School of Science, Xuchang University, Xuchang, 461000, People's Republic of China
| | - Jun Xiong
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401123, People's Republic of China
| | - Yuan Wang
- Ecological Environment Monitoring Center Station of Sichuan Suining, Suining, 629000, People's Republic of China
| | - Caixi Cui
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
16
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
17
|
Guan C, Guo Q, Wang Z, Wei X, Han B, Luo X, Pan H, Jiang J. Bisulfite activated permanganate for oxidative water decontamination. WATER RESEARCH 2022; 216:118331. [PMID: 35358879 DOI: 10.1016/j.watres.2022.118331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Recently, bisulfite-activated permanganate (MnO4-; Mn(VII)) process has attracted considerable attention as a novel class of advanced oxidation technology for destruction of organic contaminants in water. However, disputes over the underlying activation mechanism as well as reactive species generated in the Mn(VII)/bisulfite system remain for a long period due to the fairly complex chemistry involved in this system. This article aims to present a critical review on scientific development of the Mn(VII)/bisulfite system, with particular focus on the generation and contribution of various reactive intermediates. Both reactive manganese species (RMnS) (i.e., soluble Mn(III), Mn(V), and Mn(VI)) and radical species (primarily SO4•-) are identified as the oxidizing components responsible for enhanced degradation of organic contaminants by the Mn(VII)/bisulfite system. Bisulfite plays a dual role of being an activating agent for reactive intermediates generation and acting as a complexing agent to stabilize RMnS. Solution chemistry (e.g., the [Mn(VII)]/[bisulfite] molar ratio, solution pH, the type of contaminants, ligands, and water matrix components) greatly impacts the generation and consumption of RMnS and radicals, thus influencing the degradation kinetics and pathways of organics. Particularly, dissolved oxygen (DO) is a vital factor for driving the oxidation of organics since the absence of DO can block the generation of SO4•- and meantime causes the consumption of RMnS by excess SO3•- as a strong reductant. Interestingly, ferrate (FeO42-, Fe(VI)) and hexavalent chromium (CrO42-/HCrO4-, Cr(VI)) that are high-valent metal oxyanions analogous to Mn(VII) can be activated by bisulfite via a similar pathway (i.e. both high-valent metal-oxo intermediates and reactive radicals are involved). Furthermore, key knowledge gaps are identified and future research needs are proposed to address the potential challenges encountered in practical application of the Mn(VII)/bisulfite oxidation technology.
Collapse
Affiliation(s)
- Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xipeng Wei
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hanping Pan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
18
|
Spellman CD, Da'Er S, Ikuma K, Silverman I, Goodwill JE. Sulfite-activated ferrate for water reuse applications. WATER RESEARCH 2022; 216:118317. [PMID: 35339053 DOI: 10.1016/j.watres.2022.118317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ferrate is a promising, emerging water treatment technology. However, there has been limited research on the application of ferrate in a water reuse paradigm. Recent literature has shown that ferrate oxidation of target contaminants could be improved by "activation" with the addition of reductants or acid. This study examined the impact of sulfite-activated ferrate in laboratory water matrix and spiked municipal wastewater effluents with the goal of transforming organic contaminants of concern (e.g., 1,4-dioxane) and inactivating pathogenic organisms. Additionally, the formation of brominated disinfection byproducts by activated ferrate were examined and a proposed reaction pathway for byproduct formation is presented. In particular, the relative importance of reaction intermediates is discussed. This represents the first activated ferrate study to examine 1,4-dioxane transformation, disinfection, and brominated byproduct formation. Results presented show that the sub-stoichiometric ([Sulfite]:[Ferrate] = 0.5) activated ferrate treatment approach can oxidize recalcitrant contaminants by >50%, achieve >4-log inactivation of pathogens, and have relatively limited generation of brominated byproducts. However, stoichiometrically excessive ([Sulfite]:[Ferrate] = 4.0) activation showed decreased performance with decreased disinfection and increased risk of by-product formation. In general, our results indicate that sub-stoichiometric sulfite-activated ferrate seems a viable alternative technology for various modes of water reuse treatment.
Collapse
Affiliation(s)
- Charles D Spellman
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, United States
| | - Sahar Da'Er
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, United States
| | | | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, United States.
| |
Collapse
|
19
|
Lei Y, Lei X, Westerhoff P, Tong X, Ren J, Zhou Y, Cheng S, Ouyang G, Yang X. Bromine Radical (Br • and Br 2•-) Reactivity with Dissolved Organic Matter and Brominated Organic Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5189-5199. [PMID: 35349263 DOI: 10.1021/acs.est.2c00549] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) is a major scavenger of bromine radicals (e.g., Br• and Br2•-) in sunlit surface waters and during oxidative processes used in water treatment. However, the literature lacks quantitative measurements of reaction rate constants between bromine radicals and DOM and lacks information on the extent to which these reactions form brominated organic byproducts. Based on transient kinetic analysis with different fractions and sources of DOM, we determined reaction rate constants for DOM with Br• ranging from <5.0 × 107 to (4.2 ± 1.3) × 108 MC-1 s-1, which are comparable with those of HO• but higher than those with Br2•- (k = (9.0 ± 2.0) × 104 to (12.4 ± 2.1) × 105 MC-1 s-1). Br• and Br2•- attack the aromatic and antioxidant moieties of DOM via the electron transfer mechanism, resulting in Br- release with minimal substitution of bromine into DOM. For example, the total organic bromine was less than 0.25 μM (as Br) at environmentally relevant bromine radicals' exposures of ∼10-9 M·s. The results give robust evidence that the scavenging of bromine radicals by DOM is a crucial step to prevent inorganic bromine radical chemistry from producing free bromine (HOBr/OBr-) and subsequent brominated byproducts.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xingyu Tong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianing Ren
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Guo D, You S, Li F, Liu Y. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: A review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Liu Z, Wang S, Ma W, Wang J, Xu H, Li K, Huang T, Ma J, Wen G. Adding CuCo 2O 4-GO to inhibit bromate formation and enhance sulfamethoxazole degradation during the ozone/peroxymonosulfate process: Efficiency and mechanism. CHEMOSPHERE 2022; 286:131829. [PMID: 34426122 DOI: 10.1016/j.chemosphere.2021.131829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
In this work, a new type of catalyst CuCo2O4-GO was synthesized as a heterogeneous catalyst, and its control effect on bromate (BrO3-)generation and sulfamethoxazole (SMX) degradation in O3/PMS process was studied. When 100 mg/L CuCo2O4-GO was added to the reaction system, the BrO3- concentration generated was 0.25 μM at pH = 7.0, 100 μM PMS addition and 1.30 mg/min ozone injection after 30 min reaction. Compared with the 6.58 μM BrO3- produced in the control group, the addition of CuCo2O4-GO prominently inhibited the generation of BrO3- and the inhibition efficiency reached 96.17 %. The addition of CuCo2O4-GO inhibited the conversion of hypobromous acid, thereby inhibiting the formation of BrO3-. Meanwhile, the first-order kinetic constant of the degradation of SMX by O3/PMS and O3/PMS/CuCo2O4-GO was 0.163 and 0.422 min-1, respectively. The addition of CuCo2O4-GO promoted the degradation of SMX and the removal efficiency was reached above 98 % after 10 min reaction. According to the optimization of the GO loading ratio, it was found that CuCo2O4-GO with 20 % GO loading had the best promotion effect on the degradation of SMX, and almost completely inhibited the formation of BrO3-. Finally, in the repeated cycle experiment, CuCo2O4-GO could maintain its high catalytic activity and still had a high removal effect on SMX after three repeated uses. Besides, the BrO3- inhibition efficiency was above 80 % after two repeated uses. Therefore, adding synthetic CuCo2O4-GO is an effective way to control the formation of BrO3- and enhance the degradation of SMX in the O3/PMS process.
Collapse
Affiliation(s)
- Zhao Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Sibin Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Weixing Ma
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, People's Republic of China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
22
|
Jing J, Pervez MN, Sun P, Cao C, Li B, Naddeo V, Jin W, Zhao Y. Highly efficient removal of bisphenol A by a novel Co-doped LaFeO 3 perovskite/PMS system in salinity water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149490. [PMID: 34419911 DOI: 10.1016/j.scitotenv.2021.149490] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Although it can effectively degrade refractory organic pollutants, advanced oxidation processes (AOPs) can be seriously interfered with the co-existing substance in salinity water. Herein, three-dimensional hierarchical cobalt-doped LaFeO3 perovskites (LaCo0.5Fe0.5O3) micron spheres composed of nano-rods were hydrothermally synthesized and applied to activate peroxymonosulfate (PMS) for degrading bisphenol A (BPA). Nearly 100% BPA was removed by LaCo0.5Fe0.5O3/PMS system in presence of more than 50 mM Cl- within only 2 min compared that of 30 min without Cl-, which was attributed to reactive chlorine species (RCS) including Cl• and HOCl with higher oxidation capacity. •OH and SO4•- produced by LaCo0.5Fe0.5O3 activating PMS played crucial roles as the source of RCS in LaCo0.5Fe0.5O3/Cl-/PMS system. The synergistic effect between ROS and RCS promoted by the enhanced oxygen vacancies and the efficient redox recycling of FeIII/FeII and CoIII/CoII. Other anions like SO42- and NO3- hardly affected the BPA degradation. BPA degradation efficiency was also improved either in a wide pH range or in the presence of natural organic matters in salty water. This work also demonstrated the potential application of FeCo bimetallic LaCo0.5Fe0.5O3 activating PMS system for degradation of BPA or other organic micropollutants in seawater system.
Collapse
Affiliation(s)
- Jiana Jing
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bin Li
- AWS Environment TECHNOLOGIES Ltd., Guangdong 511400, China
| | - Vincenzo Naddeo
- Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai 200071, China.
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
23
|
Persulfate enhanced electrochemical oxidation of phenol with CuFe2O4/ACF (activated carbon fibers) cathode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Yu Y, Zhao Y, Wang H, Tao P, Zhang X, Shao M, Sun T. Implications of hydrogen peroxide on bromate depression during seawater ozonation. CHEMOSPHERE 2021; 280:130669. [PMID: 33940451 DOI: 10.1016/j.chemosphere.2021.130669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The presence of hydrogen peroxide (H2O2) in ozonation process can resist the formation of carcinogenic bromate (BrO3¯) efficiently, and the bromate depression is closely related with background water qualities, especially in high bromide-containing seawater. In this study, the freshwater and seawater were selected to investigate the effects of H2O2 on ozone (O3) decomposition kinetics, bromide transformation and bromate depression, and the evolutions of BrO3¯ under different scavengers were explored to speculate the primary bromate formation pathways. The results showed that the initial O3 half-live period (t1/2-O3) in seawater was only one-sixth of that in freshwater, and its attenuation rate increased analogously with the increase of H2O2 concentration in both freshwater and seawater. The H2O2 could promote the formation of BrO3¯ via hydroxyl radical (•OH) based bromate pathways, nevertheless higher concentration of H2O2 facilitated the reduction of HOBr/OBr¯ back to Br¯, resulting in 87.0% and 73.2% of BrO3¯ retardment in freshwater and seawater, respectively. The suppression ratios of BrO3¯ were up to 48.4% and 35.3% in freshwater with the addition of •OH and •O2¯ scavengers, and the corresponding depressions in seawater decreased to 35.3% and 12.7%, indicating that •OH was dominant on bromate formation when the concentration of residual ozone was adequate to generate some bromine intermediates, meanwhile H2O2 and •O2¯ functioned as the key reductants for bromate depression. Based on these results, the Br¯ transformation mechanisms via O3, •OH, H2O2, and •O2¯ reactions were speculated, and the feasibility of H2O2-ozonation was verified for the treatment of high Br¯-containing seawater.
Collapse
Affiliation(s)
- Yixuan Yu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Yingping Zhao
- Environmental Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Haonan Wang
- Environmental Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Ping Tao
- Environmental Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Xinmin Zhang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Mihua Shao
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Tianjun Sun
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
25
|
Oyekunle DT, Cai J, Gendy EA, Chen Z. Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): A mini review. CHEMOSPHERE 2021; 280:130949. [PMID: 34162111 DOI: 10.1016/j.chemosphere.2021.130949] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Chloride ion (Cl-) is ever-present in aquatic environments. Different Cl- concentration have been reported in industrial water (760 mM), surface water (<21 mM), seawater (540 mM) and groundwater (<21 mM) which could potentially accumulate into large concentrations in the sea. This mini-review examines more than 200 studies and found that Cl- ions can react with strong oxidants (SO4•-, •OH, and HSO5-) generated from persulfate activation, inducing the formation of chlorine radicals, that can either (1) directly react with organics or (2) generate chlorine radicals that can participate in the conversion of the organic substrate. Although the impact of chloride radicals have been identified as either negligible, positive, or negative (inhibitive) at different Cl- concentrations, only a few studies have considered the possible generation of chlorinated by-products. Another essential detail that is often neglected is the mutagenicity and toxicity of these products, as only a few studies have reported on the biotoxicity, AOX (adsorbable organic halogen) and the degree of mineralization of Cl- containing persulfate activated AOPs (Advanced Oxidation Process). Future studies need to consider the chemical analysis of the degradation products as well as the mutagenicity, toxicity and the biological effects pre and post-oxidation process. This evaluation will address several key issues including the properties, occurrence, and toxicity of the chlorinated products, which can significantly benefit its application in a large-scale environmental application.
Collapse
Affiliation(s)
- Daniel T Oyekunle
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Department of Chemical Engineering, College of Engineering, Covenant University, Ota, 112233, Nigeria.
| | - Jiayi Cai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Eman A Gendy
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
26
|
Wu QY, Yang ZW, Du Y, Ouyang WY, Wang WL. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126327. [PMID: 34116271 DOI: 10.1016/j.jhazmat.2021.126327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The combination of ozone (O3) and chemical reagents (such as H2O2) shows synergies on the radical formation and micropollutant degradation. The promoting performance was associated with various parameters including chemical reagents, micropollutants, solution pH, and the water matrix. In this review, we summarized existing knowledge on radical formation pathways, radical yields, and radical oxidation for different synergistic ozonation processes in various water matrices (such as groundwater, surface water, and wastewater). The increase of radical yields by synergistic ozonation processes was positively related to the increase of O3-decay, with the increase being 1.1-4.4 folds than ozonation alone (0.2). Thus, synergistic ozonation can promote the degradation rate and efficiency of O3-resistant micropollutants (second order rate constant, kP,O3 < 200 M-1 s-1), but only slightly affects or even minorly inhibits the degradation of O3-reactive micropollutants (kP,O3 > 200 M-1 s-1). The water matrices, such as the dissolved organic matters, negatively suppressed the degradation of micropollutant by quenching O3-oxidation and radical oxidation (i.e. maximum promoting was decreased by 1.3 times), but may positively extend the promoting effects of synergistic ozonation to micropollutants that are more reactive to O3 (i.e. kP,O3 was extended from <200 to <2000 M-1 s-1). The formation of bromate would be increased through increasing radical oxidation by synergistic ozonation, but can be depressed by relative higher H2O2 as the reducing agent of HOBr/OBr- intermediate. The increase in bromate formation by O3/permononsulfate is a considerable concern due to permononsulfate cannot reduce the HOBr/OBr- intermediate.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ye Du
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Wan-Yue Ouyang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
27
|
Removal of Hydrogen Peroxide Residuals and By-Product Bromate from Advanced Oxidation Processes by Granular Activated Carbon. WATER 2021. [DOI: 10.3390/w13182460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During drinking water treatment, advanced oxidation process (AOP) with O3 and H2O2 may result in by-products, residual H2O2 and BrO3−. The water containing H2O2 and BrO3− often flows into subsequent granular activated carbon (GAC) filters. A concentrated H2O2 solution can be used as GAC modification reagent at 60 °C to improve its adsorption ability. However, whether low concentrations of H2O2 residuals from AOP can modify GAC, and the impact of H2O2 residuals on BrO3− removal by the subsequent GAC filter at ambient temperature, is unknown. This study evaluated the modification of GAC surface functional groups by residual H2O2 and its effect on BrO3− removal by GAC. Results showed that both H2O2 and BrO3− were effectively removed by virgin GAC, while pre-loaded and regenerated GACs removed H2O2 but not BrO3− anymore. At the ambient temperature 150 µmol/L H2O2 residuals consumed large amounts of functional groups, which resulted in the decrease of BrO3− removal by virgin GAC in the presence of H2O2 residuals. Redox reactions between BrO3− and surface functional groups played a dominant role in BrO3− removal by GAC, and only a small amount of BrO3− was removed by GAC adsorption. The higher the pH, the less BrO3− removal and the more H2O2 removal was observed.
Collapse
|
28
|
Lai L, He Y, Zhou H, Huang B, Yao G, Lai B. Critical review of natural iron-based minerals used as heterogeneous catalysts in peroxide activation processes: Characteristics, applications and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125809. [PMID: 33865112 DOI: 10.1016/j.jhazmat.2021.125809] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Recently, an increasing number of works have been reported about iron-based materials applied as catalysts in peroxide activation processes to degrade pollutants in water. Iron-based catalysts include synthetic and natural iron-based materials. However, some synthetic iron-based materials are difficult to scale up in the practical applications due to high cost and serious secondary environmental pollution. In contrast, natural iron-based minerals are more available and cheaper, and also hold a great promise in peroxide activation processes for pollutant degradation. In this review, we classify different natural iron-based materials into two categories: iron oxide minerals (e.g., magnetite, hematite, and goethite,), and iron sulfide minerals (e.g., pyrite and pyrrhotite,). Their overview applications in peroxide activation processes for pollutant degradation in wastewaters are systematically summarized for the first time. Moreover, the peroxide activation mechanisms induced by natural minerals, and the influences of reaction conditions in different systems are discussed. Finally, the application prospects and existing drawbacks of natural iron-based minerals in the peroxide activation processes for wastewater treatment are proposed. We believe this review can shed light on the application of natural iron-based minerals in peroxide activation processes and present better perspectives for future researches.
Collapse
Affiliation(s)
- Leiduo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yongli He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
29
|
Lei Y, Lei X, Yu Y, Li K, Li Z, Cheng S, Ouyang G, Yang X. Rate Constants and Mechanisms for Reactions of Bromine Radicals with Trace Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10502-10513. [PMID: 34296618 DOI: 10.1021/acs.est.1c02313] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bromine radicals can pose great impacts on the photochemical transformation of trace organic contaminants in natural and engineered waters. However, the reaction kinetics and mechanisms involved are barely known. In this work, second-order reaction rate constants with Br• and Br2•- were determined for 70 common trace organic contaminants and for 17 model compounds using laser flash photolysis and steady-state competition kinetics. The kBr• values ranged from <108 to (2.86 ± 0.31) × 1010 M-1 s-1 and the kBr2•- values from <105 to (1.18 ± 0.09) × 109 M-1 s-1 at pH 7.0. Six quantitative structure-activity relationships were developed, which allow predicting additional unknown kBr• and kBr2•- values. Single-electron transfer was shown to be a favored pathway for the reactions of Br• and Br2•- with trace organic contaminants, and this was supported by transient spectroscopy and quantum chemical calculations. This study is essential in advancing the scientific understanding of halogen radical-involved chemistry in contaminant transformation.
Collapse
Affiliation(s)
- Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yafei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kaize Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhe Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Zhu Y, Nie J, Yang X, Guan X. Degradation of tetrabromobisphenol A by ferrate(VI)-CaSO 3 process: Kinetics, products, and impacts on following disinfection by-products formation. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125297. [PMID: 33951873 DOI: 10.1016/j.jhazmat.2021.125297] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most widely applied brominated flame retardants and has been widely detected in water environment, which might pose risks of brominated disinfection by-products formation in water treatment system. Ferrate(VI)-CaSO3 (Fe(VI)-CaSO3) system could effectively degrade TBBPA at pH 7.0-9.0 but the decomposition rate of TBBPA dropped with increasing pH. The presence of 0.5 mg C/L humic acid (HA) had negligible impact on TBBPA removal, but the removal of TBBPA decreased to ~87% and 80% at pH 7.0 and 8.0, respectively, in the presence of 5.0 mg C/L HA. The transformation products of TBBPA detected in Fe(VI)-CaSO3 process revealed that TBBPA degradation mainly proceeded via electron abstraction, debromination, and ring-opening pathways and Br- was released. In the presence of TBBPA, Fe(VI)-CaSO3 pre-oxidation decreased the generation of all determined DBPs during chlorination at pH 8.0 but it lessened the generation of some DBPs and slightly increased the formation of the other DBPs at pH 7.0. The toxic risk analysis showed that Fe(VI)-CaSO3 pre-oxidation of TBBPA could reduce the toxic risk of DBPs in both synthetic water and natural water at pH 8.0, indicating that Fe(VI)-CaSO3 process has the potential to be applied in practical water treatment.
Collapse
Affiliation(s)
- Yating Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianxin Nie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
31
|
Wang W, Chen M, Wang D, Yan M, Liu Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145522. [PMID: 33571779 DOI: 10.1016/j.scitotenv.2021.145522] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
With the continuous development of industrialization, a growing number of refractory organic pollutants are released into the environment. These contaminants could cause serious risks to the human health and wildlife, therefore their degradation and mineralization is very critical and urgent. Recently sulfate radical-based advanced oxidation technology has been widely applied to organic pollutants treatment due to its high efficiency and eco-friendly nature. This review comprehensively summarizes different methods for persulfate (PS) and peroxymonosulfate (PMS) activation including ultraviolet light, ultrasonic, electrochemical, heat, radiation and alkali. The reactive oxygen species identification and mechanisms of PS/PMS activation by different approaches are discussed. In addition, this paper summarized the toxicity of degradation intermediates through bioassays and Ecological Structure Activity Relationships (ECOSAR) program prediction and the formation of toxic bromated disinfection byproducts (Br-DBPs) and carcinogenic bromate (BrO3-) in the presence of Br-. The detoxification and mineralization of target pollutants induced by different reactive oxygen species are also analyzed. Finally, perspectives of potential future research and applications on sulfate radical-based advanced oxidation technology in the treatment of organic pollutants are proposed.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
32
|
Ding Y, Wang X, Fu L, Peng X, Pan C, Mao Q, Wang C, Yan J. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142794. [PMID: 33129538 DOI: 10.1016/j.scitotenv.2020.142794] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Nonradical persulfate oxidation processes have emerged as a new wastewater treatment method due to production of mild nonradical oxidants, selective oxidation of organic pollutants, and higher tolerance to water matrixes compared with radical persulfate oxidation processes. Since the case of the nonradical activation of peroxydisulfate (PDS) was reported on CuO surface in 2014, nonradical persulfate oxidation processes have been extensively investigated, and much achievement has been made on realization of nonradical persulfate activation processes and understanding of intrinsic reaction mechanism. Therefore, in the review, nonradical pathways and reaction mechanisms for oxidation of various organic pollutants by PDS and peroxymonosulfate (PMS) are overviewed. Five nonradical persulfate oxidation pathways for degradation of organic pollutants are summarized, which include surface activated persulfate, catalysts-free or catalysts mediated electron transfer, 1O2, high-valent metals, and newly derived inorganic oxidants (e.g., HOCl and HCO4-). Among them, the direct oxidation processes by persulfate, nonradical based persulfate activation by inorganic/organic molecules and in electrochemical methods is first overviewed. Moreover, nonradical based persulfate activation mechanisms by metal oxides and carbon materials are further updated. Furthermore, investigation methods of interaction between persulfate and catalyst surface, and nature of reactive species are also discussed in detail. Finally, the future research needs are proposed based on limited understanding on reaction mechanism of nonradical based persulfate activation. The review can offer a comprehensive assessment on nonradical oxidation of organic pollutants by persulfate to fill the knowledge gap and provide better guidance for future research and engineering application of persulfate.
Collapse
Affiliation(s)
- Yaobin Ding
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xueru Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Libin Fu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xueqin Peng
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Cong Pan
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Qihang Mao
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
33
|
Wang J, Liang J. Insight: High intensity and activity carrier granular sludge cultured using polyvinyl alcohol/chitosan and polyvinyl alcohol/chitosan/iron gel beads. BIORESOURCE TECHNOLOGY 2021; 326:124778. [PMID: 33545627 DOI: 10.1016/j.biortech.2021.124778] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The newly developed carrier granular sludge (CGS) with polyvinyl alcohol/chitosan (PVA/CS) and PVA/CS/Fe gel beads assistance showed higher intensity and anammox activity than the natural granular sludge (NGS). Through comprehensive investigation, it was found: (1) the gel beads provided a stable framework of cells entangle with extracellular polymeric substances (EPS) to enhance the sludge intensity. In this framework, β-polysaccharides are distributed at the edge of CGS as a protection layer, α-polysaccharides and proteins are spread in the whole cross-section as backbones, and Fe2+/Fe3+ in CGS-PVA/CS/Fe act as bridges to link with the negatively charged groups on bacterial surfaces and proteins. (2) The porous gel beads satisfied a relatively unimpeded mass transfer. Thus, the sludge activity, microbe's metabolism, membrane transportation and environmental adaption in CGS were apparently improved. The results improved the understanding about the advantages of the CGS and indicated their possible application in full-scale anammox processes.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
34
|
Shang Y, Xu X, Gao B, Wang S, Duan X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem Soc Rev 2021; 50:5281-5322. [DOI: 10.1039/d0cs01032d] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent advances in synthetic strategies, characterisation, and computations of carbon-based single-atom catalysts, as well as their innovative applications and mechanisms in advanced oxidation technologies.
Collapse
Affiliation(s)
- Yanan Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
35
|
Wang Y, Wu Y, Yu Y, Pan T, Li D, Lambropoulou D, Yang X. Natural polyphenols enhanced the Cu(II)/peroxymonosulfate (PMS) oxidation: The contribution of Cu(III) and HO •. WATER RESEARCH 2020; 186:116326. [PMID: 32854031 DOI: 10.1016/j.watres.2020.116326] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Copper ion (Cu(II)) in water or wastewater has been reported to trigger peroxymonosulfate (PMS) oxidation of organic contaminants (OCs). However, this process can only work in alkaline condition, which limits its potential application. In this study, we found that the introduction of natural polyphenols in the Cu(II)/PMS process can significantly promote the degradation of tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants, in the pH range of 4.3-9.0. With gallic acid (GA) as a representative natural polyphenol, the degradation of TBBPA by GA/Cu(II)/PMS process reached 84.6% in 10 min at initial pH of 4.3 (without pH adjustment), which was 2.2 times higher than that by Cu(II)/PMS process. Multiple reactive oxidants, including Cu(III), hydroxyl radical (HO•) and singlet oxygen, were generated in this process among which Cu(III) and HO• contributed to TBBPA degradation with Cu(III) playing the dominant role. GA accelerated the reduction of Cu(II) to Cu(I) due to the strong chelation and electron-donating capacity of ortho-hydroxyl groups in GA, and then Cu(I) was quickly oxidized by PMS to Cu(III) which can be further acid-catalyzed to produce HO•. TBBPA transformation mainly proceeded through electron abstraction, oxidative debromination and ring-opening reaction pathways. The feasibility of in-situ utilizing natural organic matter (NOM, enriched with polyphenol moieties) to accelerate the degradation of TBBPA by Cu(II)/PMS process in surface water and wastewater was confirmed. The findings of this study indicate that the coupling of NOM and Cu(II), which are present in contaminated water or wastewater, can potentially improve PMS oxidation of OCs in a wide range of pH.
Collapse
Affiliation(s)
- Yu Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yafei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dantong Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|