1
|
Appel RJC, Siqueira KN, Konstantinidis I, Martins MIM, Joshi R, Pretto-Giordano LG, Vilas-Boas LA, Fernandes JMDO. Comparative transcriptome analysis reveals a serotype-specific immune response in Nile tilapia ( Oreochromis niloticus) infected with Streptococcus agalactiae. Front Immunol 2025; 15:1528721. [PMID: 39867881 PMCID: PMC11758187 DOI: 10.3389/fimmu.2024.1528721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Streptococcus agalactiae is a major causative agent of streptococcosis in Nile tilapia (Oreochromis niloticus) and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different S. agalactiae serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure. Our findings revealed significant variation in the expression of genes involved in immune (e.g., CD209 antigen, granulin, C-X-C motif chemokine 10, prostacyclin synthase, and interleukins) and neuroendocrine (e.g., mmp13a, mmp9, brain aromatase, and pmch) pathways. The serotype Ib strain seems promptly recognized by the host, triggering a potent inflammatory response, whereas the serotype III strain elicited a less immediate response, resulting in more pronounced central nervous system (CNS) symptoms and behavioral effects. To the best of our knowledge, this is the first study to show serotype-specific immune responses to S. agalactiae in Nile tilapia. These findings are important for advancing disease management and control strategies in aquaculture. Identifying different immune reactions triggered by serotypes Ib and III may assist the development of more specific approaches for preventive measures, early detection, and effective treatment against streptococcosis.
Collapse
Affiliation(s)
- Renan José Casarotto Appel
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of General Biology, State University of Londrina, Londrina, Brazil
| | | | | | | | | | | | | | - Jorge Manuel de Oliveira Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Renewable Marine Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Rauch KD, Bennett JL, Stoddart AK, Gagnon GA. UV LED disinfection as a novel treatment for common salmonid pathogens. Sci Rep 2024; 14:28392. [PMID: 39551835 PMCID: PMC11570639 DOI: 10.1038/s41598-024-79347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
Aeromonas salmonicida and Yersinia ruckeri are common pathogenic bacteria that impact salmonid aquaculture. Although vaccinations are available against both organisms, large-scale vaccination efforts can be expensive, cumbersome, and are not always reliable. Alternatively, these pathogens have been effectively inactivated using UV radiation from mercury-based systems. These systems are energy intensive and fragile which currently limits their use to closed and semi-closed production systems. UV light emitting diodes (UV LEDs) have recently emerged as a novel alternative to traditional mercury-based treatment. UV LEDs have durable housing, a relatively low energy draw, can be powered by a battery source and are adaptable to challenging environments. This study examined the effectiveness of three UV LED wavelengths for disinfection of A. salmonicida and Y. ruckeri in pure culture and resuspended in a wastewater matrix. All tested UV LEDs were effective in disinfecting both organisms. 267 and 279 nm wavelengths outperformed 255 nm disinfection in both test matrices. Particulate matter from wastewater reduced the upper limit of treatment for A. salmonicida but results still indicated that all wavelengths were effective for disinfection in a challenging matrix. This study represents the first use of UV LEDs for disinfection of A. salmonicida and Y. ruckeri and provides impact to aquaculture producers looking to implement novel technologies for disease control.
Collapse
Affiliation(s)
- Kyle D Rauch
- Department of Civil and Resource Engineering, Centre for Water Resources Studies, Dalhousie University, 1360 Barrington Street, Halifax, B3H 4R2, NS, Canada
| | - Jessica L Bennett
- Department of Civil and Resource Engineering, Centre for Water Resources Studies, Dalhousie University, 1360 Barrington Street, Halifax, B3H 4R2, NS, Canada
| | - Amina K Stoddart
- Department of Civil and Resource Engineering, Centre for Water Resources Studies, Dalhousie University, 1360 Barrington Street, Halifax, B3H 4R2, NS, Canada
| | - Graham A Gagnon
- Department of Civil and Resource Engineering, Centre for Water Resources Studies, Dalhousie University, 1360 Barrington Street, Halifax, B3H 4R2, NS, Canada.
| |
Collapse
|
3
|
Blanchon C, Toulza E, Calvayrac C, Eichendorff S, Travers MA, Vidal-Dupiol J, Montagnani C, Escoubas JM, Stavrakakis C, Plantard G. Inactivation of two oyster pathogens by photocatalysis and monitoring of changes in the microbiota of seawater: A case study on Ostreid herpes virus 1 μVar and Vibrio harveyi. CHEMOSPHERE 2024; 346:140565. [PMID: 38303385 DOI: 10.1016/j.chemosphere.2023.140565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
The pollution of seawater by both biotic (bacteria, viruses) and abiotic contaminants (biocides, pharmaceutical residues) frequently leads to economic losses in aquaculture activities mostly mortality events caused by microbial infection. Advanced Oxidation Processes (AOPs) such as heterogeneous photocatalysis allow the removal of all organic contaminants present in water and therefore could reduce production losses in land-based farms. Oysters in land-based farms such as hatcheries and nurseries suffer from a large number of mortality events, resulting in significant losses. If photocatalysis has been widely studied for the decontamination, its application for disinfection is still overlooked, especially on seawater for viruses. We therefore studied seawater disinfection using the photocatalysis (UV365/TiO2) method in the context of Pacific oyster mortality syndrome (POMS). POMS has been defined as a polymicrobial disease involving an initial viral infection with Ostreid Herpes Virus 1, accompanied by multiple bacterial infections. We investigated the impact of treatment on Vibrio harveyi, a unique opportunistic pathogenic bacterium, and on a complex microbial community reflecting a natural POMS event. Viral inactivation was monitored using experimental infections to determine whether viral particles were still infectious after. Changes in the total bacterial community in seawater were studied by comparing UV365/TiO2 treatment with UV365-irradiated seawater and untreated seawater. In the case of OsHV-1, a 2-h photocatalytic treatment prevents POMS disease and oyster mortality. The same treatment also inactivates 80% of viable Vibrio harveyi culture (c.a. 1.5 log). Since OsHV-1 and Vibrio harveyi are effectively inactivated without long-term destabilization of the total bacterial microbiota in the seawater, photocatalysis appears to be a relevant alternative for disinfecting seawater in land-based oyster beds.
Collapse
Affiliation(s)
- Cécile Blanchon
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France; Biocapteurs Analyses Environnement, Université de Perpignan Via Domitia, 66000, Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Université, CNRS, 66650, Banyuls sur Mer, France; PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, 66100, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France.
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, Université de Perpignan Via Domitia, 66000, Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Université, CNRS, 66650, Banyuls sur Mer, France
| | - Stanislawa Eichendorff
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, 66100, Perpignan, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | | | - Gaël Plantard
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, 66100, Perpignan, France
| |
Collapse
|
4
|
Moreno-Andrés J, Tierno-Galán M, Romero-Martínez L, Acevedo-Merino A, Nebot E. Inactivation of the waterborne marine pathogen Vibrio alginolyticus by photo-chemical processes driven by UV-A, UV-B, or UV-C LED combined with H 2O 2 or HSO 5. WATER RESEARCH 2023; 232:119686. [PMID: 36764105 DOI: 10.1016/j.watres.2023.119686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet (UV) radiation is a well-implemented process for water disinfection. The development of emergent UV sources, such as light-emitting diodes (LEDs), has afforded new possibilities for advanced oxidation processes. The emission wavelength is considered to be an important factor for photo-chemical processes in terms of both biological damage and energetic efficiency, as the inactivation mechanisms and mode-of-action may differ according to the wavelength that is applied. In addition, these processes merit exploration for inactivating emerging pathogens, such as marine vibrios, that are important bacteria to control in maritime activities. The main goal of this study was to compare the disinfection efficacy of several UV-LED driven processes with different modes of action. First, the effect of UV-LEDs was assessed at different UV ranges (UV-A, UV-B, or UV-C). Second, the possible enhancement of a combination with hydrogen peroxide (H2O2) or peroxymonosulfate salt (HSO5-) was investigated under two different application strategies, i.e. simultaneous or sequential. The results obtained indicate a high sensitivity of Vibrio alginolyticus to UV radiation, especially under UV-B (kobs = 0.24 cm2/mJ) and UV-C (kobs = 1.47 cm2/mJ) irradiation. The highest inactivation rate constants were obtained for UV/HSO5- (kobs (cm2/mJ)=0.0007 (UV-A); 0.39 (UV-B); 1.79 (UV-C)) with respect to UV/H2O2 (kobs (cm2/mJ)=0.0006 (UV-A); 0.26 (UV-B); and 1.54 (UV-C)) processes, however, regrowth was avoided only with UV/H2O2. Additionally, the disinfection enhancement caused by a chemical addition was more evident in the order UV-A > UV-B > UV-C. By applying H2O2 (10 mg/L) or HSO5- (2.5 mg/L) in a sequential mode before the UV, negligible effects were obtained in comparison with the simultaneous application. Finally, promising electrical energy per order (EEO) values were obtained as follows: UV/HSO5- (EEO (kWh/m3)=1.68 (UV-A); 0.20 (UV-B); 0.04 (UV-C)) and UV/H2O2 (EEO (kWh/m3)=2.15 (UV-A); 0.32 (UV-B); 0.04 (UV-C)), demonstrating the potential of UV-LEDs for disinfection in particular activities such as the aquaculture industry or maritime transport.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain.
| | - Miguel Tierno-Galán
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Leonardo Romero-Martínez
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| |
Collapse
|
5
|
Potential of Advanced Oxidation as Pretreatment for Microplastics Biodegradation. SEPARATIONS 2023. [DOI: 10.3390/separations10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In the last two decades, microplastics (MP) have been identified as an emerging environmental pollutant. Due to their small size, MP particles may easily enter the food chain, where they can have adverse effects on organisms and the environment in general. The common methods for the removal of pollutants from the environment are not fully effective in the elimination of MP; thus, it is necessary to find a more suitable treatment method(s). Among the various approaches tested, biodegradation is by far the most environmentally friendly and economically acceptable remediation approach. However, it has serious drawbacks, generally related to the rather low removal rate and often insufficient efficiency. Therefore, it would be beneficial to use some of the less economical but more efficient methods as pretreatment prior to biodegradation. Such pretreatment would primarily serve to increase the roughness and hydrophilicity of the surface of MP, making it more susceptible to bioassimilation. This review focuses on advanced oxidation processes (AOPs) as treatment methods that can enhance the biodegradation of MP particles. It considers MP particles of the six most commonly used plastic polymers, namely: polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate and polyurethane. The review highlights organisms with a high potential for biodegradation of selected MP particles and presents the potential benefits that AOP pretreatment can provide for MP biodegradation.
Collapse
|
6
|
Zhang Y, Zhao YG, Hu Y, Gao M, Guo L, Ji J. Insight in degradation of tetracycline in mariculture wastewater by ultraviolet/persulfate advanced oxidation process. ENVIRONMENTAL RESEARCH 2022; 212:113324. [PMID: 35439457 DOI: 10.1016/j.envres.2022.113324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The direct discharge of trace amounts of antibiotics in mariculture wastewater results in adverse effect on the ecological environment of receiving waters. Hence, the degradation of tetracycline (TC) in mariculture wastewater by the ultraviolet/peroxydisulfate (UV/PS) process was investigated in this study. The results revealed that 95.73% removal of TC with 5 mg/L dosage was achieved after 30 min UV/PS treatment. Chloride ion (Cl-) in mariculture wastewater slightly inhibited TC degradation by scavenging free radicals. Comparably, bromine ion (Br-) significantly enhanced the removal of TC and even doubled the degradation rate. Reactive bromine species (RBS) made a major contribution to the TC removal, followed by free chlorine and other reactive chlorine species (RCS). The TC degradation pathway revealed that functional group shedding and ring-opening reactions occurred successively. In addition, TC mineralization rate was low within 30 min, causing the inefficient reduction of acute toxicity of TC and its intermediates, which could be improved by optimizing the process parameters. These results indicated that UV/PS is a new alternative process for the harmless treatment of mariculture wastewater containing the antibiotics.
Collapse
Affiliation(s)
- Yanan Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Yubo Hu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Liang Guo
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Junyuan Ji
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
7
|
Kumar A, Hasija V, Sudhaik A, Raizada P, Nguyen VH, Le QV, Singh P, Nguyen DC, Thakur S, Hussain CM. The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review. ENVIRONMENTAL RESEARCH 2022; 209:112814. [PMID: 35090874 PMCID: PMC8789448 DOI: 10.1016/j.envres.2022.112814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
The prevalence of global health implications from the COVID-19 pandemic necessitates the innovation and large-scale application of disinfection technologies for contaminated surfaces, air, and wastewater as the significant transmission media of disease. To date, primarily recommended disinfection practices are energy exhausting, chemical driven, and cause severe impact on the environment. The research on advanced oxidation processes has been recognized as promising strategies for disinfection purposes. In particular, semiconductor-based photocatalysis is an effective renewable solar-driven technology that relies on the reactive oxidative species, mainly hydroxyl (•OH) and superoxide (•O2-) radicals, for rupturing the capsid shell of the virus and loss of pathogenicity. However, the limited understanding of critical aspects such as viral photo-inactivation mechanism, rapid virus mutagenicity, and virus viability for a prolonged time restricts the large-scale application of photocatalytic disinfection technology. In this work, fundamentals of photocatalysis disinfection phenomena are addressed with a reviewed remark on the reported literature of semiconductor photocatalysts efficacies against SARS-CoV-2. Furthermore, to validate the photocatalysis process on an industrial scale, we provide updated data on available commercial modalities for an effective virus photo-inactivation process. An elaborative discussion on the long-term challenges and sustainable solutions is suggested to fill in the existing knowledge gaps. We anticipate this review will ignite interest among researchers to pave the way to the photocatalysis process for disinfecting virus-contaminated environments and surfaces for current and future pandemics.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - D C Nguyen
- Department of Chemistry, The University of Danang, University of Science and Education, Danang, 550000, Viet Nam
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA.
| |
Collapse
|
8
|
Zhang Y, Wei M, Huang K, Yu K, Liang J, Wei F, Huang J, Yin X. Inactivation of E. coli and Streptococcus agalactiae by UV/persulfate during marine aquaculture disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45421-45434. [PMID: 35147881 DOI: 10.1007/s11356-022-19108-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Sulfate radical (•SO4-)-based advanced oxidation processes have attracted a great deal of attention for use in water disinfection because of their strong oxidation ability toward electron-rich moieties on microorganism molecules. However, a few studies have focused on the effects of •SO4- on pathogenic microorganism inactivation in marine aquaculture water containing various inorganic anions. We employed the gram-negative bacteria E. coli and gram-positive bacteria S. agalactiae as representatives to evaluate the application of UV/persulfate (S2O82-, PDS), to the disinfection of marine aquaculture water in a comprehensive manner. Total inactivation of 4.13ˍlog of E. coli cells and 4.74ˍlog of S. agalactiae cells was reached within 120 s in the UV/PDS system. The inactivation of pathogenic bacteria in marine aquaculture water increased with the increasing PDS concentration and UV intensity. An acidic pH was beneficial for UV/PDS inactivation. Halogen-free radicals showed a strong influence on the inactivation. Anions in seawater, including Cl-, Br-, and HCO3- inhibited the disinfection. The inactivation rates of pathogenic bacteria followed the order seawater < marine aquaculture water < freshwater. Pathogenic bacteria could also be effectively inactivated in actual marine aquaculture water and reservoir water. The analysis of the inactivation mechanisms showed that S2O82- was activated by UV to produce •SO4-, which damaged the cell membranes. In addition, antioxidant enzymes, including SOD and CAT, were induced. The genomic DNA was also damaged. Inorganic disinfection byproducts such as chlorate and bromate were not formed during the disinfection of marine aquaculture water, which indicated that UV/PDS was a safe and efficient disinfection method.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Min Wei
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Kunling Huang
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Jiayuan Liang
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Fen Wei
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Jianping Huang
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Xinyue Yin
- School of Marine Sciences, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| |
Collapse
|
9
|
Levchuk I, Homola T, Singhal G, Rueda-Márquez JJ, Vida J, Souček P, Svoboda T, Villar-Navarro E, Levchuk O, Dzik P, Lähde A, Moreno-Andrés J. UVA and solar driven photocatalysis with rGO/TiO2/polysiloxane for inactivation of pathogens in recirculation aquaculture systems (RAS) streams. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Nicolau T, Gomes Filho N, Padrão J, Zille A. A Comprehensive Analysis of the UVC LEDs' Applications and Decontamination Capability. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2854. [PMID: 35454546 PMCID: PMC9028096 DOI: 10.3390/ma15082854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
The application of light-emitting diodes (LEDs) has been gaining popularity over the last decades. LEDs have advantages compared to traditional light sources in terms of lifecycle, robustness, compactness, flexibility, and the absence of non-hazardous material. Combining these advantages with the possibility of emitting Ultraviolet C (UVC) makes LEDs serious candidates for light sources in decontamination systems. Nevertheless, it is unclear if they present better decontamination effectiveness than traditional mercury vapor lamps. Hence, this research uses a systematic literature review (SLR) to enlighten three aspects: (1) UVC LEDs' application according to the field, (2) UVC LEDs' application in terms of different biological indicators, and (3) the decontamination effectiveness of UVC LEDs in comparison to conventional lamps. UVC LEDs have spread across multiple areas, ranging from health applications to wastewater or food decontamination. The UVC LEDs' decontamination effectiveness is as good as mercury vapor lamps. In some cases, LEDs even provide better results than conventional mercury vapor lamps. However, the increase in the targets' complexity (e.g., multilayers or thicker individual layers) may reduce the UVC decontamination efficacy. Therefore, UVC LEDs still require considerable optimization. These findings are stimulating for developing industrial or final users' applications.
Collapse
Affiliation(s)
- Talita Nicolau
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| | - Núbio Gomes Filho
- School of Economics and Management, University of Minho, 4710-057 Braga, Portugal
| | - Jorge Padrão
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| | - Andrea Zille
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| |
Collapse
|
11
|
Nitrogen Removal Performance of Novel Isolated Bacillus sp. Capable of Simultaneous Heterotrophic Nitrification and Aerobic Denitrification. Appl Biochem Biotechnol 2022; 194:3196-3211. [PMID: 35349088 DOI: 10.1007/s12010-022-03877-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023]
Abstract
The control of nitrogenous pollutants is a key concern in aquaculture production. Bacillus spp. are commonly used as probiotics in aquaculture, but only a few reports have focused on the simultaneous heterotrophic nitrification and aerobic denitrification (SND) capacity of Bacillus sp. strains. In order to improve nitrogen biodegradation efficiency in the aquaculture industry, the SND capacity of Bacillus sp. strains was evaluated using both individual and mixed nitrogen sources and different sources of organic carbon. Twelve Bacillus sp. isolates were screened from aquaculture pond sediments and shrimp guts for nitrogen biodegradation. Six strains exhibited especially efficient inorganic nitrogen removal capacities in media with individual and mixed nitrogen sources. These strains comprise K8, N2, and N5 (B. subtilis), HYS (B. albus), H4 (B. amyloliquefaciens), and S1 (B. velezensis). The strains grew better when the sole nitrogen source was NH4+-N, but degraded nitrogen in the following order: nitrite nitrogen (NO2--N), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3--N). There was no associated NO2--N accumulation, regardless of the nitrogen source. The optimal carbon source for nitrogen removal varied based on different nitrogen sources and associated metabolic pathways. The optimal carbon sources for the removal of NO3--N, NO2--N, and NH4+-N were sodium citrate, sodium acetate, and sucrose, respectively. The application of H4 in recirculating aquaculture water further demonstrated that NO2--N and NH4+-N could be effectively removed. This study thus provides valuable technical support for the bioremediation of aquaculture water.
Collapse
|
12
|
Lu M, Zhang H. Preparation and decontamination performance of a flexible self-standing hydrogel photocatalytic membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Sabri M, Habibi-Yangjeh A, Rahim Pouran S, Wang C. Titania-activated persulfate for environmental remediation: the-state-of-the-art. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1996776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mina Sabri
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shima Rahim Pouran
- Social Determinants of Health Research Center, Department of Environmental and Occupational Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan PR China
| |
Collapse
|
14
|
Ren Z, Gui X, Wei Y, Chen X, Xu X, Zhao L, Qiu H, Cao X. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling. WATER RESEARCH 2021; 202:117407. [PMID: 34271454 DOI: 10.1016/j.watres.2021.117407] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/04/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) inevitably undergo aging transformation and transport process in environmental compartments. In this study, the polystyrene MPs were aged via three different oxidation methods including persulfate oxidation (PS), UV irradiation (UV), and UV irradiated persulfate oxidation (UVPS). All three treatments induced the great transformation of MPs, with the significant increase in surface roughness and in oxygen-containing functional groups, i.e., COOH or COOC. The UVPS aging showed synergetic effect due to the strengthened photo-initiated chemical oxidation, compared to UV and PS alone. All aged MPs exhibited the enhanced transport (34.9%-89.2%) in sandy and clay loam soils than pristine MPs (30.5%), and the synergetic effect was also observed in the transport behaviors of the UVPS MPs. Higher transport of MPs and aged MPs occurred in sandy soil than that in clay loam soil since the latter one contained high Fe minerals that tend to retain MPs, which was confirmed by the model quartz sand column experiment. Modeling on the migration of MPs retained in soil under a rainstorm scenario showed that the aged MPs had the stronger remobility and greater proportion of cumulative flux than pristine ones in the soil profile. These findings provided new insights on the fate and transport of MPs in natural soil and their potential risk to groundwater contamination.
Collapse
Affiliation(s)
- Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiang Wei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai 200092, China.
| |
Collapse
|
15
|
He J, Cheng J, Lo IMC. Green photocatalytic disinfection of real sewage: efficiency evaluation and toxicity assessment of eco-friendly TiO 2-based magnetic photocatalyst under solar light. WATER RESEARCH 2021; 190:116705. [PMID: 33285454 DOI: 10.1016/j.watres.2020.116705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
To evaluate the green photocatalytic disinfection for practical applications, disinfection of different types of real sewage using magnetic photocatalyst RGO/Fe,N-TiO2/Fe3O4@SiO2 (RGOFeNTFS) under simulated solar light was investigated: low-salinity sewage after tertiary treatment, low-salinity sewage after secondary biological treatment, high-salinity sewage after secondary biological treatment, and high-salinity sewage after chemically enhanced primary treatment. The classification of the sewage as high and low-salinity is based on the regions of sewage source that use seawater and freshwater for toilet flushing, respectively. It shows potential of solar-light-driven photocatalytic disinfection in low-salinity sewage: around 20 min (for sewage after tertiary treatment) and 45 min (for sewage after secondary treatment) of photocatalytic disinfection are required for sewage to meet the discharge standard, and no bacterial regrowth is observed in the treated sewage after 48 h. However, due to the poorer water quality, the high-salinity sewage requires a relatively long reaction time (more than 240 min) to meet the discharge standard, showing minimal practical significance. Further, the complex characteristics of real sewage, such as organic matter, suspended matter, multivalent-ions, pH and DO level significantly influence photocatalytic disinfection, and should be carefully reviewed in evaluating the photocatalytic disinfection of sewage. Besides, RGOFeNTFS shows a good reusability over three cycles for photocatalytic disinfection of low-salinity sewage samples. Moreover, the non-toxicity, indicated by phytoplankton in seawater, of both RGOFeNTFS (<= 3 g/L) and treated low-salinity sewage demonstrates the feasibility of the practical application of photocatalytic disinfection using RGOFeNTFS under irradiation of solar light.
Collapse
Affiliation(s)
- Juhua He
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinping Cheng
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution & Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|