1
|
Mahmoodi M, Pishbin E. Ozone-based advanced oxidation processes in water treatment: recent advances, challenges, and perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-024-35835-w. [PMID: 39827442 DOI: 10.1007/s11356-024-35835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices. Significant progress in the combination of ozonation with additional technologies, including UV irradiation, hydrogen peroxide (H₂O₂), catalytic systems, and biological treatments, is examined, highlighting their effectiveness in enhancing pollutant breakdown, increasing biodegradability, and reducing secondary pollution. Hybrid methods, including catalytic ozonation and ozone-biological treatment, show significant enhancements in process efficiency and cost-effectiveness, while effectively tackling challenges associated with energy use and byproduct generation. Despite the promising possibilities, obstacles remain, such as scalability issues, high operational costs, and the risk of generating potentially harmful transformation products. Cutting-edge approaches, including the creation of sophisticated catalysts, integration of processes, and refinement of reactor designs, are suggested to address these challenges and improve the real-world implementation of ozone-based advanced oxidation processes. This review highlights the significant potential of ozone-based advanced oxidation processes as sustainable approaches for wastewater treatment, providing an essential route to environmental conservation and safeguarding public health.
Collapse
Affiliation(s)
- Mohammadreza Mahmoodi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 2515 Speedway, Austin, TX, 78712, USA
- Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| |
Collapse
|
2
|
Fang Y, Wang F, Fang H, Lei Z, Song W, Fu C, Du X, Wang Z, Zhao Z. Synergistically enhanced heterogeneous activation of dissolved oxygen for aqueous carbamazepine degradation over S(III) coupled with siderite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125048. [PMID: 39357556 DOI: 10.1016/j.envpol.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The wide occurrence of emerging contaminants (ECs) was drawing more attention due to the potential hazard and threat on human and environment. Carbamazepine (CBZ) is a widely prescribed medication that has garnered considerable research interest with the exposures exceeding the environmental carrying capacity. We have established the innovative heterogeneous advanced oxidation process (AOPs) based on the activated dissolved oxygen (DO) coupled with S(III) and natural iron ore (siderite). In S(III)/O2/siderite system, we investigated the degradation efficiency, reactive species generation mechanism, and degradation pathway of CBZ. CBZ degradation and mineralization rate were 90% above and ∼15% with the reaction time of 40 min. The degradation of CBZ conformed to a pseudo-first-order kinetic model, with an activation energy determination of 76.36 kJ/mol. The optimal initial solution pH was the weak acid condition (pH = 4-6) for CBZ degradation. Moreover, the inhibition effects of coexisting substance including Cl-, HCO3-, and natural organic matter (NOM) on CBZ removal were observed, while the coexisted SO42- exhibited no significant influence. In addition, the reactive species generated in S(III)/O2/siderite system were predominantly identified as sulfate radical (SO4∙-) and hydroxyl radical (∙OH). The crucial intermediate complexes, Fe(III)S(IV)O3(+) and Fe(II)HS(IV)O3(+), was proposed to form in the initial stages of the reaction, which upon decomposition, yielded SO4∙- along with other reactive species. The degradation pathway of CBZ primarily involved deamination, oxidative ring-opening, hydroxylation, decarboxylation, and ketone degradation processes. This work provides the effective approach for the CBZ degradation with the mild reaction conditions and the sustainable technology for ECs treatment and control.
Collapse
Affiliation(s)
- Yuning Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute/Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai, 264006, China
| | - Hongze Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaosheng Lei
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Caixia Fu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 51060, China.
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Cross Research Institute of Ocean Engineering Safety and Sustainable Development, Guangzhou, 510000, China
| |
Collapse
|
3
|
Abdulkareem-Alsultan G, Asikin-Mijan N, Samidin S, Voon Lee H, Chyuan Ong H, Hwa Teo S, Agustiono Kurniawan T, Adzahar NA, Alomari N, Hin Taufiq-Yap Y. Hydrodeoxygenation of Isoeugenol-Derived Model Compound over Carbon-Supported Pt and Pt-SnS Catalysts for the Production of Sustainable Jet Fuel. Chempluschem 2024; 89:e202400368. [PMID: 39228206 DOI: 10.1002/cplu.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
This study focuses on the sustainable production of bio-jet fuel through the catalytic hydrodeoxygenation (HDO) of isoeugenol (IE). Sucrose-based activated carbon supported bimetallic Platinum-Tin metal sulphides (PtO-SnS/AC) catalyst was prepared for HDO process. Physicochemical properties of catalysts with different spraying synthesis methods (in situ and ex situ metal doping) and Pt loading (0.1-1.0 %) were further investigated. The PtO-SnS/AC catalysts were characterised using various techniques such as X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). Both HRTEM and FESEM results show the successful preparation of a spherical nanoparticles doped over activated carbon, and Pt was dispersed on the outer shell of the particles. The catalytic HDO of IE was evaluated in a batch system and showed a high yield and conversion as follows: IE conversion of 100 %, liquid-phase mass balance of 95.92 %, dihydroeugenol (DH) conversion of 99.32 %, propylcyclohexane (PCH) yield of 88.94 % and 2-methoxy-4-propylcyclohexanol (HYD) yield of 76.19 %. Moreover, the PtO-SnS/AC catalyst exhibited high reusability with low metal leaching and high coke resistance for 10 cycles. The catalyst was evaluated in a continuous flow reactor for 100 h at different reaction temperatures, and interestingly, the catalyst showed low deactivation with a high half-time.
Collapse
Affiliation(s)
- G Abdulkareem-Alsultan
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - N Asikin-Mijan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Salma Samidin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Hwei Voon Lee
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, 47500, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Siow Hwa Teo
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Nur Athirah Adzahar
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Alomari
- Department of Chemical and Paper Engineering, Western Michigan University, 49008, Kalamazoo, MI, USA
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Chen T, Xie P, Yu Y, Duan X, Sun Y, Guan X. Metal ions-mediated concerted electron-proton transfer enables catalytic oxidation of phenolic contaminants by permanganate. WATER RESEARCH 2024; 268:122622. [PMID: 39418802 DOI: 10.1016/j.watres.2024.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Permanganate has been extensively applied in water treatment due to its ease of handling and high stability. However, the impact of common water constituents, especially metal ions, on permanganate oxidation is poorly understood. Here, we report that many redox-inactive metal ions, such as Ca2+, Mg2+, Zn2+, Cu2+, and Al3+, can enhance the reactivity of permanganate with phenolic compounds. Moreover, the enhancing effects of metal ions are highly pH-dependent with the largest promotion effect obtained at the pH close to phenols' pKa. Experimental and computational analysis revealed that the oxidation of protonated phenols by permanganate underwent proton-coupled electron transfer (PCET) pathways, regardless of the presence of metal ions. Nonetheless, metal ions could catalyze the concerted electron-proton transfer (CEPT) but exhibited negligible effect on ETPT (electron transfer followed by proton transfer) and PTET (proton transfer followed by electron transfer) reactions, accounting for the pH-dependent effects of metal ions. Correlation between CEPT rate constants and the complexing capability of metal ions with phenols suggested that the co-existing metal ions may coordinate to phenolic O-H group and thus facilitate the CEPT reaction of phenols. This study could shed light on the application of permanganate in real practice and the modulation of CEPT reactions.
Collapse
Affiliation(s)
- Tiansheng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, PR China
| | - Pin Xie
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yanghai Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming (IEC), School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Wang Z, Hu N, Wang L, Zhao H, Zhao G. In Situ Production of Hydroxyl Radicals via Three-Electron Oxygen Reduction: Opportunities for Water Treatment. Angew Chem Int Ed Engl 2024; 63:e202407628. [PMID: 39007234 DOI: 10.1002/anie.202407628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The electro-Fenton (EF) process is an advanced oxidation technology with significant potential; however, it is limited by two steps: generation and activation of H2O2. In contrast to the production of H2O2 via the electrochemical two-electron oxygen reduction reaction (ORR), the electrochemical three-electron (3e-) ORR can directly activate molecular oxygen to yield the hydroxyl radical (⋅OH), thus breaking through the conceptual and operational limitations of the traditional EF reaction. Therefore, the 3e- ORR is a vital process for efficiently producing ⋅OH in situ, thus charting a new path toward the development of green water-treatment technologies. This review summarizes the characteristics and mechanisms of the 3e- ORR, focusing on the basic principles and latest progress in the in situ generation and efficient utilization of ⋅OH through the modulation of the reaction pathway, shedding light on the rational design of 3e- ORR catalysts, mechanistic exploration, and practical applications for water treatment. Finally, the future developments and challenges of efficient, stable, and large-scale utilization of ⋅OH are discussed based on achieving optimal 3e- ORR regulation and the potential to combine it with other technologies.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lan Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
6
|
Ma Y, Han Y, Yao Y, Zhou T, Sun D, Liu C, Che G, Hu B, Valtchev V, Fang Q. A cobalt-modified covalent organic framework enables highly efficient degradation of 2,4-dichlorophenol in high concentrations through peroxymonosulfate activation. Chem Sci 2024; 15:12488-12495. [PMID: 39118632 PMCID: PMC11304524 DOI: 10.1039/d4sc02462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The development of covalent organic frameworks (COFs) which can rapidly degrade high concentrations of 2,4-dichlorophenol is of great significance for its practical application. In this work, we report a cobalt-doped two-dimensional (2D) COF (JLNU-307-Co) for the ultra-efficient degradation of high concentration 2,4-dichlorophenol (2,4-DCP) by activating peroxymonosulfate (PMS). The JLNU-307-Co/PMS system takes only 3 min to degrade 100% of 50 mg L-1 2,4-DCP and shows excellent catalytic stability in real water. The superoxide radical (O2˙-) and singlet oxygen (1O2) play a major role in the system through capture experiments and electron spin resonance (ESR) tests. Compared to most previously reported catalysts, JLNU-307-Co/PMS showed the highest efficiency to date in degrading 2,4-DCP. This work not only demonstrates the potential of COFs as a catalyst for water environmental treatment, but also provides unprecedented insights into the degradation of organic pollutants.
Collapse
Affiliation(s)
- Yunchao Ma
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Yuhang Han
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Yuxin Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University Siping 136000 China
| | - Dongshu Sun
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University Siping 136000 China
| | - Guangbo Che
- College of Chemistry, Baicheng Normal University Baicheng 137000 China
| | - Bo Hu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun 130103 P. R. China
| | - Valentin Valtchev
- Qindao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shangdong 266101 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
7
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
9
|
Sun M, Xie Y, Huang J, Liu C, Dong Y, Li S, Zeng C. Oxygen-deficient AgIO 3 for efficiently photodegrading organic contaminants under natural sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121393. [PMID: 38850920 DOI: 10.1016/j.jenvman.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Defect engineering is regarded as an effective strategy to boost the photo-activity of photocatalysts for organic contaminants removal. In this work, abundant surface oxygen vacancies (Ov) are created on AgIO3 microsheets (AgIO3-OV) by a facile and controllable hydrogen chemical reduction approach. The introduction of surface Ov on AgIO3 broadens the photo-absorption region from ultraviolet to visible light, accelerates the photoinduced charges separation and migration, and also activates the formation of superoxide radicals (•O2-). The AgIO3-OV possesses an outstanding degradation rate constant of 0.035 min-1, for photocatalytic degrading methyl orange (MO) under illumination of natural sunlight with a light intensity is 50 mW/cm2, which is 7 and 3.5 times that of the pristine AgIO3 and C-AgIO3 (AgIO3 is calcined in air without generating Ov). In addition, the AgIO3-OV also exhibit considerable photoactivity for degrading other diverse organic contaminants, including azo dye (rhodamine B (RhB)), antibiotics (sulflsoxazole (SOX), norfloxacin (NOR), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)), and even the mixture of organic contaminants (MO-RhB and CTC-OFX). After natural sunlight illumination for 50 min, 41.4% of total organic carbon (TOC) for MO-RhB mixed solution can be decreased over AgIO3-OV. In a broad range of solution pH from 3 to 11 or diverse water bodies of MO solution, AgIO3-OV exhibits attractive activity for decomposing MO. The MO photo-degradation process and mechanism over AgIO3-OV under natural sunlight irradiation has been systemically investigated and proposed. The toxicities of MO and its degradation intermediates over AgIO3-OV are compared using Toxicity Estimation Software (T.E.S.T.). Moreover, the non-toxicity of both AgIO3-OV catalyst and treated antibiotic solution (CTC-OFX mixture) are confirmed by E. coli DH5a cultivation test, supporting the feasibility of AgIO3-OV catalyst to treat organic contaminants in real water under natural sunlight illumination.
Collapse
Affiliation(s)
- Miaofei Sun
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiayang Huang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yujing Dong
- School of Science and Technology, Xinyang College, Xinyang, 464000, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
10
|
Jin J, Liu C, Dai C, Zeng C, Jia Y, Liu X. Boosting the activity for organic pollutants removal of In 2O 3 by loading Ag particles under natural sunlight irradiation. ENVIRONMENTAL RESEARCH 2024; 251:118649. [PMID: 38458589 DOI: 10.1016/j.envres.2024.118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
A novel photocatalyst In2O3 with loading Ag particles is prepared via a facile one-step annealing method in air atmosphere. The Ag/In2O3 exhibits considerable photoactivity for decomposing sulfisoxazole (SOX), tetracycline hydrochloride (TC), and rhodamine B (RhB) under natural sunlight irradiation, which is much higher than that of pristine In2O3 and Ag species. After natural sunlight irradiation for 100 min, 70.6% of SOX, 65.6% of TC, and 81.9% of RhB are degraded over Ag/In2O3, and their corresponding chemical oxygen demand (COD) removal ratio achieve 95.4%, 38.4%, and 93.6%, respectively. A batch of experiments for degrading SOX with adjusting pollutant solution pH and adding coexisting anions over Ag/In2O3 are carried out to estimate its practical application prospect. Particularly, the as-prepared Ag/In2O3 possesses a superior stability, which exhibits no noticeable deactivation in decomposing SOX after eight cycles' reactions. In addition, the Ag/In2O3 coated on a frosted glass plate, also possesses a superior activity and stability for SOX removal, which solve the possible second pollution of residual powdered catalyst in water. Ag particles on In2O3 working as electron accepter improve charge separation and transfer efficiency, as well as the photo-absorption and organic pollutants affinity, leading to the boosted photoactivity of Ag/In2O3. The photocatalytic mechanism for degrading SOX and degradation process over Ag/In2O3 has been systemically investigated and proposed. This work offers an archetype for the rational design of highly efficient photocatalysts by metal loading.
Collapse
Affiliation(s)
- Jiahui Jin
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yushuai Jia
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Xin Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
11
|
Xie DH, Li WQ, Xu N, Yuan L, Zhang WH, Huang TY, Sheng GP. Sulfur doping-induced morphological and electronic structure modification of polyoxometalate FeWO 4 for enhanced removal of organic pollutants from water. WATER RESEARCH 2024; 257:121695. [PMID: 38723352 DOI: 10.1016/j.watres.2024.121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Wolframite (FeWO4), a typical polyoxometalate, serves as an auspicious candidate for heterogeneous catalysts, courtesy of its high chemical stability and electronic properties. However, the electron-deficient surface-active Fe species in FeWO4 are insufficient to cleave H2O2 via Fe redox-mediated Fenton-like catalytic reaction. Herein, we doped Sulfur (S) atom into FeWO4 catalysts to refine the electronic structure of FeWO4 for H2O2 activation and sulfamethoxazole (SMX) degradation. Furthermore, spin-state reconstruction on S-doped FeWO4 was found to effectively refine the electronic structure of Fe in the d orbital, thereby enhancing H2O2 activation. S doping also accelerated electron transfer during the conversion of sulfur species, promoting the cycling of Fe(III) to Fe(II). Consequently, S-doped FeWO4 bolstered the Fenton-like reaction by nearly two orders of magnitude compared to FeWO4. Significantly, the developed S-doped FeWO4 exhibited a remarkable removal efficiency of approximately 100% for SMX within 40 min in real water samples. This underscores its extensive pH adaptability, robust catalytic stability, and leaching resistance. The matrix effects of water constituents on the performance of S-doped FeWO4 were also investigated, and the results showed that a certain amount of Cl-, SO42-, NO3-, HCO3- and PO43- exhibited negligible effects on the degradation of SMX. Theoretical calculations corroborate that the distinctive spin-state reconstruction of Fe center in S-doped FeWO4 is advantageous for H2O2 decomposition. This discovery offers novel mechanistic insight into the enhanced catalytic activity of S doping in Fenton-like reactions and paves the way for expanding the application of FeWO4 in wastewater treatment.
Collapse
Affiliation(s)
- Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Nuo Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Hua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Tian-Yin Huang
- National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, 215009, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
Xu H, Zhang Y, Wu M, Gong T, Hu Y, Zhou H. Efficient degradation of sulfonamides by introducing sulfur to magnetic Prussian blue analog in photo-assisted persulfate oxidation system. CHEMOSPHERE 2024; 357:141938. [PMID: 38631498 DOI: 10.1016/j.chemosphere.2024.141938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
The peroxynitrite photocatalytic degradation system was considered a green, convenient, and efficient water treatment process, but not satisfying against some antibiotics, e.g. sulfonamides (SAs). To improve the photocatalytic degradation efficiency of SAs, sulfur was introduced to a magnetic Fe-MOF (Fe-metal organic framework) Prussian blue analog to achieve a heteroatomic material CuFeO@S, which was applied in heterogeneous visible light photo-assisted catalytic process with persulfate (PS) as an oxidant. The characterization results of CuFeO@S by XRD and XPS confirmed the presence of Fe3O4 (for magnetic separation), Cu+ (for activation of PS) and S2- (for narrowing the energy band and prolonging the lifetime of photo-generated electronics). Through systematic optimization of reaction conditions in CuFeO@S + PS + hv system, efficient degradation of four tested SAs was achieved in 30 min (removal rate of 97-100% for the tested 4 SAs). Moreover, the material could be magnetically recycled and reused for over 7 cycles with a removal rate of >90% for sulfamerazine. Furthermore, the removal rate of sulfamerazine in pond water reached 99% at a mineralization rate of about 34% (decrease in total organic matter), demonstrating its potential in the treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Hao Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yiwen Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Tingyue Gong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yufeng Hu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
13
|
Zhan D, Chen X, Xia Y, He S, Huang J, Guo Z. Improved Fog Collection on a Hybrid Surface with Acylated Cellulose Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27657-27667. [PMID: 38747627 DOI: 10.1021/acsami.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Fog collection serves as an efficient method to alleviate water scarcity in foggy, water-stressed regions. Recent research has focused on constructing a hybrid surface to enhance fog collection efficiency, with one approach being the prevention of liquid film formation at hydrophilic sites. Inspired by the desert beetle, a coating (10-MCC) made by partially acylating microcrystalline cellulose (MCC) exhibits hydrophilic sites alongside a hydrophobic skeleton enabling rapid droplet capture despite its overall hydrophobicity. The captured droplets quickly coalesce into a large droplet driven by the wetting gradient created by the hydrophobic backbone and hydrophilic sites. To achieve greater fog collection efficiency, a hydrophobic-superhydrophobic hybrid surface is formed by combining a coating of 10-MCC with a superhydrophobic surface. The construction of superhydrophobic surfaces typically involves creating a rough surface with a distinctive structure produced by the anodization technique and modifying it with stearic acid. The superhydrophobic surface exhibits excellent corrosion resistance and mechanical stability. Moreover, the hybrid surface shows high efficiency in fog collection, with a tested maximum efficiency of approximately 1.5092 g/cm2/h, 1.77 times that of the original Al sheets. The results demonstrate a remarkable enhancement in fog collection capacity. Furthermore, this work serves as an inspiration for the low-cost and innovative design of engineered surfaces for efficient fog collection.
Collapse
Affiliation(s)
- Danyan Zhan
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xionggang Chen
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Yu Xia
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Shaojun He
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - JinXia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Zhiguang Guo
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| |
Collapse
|
14
|
Zhang T, Zuo S. Nitrogen-doped metal-free granular activated carbons as economical and easily separable catalysts for peroxymonosulfate and hydrogen peroxide activation to degrade bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25751-25768. [PMID: 38488915 DOI: 10.1007/s11356-024-32751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The fabrication of low-cost, highly efficient, environmentally friendly, and easily separable metal-free heterogeneous catalysts for environmental remediation remains a challenge. In this study, granular nitrogen-doped highly developed porous carbons with a particle size of 0.25-0.30 mm were prepared by preoxidation and subsequent NH3 modification of a commercially available coconut-based activated carbon, and used to activate peroxymonosulphate (KHSO5) or hydrogen peroxide (H2O2) to degrade bisphenol A (BPA). The nitrogen-doped carbon (ACON-950) prepared by NH3 modification at 950 °C, with the addition of only 0.15 g/L could remove 100% of 50 mg/L BPA in 150 min, and more than 90% of the removed BPA was due to degradation. The removal rates of total organic carbon of ACON-950/KHSO5 and ACON-950/H2O2 systems reached 60.4% and 66.2% respectively, indicating the excellent catalytic activity of ACON-950. The reaction rate constant was significantly positively correlated with the absolute content of pyridinic N (N-6) and graphitic N (N-Q) and negatively and weakly positively correlated with pyrrolic N (N-5) and defects. Quenching experiments combined with electron paramagnetic resonance demonstrated that singlet oxygen was the dominant reactive oxidative species for BPA degradation. ACON-950 was characterized before and after the degradation reaction using N2 adsorption-desorption analyzer, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results confirmed the prominent contribution of both the N-6 and N-Q to the catalytic performance of nitrogen-doped carbons. The reusability of ACON-950 and its application in actual water bodies further demonstrated its remarkable potential for the remediation of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Songlin Zuo
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
15
|
Yu Z, Jin X, Guo Y, Liu Q, Xiang W, Zhou S, Wang J, Yang D, Wu HB, Wang J. Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment. Nat Commun 2024; 15:1186. [PMID: 38332033 PMCID: PMC10853265 DOI: 10.1038/s41467-024-45481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
In-situ wastewater treatment has gained popularity due to cost and energy savings tailored to water sources and user needs. However, this treatment, particularly through advanced oxidation processes (AOPs), poses ecological risks due to the need for strong oxidizing agents. Here, we present a decoupled oxidation process (DOP) using single-atom copper-modified graphite felt electrodes. This process creates a positive potential difference (ΔE ~ 0.5 V) between spatially isolated oxidants and organics and drives electron transfer-based redox reactions. The approach avoids the drawbacks of conventional AOPs, while being capable of treating various recalcitrant electron-rich organics. A floating water treatment device designed based on the DOP approach can degrade organic molecules in large bodies of water with oxidants stored separately in the device. We demonstrate that over 200 L of contaminated water can be treated with a floating device containing only 40 mL of oxidant (10 mM peroxysulphate). The modular device can be used in tandem structures on demand, maximizing water remediation per unit area. Our result provides a promising, eco-friendly method for in-situ water treatment that is unattainable with existing techniques.
Collapse
Affiliation(s)
- Ziwei Yu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Xuming Jin
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Yang Guo
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Qian Liu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenyu Xiang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Zhou
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Jiaying Wang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Dailin Yang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Juan Wang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Chen L, Wang F, Zhang J, Wei H, Dang L. Integrating g-C 3N 4 nanosheets with MOF-derived porous CoFe 2O 4 to form an S-scheme heterojunction for efficient pollutant degradation via the synergy of photocatalysis and peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2024; 241:117653. [PMID: 37980982 DOI: 10.1016/j.envres.2023.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
When confronted with wastewater that is characterized by complex composition, stable molecular structure, and high concentration, relying solely on photocatalytic technology proves inadequate in achieving satisfactory degradation results. Therefore, the integration of other highly efficient degradation techniques has emerged as a viable approach to address this challenge. Herein, a novel strategy was employed whereby the exfoliated g-C3N4 nanosheets (CNs) with exceptional photocatalytic performance, were intimately combined with porous rod-shaped cobalt ferrite (CFO) through a co-calcination process to form the composite CFO/CNs, which exhibited remarkable efficacy in the degradation of various organic pollutants through the combination of photocatalysis and Fenton-like process synergistically, exemplified by the representative case of tetracycline hydrochloride (TCH, 200 mL, 50 mg/L). Specifically, under 1 mM of peroxymonosulfate (PMS) and illumination conditions, 50 mg of 1CFO/9CNs achieved a TCH removal ratio of ∼90% after 60 min of treatment. Furthermore, this work comprehensively investigated the influence of various factors, including catalyst and PMS dosages, solution pH, and the presence of anions and humate, on the degradation efficiency of pollutants. Besides, quenching experiments and EPR tests confirmed the establishment of an S-scheme heterojunction between CNs and CFO, which facilitated the effective spatial separation of photoexcited charge carriers and preserved the potent redox potential of photogenerated electrons and holes. This work offers a valuable reference for the integration of photocatalysis with the PMS-based Fenton-like process.
Collapse
Affiliation(s)
- Lijun Chen
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feihong Wang
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jiahao Zhang
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Hongyuan Wei
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Leping Dang
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
17
|
Guo G, Min J, Xu Y, Zhou Y, Xu G. Gas Sensing Properties of Pd-Decorated GeSe Monolayer toward Formaldehyde and Benzene Molecules: A First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:997-1006. [PMID: 38150054 DOI: 10.1021/acs.langmuir.3c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In this study, the gas sensing properties of formaldehyde (HCHO) and benzene (C6H6) adsorbed on two-dimensional (2D) pristine GeSe and Pd-decorated GeSe (Pd-GeSe) monolayers are studied by using first-principles calculations. The adsorption energies, electronic properties, optical properties, sensitivity, and recovery time of the gas adsorption systems have been thoroughly investigated. It is found that the adsorption of C6H6 on two substrate surfaces and the adsorption of HCHO on pristine GeSe are examples of physical adsorption. However, after HCHO adsorption on the Pd-GeSe monolayer, the adsorption system exhibits an increased adsorption energy of -1.21 eV, which is more favorable compared with the other adsorption systems studied. Moreover, the electron localization function and charge transfer from Pd-GeSe to HCHO are significantly enhanced, indicating distinct chemical adsorption behavior. Furthermore, it demonstrates a larger band gap change rate of 18.8% and a significant enhancement of optical absorption upon the adsorption of HCHO on the Pd-GeSe monolayer. Additionally, the appropriate sensitivity and moderate recovery time for the adsorption of HCHO on the Pd-GeSe surface indicate that the Pd-GeSe monolayer possesses an outstanding sensing capability for HCHO gas.
Collapse
Affiliation(s)
- Gang Guo
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiewen Min
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| | - Yajuan Xu
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| | - Yong Zhou
- Research Institute of Interdisciplinary Sciences (RISE) and School of Materials Science & Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Guobao Xu
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
18
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Jiang Z, Wei J, Niu X, Cui X, Li Y, Cui N, Li J, Huo J, Wang L, Ji W, Li J. Highly dispersed Fe 7S 8 anchored on sp 2/sp 3 hybridized carbon boosting peroxymonosulfate activation for enhanced EOCs elimination though singlet oxygen-dominated nonradical pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132607. [PMID: 37757558 DOI: 10.1016/j.jhazmat.2023.132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The synergistic effect of carbon materials with high sp2/sp3 hybridized carbon ratio and metal materials can enhance the efficiency of peroxymonosulfate (PMS) based advanced oxidation processes. In this study, a composite of highly dispersed Fe7S8 anchored on sp2/sp3 hybridized carbon (Fe7S8@HC) was developed by a facile synthesis for PMS activation. Within 10 min, the removal efficiency of the target pollutant doxycycline (DOX) could reach ca. 96 % in optimal Fe7S8@HC/PMS system through a 1O2-dominated non-radical pathway. Correlation mechanism analysis revealed that thiophene S, sp2/sp3 ratio and Fe(II) were critical factors for elongating of the O-O bond of PMS. Moreover, the Fe7S8@HC/PMS system exhibited favorable adaptability to interference such as common inorganic anions, humic acid and pH changes and could effectively remove various organic pollutants with low ionization potential. Moreover, the system maintained high DOX removal efficiency by running 30 cycles in a continuous flow reactor. Finally, susceptible sites of DOX and four degradation pathways were proposed by density functional theory calculation and LC-MS detection. This work not only offered new insights into the design of high-performance catalysts combining metal and biomass-based carbon materials, but also provided technical support for the remediation of water bodies containing emerging organic contaminants.
Collapse
Affiliation(s)
- Zijian Jiang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jia Wei
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Xiruo Niu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xueru Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yanan Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Nan Cui
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiamei Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiangkai Huo
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Linhao Wang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wei Ji
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
20
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
21
|
Ma H, Feng G, Li X, Pan Z, Xu R, Wang P, Fan X, Song C. A novel copper oxide/titanium membrane integrated with peroxymonosulfate activation for efficient phenolic pollutants degradation. J Colloid Interface Sci 2023; 650:1052-1063. [PMID: 37459729 DOI: 10.1016/j.jcis.2023.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Herein, a novel CuO catalyst functionalized Ti-based catalytic membrane (FCTM) was prepared via the regulated electro-deposition technique followed with low-temperature calcination. The morphology of CuO catalyst and oxygen vacancy (OV) content can be controlled by adjusting the preparation conditions, under optimal condition (400 °C, electrolyte as sulfuric acid), the fern-shaped CuO catalyst was formed and the OV content was up to its highest level. Under the optimal treatment condition, the 4-chlorophenol (4-CP) removal of the membrane filtration combined with peroxymonosulfate (PMS) activation (MFPA) process was up to 98.2% (TOC removal of 88.2%). Mechanism studying showed that the enhanced performance in this system was mainly due to the increased production of singlet oxygen (1O2) via the co-effect of fern-shaped CuO (increased specific surface area) and its fine-tuned OV (precursor of 1O2), which not only synergistically enhanced adsorption ability but also offered more active sites for PMS activation. Theoretical calculations showed that the OV-rich CuO displayed high adsorption energy for PMS molecule, leading to the change in OO and OH bond (tend to 1O2) of the PMS molecule. Finally, the possible three degradation pathways of 4-CP were formed by the electrophilic attacking of 1O2.
Collapse
Affiliation(s)
- Huanran Ma
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Guoqing Feng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Xiaoyang Li
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
22
|
Feng Z, Yang Z, Yang S, Xiong H, Ning Y, Wang C, Li Y. Current status and future challenges of chlorobenzenes pollution in soil and groundwater (CBsPSG) in the twenty-first century: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111748-111765. [PMID: 37843707 DOI: 10.1007/s11356-023-29956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The global industrial structure had undertaken significant changes since the twenty-first century, making a severe problem of chlorobenzene pollution in soil and groundwater (CBsPSG). CBsPSG receives increasing attention due to the high toxicity, persistence, and bioaccumulation of chlorobenzenes. To date, despite the gravity of this issue, no bibliometric analysis (BA) of CBsPSG does exist. This study fills up the gap by conducting a BA of 395 articles related to CBsPSG from the Web of Science Core Collection database using CiteSpace. Based on a comprehensive analysis of various aspects, including time-related, related disciplines, keywords, journal contribution, author productivity, and institute and country distribution, the status, development, and hotspots of research in the field were shown visually and statistically. Moreover, this study has also delved into the environmental behavior and remediation techniques of CBsPSG. In addition, four challenges (unequal research development, insufficient cooperation, deeply mechanism research, and developing new technologies) have been identified, and corresponding suggestions have been proposed for the future development of research in the field. Afterwards, the limitations of BA were discussed. This work provides a powerful insight into CBsPSG, enabling to quickly identify the hotspot and direction of future studies by relevant researchers.
Collapse
Affiliation(s)
- Zhi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Changxiang Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
23
|
Wang X, Zhou Y, Wang N, Zhang J, Zhu L. Carbonate-induced enhancement of phenols degradation in CuS/peroxymonosulfate system: A clear correlation between this enhancement and electronic effects of phenols substituents. J Environ Sci (China) 2023; 129:139-151. [PMID: 36804230 DOI: 10.1016/j.jes.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/18/2023]
Abstract
This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst. It was found that the added CO32- increased both the catalytic activity and the stability of the catalyst. Under optimized reaction conditions in the presence of CO32-, the degradation removal of 4-methylphenol (4-MP) within 2 min reached 100%, and this was maintained in consecutive multi-cycle experiments. The degradation rate constant of 4-MP was 2.159 min-1, being 685% greater than that in the absence of CO32- (0.315 min-1). The comparison of dominated active species and 4-MP degradation pathways in both CO32--free and CO32--containing systems suggested that more CO3•-/1O2 was produced in the case of CO32-deducing an electron transfer medium, which tending to react with electron-rich moieties. Meanwhile, Characterization by X-ray photoelectron spectroscopic and cyclic voltammetry measurement verified CO32- enabled the effective reduction of Cu2+ to Cu+. By investigating the degradation of 11 phenolics with different substituents, the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constants σp of the aromatic phenolics and the logarithm of k in the CO32--containing system. This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies.
Collapse
Affiliation(s)
- Xiaobo Wang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Zhou
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nan Wang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jindong Zhang
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Liu Z, Luo Y, Yang P, Yang H, Chen Y, Shao Q, Wu F, Xie P, Ma J. Cobalt-doped molybdenum disulfide for efficient sulfite activation to remove As(III): Preparation, efficacy, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131311. [PMID: 37030224 DOI: 10.1016/j.jhazmat.2023.131311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The sulfite(S(IV))-based advanced oxidation process has attracted significant attention in removing As(III) in the water matrix for its low-cost and environmental-friendly. In this study, a cobalt-doped molybdenum disulfide (Co-MoS2) nanocatalyst was first applied to activate S(IV) for As(III) oxidation. Some parameters including initial pH, S(IV) dosage, catalyst dosage, and dissolved oxygen were investigated. The experiment results show that >Co(II) and >Mo(VI) on the catalyst surface promptly activated S(IV) in the Co-MoS2/S(IV) system, and the electron transfer between Mo, S, and Co atoms accelerated the activation. SO4•- was identified as the main active species for As(III) oxidation. Furthermore, DFT calculations confirmed that Co doping improved the MoS2 catalytic capacity. This study has proven that the material has broad application prospects through reutilization test and actual water experiments. It also provides a new idea for developing bimetallic catalysts for S(IV) activation.
Collapse
Affiliation(s)
- Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yingxi Luo
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Pan Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Haike Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Qing Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Feng Wu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Cai J, Li H, Jing Q, Feng K, Takaoka M. Atomically dispersed copper sites on titanium zirconium oxide accelerate the simultaneous oxidative removal of organic carbon and ammonia from landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131773. [PMID: 37295333 DOI: 10.1016/j.jhazmat.2023.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Landfill leachate is a refractory wastewater. Low-temperature catalytic air oxidation (LTCAO) has shown considerable potential for leachate treatment owing to its green and simple operation, but the simultaneous removal of chemical oxygen demand (COD) and ammonia from leachate remains challenging. Herein, TiZrO4 @CuSA hollow spheres with high-loading single-atom Cu were synthesized using isovolumic vacuum impregnation and co-calcination methods, and the catalyst was applied to the LTCAO treatment of real leachate. Consequently, the removal rate of UV254 reached 66% at 90 °C within 5 h, while that for COD was 88%. Simultaneously, the NH3/NH4+ (33.5 mg/L, 100 wt%) in the leachate was oxidized to N2 (88.2 wt%), NO2--N (11.0 wt%), and NO3--N (0.3 wt%) owing to the effect of free radicals. The single-atom Cu co-catalyst in TiZrO4 @CuSA exhibited a localized surface plasmon resonance effect at the active center, which could quickly transfer electrons to O2 in water to form O2.- with a high activation efficiency. The degradation products were determined and the deduced pathway was as follows: the bonds joining benzene rings were first broken, and then the ring structure was further opened to produce acetic acid and other simple organic macromolecules, which were finally mineralized to CO2 and H2O.
Collapse
Affiliation(s)
- Jiabai Cai
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Qi Jing
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kai Feng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan.
| |
Collapse
|
26
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
27
|
Shao S, Zhang P, Chen Y, Zhao X. Enhanced tetracycline abatement by peracetic acid activation with sulfidation of nanoscale zerovalent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27779-4. [PMID: 37231132 DOI: 10.1007/s11356-023-27779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Iron-based heterogeneous catalysts due to the environmental friendliness have been widely studied for activation of peracetic acid (PAA) for abatement of organic contaminants in the water and wastewater treatment. However, the slow reduction from Fe(III) to Fe(II) of the iron-based catalysts as the rate-limiting step results in the low PAA activation efficiency. With regard to the excellent electron-donating capability of the reductive sulfur species, sulfidized nanoscale zerovalent iron is proposed for PAA activation (simplified as the S-nZVI/PAA process) and the tetracycline (TC) abatement efficacy and mechanism of this process are elucidated. The optimal sulfidation ratio (S/Fe) of S-nZVI is 0.07, which exhibits superior performance in PAA activation for TC abatement with the efficiency of 80-100% in the pH range of 4.0-10.0. The radical quenching experiments and oxygen release measurements confirm that acetyl(per)oxygen radicals (CH3C(O)OO•) are the main radical contributing to TC abatement. The influence of sulfidation on the crystalline structure, hydrophobicity, corrosion potential, and electron transfer resistance of S-nZVI is evaluated. The main sulfur species on the S-nZVI surface are identified as ferrous sulfide (FeS) and ferrous disulfide (FeS2). The analysis by X-ray photoelectron spectroscopy (XPS) and Fe(II) dissolution suggest that the reductive sulfur species can accelerate the conversion from Fe(III) to Fe(II). In summary, the S-nZVI/PAA process exhibits application prospects for the abatement of antibiotics in the aquatic environments.
Collapse
Affiliation(s)
- Shujing Shao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Pengyu Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yang Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
28
|
Mohammed AM, Aziz F, Mohtar SS, Mhamad SA, Ahmadu B, Nasir MU, Muhammad KY, Aziz M. A review of research trends on the usage of photocatalysis for wastewater treatment: bibliometric analysis. SUSTAINABLE WATER RESOURCES MANAGEMENT 2023; 9:88. [PMID: 37273915 PMCID: PMC10213572 DOI: 10.1007/s40899-023-00868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Photocatalysis is seen as a viable alternative to treating water pollution, due to its flexibility, low cost, and ability to use visible light which is a plentiful and free energy source. Hence, determining the topics of interest and widening collaboration networks will go a long way in improving research in this field. In this study, we aimed to analyze the global research trends on the usage of photocatalysis for wastewater treatment using bibliometric analysis, centered on the outputs of publications, co-authorships, countries of affiliation, and author's keyword co-occurrences. Bibliometric analysis is a review method that is well-known and more conversant to Social Science. Employing it in Physical Science, which is rarely seen, will provide an avenue and yet another method of determining common research topics as well as the potential opportunities and future research in the field. A potential hybrid review paper of great importance to future research in the area will be produced. A total of 1373 articles published within 27 years between 1993 and 2020 were extracted from the Scopus database. In the beginning, less attention was given to the said topic, because after the oldest article was published in 1993, there was no record of other publications until after 5 years (1998). However, from 2002 there was a growing interest in research in that field, with a cumulative increase every year to date, except for a few years with fewer publications. Meanwhile, the number of publications has risen significantly from 2017 to 2020, with an increase of more than 70 publications every year; this is expected to increase rapidly in the coming years. Recently researchers are focusing on developing efficient photocatalysts for contaminants of emerging concern, like pharmaceutical and refinery wastewater, however, the usage of conducting polymers to produce nanocomposite which was found to be very effective is still lagged in wastewater treatment, as such it will be a good area of future research on effective photocatalysts for wastewater treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40899-023-00868-5.
Collapse
Affiliation(s)
- Abdussamad Mukhtar Mohammed
- Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
- Department of Chemistry, Yobe State University, Damaturu, Yobe State Nigeria
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| | - Safia Syazana Mohtar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| | - Shakhawan Ahmad Mhamad
- Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
- Department of Chemistry, Faculty of Education, University of Sulaimani, Sulaimani, Kurdistan Iraq
| | - Bello Ahmadu
- Academy Library, Nigerian Defence Academy, Kaduna, Kaduna State Nigeria
| | | | | | - Madzlan Aziz
- Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
29
|
Song W, Gao Z, Tan F, Cheng X, Yang T, Wu D, Yang J, Liang H. Calcium sulfite oxidation activated by ferrous iron integrated with membrane filtration for removal of typical algal contaminants. CHEMOSPHERE 2023; 333:138956. [PMID: 37209855 DOI: 10.1016/j.chemosphere.2023.138956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Oxidation treatment of algae-laden water may cause cells rupture and emission of intracellular organics, thus restricting its further popularization. As a moderate oxidant, calcium sulfite could be slowly released in the liquid phase, thus exhibiting a potential to maintain the cells integrity. To this end, calcium sulfite oxidation activated by ferrous iron was proposed integrated with ultrafiltration (UF) for removal of Microcystis aeruginosa, Chlorella vulgaris and Scenedesmus quadricauda. The organic pollutants were significantly eliminated, and the repulsion between algal cells was obviously weakened. Through fluorescent components extraction and molecular weights distribution analyses, the degradation of fluorescent substances and the generation of micromolecular organics were verified. Moreover, the algal cells were dramatically agglomerated and formed larger flocs under the premise of maintaining high cell integrity. The terminal normalized flux was ascended from 0.048 to 0.072 to 0.711-0.956, and the fouling resistances were extraordinarily decreased. Due to the distinctive spiny structure and minimal electrostatic repulsion, Scenedesmus quadricauda was easier to form flocs, and its fouling was more readily mitigated. The fouling mechanism was remarkably altered through postponing the formation of cake filtration. The membrane interface characteristics including microstructures and functional groups firmly proved the fouling control efficiency. The reactive oxygen species (i.e., SO4•- and 1O2) generated through the principal reactions and Fe-Ca composite flocs played dominant roles in alleviating membrane fouling. Overall, the proposed pretreatment exhibits a brilliant application potential for enhancing UF in algal removal.
Collapse
Affiliation(s)
- Wenxin Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Zhimin Gao
- Design & Research Institute, The First Company of China Eighth Engineering Bureau Ltd, Jinan, 250100, PR China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
30
|
Jin Y, Huang P, Chen X, Li LP, Lin CY, Chen X, Ding R, Liu J, Chen R. Ciprofloxacin degradation performances and mechanisms by the heterogeneous electro-Fenton with flocculated fermentation biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121425. [PMID: 36898645 DOI: 10.1016/j.envpol.2023.121425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic fermentation residue flocculated by polymeric ferric sulfate (PFS) has been classified as a "hazardous waste" in China. In this study, it was recycled into antibiotic fermentation residue biochar (AFRB) by pyrolysis and used as a heterogeneous electro-Fenton (EF) catalyst for ciprofloxacin (CIP) degradation. The results show that PFS was reduced to Fe0 and FeS during pyrolysis, which was beneficial for the EF process. The AFRB with mesoporous structures exhibited soft magnetic features, which were convenient for separation. CIP was completely degraded within 10 min by the AFRB-EF process at an initial concentration of 20 mg/L. Increasing the working current and catalyst dosage within a certain range could improve the degradation rate. ·OH and O2·- were the dominant reactive oxygen species that played critical roles for CIP degradation. The antibacterial groups of CIP have been destroyed by the heterogeneous electro-Fenton process and its toxicity was negligible. The AFRB showed satisfactory performance, even though it was recycled five times. This study provide new insights into the resourceful treatment of antibiotic fermentation residues.
Collapse
Affiliation(s)
- Yanchao Jin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Peiwen Huang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xiongjian Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Li-Ping Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chun-Yan Lin
- School of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Xiao Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Rui Ding
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Jianxi Liu
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Riyao Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China.
| |
Collapse
|
31
|
Zuo G, Ma S, Yin Z, Chen W, Wang Y, Ji Q, Xian Q, Yang S, He H. Z-Scheme Modulated Charge Transfer on InVO 4 @ZnIn 2 S 4 for Durable Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207031. [PMID: 36793252 DOI: 10.1002/smll.202207031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/24/2023] [Indexed: 05/11/2023]
Abstract
The charge transfer within heterojunction is crucial for the efficiency and stability of photocatalyst for overall water splitting (OWS). Herein, InVO4 nanosheets have been employed as a support for the lateral epitaxial growth of ZnIn2 S4 nanosheets to produce hierarchical InVO4 @ZnIn2 S4 (InVZ) heterojunctions. The distinct branching heterostructure facilitates active site exposure and mass transfer, further boosting the participation of ZnIn2 S4 and InVO4 for proton reduction and water oxidation, respectively. The unique Z-scheme modulated charge transfer, visualized by simulation and in situ analysis, has been proved to promote the spatial separation of photoexcited charges and strengthen the anti-photocorrosion capability of InVZ. The optimized InVZ heterojunction presents improved OWS (153.3 µmol h-1 g-1 for H2 and 76.9 µmol h-1 g-1 for O2 ) and competitive H2 production (21090 µmol h-1 g-1 ). Even after 20 times (100 h) of cycle experiment, it still holds more than 88% OWS activity and a complete structure.
Collapse
Affiliation(s)
- Gancheng Zuo
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, P. R. China
| | - Sisi Ma
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, P. R. China
| | - Zhizhen Yin
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, Yili Normal University, Yining, 835000, P. R. China
| | - Wuyang Chen
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, P. R. China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Qiuyi Ji
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, P. R. China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaogui Yang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Huan He
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, P. R. China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, P. R. China
| |
Collapse
|
32
|
Xie X, Chen H, Liu X, Xiang K, Liu H. Achieving Large-Capability Adsorption of Hg 0 in Wet Scrubbing by Defect-Rich Colloidal Copper Sulfides under High-SO 2 Atmosphere. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3157. [PMID: 37109995 PMCID: PMC10144309 DOI: 10.3390/ma16083157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
This paper reports on a novel method to remove Hg0 in the wet scrubbing process using defect-rich colloidal copper sulfides for reducing mercury emissions from non-ferrous smelting flue gas. Unexpectedly, it migrated the negative effect of SO2 on mercury removal performance, while also enhancing Hg0 adsorption. Colloidal copper sulfides demonstrated the superior Hg0 adsorption rate of 306.9 μg·g-1·min-1 under 6% SO2 + 6% O2 atmosphere with a removal efficiency of 99.1%, and the highest-ever Hg0 adsorption capacity of 736.5 mg·g-1, which was 277% higher than all other reported metal sulfides. The Cu and S sites transformation results reveal that SO2 could transform the tri-coordinate S sites into S22- on copper sulfides surfaces, while O2 regenerated Cu2+ via the oxidation of Cu+. The S22- and Cu2+ sites enhanced Hg0 oxidation, and the Hg2+ could strongly bind with tri-coordinate S sites. This study provides an effective strategy to achieve large-capability adsorption of Hg0 from non-ferrous smelting flue gas.
Collapse
Affiliation(s)
- Xiaofeng Xie
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hao Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xudong Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-Ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-Ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
33
|
Zhang S, Wang Q, Zhang P, Wang J, Li Y, Lu C, Sarwar MT, Dong X, Zhao Q, Tang A, Fu L, Yang H. Nanoclay-Modulated Interfacial Chemical Bond and Internal Electric Field at the Co 3 O 4 /TiO 2 p-n Junction for Efficient Charge Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300770. [PMID: 37035990 DOI: 10.1002/smll.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
To achieve a high separation efficiency of photogenerated carriers in semiconductors, constructing high-quality heterogeneous interfaces as charge flow highways is critical and challenging. This study successfully demonstrates an interfacial chemical bond and internal electric field (IEF) simultaneously modulated 0D/0D/1D-Co3 O4 /TiO2 /sepiolite composite catalyst by exploiting sepiolite surface-interfacial interactions to adjust the Co2+ /Co3+ ratio at the Co3 O4 /TiO2 heterointerface. In situ irradiation X-ray photoelectron spectroscopy and density functional theory (DFT) calculations reveal that the interfacial Co2+ OTi bond (compared to the Co3+ OTi bond) plays a major role as an atomic-level charge transport channel at the p-n junction. Co2+ /Co3+ ratio increase also enhances the IEF intensity. Therefore, the enhanced IEF cooperates with the interfacial Co2+ OTi bond to enhance the photoelectron separation and migration efficiency. A coupled photocatalysis-peroxymonosulfate activation system is used to evaluate the catalytic activity of Co3 O4 /TiO2 /sepiolite. Furthermore, this work demonstrates how efficiently separated photoelectrons facilitate the synergy between photocatalysis and peroxymonosulfate activation to achieve deep pollutant degradation and reduce its ecotoxicity. This study presents a new strategy for constructing high-quality heterogeneous interfaces by consciously modulating interfacial chemical bonds and IEF, and the strategy is expected to extend to this class of spinel-structured semiconductors.
Collapse
Affiliation(s)
- Shilin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Qingjie Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peng Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Wang
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yue Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chang Lu
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Qihang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Liangjie Fu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
34
|
Mi Y, Zhang S, Zhao Y, Sun G, Cao Z. Pyrrolic N and Persistent Free Radical Synergistically Promote Catalytic Degradation of Dyes via Fe2O3/Activated Biochar Derived from Taihu Blue Algae. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
35
|
Yang Q, Xia C, Chen S, Cao X, Hao J. Enhanced activation of H 2O 2 by bimetallic Cu 2SnS 3: A new insight for Cu (II)/Cu (I) redox cycle promotion. J Colloid Interface Sci 2023; 640:750-760. [PMID: 36898181 DOI: 10.1016/j.jcis.2023.02.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
HYPOTHESIS Despite that the development of Cu2SnS3 (CTS) catalyst has attracted increasing interests, few study has reported to investigate its heterogeneous catalytic degradation of organic pollutants in a Fenton-like process. Furthermore, the influence of Sn components towards Cu (II)/Cu (I) redox cycling in CTS catalytic systems remains a fascinating research. EXPERIMENTS In this work, a series of CTS catalysts with controlled crystalline phases were prepared via a microwave-assisted pathway and applied in the H2O2 activation for phenol degradation. The efficiency of phenol degradation in CTS-1/H2O2 system (CTS-1: the molar ratio of Sn (copper acetate) and Cu (tin dichloride) is determined to be Sn:Cu = 1:1) was systematically investigated by controlling various reaction parameters including H2O2 dosage, initial pH and reaction temperature. We discovered that Cu2SnS3 exhibited superior catalytic activity to the contrast monometallic Cu or Sn sulfides and Cu (I) acted as the dominant active sites. The higher Cu (I) proportions conduce to the higher catalytic activities of CTS catalysts. Quenching experiments and electron paramagnetic resonance (EPR) further proved that the activation of H2O2 by CTS catalyst produces reactive oxygen species (ROS) and subsequently leads to degradation of the contaminants. A reasonable mechanism of enhanced H2O2 activation in Fenton-like reaction of CTS/H2O2 system was proposed for phenol degradation by investigating the roles of copper, tin and sulfur species. FINDINGS The developed CTS acted as a promising catalyst in Fenton-like oxidation progress for phenol degradation. Importantly, the copper and tin species contribute to a synergetic effect for the promotion of Cu (II)/Cu (I) redox cycle, which thus enhanced the activation of H2O2. Our work may offer new insight on the facilitation of Cu (II)/Cu (I) redox cycle in Cu-based Fenton-like catalytic systems.
Collapse
Affiliation(s)
- Qiao Yang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China
| | - Chuanhai Xia
- School of Resources and Environmental Engineering & Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China.
| | - Shuai Chen
- School of Resources and Environmental Engineering & Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
| | - Xuezhi Cao
- School of Resources and Environmental Engineering & Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China.
| |
Collapse
|
36
|
Xie T, Chen B, Mei Y, Feng S, Tang X, Xiang W, Yang J, He J, Wang J, Chen H, Yang J, Yang F. Ultrafast degradation of tetracycline by PMS activation over perfect cubic configuration MnCo2O4.5 : New insights into the role of metal-oxygen bonds in PMS activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
37
|
Forés E, Mejías-Molina C, Ramos A, Itarte M, Hundesa A, Rusiñol M, Martínez-Puchol S, Esteve-Bricullé P, Espejo-Valverde A, Sirés I, Calvo M, Araujo RM, Girones R. Evaluation of pathogen disinfection efficiency of electrochemical advanced oxidation to become a sustainable technology for water reuse. CHEMOSPHERE 2023; 313:137393. [PMID: 36442679 DOI: 10.1016/j.chemosphere.2022.137393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO2-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm2), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.
Collapse
Affiliation(s)
- Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Arantxa Ramos
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Ayalkibet Hundesa
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Pau Esteve-Bricullé
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alejandro Espejo-Valverde
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosa M Araujo
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
38
|
Moftakhari Anasori Movahed S, Calgaro L, Marcomini A. Trends and characteristics of employing cavitation technology for water and wastewater treatment with a focus on hydrodynamic and ultrasonic cavitation over the past two decades: A Scientometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159802. [PMID: 36411670 DOI: 10.1016/j.scitotenv.2022.159802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cavitation-based technologies have emerged as a sustainable and effective way to treat natural waters and wastewater, considering their increasing scarcity due to pollution and climate change. For this reason, this work aimed to conduct a scientometric analysis on the topic of cavitation for water and wastewater treatment during the last 20 years, from 2001 to August 2022. We focused on hydrodynamic and ultrasonic cavitation as the prevalent methods of inducing cavitation. Furthermore, an in-depth study on the main trends regarding the number of publications and citations, keywords co-occurrence and evolution, and countries' publication trends was carried out to investigate the future direction of this research topic. The data was gathered from the Web of Science database and analyzed by the Visualization Of Similarities software. This work focused on: i) publication and citation trends, ii) scientific categories, iii) countries' contribution to the topic of cavitation, iv) prominent journals, v) keyword co-occurrence and cluster analysis, and vi) keyword evolution analysis. Results showed a significant increase in publications during the past 5 years. The scientific categories with the highest number of publications were "environmental sciences" and "environmental engineering," with a combined share of 19.4 % of publications. Keywords evolution analysis showed that limited focus was given to topics related to "energy" and "energy efficiency" in the field of cavitation, but with the rising importance of each process's sustainability, the attention given to these concepts will increase in the future. Future directions for the topic of cavitation-related water and wastewater treatments will shift towards more environmentally friendly applications of hydrodynamic and ultrasonic cavitation as well as towards more green and sustainable approaches to address the increasing water pollution problems and shortage. Moreover, it will include other uses besides water treatment such as manufacturing nanomaterials food production and medicine.
Collapse
Affiliation(s)
- Saman Moftakhari Anasori Movahed
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy
| | - Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy.
| |
Collapse
|
39
|
Thao LT, Nguyen TV, Nguyen VQ, Phan NM, Kim KJ, Huy NN, Dung NT. Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe 2O 4/α-MnO 2 hybrid. J Environ Sci (China) 2023; 124:379-396. [PMID: 36182147 DOI: 10.1016/j.jes.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 06/16/2023]
Abstract
Wastewater containing an azo dye Orange G (OG) causes massive environmental pollution, thus it is critical to develop a highly effective, environmental-friendly, and reusable catalyst in peroxymonosulfate (PMS) activation for OG degradation. In this work, we successfully applied a magnetic MnFe2O4/α-MnO2 hybrid fabricated by a simple hydrothermal method for OG removal in water. The characteristics of the hybrid were investigated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller method, vibrating sample magnetometry, electron paramagnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The effects of operational parameters (i.e., catalytic system, catalytic dose, solution pH, and temperature) were investigated. The results exhibited that 96.8% of OG degradation was obtained with MnFe2O4/α-MnO2(1:9)/PMS system in 30 min regardless of solution pH changes. Furthermore, the possible reaction mechanism of the coupling system was proposed, and the degradation intermediates of OG were identified by mass spectroscopy. The radical quenching experiments and EPR tests demonstrated that SO4•̶, O2•̶, and 1O2 were the primary reactive oxygen species responsible for the OG degradation. The hybrid also displayed unusual stability with less than 30% loss in the OG removal after four sequential cycles. Overall, magnetic MnFe2O4/α-MnO2 hybrid could be used as a high potential activator of PMS to remove orange G and maybe other dyes from wastewater.
Collapse
Affiliation(s)
- Le Thi Thao
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam; Department of Energy Engineering, Konkuk University, Seoul 05029, Korea
| | - To Van Nguyen
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea
| | - Ngoc Man Phan
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea
| | - Ki Jae Kim
- Department of Energy Engineering, Konkuk University, Seoul 05029, Korea.
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Trung Dung
- Faculty of Physical and Chemical Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam.
| |
Collapse
|
40
|
Pinelli F, Piras C, Nogueira LP, Rossi F. On the Sorbent Ability and Reusability of Graphene-Oxide-Chitosan Aerogels for the Removal of Dyes from Wastewater. Gels 2023; 9:gels9020110. [PMID: 36826280 PMCID: PMC9956623 DOI: 10.3390/gels9020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
One of the most persistent issues affecting people worldwide is water contamination due to the indiscriminate disposal of pollutants, causing severe environmental problems. Dyes are among the most harmful contaminants because of their high chemical stability and consequently difficult degradation. To remove contaminants from water, adsorption is the most widely used and effective method. In this work, we recall the results already published about the synthesis, the characterization and the use of porous graphene-oxide-chitosan aerogels as a sorbent material. Those systems, prepared by mixing GO sheets and CS chains, using APS as a cross-linking agent, and by further lyophilization, were further characterized using nano-computed tomography, supplying more understanding about their micro and nano-structure. Their sorbent ability has been investigated also by the study of their isotherm of adsorption of two different anionic dyes: Indigo Carmine and Cibacron Brilliant Yellow. Those analyses confirmed the potentialities of the aerogels and their affinity for those anionic dyes. Moreover, the possibility of regenerating and reusing the material was evaluated as a key aspect for applications of this kind. The treatment with NaOH, to promote the desorption of adsorbed dyes, and subsequent washing with HCl, to re-protonate the system, ensured the regeneration of the gels and their use in multiple cycles of adsorption with the selected water contaminants.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli, 7, 20131 Milan, Italy
| | - Chiara Piras
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli, 7, 20131 Milan, Italy
| | | | - Filippo Rossi
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli, 7, 20131 Milan, Italy
- Correspondence: ; Tel.: +39-0223993145
| |
Collapse
|
41
|
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q, Zhang H. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130014. [PMID: 36152542 DOI: 10.1016/j.jhazmat.2022.130014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Percarbonate (SPC) has drawn considerable attention due to its merits in the safety of handling and transport, stability, and price as well as environmental friendliness, which has been extensively applied in advanced oxidation processes (AOPs) for water decontamination. Nevertheless, comprehensive information on the application of SPC-AOPs for the treatment of organic compounds in aquatic media is scarce. Hence, the focus of this review is to shed light on the mechanisms of reactive oxygen species (ROS) evolution in typical SPC-AOPs (i.e., Fenton-like oxidation, photo-assisted oxidation, and discharge plasma-involved oxidation processes). These SPC-AOPs enable the formation of multiple reactive species like hydroxyl radical (•OH), superoxide radical (O2•-), singlet oxygen (1O2), carbonate radicals (CO3•-), and peroxymonocarbonate (HCO4-), which together or solely contribute to the degradation of target pollutants. Simultaneously, the potential challenges in practical applications of SPC-AOPs are systematically discussed, which include the influence of water quality parameters, cost-effectiveness, available active sites, feasible activation approaches, and ecotoxicity. Subsequently, enhancing strategies to improve the feasibility of SPC-AOPs in the practical implementation are tentatively proposed, which can be achieved by introducing reducing and chelating agents, developing novel activation approaches, designing multiple integrated oxidation processes, as well as alleviating the toxicity after SPC-AOPs treatment. Accordingly, future perspectives and research gaps in SPC-AOPs are elucidated. This review will hopefully offer valuable viewpoints and promote the future development of SPC-AOPs for actual water purification.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
42
|
Zhou C, Liang Y, Xia W, Almatrafi E, Song B, Wang Z, Zeng Y, Yang Y, Shang Y, Wang C, Zeng G. Single atom Mn anchored on N-doped porous carbon derived from spirulina for catalyzed peroxymonosulfate to degradation of emerging organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129871. [PMID: 36067561 DOI: 10.1016/j.jhazmat.2022.129871] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Highly efficient single atom catalysts are critical to substantially promote for peroxymonosulfate (PMS) activation to organic pollutant degradation, but it remains a challenge at present. Herein, single atom Mn anchored on N-doped porous carbon (SA-Mn-NSC) was synthesized by ball milling of Mn-doped carbon nitride and spirulina biochar to dominantly activate PMS. The precursor of carbon nitride and spirulina possessed a strong coordinating capability for Mn(II), facilitating the formation of highly dispersed nitrogen-coordinated Mn sites (Mn-N4). The SA-Mn-NSC catalyst exhibited high activity and stability in the heterogeneous activation of PMS to degrade a wide range of pollutants within 10 min, showing an outstanding degradation rate constant of 0.31 min-1 in enrofloxacin (ENR) degradation. The high surface density of Mn-N4 sites and abundant interconnected meso-macro pores were highly favorable for activating PMS to produce 1O2 and high-valent manganese (Mn(IV)) for pollutant degradation. This work offers a new pathway of using a low-cost and easily accessible single-atom catalysts (SACs) and could inspire more catalytic oxidation strategies.
Collapse
Affiliation(s)
- Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Yuntao Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wu Xia
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanan Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Chaohai Wang
- Key Laboratory of New Membrane Materials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
43
|
Novel flower-like Fe-Mo composite for peroxydisulfate activation toward efficient degradation of carbamazepine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Gao H, Yu H, Yu J, Xu T, Feng Y, Wang Y, Qian J, Tan C. The key role of crystal boron in enhanced degradation of refractory contaminants using heterogeneous Fe 3+/SPC system. CHEMOSPHERE 2023; 311:137131. [PMID: 36336018 DOI: 10.1016/j.chemosphere.2022.137131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
An origin Fenton-like system was discussed for the abatement of refractory contaminants. Sodium percarbonate (SPC) was utilized as the source of H2O2 and crystal boron (C-boron) was applied to enhance the activation of H2O2. Under the conditions of 0.50 mM Fe3+, 0.34 mM SPC, and heterogeneous catalysis using 100 mg L-1 C-boron, four target pollutants, at the initial concentrations of 20 μM, could be efficiently degraded by the Fenton-like system, with a degradation rate within 20 min up to 81.1% (aspirin, ASA), 92.8% (nitrobenzene, NB), 94.7% (flunixin meglumine, FMME), and 94.3% (benzoic acid, BA) respectively and total organic carbon removal up to 25.0%. The increase of Fe2+ concentration indicated that the conversion of Fe2+/Fe3+ was remarkably promoted by C-boron. Degradation reactions at acidic pH were comparatively fast, with pH-dependent kobs of 9.9 × 10-2 min-1 (ASA), 1.5 × 10-1 min-1 (NB), 1.7 × 10-1 min-1 (FMME), and 1.9 × 10-1 min-1 (BA), whereas those at neutral and alkaline pH were slower. Furthermore, reactive oxygen species including ·OH, 1O2, and O2·- were identified by in-situ electron paramagnetic resonance tests. The contribution ratios of ·OH turned out to be about 71.3-86.7% for the decomposition of four contaminants. The elimination of natural organic matter and the performance of material recycling highlighted the potential for its application in water treatment. The inhibition rate of Chlorella pyrenoidosa reached 211.9% in the C-boron/Fe3+/SPC system. The relatively high algae toxicity limited its application scope, which requires additional research to resolve.
Collapse
Affiliation(s)
- Haiying Gao
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Yu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Yu
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Tianhui Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yiming Feng
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Jun Qian
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technolog Co., Ltd, Hefei, 230088, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
45
|
Su Y, Ding H, Sun M, Liu X, Dai C, Li Y, Xu G, Zeng C. Construction of BiOIO 3/AgIO 3 Z-Scheme Photocatalysts for the Efficient Removal of Persistent Organic Pollutants under Natural Sunlight Illumination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16163-16171. [PMID: 36520846 DOI: 10.1021/acs.langmuir.2c02903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficient removal of persistent organic pollutants (POPs) in natural waters is vital for human survival and sustainable development. Photocatalytic degradation is a feasible and cost-effective strategy to completely disintegrate POPs at room temperature. Herein, we develop a series of direct Z-scheme BiOIO3/AgIO3 hybrid photocatalysts via a facile deposition-precipitation method. Under natural sunlight irradiation, the light intensity of which is ∼40 mW/cm2, a considerable rate constant of 0.185 min-1 for photodecomposing 40 mg/L MO is obtained over 0.5 g/L Bi@Ag-5 composite photocatalyst powder, about 92.5 and 5.3 times higher than those of pristine AgIO3 and BiOIO3. The photoactivity of Bi@Ag-5 for photodecomposing MO under natural sunlight illumination surpasses most of the reported photocatalysts under Xe lamp illumination. After natural sunlight irradiation for 20 min, 95% of MO, 82% of phenol, 78% of 2,4-DCP, 54% of ofloxacin, and 88% of tetracycline hydrochloride can be photodecomposed over Bi@Ag-5. Relative to the commercial photocatalyst TiO2 (P25), Bi@Ag-5 exhibits greatly higher photoactivity for the treatment of MO-phenol-tetracycline hydrochloride mixture pollutants in the scale-up experiment of 500 mL of solution, decreasing COD, TOC, and chromaticity value by 52, 19, and 76%, respectively, after natural sunlight irradiation for 40 min. The photodegradation process and mechanism of MO have been systematically investigated and proposed. This work provides an archetype for designing efficient photocatalysts to remove POPs.
Collapse
Affiliation(s)
- Yao Su
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Haojia Ding
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Miaofei Sun
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xin Liu
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Yuqin Li
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Guodong Xu
- Institute of Advanced Scientific Research (iASR), Analysis and Testing Center, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Chao Zeng
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
46
|
Li P, Qu J, Wu J, Zhang J, Zhou G, Zhang Y, Cao Y, Teng D. Calcination-Induced Oxygen Vacancies Enhancing the Photocatalytic Performance of a Recycled Bi 2O 3/BiOCl Heterojunction Nanosheet. ACS OMEGA 2022; 7:46250-46259. [PMID: 36570211 PMCID: PMC9773810 DOI: 10.1021/acsomega.2c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
With the rapid development of industry, bismuth-based semiconductors have been widely used for the photocatalytic degradation of organic contaminants discharged into wastewater. Herein, a Bi2O3/BiOCl (BBOC) heterojunction was constructed with high photocatalytic activity toward Rhodamine B (RhB) in the first cycle of the photocatalysis test, while the photocatalytic performance was drastically reduced after repeated testing. The adsorbed RhB molecules occupying the facial active sites of BBOC contributed to the decline of photocatalytic activity. The spent BBOC can be reactivated by the decomposition of the adsorbed RhB and the introduction of oxygen vacancies during calcination under an air atmosphere. The BBOC thus recovered exhibited a superior apparent rate constant of 0.08087 min-1 compared with 0.05228 min-1 of pristine BBOC. This study provided an effective strategy to investigate the deactivation/activation mechanism of bismuth-based heterojunction photocatalysts.
Collapse
Affiliation(s)
- Peng Li
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Jie Qu
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Jing Wu
- Huaibei
Blasting Technology Research Institute Co., Ltd., Huaibei235000, Anhui, China
| | - Jie Zhang
- School
of Ecology and Environment, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Guoli Zhou
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Ying Zhang
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Yijun Cao
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Daoguang Teng
- School
of Chemical Engineering, Zhengzhou University, Zhengzhou450001, Henan, China
- Zhongyuan
Critical Metals Laboratory, Zhengzhou University, Zhengzhou450001, Henan, China
| |
Collapse
|
47
|
Ecofriendly Green Synthesis of Copper (II) Oxide Nanoparticles Using Corchorus olitorus Leaves (Molokhaia) Extract and Their Application for the Environmental Remediation of Direct Violet Dye via Advanced Oxidation Process. Molecules 2022; 28:molecules28010016. [PMID: 36615210 PMCID: PMC9822215 DOI: 10.3390/molecules28010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
In this research, copper (II) oxide nanoparticles were prepared by an ecofriendly green method using the extract of corchorus olitorus leaves (Molokhaia) as a surfactant, capping and anti-agglomeration agent. The ecofriendly green CuO NPs were characterized using different chemical and physical techniques and the results confirmed the formation of monoclinic tenorite CuO nanoparticles with an average particle size of 12 nm and BET surface area of 11.1 m2/g. The eco-friendly green CuO NPs were used in environmental remediation for the efficient catalytic degradation of direct violet dye via advanced oxidation process (AOP) in presence of H2O2. The impact of AOP environmental parameters affecting the degradation process was investigated. Moreover, the catalytic degradation of the direct violet dye using the ecofriendly green CuO NPs was studied kinetically and thermodynamically and the results showed that the catalytic degradation process agreed well with the pseudo-second-order kinetic model and the process was spontaneous and endothermic in nature. Finally, high catalytic degradation of the direct violet dye was observed when the eco-friendly prepared green CuO NPs were placed in real water samples.
Collapse
|
48
|
Heterogeneous electro-Fenton catalysis with novel bimetallic CoFeC electrode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Liu H, Huang C, Wang P, Huang S, Yang X, Xu H, Zhu J, Ling D, Feng C, Liu Z. A novel Fe/Mo co-catalyzed graphene-based nanocomposite to activate peroxymonosulfate for highly efficient degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2022; 215:114233. [PMID: 36058268 DOI: 10.1016/j.envres.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A novel 3D α-FeOOH@MoS2/rGO nanocomposite was successfully fabricated by a simple in situ hydrothermal method. It is a highly efficient heterogeneous catalyst in activation of peroxymonosulfate (PMS) for rapid degradation of rhodamine B (RhB), with 99.9% of RhB removed within 20 min. The introduction of rGO contributes to uniform dispersion and sufficient contact of α-FeOOH and MoS2 nanosheets. Highly active Mo(IV) enhances the reduction of Fe(III), improves Fe(III)/Fe(II) conversion and promotes the generation of O21, which ensures an improved catalytic activity. MoS2/rGO hybrid can effectively solve the problem of material reunion and make α-FeOOH exhibit excellent catalytic performance. The α-FeOOH@MoS2-rGO/PMS system is a co-catalytic system based on the active components of α-FeOOH and MoS2. The main reactive oxygen species in the α-FeOOH@MoS2-rGO/PMS system are O21, SO4.- and ⋅O2-, which contribute to a high reactivity over a wide range of pH (5-9). Besides, this system is highly resistant to anions (Cl-, SO42-) and natural organic matter (humic acid), and can be widely used for degradation of common organic pollutants. The α-FeOOH@MoS2/rGO is a promising Fenton-like catalyst for refractory organic wastewater treatment.
Collapse
Affiliation(s)
- Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chonglin Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
50
|
Cong Y, Chen X, Zheng Q, Zhang Y, Lv SW. The calcium alginate-immobilized Co-g-C 3N 4 composite microspheres as an efficient mediator to activate peroxymonosulfate for degrading organic pollutants. ENVIRONMENTAL RESEARCH 2022; 215:114414. [PMID: 36162465 DOI: 10.1016/j.envres.2022.114414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Poor water stability and difficult separation severely limited the application of Co-based catalysts in persulfate activation. Herein, for the first time, the calcium alginate-immobilized Co-g-C3N4-2 composite microspheres were prepared by a feasible method. Notably, embedding Co ion into g-C3N4 can improve its specific surface area and electrochemical activities. More significantly, as-prepared Co-g-C3N4-2 microsphere presented excellent catalytic performance in PMS activation for the degradation of TC. For the activation mechanisms of PMS over Co-g-C3N4-2 microspheres, the calcium alginate microspheres could mediate the direct electron transfer between TC and PMS, while both radical and nonradical pathways were involved in the activation of PMS over Co-g-C3N4-2. Meanwhile, SO4•-, OH•, O2•- and 1O2 were major reactive oxygen species formed in the Co-g-C3N4-2 microsphere/PMS system. Proposed Co-g-C3N4-2 microsphere/PMS system still exhibited great degradation ability towards TC over a wide pH range, and co-existing anions had weak influence on TC degradation over Co-g-C3N4-2 microsphere/PMS system. Moreover, the construction of Co-g-C3N4-2 microspheres not only avoided the release of metal ion from catalyst, but also provided convenience for the recovery of catalyst. In short, current work shared some novel insights into the application of heterogeneous catalysis in persulfate activation for wastewater treatment.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiang Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiuyu Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shi-Wen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|