1
|
Chaqroun A, El Soufi G, Gerber Z, Loutreul J, Cluzel N, Delafoy D, Sandron F, Di Jorio L, Raffestin S, Maréchal V, Gantzer C, Olaso R, Deleuze JF, Rohr O, Boudaud N, Wallet C, Bertrand I. Definition of a concentration and RNA extraction protocol for optimal whole genome sequencing of SARS-CoV-2 in wastewater (ANRS0160). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175823. [PMID: 39197764 DOI: 10.1016/j.scitotenv.2024.175823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Monitoring the presence of RNA from emerging pathogenic viruses, such as SARS-CoV-2, in wastewater (WW) samples requires suitable methods to ensure an effective response. Genome sequencing of WW is one of the crucial methods, but it requires high-quality RNA in sufficient quantities, especially for monitoring emerging variants. Consequently, methods for viral concentration and RNA extraction from WW samples have to be optimized before sequencing. The purpose of this study was to achieve high coverage (≥ 90 %) and sequencing depth (at least ≥200×) even for low initial RNA concentrations (< 105 genome copies (GC)/L) in WW. A further objective was to determine the range of SARS-CoV-2 RNA concentrations that allow high-quality sequencing, and the optimal sample volume for analysis. Ultrafiltration (UF) methods were used to concentrate viral particles from large influent samples (up to 500 mL). An RNA extraction protocol using silica beads, neutral phenol-chloroform treatment, and a PCR inhibitor removal kit was chosen for its effectiveness in extracting RNA and eliminating PCR inhibitors, as well as its adaptability for use with large influent samples. Recovery rates ranged from 24 % to 63 % (N = 17) for SARS-CoV-2 naturally present in WW samples. 200 mL WW samples can be enough for UF concentration, as they showed high quality sequencing analyses with between 5 × 104 GC/L and 6 × 103 GC/L. Below 6 × 103 GC/L, high-quality sequencing was also achieved for ∼40 % of the samples using 500 mL of WW. Sequencing analysis for variant detection was performed on 200 mL WW samples with coverage of >95 % and sequencing depth of >1000×. Analyses revealed the predominance of variant EG.5, known as Eris (66 %-100 %). The use of UF methods in combination with a suitable RNA extraction protocol appear promising for sequencing enveloped viruses in WW in a context of viral emergence.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France
| | - Ghina El Soufi
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Zuzana Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Julie Loutreul
- ACTALIA, F-50000 Saint Lô, France; OBEPINE consortium, Paris, France
| | - Nicolas Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, Paris 75005, France; OBEPINE consortium, Paris, France
| | - Damien Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Florian Sandron
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Léo Di Jorio
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Stéphanie Raffestin
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE consortium, Paris, France
| | - Vincent Maréchal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris 75012, France; OBEPINE consortium, Paris, France
| | - Christophe Gantzer
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Olivier Rohr
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Nicolas Boudaud
- ACTALIA, F-50000 Saint Lô, France; OBEPINE consortium, Paris, France
| | - Clémentine Wallet
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Isabelle Bertrand
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France.
| |
Collapse
|
2
|
Kevill JL, Li X, Garcia-Delgado A, Herridge K, Farkas K, Gaze W, Robins P, Malham SK, Jones DL. Microcosm experiment investigating climate-induced thermal effects on human virus viability in seawater: qPCR vs capsid integrity for enhanced risk management. MARINE POLLUTION BULLETIN 2024; 208:117006. [PMID: 39342910 DOI: 10.1016/j.marpolbul.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Climate change is intensifying extreme weather events in coastal areas, leading to more frequent discharge of untreated wastewater containing human viruses into coastal waters. This poses a health risk, especially during heatwaves when bathing activity increases. A study examined the survival and viability of seven common wastewater viruses in seawater at different temperatures. Viral genomes were quantified using direct qPCR, whilst viability was assessed using Capsid Integrity qPCR. Results showed that T90 values from direct qPCR were much higher than those from CI-qPCR, suggesting that risk mitigation should be based on viral integrity tests. All viruses remained potentially viable for at least 72 h in environmental seawater and longer in sterile artificial seawater, highlighting the importance of biotic processes in viral inactivation. Viral persistence decreased with increasing temperature. Whilst heatwaves may partially reduce risks from human viral pathogens in coastal waters, they do not eliminate them entirely.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - William Gaze
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
3
|
Toancha K, Borges A, Lázaro L, Teixeira N, Lima AK, Gonçalves A, Winter D, Santos A, do Nascimento M, de Sousa AB, May J, Sequeira YS, Neto RMA, Fernandez-Cassi X, Schuldt K. Wastewater-based surveillance for Hepatitis A virus, Enterovirus, Poliovirus, and SARS-CoV-2 in São Tomé and Príncipe: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176923. [PMID: 39427898 DOI: 10.1016/j.scitotenv.2024.176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Wastewater-based surveillance is a valuable tool for monitoring pathogen transmission in communities, especially in regions where formal surveillance systems are limited. AIM The aim of this study was to implement and evaluate a wastewater-based monitoring system for viral pathogens in São Tomé and Príncipe. METHODS A total of 122 water samples were collected bi-weekly from June 2022 to July 2023 at six locations in São Tomé city and analysed for molecular detection of Hepatitis A Virus (HAV), Enterovirus (EV), Poliovirus (PV), SARS-CoV-2, as well as JC-Polyomavirus (JCPyV) and pepper mild mottle virus (PMMoV) as indicators of human contamination. Prevalence was analysed per pathogen and across sampling locations. Results for SARS-CoV-2 were assessed together with notifications from national COVID-19 surveillance. Further, we estimated resources needed to establish a wastewater-based approach to assess community-level transmission of viral pathogens. RESULTS All 122 and 117 samples were found positive for PMMoV and JCPyV, respectively, demonstrating a high level of human contamination at all sampling locations. The prevalence of HAV and EV ranged from 0 % to 59 % and 56 % respectively. Consistent with national surveillance data the highest proportion of SARS-CoV-2 positive water samples coincides with the highest number of COVID-19 cases reported during the study, demonstrating the potential of wastewater-based surveillance to identify signals. In addition, for SARS-CoV-2 this approach provided evidence of continuous circulation of the virus in the community, most importantly during weeks when no COVID-19 cases were reported. CONCLUSION Our findings provide evidence of high transmission of HAV and EV in communities in São Tomé and continuous circulation of SARS-CoV-2, even in weeks without COVID-19 case notifications. This study demonstrates that monitoring of viral pathogens in humanly impacted open water streams and sewage tanks is a valuable tool to complement clinical surveillance in resource-limited settings.
Collapse
Affiliation(s)
- Katia Toancha
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Adjaia Borges
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Lazismino Lázaro
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Nilton Teixeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anery Katia Lima
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anabela Gonçalves
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Doris Winter
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Asmiralda Santos
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Marcos do Nascimento
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | | | - Jürgen May
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Tropical Medicine II, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yardlene Sacramento Sequeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Rosa Maria Afonso Neto
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Xavier Fernandez-Cassi
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Spain
| | - Kathrin Schuldt
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
4
|
Purves K, Reynolds LJ, Sala-Comorera L, Martin NA, Dahly DL, Meijer WG, Fletcher NF. Decay of RNA and infectious SARS-CoV-2 and murine hepatitis virus in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173877. [PMID: 38871327 DOI: 10.1016/j.scitotenv.2024.173877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Wastewater-based epidemiology (WBE) has been an important tool for population surveillance during the COVID-19 pandemic and continues to play a key role in monitoring SARS-CoV-2 infection levels following reductions in national clinical testing schemes. Studies measuring decay profiles of SARS-CoV-2 in wastewater have underscored the value of WBE, however investigations have been hampered by high biosafety requirements for SARS-CoV-2 infection studies. Therefore, surrogate viruses with lower biosafety standards have been used for SARS-CoV-2 decay studies, such as murine hepatitis virus (MHV), but few studies have directly compared decay rates of both viruses. We compared the persistence of SARS-CoV-2 and MHV in wastewater, using 50 % tissue culture infectious dose (TCID50) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays to assess infectious virus titre and viral gene markers, respectively. Infectious SARS-CoV-2 and MHV indicate similar endpoints, however observed early decay characteristics differed, with infectious SARS-CoV-2 decaying more rapidly than MHV. We find that MHV is an appropriate infectious virus surrogate for viable SARS-CoV-2, however inconsistencies exist in viral RNA decay parameters, indicating MHV may not be a suitable nucleic acid surrogate across certain temperature regimes. This study highlights the importance of sample preparation and the potential for decay rate overestimation in wastewater surveillance for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Kevin Purves
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Laura Sala-Comorera
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Darren L Dahly
- Health Research Board Clinical Research Facility, University College Cork, Ireland; School of Public Health, University College Cork, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Nicola F Fletcher
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Ireland.
| |
Collapse
|
5
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
6
|
Demongeot J, Magal P. Data-driven mathematical modeling approaches for COVID-19: A survey. Phys Life Rev 2024; 50:166-208. [PMID: 39142261 DOI: 10.1016/j.plrev.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
In this review, we successively present the methods for phenomenological modeling of the evolution of reported and unreported cases of COVID-19, both in the exponential phase of growth and then in a complete epidemic wave. After the case of an isolated wave, we present the modeling of several successive waves separated by endemic stationary periods. Then, we treat the case of multi-compartmental models without or with age structure. Eventually, we review the literature, based on 260 articles selected in 11 sections, ranging from the medical survey of hospital cases to forecasting the dynamics of new cases in the general population. This review favors the phenomenological approach over the mechanistic approach in the choice of references and provides simulations of the evolution of the number of observed cases of COVID-19 for 10 states (California, China, France, India, Israel, Japan, New York, Peru, Spain and United Kingdom).
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, AGEIS EA7407, La Tronche, F-38700, France.
| | - Pierre Magal
- Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; Univ. Bordeaux, IMB, UMR 5251, Talence, F-33400, France; CNRS, IMB, UMR 5251, Talence, F-33400, France
| |
Collapse
|
7
|
Hassanin A, Tu VT, Görföl T, Ngon LQ, Pham PV, Hang CT, Tuan TA, Prot M, Simon-Lorière E, Kemenesi G, Tóth GE, Moulin L, Wurtzer S. Phylogeography of horseshoe bat sarbecoviruses in Vietnam and neighbouring countries. Implications for the origins of SARS-CoV and SARS-CoV-2. Mol Ecol 2024; 33:e17486. [PMID: 39161178 DOI: 10.1111/mec.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
Previous studies on horseshoe bats (Rhinolophus spp.) have described many coronaviruses related to SARS-CoV (SARSCoVr) in China and only a few coronaviruses related to SARS-CoV-2 (SARSCoV2r) in Yunnan (southern China), Cambodia, Laos and Thailand. Here, we report the results of several field missions carried out in 2017, 2021 and 2022 across Vietnam during which 1218 horseshoe bats were sampled from 19 locations. Sarbecoviruses were detected in 11% of faecal RNA extracts, with much more positives among Rhinolophus thomasi (46%). We assembled 38 Sarbecovirus genomes, including 32 SARSCoVr, four SARSCoV2r, and two recombinants of SARSCoVr and SARSCoV2r (RecSar), one showing a Spike protein very similar to SARS-CoV-2. We detected a bat co-infected with four coronaviruses, including two sarbecoviruses. Our analyses revealed that Sarbecovirus genomes evolve in Vietnam under strong geographical and host constraints. First, we found evidence for a deep separation between viruses from northern Vietnam and those from central and southern Vietnam. Second, we detected only SARSCoVr in Rhinolophus thomasi, both SARSCoVr and SARSCoV2r in Rhinolophus affinis, and only RecSar in Rhinolophus pusillus captured close to the border with China. Third, the bias in favour of Uracil in synonymous third codon positions of SARSCoVr extracted from R. thomasi showed a negative correlation with latitudes. Our results also provided support for an emergence of SARS-CoV in horseshoe bats from northern Yunnan and emergence of SARS-CoV-2 in horseshoe bats from northern Indochina subtropical forests (southern Yunnan, northern Laos and north-western Vietnam).
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), SU, MNHN, CNRS, EPHE, UA, Sorbonne Université, Paris, France
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lam Quang Ngon
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phu Van Pham
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chu Thi Hang
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Anh Tuan
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mathieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Laurent Moulin
- R&D Laboratory, Direction Recherche, Développement et Qualité de l'Eau, Eau de Paris, Ivry-sur-Seine, France
| | - Sébastien Wurtzer
- R&D Laboratory, Direction Recherche, Développement et Qualité de l'Eau, Eau de Paris, Ivry-sur-Seine, France
| |
Collapse
|
8
|
Cha G, Huang Y, Graham KE, Luo A, Chen W, Hatt JK, Konstantinidis KT, Xie X. Cold-chain free nucleic acid preservation using porous super-absorbent polymer (PSAP) beads to facilitate wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173468. [PMID: 38788933 DOI: 10.1016/j.scitotenv.2024.173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The instability of viral targets including SARS-CoV-2 in sewage is an important challenge in wastewater monitoring projects. The unrecognized interruptions in the 'cold-chain' transport from the sample collection to RNA quantification in the laboratory may undermine the accurate quantification of the virus. In this study, bovine serum albumin (BSA)-modified porous superabsorbent polymer (PSAP) beads were applied to absorb raw sewage samples as a simple method for viral RNA preservation. The preservation efficiency for SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA were examined during storage for 14 days at 4 °C or room temperature against the control (no beads applied). While a non-significant difference was observed at 4 °C (∼80 % retention for both control and PSAP-treated sewage), the reduction of SARS-CoV-2 RNA concentrations was significantly lower in sewage retrieved from PSAP beads (25-40 % reduction) compared to control (>60 % reduction) at room temperature. On the other hand, the recovery of PMMoV, known for its high persistence in raw sewage, from PSAP beads or controls were consistently above 85 %, regardless of the storage temperature. Our results demonstrate the applicability of PSAP beads to wastewater-based epidemiology (WBE) projects for preservation of SARS-CoV-2 RNA in sewage, especially in remote settings with no refrigeration capabilities.
Collapse
Affiliation(s)
- Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yixuan Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anjin Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wensi Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
9
|
Williams RC, Perry WB, Lambert-Slosarska K, Futcher B, Pellett C, Richardson-O'Neill I, Paterson S, Grimsley JMS, Wade MJ, Weightman AJ, Farkas K, Jones DL. Examining the stability of viral RNA and DNA in wastewater: Effects of storage time, temperature, and freeze-thaw cycles. WATER RESEARCH 2024; 259:121879. [PMID: 38865915 DOI: 10.1016/j.watres.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.
Collapse
Affiliation(s)
- Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - William B Perry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | - Ben Futcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK; The London Data Company, London, EC2N 2AT, UK
| | - Matthew J Wade
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
10
|
Wurtzer S, Duvivier M, Accrombessi H, Levert M, Richard E, Moulin L. Assessing RNA integrity by digital RT-PCR: Influence of extraction, storage, and matrices. Biol Methods Protoc 2024; 9:bpae053. [PMID: 39450241 PMCID: PMC11500190 DOI: 10.1093/biomethods/bpae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 10/26/2024] Open
Abstract
The development of high-throughput sequencing has greatly improved our knowledge of microbial diversity in aquatic environments and its evolution in highly diverse ecosystems. Relevant microbial diversity description based on high-throughput sequencing relies on the good quality of the nucleic acid recovered. Indeed, long genetic fragments are more informative for identifying mutation combinations that characterize variants or species in complex samples. This study describes a new analytical method based on digital Polymerase Chain Reaction (PCR) partitioning technology for assessing the fragmentation of nucleic acid and more specifically viral RNA. This method allows us to overcome limits associated with hydrolysis probe-based assay by focusing on the distance between different amplicons, and not, as usual, on the size of amplicons. RNA integrity can thus be determined as a new fragmentation index, the so-called Fragment size 50. The application of this method has provided information on issues that are inherent in environmental analyses, such as the storage impact of raw samples or extracted RNA, extraction methods, and the nature of the sample on the integrity of viral RNA. Finally, the estimation of fragment size by digital PCR (dPCR) showed a very strong similarity with the fragment size sequenced using Oxford Nanopore Technology. In addition to enabling objective improvements in analytical methods, this approach could become a systematic quality control prior to any long-read sequencing, avoiding insufficiently productive sequencing runs or biases in the representativeness of sequenced fragments.
Collapse
Affiliation(s)
- Sebastien Wurtzer
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
| | - Mathilde Duvivier
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
| | | | - Morgane Levert
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
- Paris Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005, Paris, France
| | - Elise Richard
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
| | - Laurent Moulin
- Research & Development Department, Eau de Paris. DRDQE, FR-9400, France
- Obepine SIG, Paris, FR-75000, France
| |
Collapse
|
11
|
Dlamini M, Msolo L, Ehi Ebomah K, Nontongana N, Ifeanyi Okoh A. A systematic review on the incidence of influenza viruses in wastewater matrices: Implications for public health. PLoS One 2024; 19:e0291900. [PMID: 38662758 PMCID: PMC11045120 DOI: 10.1371/journal.pone.0291900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza viruses pose a significant public health threat, necessitating comprehensive surveillance strategies to enhance early detection and preventive measures. This systematic review investigates the incidence of influenza viruses in wastewater matrices, aiming to elucidate the potential implications for public health. The study synthesizes existing literature, employing rigorous inclusion criteria to identify relevant studies conducted globally. The essence of the problem lies in the gaps of traditional surveillance methods, which often rely on clinical data and may underestimate the true prevalence of influenza within communities. Wastewater-based epidemiology offers a novel approach to supplementing these conventional methods, providing a broader and more representative assessment of viral circulation. This review systematically examines the methodologies employed in the selected studies, including virus concentration techniques and molecular detection methods, to establish a standardized framework for future research. Our findings reveal a consistent presence of influenza viruses in diverse wastewater matrices across different geographic locations and seasons. Recommendations for future research include the standardization of sampling protocols, improvement of virus concentration methods, and the integration of wastewater surveillance into existing public health frameworks. In conclusion, this systematic review contributes to the understanding of influenza dynamics in wastewater matrices, offering valuable insights for public health practitioners and policymakers. Implementation of wastewater surveillance alongside traditional methods can enhance the resilience of public health systems and better prepare communities for the challenges posed by influenza outbreaks.
Collapse
Affiliation(s)
- Mbasa Dlamini
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| |
Collapse
|
12
|
Zhang M, Roldan-Hernandez L, Boehm A. Persistence of human respiratory viral RNA in wastewater-settled solids. Appl Environ Microbiol 2024; 90:e0227223. [PMID: 38501669 PMCID: PMC11022535 DOI: 10.1128/aem.02272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Wastewater-based epidemiology has emerged as a valuable tool for monitoring respiratory viral diseases within communities by analyzing concentrations of viral nucleic-acids in wastewater. However, little is known about the fate of respiratory virus nucleic-acids in wastewater. Two important fate processes that may modulate their concentrations in wastewater as they move from household drains to the point of collection include sorption or partitioning to wastewater solids and degradation. This study investigated the decay kinetics of genomic nucleic-acids of seven human respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, human rhinovirus (HRV), and influenza A virus (IAV), as well as pepper mild mottle virus (PMMoV) in wastewater solids. Viruses (except for PMMoV) were spiked into wastewater solids and their concentrations were followed for 50 days at three different temperatures (4°C, 22°C, and 37°C). Viral genomic RNA decayed following first-order kinetics with decay rate constants k from 0 to 0.219 per day. Decay rate constants k were not different from 0 for all targets in solids incubated at 4°C; k values were largest at 37°C and at this temperature, k values were similar across nucleic-acid targets. Regardless of temperature, there was limited viral RNA decay, with an estimated 0% to 20% reduction, over the typical residence times of sewage in the piped systems between input and collection point (<1 day). The k values reported herein can be used directly in fate and transport models to inform the interpretation of measurements made during wastewater surveillance.IMPORTANCEUnderstanding whether or not the RNA targets quantified for wastewater-based epidemiology (WBE) efforts decay during transport between drains and the point of sample collection is critical for data interpretation. Here we show limited decay of viral RNA targets typically measured for respiratory disease WBE.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Laura Roldan-Hernandez
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
Dostálková A, Zdeňková K, Bartáčková J, Čermáková E, Kapisheva M, Lopez Marin MA, Kouba V, Sýkora P, Chmel M, Bartoš O, Dresler J, Demnerová K, Rumlová M, Bartáček J. Prevalence of SARS-CoV-2 variants in Prague wastewater determined by nanopore-based sequencing. CHEMOSPHERE 2024; 351:141162. [PMID: 38218235 DOI: 10.1016/j.chemosphere.2024.141162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The early detection of upcoming disease outbreaks is essential to avoid both health and economic damage. The last four years of COVID-19 pandemic have proven wastewater-based epidemiology is a reliable system for monitoring the spread of SARS-CoV-2, a causative agent of COVID-19, in an urban population. As this monitoring enables the identification of the prevalence of spreading variants of SARS-CoV-2, it could provide a critical tool in the fight against this viral disease. In this study, we evaluated the presence of variants and subvariants of SARS-CoV-2 in Prague wastewater using nanopore-based sequencing. During August 2021, the data clearly showed that the number of identified SARS-CoV-2 RNA copies increased in the wastewater earlier than in clinical samples indicating the upcoming wave of the Delta variant. New SARS-CoV-2 variants consistently prevailed in wastewater samples around a month after they already prevailed in clinical samples. We also analyzed wastewater samples from smaller sub-sewersheds of Prague and detected significant differences in SARS-CoV-2 lineage progression dynamics among individual localities studied, e.g., suggesting faster prevalence of new variants among the sites with highest population density and mobility.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Czech Republic; National Institute of Virology and Bacteriology, University of Chemistry and Technology Prague, Czech Republic
| | - Kamila Zdeňková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic.
| | - Jana Bartáčková
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Eliška Čermáková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic
| | - Marina Kapisheva
- National Institute of Virology and Bacteriology, University of Chemistry and Technology Prague, Czech Republic
| | - Marco A Lopez Marin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic
| | - Vojtěch Kouba
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Petr Sýkora
- PVK a.s., Prague Water Supply and Sewerage Company, Czech Republic
| | - Martin Chmel
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic; Military Health Institute, Military Medical Agency, Czech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Czech Republic
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Czech Republic; National Institute of Virology and Bacteriology, University of Chemistry and Technology Prague, Czech Republic
| | - Jan Bartáček
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Czech Republic
| |
Collapse
|
14
|
Tran DPH, You BC, Liu CW, Chen YN, Wang YF, Chung SN, Lee JJ, You SJ. Identifying spatiotemporal trends of SARS-CoV-2 RNA in wastewater: from the perspective of upstream and downstream wastewater-based epidemiology (WBE). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11576-11590. [PMID: 38221556 DOI: 10.1007/s11356-023-31769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Recently, many efforts have been made to address the rapid spread of newly identified COVID-19 virus variants. Wastewater-based epidemiology (WBE) is considered a potential early warning tool for identifying the rapid spread of this virus. This study investigated the occurrence of SARS-CoV-2 in eight wastewater treatment plants (WWTPs) and their sewerage systems which serve most of the population in Taoyuan City, Taiwan. Across the entire study period, the wastewater viral concentrations were correlated with the number of COVID-19 cases in each WWTP (Spearman's r = 0.23-0.76). In addition, it is confirmed that several treatment technologies could effectively eliminate the virus RNA from WWTP influent (> 90%). On the other hand, further results revealed that an inverse distance weighted (IDW) interpolation and hotspot model combined with the geographic information system (GIS) method could be applied to analyze the spatiotemporal variations of SARS-CoV-2 in wastewater from the sewer system. In addition, socio-economic factors, namely, population density, land use, and income tax were successfully identified as the potential drivers which substantially affected the onset of the COVID-19 outbreak in Taiwan. Finally, the data obtained from this study can provide a powerful tool in public health decision-making not only in response to the current epidemic situation but also to other epidemic issues in the future.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Bo-Cheng You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Chen-Wuing Liu
- Department of Water Resource, Taoyuan City Government, Taoyuan City, 320, Taiwan, Republic of China
| | - Yi-Ning Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China
| | - Shu-Nu Chung
- Department of Water Resource, Taoyuan City Government, Taoyuan City, 320, Taiwan, Republic of China
| | - Jin-Jing Lee
- Department of Water Resource, Taoyuan City Government, Taoyuan City, 320, Taiwan, Republic of China
| | - Sheng-Jie You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China.
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320, Taiwan, Republic of China.
| |
Collapse
|
15
|
El Soufi G, Di Jorio L, Gerber Z, Cluzel N, Van Assche J, Delafoy D, Olaso R, Daviaud C, Loustau T, Schwartz C, Trebouet D, Hernalsteens O, Marechal V, Raffestin S, Rousset D, Van Lint C, Deleuze JF, Boni M, Rohr O, Villain-Gambier M, Wallet C. Highly efficient and sensitive membrane-based concentration process allows quantification, surveillance, and sequencing of viruses in large volumes of wastewater. WATER RESEARCH 2024; 249:120959. [PMID: 38070350 DOI: 10.1016/j.watres.2023.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Wastewater-based epidemiology is experiencing exponential development. Despite undeniable advantages compared to patient-centered approaches (cost, anonymity, survey of large populations without bias, detection of asymptomatic infected peoples…), major technical limitations persist. Among them is the low sensitivity of the current methods used for quantifying and sequencing viral genomes from wastewater. In situations of low viral circulation, during initial stages of viral emergences, or in areas experiencing heavy rains, the extremely low concentrations of viruses in wastewater may fall below the limit of detection of the current methods. The availability during crisis and the cost of the commercial kits, as well as the requirement of expensive materials such as high-speed centrifuge, can also present major blocks to the development of wastewater-based epidemiological survey, specifically in low-income countries. Thereby, highly sensitive, low cost and standardized methods are still needed, to increase the predictability of the viral emergences, to survey low-circulating viruses and to make the results from different labs comparable. Here, we outline and characterize new protocols for concentrating and quantifying SARS-CoV-2 from large volumes (500 mL-1 L) of untreated wastewater. In addition, we report that the methods are applicable for monitoring and sequencing. Our nucleic acid extraction technique (the routine C: 5 mL method) does not require sophisticated equipment such as automatons and is not reliant on commercial kits, making it readily available to a broader range of laboratories for routine epidemiological survey. Furthermore, we demonstrate the efficiency, the repeatability, and the high sensitivity of a new membrane-based concentration method (MBC: 500 mL method) for enveloped (SARS-CoV-2) and non-enveloped (F-specific RNA phages of genogroup II / FRNAPH GGII) viruses. We show that the MBC method allows the quantification and the monitoring of viruses in wastewater with a significantly improved sensitivity compared to the routine C method. In contexts of low viral circulation, we report quantifications of SARS-CoV-2 in wastewater at concentrations as low as 40 genome copies per liter. In highly diluted samples collected in wastewater treatment plants of French Guiana, we confirmed the accuracy of the MBC method compared to the estimations done with the routine C method. Finally, we demonstrate that both the routine C method processing 5 mL and the MBC method processing 500 mL of untreated wastewater are both compatible with SARS-CoV-2 sequencing. We show that the quality of the sequence is correlated with the concentration of the extracted viral genome. Of note, the quality of the sequences obtained with some MBC processed wastewater was improved by dilutions or enzyme substitutions suggesting the presence of specific enzyme inhibitors in some wastewater. To the best of our knowledge, our MBC method is one of the first efficient, sensitive, and repeatable method characterized for SARS-CoV-2 quantification and sequencing from large volumes of wastewater.
Collapse
Affiliation(s)
- G El Soufi
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - L Di Jorio
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - Z Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - N Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, Paris 75005, France
| | - J Van Assche
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - R Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - C Daviaud
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - T Loustau
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - C Schwartz
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Trebouet
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - O Hernalsteens
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - V Marechal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris 75012, France; OBEPINE Consortium, Paris, France
| | - S Raffestin
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - D Rousset
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - C Van Lint
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - J F Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - M Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; OBEPINE Consortium, Paris, France
| | - O Rohr
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France.
| | - M Villain-Gambier
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - C Wallet
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France
| |
Collapse
|
16
|
Bichet MC, Gardette M, Das Neves B, Challant J, Erbs A, Roman V, Robin M, La Carbona S, Gantzer C, Boudaud N, Bertrand I. A new understanding of somatic coliphages belonging to the Microviridae family in urban wastewater. WATER RESEARCH 2024; 249:120916. [PMID: 38043350 DOI: 10.1016/j.watres.2023.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses. Three PCR assays specific for each genus of Microviridae were designed to study these phages in raw and treated wastewater (WW) in order to gain knowledge about the diversity and prevalence of Microviridae among SC, as well as their inactivation and removal during WW treatments. Among the four wastewater treatment plants (WWTPs) monitored here, two WWTPs applied disinfection by UV light as tertiary treatment. First, we noticed that Microviridae represented 10 to 30 % of infectious SC in both raw and treated WW. Microviridae appeared to behave in the same way as all SC during these WW treatments. As expected, the highest inactivation, at least 4 log10, was achieved for infectious Microviridae and SC in both WWTPs using UV disinfection. PCR assays showed that the highest removal of Microviridae reached about 4 log10, but the phage removal can vary greatly between WWTPs using similar treatments. This work forms the basis for a broader evaluation of Microviridae as a viral indicator of water treatment efficiency and WW reuse.
Collapse
Affiliation(s)
- Marion C Bichet
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Marion Gardette
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Anaïs Erbs
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Véronica Roman
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France
| | | | | | | | | |
Collapse
|
17
|
Shousha HI, Ayman H, Hashem MB. Climate Changes and COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:217-231. [PMID: 39102199 DOI: 10.1007/978-3-031-61943-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Climatic change, which influences population growth and land usage, has been theorized to be linked to the emergence and spread of new viruses like the currently unfolding COVID-19 pandemic. In this chapter, we explain how climate change may have altered the beginning, transmission, and maybe even the sickness consequences of the COVID-19 pandemic. Where possible, we also provide mechanistic explanations for how this may have occurred. We have presented evidence that suggests climate change may have had a role in the establishment and transmission of SARS-CoV-2 infection, and most possibly even in some of its clinical effects. Human activities bringing people into closer contact with bats and animals like pangolins that potentially represent the intermediate hosts, and evidence that climate-induced changes in vegetation are the main reservoir source of coronaviruses for human infection, are among the explanations. Although there are still unsubstantiated indications that the first viral pathogen may have escaped from a laboratory, it is possible that this encounter took place in the field or in marketplaces in the instance of COVID-19. We also present the argument that climate change is working to enhance transmission between diseased and uninfected humans, and this is true regardless of the source of the original development of the disease. Changes in temperature and humidity make it easier for viruses to survive, and the impacts of industrial pollution induce people to cough and sneeze, which releases highly infectious aerosols into the air. These three factors combine to make this a more likely scenario than it would otherwise be. We suggest that changes in climate are contributing to create conditions that are favorable for the development of more severe symptoms of illness. It is more difficult to build the argument for this circumstance, and much of it is indirect. However, climate change has caused some communities to adjust their nutritional habits, both in terms of the quantity of food they eat and the quality of the foods they consume. The effects frequently become apparent as a result of alterations that are imposed on the microbiome of the gut, which, in turn, influence the types of immune responses that are produced. The incidence of comorbidities like diabetes and animal vectors like bats that transmit other illnesses that modify vulnerability to SARS-CoV-2 are also two examples of the factors that have been affected by climate change. In order to curb the development of infectious illnesses caused by new viruses, it is necessary to understand the connection between environmental dynamics and the emergence of new coronaviruses. This knowledge should lead to initiatives aimed at reducing global greenhouse gas emissions.
Collapse
Affiliation(s)
- Hend Ibrahim Shousha
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt.
| | - Hedy Ayman
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt
| | - Mohamed B Hashem
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Yan C, Hu YN, Gui ZC, Lai TN, Ali W, Wan NH, He SS, Liu S, Li X, Jin TX, Nasir ZA, Alcega SG, Coulon F. Quantitative SARS-CoV-2 exposure assessment for workers in wastewater treatment plants using Monte-Carlo simulation. WATER RESEARCH 2024; 248:120845. [PMID: 37976948 DOI: 10.1016/j.watres.2023.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Several studies on COVID-19 pandemic have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originating from human stool are detected in raw sewage for several days, leading to potential health risks for workers due to the production of bioaerosols and droplets during wastewater treatment process. In this study, data of SARS-CoV-2 concentrations in wastewater were gathered from literatures, and a quantitative microbial risk assessment with Monte Carlo simulation was used to estimate the daily probability of infection risk through exposure to viable infectious viral airborne particles of the workers during four seasons and under six environmental conditions. Inhalation of bioaerosols and direct ingestion of wastewater droplets were selected as exposure pathways. Spearman rank correlation coefficients were used for sensitivity analysis to identify the variables with the greatest influence on the infection risk probability. It was found that the daily probability of infection risk decreased with temperature (T) and relative humidity (RH) increase. The probability of direct droplet ingestion exposure pathway was higher than that of the bioaerosol inhalation pathway. The sensitivity analysis indicated that the most sensitive variable for both exposure pathways was the concentration of SARS-CoV-2 in stool. So, appropriate aeration systems, covering facilities, and effective ventilation are suggested to implement in wastewater treatment plants (WWTPs) to reduce emission concentration. Further to this, the exposure time (t) had a larger variance contribution than T and RH for the bioaerosol inhalation pathway. Implementing measures such as adding more work shifts, mandating personal protective equipment for all workers, and implementing coverage for treatment processes can significantly reduce the risk of infection among workers at WWTPs. These measures are particularly effective during environmental conditions with low temperatures and humidity levels.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| | - Yi-Ning Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zi-Cheng Gui
- CCDI (Suzhou) exploration and design consultant Co., Ltd., Suzhou 215123, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Nian-Hong Wan
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Ting-Xu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, PR China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
19
|
Kevill JL, Farkas K, Ridding N, Woodhall N, Malham SK, Jones DL. Use of Capsid Integrity-qPCR for Detecting Viral Capsid Integrity in Wastewater. Viruses 2023; 16:40. [PMID: 38257740 PMCID: PMC10819219 DOI: 10.3390/v16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 μM and 100 μM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 μM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.
Collapse
Affiliation(s)
- Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicholas Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK;
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
20
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
21
|
Chatterjee A, Zhang K, Parker KM. Binding of Dissolved Organic Matter to RNA and Protection from Nuclease-Mediated Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16086-16096. [PMID: 37811805 DOI: 10.1021/acs.est.3c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The persistence of RNA in environmental systems is an important parameter for emerging applications, including ecological surveys, wastewater-based epidemiology, and RNA interference biopesticides. RNA persistence is controlled by its rate of biodegradation, particularly by extracellular enzymes, although the specific factors determining this rate have not been characterized. Due to prior work suggesting that nucleic acids-specifically DNA-interact with dissolved organic matter (DOM), we hypothesized that DOM may bind RNA and impede its biodegradation in natural systems. We first adapted a technique previously used to assess RNA-protein binding to differentiate RNA that is bound at all sites by DOM from RNA that is unbound or partially bound by DOM. Results from this technique suggested that humic acids bound RNA more extensively than fulvic acids. At concentrations of 8-10 mgC/L, humic acids were also found to be more effective than fulvic acids at suppressing enzymatic degradation of RNA. In surface water and soil extract containing DOM, RNA degradation was suppressed by 39-46% relative to pH-adjusted controls. Due to the ability of DOM to both bind and suppress the enzymatic degradation of RNA, RNA biodegradation may be slowed in environmental systems with high DOM concentrations, which may increase its persistence.
Collapse
Affiliation(s)
- Anamika Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Thapar I, Langan LM, Davis H, Norman RS, Bojes HK, Brooks BW. Influence of storage conditions and multiple freeze-thaw cycles on N1 SARS-CoV-2, PMMoV, and BCoV signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165098. [PMID: 37392884 PMCID: PMC10307669 DOI: 10.1016/j.scitotenv.2023.165098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Wastewater-based epidemiology/wastewater-based surveillance (WBE/WBS) continues to serve as an effective means of monitoring various diseases, including COVID-19 and the emergence of SARS-CoV-2 variants, at the population level. As the use of WBE expands, storage conditions of wastewater samples will play a critical role in ensuring the accuracy and reproducibility of results. In this study, the impacts of water concentration buffer (WCB), storage temperature, and freeze-thaw cycles on the detection of SARS-CoV-2 and other WBE-related gene targets were examined. Freeze-thawing of concentrated samples did not significantly affect (p > 0.05) crossing/cycle threshold (Ct) value for any of the gene targets studied (SARS-CoV-2 N1, PMMoV, and BCoV). However, use of WCB during concentration resulted in a significant (p < 0.05) decrease in Ct for all targets, and storage at -80 °C (in contrast to -20 °C) appeared preferable for wastewater storage signal stability based on decreased Ct values, although this was only significantly different (p < 0.05) for the BCoV target. Interestingly, when Ct values were converted to gene copies per influent sample, no significant differences (p > 0.05) were observed in any of the targets examined. Stability of RNA targets in concentrated wastewater against freeze-thaw degradation supports archiving of concentrated samples for use in retrospective examination of COVID-19 trends and tracing SARS-CoV-2 variants and potentially other viruses, and provides a starting point for establishing a consistent procedure for specimen collection and storage for the WBE/WBS community.
Collapse
Affiliation(s)
- Isha Thapar
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA.
| | - Haley Davis
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, FL 34946, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, South Carolina, 921 Assembly St., Columbia, SC 29208, USA
| | - Heidi K Bojes
- Environmental Epidemiology and Disease Registries Section, Texas Department of State Health Services, Austin, TX 78756, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA
| |
Collapse
|
23
|
Breadner PR, Dhiyebi HA, Fattahi A, Srikanthan N, Hayat S, Aucoin MG, Boegel SJ, Bragg LM, Craig PM, Xie Y, Giesy JP, Servos MR. A comparative analysis of the partitioning behaviour of SARS-CoV-2 RNA in liquid and solid fractions of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165095. [PMID: 37355124 PMCID: PMC10287177 DOI: 10.1016/j.scitotenv.2023.165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
As fragments of SARS-CoV-2 RNA can be quantified and measured temporally in wastewater, surveillance of concentrations of SARS-CoV-2 in wastewater has become a vital resource for tracking the spread of COVID-19 in and among communities. However, the absence of standardized methods has affected the interpretation of data for public health efforts. In particular, analyzing either the liquid or solid fraction has implications for the interpretation of how viral RNA is quantified. Characterizing how SARS-CoV-2 or its RNA fragments partition in wastewater is a central part of understanding fate and behaviour in wastewater. In this study, partitioning of SARS-CoV-2 was investigated by use of centrifugation with varied durations of spin and centrifugal force, polyethylene glycol (PEG) precipitation followed by centrifugation, and ultrafiltration of wastewater. Partitioning of the endogenous pepper mild mottled virus (PMMoV), used to normalize the SARS-CoV-2 signal for fecal load in trend analysis, was also examined. Additionally, two surrogates for coronavirus, human coronavirus 229E and murine hepatitis virus, were analyzed as process controls. Even though SARS-CoV-2 has an affinity for solids, the total RNA copies of SARS-CoV-2 per wastewater sample, after centrifugation (12,000 g, 1.5 h, no brake), were partitioned evenly between the liquid and solid fractions. Centrifugation at greater speeds for longer durations resulted in a shift in partitioning for all viruses toward the solid fraction except for PMMoV, which remained mostly in the liquid fraction. The surrogates more closely reflected the partitioning of SARS-CoV-2 under high centrifugation speed and duration while PMMoV did not. Interestingly, ultrafiltration devices were inconsistent in estimating RNA copies in wastewater, which can influence the interpretation of partitioning. Developing a better understanding of the fate of SARS-CoV-2 in wastewater and creating a foundation of best practices is the key to supporting the current pandemic response and preparing for future potential infectious diseases.
Collapse
Affiliation(s)
- Patrick R Breadner
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Azar Fattahi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Scott J Boegel
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Yuwei Xie
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Science, Baylor University, One Bear Place, Waco, TX 76798, USA
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
24
|
Alkady W, ElBahnasy K, Gad W. A diagnostic model for COVID-19 based on proteomics analysis. Comput Biol Med 2023; 162:107109. [PMID: 37276752 PMCID: PMC10232940 DOI: 10.1016/j.compbiomed.2023.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Early diagnosis of Coronavirus Disease 2019 (COVID-19) can help save patients' lives before the disease turns severe. This can be achieved through an effective and correct treatment protocol. In this paper, a prediction model is proposed to detect infected cases and determine the severity level of the disease. METHODS The proposed model is based on utilizing proteins and metabolites as features for each patient, which are then analyzed using feature selection methods such as Principal Component Analysis (PCA), Information Gain (IG), and analysis of Variance (ANOVA) to select the most significant features. The model employs three classifiers, namely K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF), to predict and classify the severity level of the COVID-19 infection. The proposed model is evaluated using four performance measures: accuracy, sensitivity, specificity, and precision. RESULTS The experiment results show that the proposed model accuracy can reach 80% using RF classifier with PCA. The PCA selects 22 proteins and 10 metabolites. While ANOVA selects 9 proteins and 5 metabolites. The accuracy reaches 92% after applying RF classifier with the ANOVA. Finally, the accuracy reaches 93% using the RF classifier with only ten features. The selected features are 7 proteins and 3 metabolites. Moreover, it shows that the selected features have a relation to the immune system and respiratory systems. CONCLUSION The proposed model uses three classifiers and shows promising results by selecting the important features and maximizing the prediction accuracy.
Collapse
Affiliation(s)
- Walaa Alkady
- Bioinformatics Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.
| | - Khaled ElBahnasy
- Department of Information Systems, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.
| | - Walaa Gad
- Department of Information Systems, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
25
|
Kang Y, Wang J, Zhang W, Xu Y, Xu B, Qu G, Yu Y, Yan B, Su G. RNA extraction-free workflow integrated with a single-tube CRISPR-Cas-based colorimetric assay for rapid SARS-CoV-2 detection in different environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131487. [PMID: 37148798 PMCID: PMC10125216 DOI: 10.1016/j.jhazmat.2023.131487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
On-site environmental surveillance of viruses is increasingly important for infection prevention and pandemic control. Herein, we report a facile single-tube colorimetric assay for detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from environmental compartments. Using glycerol as the phase separation additive, reverse transcription recombinase polymerase amplification (RT-RPA), CRISPR-Cas system activation, G-quadruplex (G4) cleavage, and G4-based colorimetric reaction were performed in a single tube. To further simplify the test, viral RNA genomes used for the one-tube assay were obtained via acid/base treatment without further purification. The whole assay from sampling to visual readout was completed within 30 min at a constant temperature without the need for sophisticated instruments. Coupling the RT-RPA to CRISPR-Cas improved the reliability by avoiding false positive results. Non-labeled cost-effective G4-based colorimetric systems are highly sensitive to CRISPR-Cas cleavage events, and the proposed assay reached the limit of detection of 0.84 copies/µL. Moreover, environmental samples from contaminated surfaces and wastewater were analyzed using this facile colorimetric assay. Given its simplicity, sensitivity, specificity, and cost-effectiveness, our proposed colorimetric assay is highly promising for applications in on-site environmental surveillance of viruses.
Collapse
Affiliation(s)
- Yuliang Kang
- School of Pharmacy, Nantong University, Nantong 226001, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wensi Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
26
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
27
|
Belmonte-Lopes R, Barquilha CER, Kozak C, Barcellos DS, Leite BZ, da Costa FJOG, Martins WL, Oliveira PE, Pereira EHRA, Filho CRM, de Souza EM, Possetti GRC, Vicente VA, Etchepare RG. 20-Month monitoring of SARS-CoV-2 in wastewater of Curitiba, in Southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76687-76701. [PMID: 37243767 PMCID: PMC10224667 DOI: 10.1007/s11356-023-27926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic resulted in the collapse of healthcare systems and led to the development and application of several approaches of wastewater-based epidemiology to monitor infected populations. The main objective of this study was to carry out a SARS-CoV-2 wastewater based surveillance in Curitiba, Southern Brazil Sewage samples were collected weekly for 20 months at the entrance of five treatment plants representing the entire city and quantified by qPCR using the N1 marker. The viral loads were correlated with epidemiological data. The correlation by sampling points showed that the relationship between the viral loads and the number of reported cases was best described by a cross-correlation function, indicating a lag between 7 and 14 days amidst the variables, whereas the data for the entire city presented a higher correlation (0.84) with the number of positive tests at lag 0 (sampling day). The results also suggest that the Omicron VOC resulted in higher titers than the Delta VOC. Overall, our results showed that the approach used was robust as an early warning system, even with the use of different epidemiological indicators or changes in the virus variants in circulation. Therefore, it can contribute to public decision-makers and health interventions, especially in vulnerable and low-income regions with limited clinical testing capacity. Looking toward the future, this approach will contribute to a new look at environmental sanitation and should even induce an increase in sewage coverage rates in emerging countries.
Collapse
Affiliation(s)
- Ricardo Belmonte-Lopes
- Graduate Program On Pathology, Parasitology, and Microbiology, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Basic Pathology Department, Biological Sciences Sector, Microbiological Collections of Paraná Network, Room 135/136. 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Basic Pathology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Carlos E R Barquilha
- Graduate Program On Water Resources and Environmental Engineering, Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Caroline Kozak
- Environment Department, Maringa State University, SESI Block, 1800 Ângelo Moreira da Fonseca AvenueRoom 15, Parque Danielle, Umuarama, PR, 87506-370, Brazil
| | - Demian S Barcellos
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Bárbara Z Leite
- Research and Innovation Management, Paraná Sanitation Company (SANEPAR), 1376 Eng. Rebouças St, Rebouças, Curitiba, PR, 80215-900, Brazil
| | - Fernanda J O Gomes da Costa
- Research and Innovation Management, Paraná Sanitation Company (SANEPAR), 1376 Eng. Rebouças St, Rebouças, Curitiba, PR, 80215-900, Brazil
| | - William L Martins
- Basic Pathology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Pâmela E Oliveira
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Edy H R A Pereira
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Cesar R Mota Filho
- Sanitary and Environmental Engineering Department, Federal University of Minas Gerais (UFMG), 6627 Antonio Carlos Avenue, Block 1, Room 4529, Belo Horizonte, MG, 31270-901, Brazil
| | - Emanuel M de Souza
- Biochemistry and Molecular Biology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Gustavo R C Possetti
- Research and Innovation Management, Paraná Sanitation Company (SANEPAR), 1376 Eng. Rebouças St, Rebouças, Curitiba, PR, 80215-900, Brazil
| | - Vania A Vicente
- Basic Pathology Department, Biological Sciences Sector, Microbiological Collections of Paraná Network, Room 135/136. 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
- Basic Pathology Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil
| | - Ramiro G Etchepare
- Hydraulics and Sanitation Department, Federal University of Paraná, 100 Coronel Francisco Heráclito Dos Santos Avenue, Curitiba, PR, 81530-000, Brazil.
| |
Collapse
|
28
|
Ashraf MA, Nawaz M, Asif A, Ali MA, Mehmood A, Aziz MW, Shabbir MZ, Mukhtar N, Shabbir MAB, Raza S, Yaqub T. Temporal study of wastewater surveillance from September 2020 to March 2021: an estimation of COVID-19 patients in Lahore, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80855-80862. [PMID: 37308626 DOI: 10.1007/s11356-023-28041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
The first aim of study was to quantify the viral load in the wastewater samples by RT-qPCR testing in Lahore population to estimate the number of patients affected and predict the next resurgence of COVID-19 wave in the city. The second aim of the study was to determine the hotspot areas of Lahore which remained positive more often for virus with high viral load. In this study, n = 420 sewage samples were collected on an average of two weeks intervals from 30 different sewage water disposal stations (14 sampling events) from Sept 2020 to March 2021. RNA was extracted and quantified by RT-qPCR without concentrating the virus in samples. Number of positive disposal sites (7-93%), viral load from sewage samples (100.296 to 103.034), and estimated patients (660-17,030) ranged from low to high according to the surge and restrain of 2nd and 3rd COVID-19 waves in the country. The viral load and estimated patients were reported high in January 2021 and March 2021 which were similar to the peak of 2nd and 3rd waves in Pakistan. Site 18 (Niaz Baig village DS) showed the highest viral load among all sites. Findings of the present study helped to estimate the number of patients and track the resurgence in COVID-19 waves in Lahore particularly, and in Punjab generally. Furthermore, it emphasizes the role of wastewater-based epidemiology to help policymakers strengthen the quarantine measures along with immunization to overcome enteric viral diseases. Local and national stake holders should work in collaboration to improve the environmental hygiene to control the disease.
Collapse
Affiliation(s)
- Muhammad Adnan Ashraf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Ali Asif
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Asad Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Adnan Mehmood
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
29
|
Gupta P, Liao S, Ezekiel M, Novak N, Rossi A, LaCross N, Oakeson K, Rohrwasser A. Wastewater Genomic Surveillance Captures Early Detection of Omicron in Utah. Microbiol Spectr 2023; 11:e0039123. [PMID: 37154725 PMCID: PMC10269515 DOI: 10.1128/spectrum.00391-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Wastewater-based epidemiology has emerged as a powerful public health tool to trace new outbreaks, detect trends in infection, and provide an early warning of COVID-19 community spread. Here, we investigated the spread of SARS-CoV-2 infections across Utah by characterizing lineages and mutations detected in wastewater samples. We sequenced over 1,200 samples from 32 sewersheds collected between November 2021 and March 2022. Wastewater sequencing confirmed the presence of Omicron (B.1.1.529) in Utah in samples collected on November 19, 2021, up to 10 days before its corresponding detection via clinical sequencing. Analysis of diversity of SARS-CoV-2 lineages revealed Delta as the most frequently detected lineage during November 2021 (67.71%), but it started declining in December 2021 with the onset of Omicron (B.1.1529) and its sublineage BA.1 (6.79%). The proportion of Omicron increased to ~58% by January 4, 2022, and completely displaced Delta by February 7, 2022. Wastewater genomic surveillance revealed the presence of Omicron sublineage BA.3, a lineage that was not identified from Utah's clinical surveillance. Interestingly, several Omicron-defining mutations began to appear in early November 2021 and increased in prevalence across sewersheds from December to January, aligning with the surge in clinical cases. Our study highlights the importance of tracking epidemiologically relevant mutations in detecting emerging lineages in the early stages of an outbreak. Wastewater genomic epidemiology provides an unbiased representation of community-wide infection dynamics and is an excellent complementary tool to SARS-CoV-2 clinical surveillance, with the potential of guiding public health action and policy decisions. IMPORTANCE SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has had a significant impact on public health. Global emergence of novel SARS-CoV-2 variants, shift to at-home tests, and reduction in clinical tests demonstrate the need for a reliable and effective surveillance strategy to contain COVID-19 spread. Monitoring of SARS-CoV-2 viruses in wastewater is an effective way to trace new outbreaks, establish baseline levels of infection, and complement clinical surveillance efforts. Wastewater genomic surveillance, in particular, can provide valuable insights into the evolution and spread of SARS-CoV-2 variants. We characterized the diversity of SARS-CoV-2 mutations and lineages using whole-genome sequencing to trace the introduction of lineage B.1.1.519 (Omicron) in Utah. Our data showed that Omicron appeared in Utah on November 19, 2021, up to 10 days prior to its detection in patient samples, indicating that wastewater surveillance provides an early warning signal. Our findings are important from a public health perspective as timely identification of communities with high COVID-19 transmission could help guide public health interventions.
Collapse
Affiliation(s)
- Pooja Gupta
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Stefan Liao
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Maleea Ezekiel
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Nicolle Novak
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Alessandro Rossi
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Nathan LaCross
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Kelly Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Andreas Rohrwasser
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| |
Collapse
|
30
|
Lanzarini NM, Mannarino CF, Ribeiro AVC, Prado T, Vahia LS, Siqueira MM, Resende PC, Quintaes BR, Miagostovich MP. SARS-CoV-2 surveillance-based on municipal solid waste leachate in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67368-67377. [PMID: 37101215 PMCID: PMC10132925 DOI: 10.1007/s11356-023-27019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Municipal solid waste leachate-based epidemiology is an alternative viral tracking tool that applies fresh truck leachate as an early warning of public health emergencies. This study aimed to investigate the potential of SARS-CoV-2 surveillance based on solid waste fresh truck leachate. Twenty truck leachate samples were ultracentrifugated, nucleic acid extracted, and real-time RT-qPCR SARS-CoV-2 N1/N2 applied. Viral isolation, variant of concern (N1/N2) inference, and whole genome sequencing were also performed. SARS-CoV-2 was detected on 40% (8/20) of samples, with a concentration from 2.89 to 6.96 RNA Log10 100 mL-1. The attempt to isolate SARS-CoV-2 and recover the whole genome was not successful; however, positive samples were characterized as possible pre-variant of concern (pre-VOC), VOC Alpha (B.1.1.7) and variant of interest Zeta (P.2). This approach revealed an alternative tool to infer SARS-CoV-2 in the environment and may help the management of local surveillance, health, and social policies.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Leonardo Saboia Vahia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
31
|
Tang L, Wu J, Liu R, Feng Z, Zhang Y, Zhao Y, Li Y, Yang K. Exploration on wastewater-based epidemiology of SARS-CoV-2: Mimic relative quantification with endogenous biomarkers as internal reference. Heliyon 2023; 9:e15705. [PMID: 37124340 PMCID: PMC10122556 DOI: 10.1016/j.heliyon.2023.e15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Wastewater-based epidemiology has become a powerful surveillance tool for monitoring the pandemic of COVID-19. Although it is promising to quantitatively correlate the SARS-CoV-2 RNA concentration in wastewater with the incidence of community infection, there is still no consensus on whether the viral nucleic acid concentration in sewage should be normalized against the abundance of endogenous biomarkers and which biomarker should be used as a reference for the normalization. Here, several candidate endogenous reference biomarkers for normalization of SARS-CoV-2 signal in municipal sewage were evaluated. The human fecal indicator virus (crAssphage) is a promising candidate of endogenous reference biomarker for data normalization of both DNA and RNA viruses for its intrinsic viral nature and high and stable content in sewage. Without constructing standard curves, the relative quantification of sewage viral nucleic acid against the abundance of the reference biomarker can be used to correlate with community COVID-19 incidence, which was proved via mimic experiments by spiking pseudovirus of different concentrations in sewage samples. Dilution of pseudovirus-seeded wastewater did not affect the relative abundance of viral nucleic acid, demonstrating that relative quantification can overcome the sewage dilution effects caused by the greywater input, precipitation and/or groundwater infiltration. The process of concentration, recovery and detection of the endogenous biomarker was consistent with that of SARS-CoV-2 RNA. Thus, it is necessary to co-quantify the endogenous biomarker because it can be not only an internal reference for data normalization, but also a process control.
Collapse
Affiliation(s)
- Langjun Tang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongxi Feng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanan Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingzhe Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yonghong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Yang K, Guo J, Møhlenberg M, Zhou H. SARS-CoV-2 surveillance in medical and industrial wastewater-a global perspective: a narrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63323-63334. [PMID: 36988799 PMCID: PMC10049894 DOI: 10.1007/s11356-023-26571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
The novel coronavirus SARS-CoV-2 has spread at an unprecedented rate since late 2019, leading to the global COVID-19 pandemic. During the pandemic, being able to detect SARS-CoV-2 in human populations with high coverage quickly is a huge challenge. As SARS-CoV-2 is excreted in human excreta and thus exposed to the aqueous environment through sewers, the goal is to develop an ideal, non-invasive, cost-effective epidemiological method for detecting SARS-CoV-2. Wastewater surveillance has gained widespread interest and is increasingly being investigated as an effective early warning tool for monitoring the spread and evolution of the virus. This review emphasizes important findings on SARS-CoV-2 wastewater-based epidemiology (WBE) in different continents and techniques used to detect SARS-CoV-2 in wastewater during the period 2020-2022. The results show that WBE is a valuable population-level method for monitoring SARS-CoV-2 and is a valuable early warning alert. It can assist policymakers in formulating relevant policies to avoid the negative impacts of early or delayed action. Such strategy can also help avoid unnecessary wastage of medical resources, rationalize vaccine distribution, assist early detection, and contain large-scale outbreaks.
Collapse
Affiliation(s)
- Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China
| | - Michelle Møhlenberg
- Department of Biomedicine, Høegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Road 1166, Wenjiang, Chengdu, 610000, China.
| |
Collapse
|
33
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Green BM, Kara-Murdoch F, Swift CM, Hazen TC. Decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA in raw sewage from university dormitories. Front Microbiol 2023; 14:1144026. [PMID: 37187532 PMCID: PMC10175580 DOI: 10.3389/fmicb.2023.1144026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA has been frequently detected in sewage from many university dormitories to inform public health decisions during the COVID-19 pandemic, a clear understanding of SARS-CoV-2 RNA persistence in site-specific raw sewage is still lacking. To investigate the SARS-CoV-2 RNA persistence, a field trial was conducted in the University of Tennessee dormitories raw sewage, similar to municipal wastewater. Methods The decay of enveloped SARS-CoV-2 RNA and non-enveloped Pepper mild mottle virus (PMMoV) RNA was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in raw sewage at 4°C and 20°C. Results Temperature, followed by the concentration level of SARS-CoV-2 RNA, was the most significant factors that influenced the first-order decay rate constants (k) of SARS-CoV-2 RNA. The mean k values of SARS-CoV-2 RNA were 0.094 day-1 at 4°C and 0.261 day-1 at 20°C. At high-, medium-, and low-concentration levels of SARS-CoV-2 RNA, the mean k values were 0.367, 0.169, and 0.091 day-1, respectively. Furthermore, there was a statistical difference between the decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA at different temperature conditions. Discussion The first decay rates for both temperatures were statistically comparable for SARS-CoV-2 RNA, which showed sensitivity to elevated temperatures but not for PMMoV RNA. This study provides evidence for the persistence of viral RNA in site-specific raw sewage at different temperature conditions and concentration levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - K. T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Department of Facilities Services, The University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
34
|
Tangwangvivat R, Wacharapluesadee S, Pinyopornpanish P, Petcharat S, Hearn SM, Thippamom N, Phiancharoen C, Hirunpatrawong P, Duangkaewkart P, Supataragul A, Chaiden C, Wechsirisan W, Wandee N, Srimuang K, Paitoonpong L, Buathong R, Klungthong C, Pawun V, Hinjoy S, Putcharoen O, Iamsirithaworn S. SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region. Viruses 2023; 15:v15040876. [PMID: 37112855 PMCID: PMC10145351 DOI: 10.3390/v15040876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Wastewater surveillance is considered a promising approach for COVID-19 surveillance in communities. In this study, we collected wastewater samples between November 2020 and February 2022 from twenty-three sites in the Bangkok Metropolitan Region to detect the presence of SARS-CoV-2 and its variants for comparison to standard clinical sampling. A total of 215 wastewater samples were collected and tested for SARS-CoV-2 RNA by real-time PCR with three targeted genes (N, E, and ORF1ab); 102 samples were positive (42.5%). The SARS-CoV-2 variants were determined by a multiplex PCR MassARRAY assay to distinguish four SARS-CoV-2 variants, including Alpha, Beta, Delta, and Omicron. Multiple variants of Alpha-Delta and Delta-Omicron were detected in the wastewater samples in July 2021 and January 2022, respectively. These wastewater variant results mirrored the country data from clinical specimens deposited in GISAID. Our results demonstrated that wastewater surveillance using multiple signature mutation sites for SARS-CoV-2 variant detection is an appropriate strategy to monitor the presence of SARS-CoV-2 variants in the community at a low cost and with rapid turn-around time. However, it is essential to note that sequencing surveillance of wastewater samples should be considered complementary to whole genome sequencing of clinical samples to detect novel variants.
Collapse
Affiliation(s)
- Ratanaporn Tangwangvivat
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Papassorn Pinyopornpanish
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Suthida Muangnoicharoen Hearn
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Chadaporn Phiancharoen
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Piyapha Hirunpatrawong
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Phattra Duangkaewkart
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Ananporn Supataragul
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Chadaporn Chaiden
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Wiriyachayon Wechsirisan
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Nantaporn Wandee
- National Institute of Animal Health, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Chatuchak, Bangkok 10900, Thailand
| | - Krongkan Srimuang
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Leilani Paitoonpong
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Vichan Pawun
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Soawapak Hinjoy
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| |
Collapse
|
35
|
Henriques TB, Cassini ST, de Pinho Keller R. Contribution of wastewater-based epidemiology to SARS-CoV-2 screening in Brazil and the United States. JOURNAL OF WATER AND HEALTH 2023; 21:343-353. [PMID: 37338314 PMCID: wh_2023_260 DOI: 10.2166/wh.2023.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Wastewater-based epidemiology (WBE) is a valuable tool for investigating the existence, prevalence, and spread of pathogens, such as SARS-CoV-2, in a given population. WBE, proposed as part of the SARS-CoV-2 surveillance strategy for monitoring virus circulation, may complement clinical data and contribute to reducing the spread of the disease through early detection. In developing countries such as Brazil, where clinical data are scarce, information obtained from wastewater monitoring can be crucial for designing public health interventions. In the United States, the country with the largest number of confirmed SARS-CoV-2 cases worldwide, WBE programs have begun to be carried out to investigate correlations with coronavirus disease 2019 (COVID-19) clinical data and support health agencies in decision-making to prevent the spread of the disease. This systematic review aimed to assess the contribution of WBE to SARS-CoV-2 screening in Brazil and the United States and compare studies conducted in a developed and developing country. Studies in Brazil and the United States showed WBE to be an important epidemiological surveillance strategy in the context of the COVID-19 pandemic. WBE approaches are useful for early detection of COVID-19 outbreaks, estimation of clinical cases, and assessment of the effectiveness of vaccination program.
Collapse
Affiliation(s)
- Taciane Barbosa Henriques
- Sanitation Laboratory, Department of Environmental Engineering, Federal University of Espírito Santo, Vitória, Espirito Santo, Brazil E-mail:
| | - Servio Túlio Cassini
- Sanitation Laboratory, Department of Environmental Engineering, Federal University of Espírito Santo, Vitória, Espirito Santo, Brazil E-mail:
| | - Regina de Pinho Keller
- Sanitation Laboratory, Department of Environmental Engineering, Federal University of Espírito Santo, Vitória, Espirito Santo, Brazil E-mail:
| |
Collapse
|
36
|
Zheng X, Wang M, Deng Y, Xu X, Lin D, Zhang Y, Li S, Ding J, Shi X, Yau CI, Poon LLM, Zhang T. A rapid, high-throughput, and sensitive PEG-precipitation method for SARS-CoV-2 wastewater surveillance. WATER RESEARCH 2023; 230:119560. [PMID: 36623382 PMCID: PMC9803703 DOI: 10.1016/j.watres.2022.119560] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The effective application of wastewater surveillance is dependent on testing capacity and sensitivity to obtain high spatial resolution testing results for a timely targeted public health response. To achieve this purpose, the development of rapid, high-throughput, and sensitive virus concentration methods is urgently needed. Various protocols have been developed and implemented in wastewater surveillance networks so far, however, most of them lack the ability to scale up testing capacity or cannot achieve sufficient sensitivity for detecting SARS-CoV-2 RNA at low prevalence. In the present study, using positive raw wastewater in Hong Kong, a PEG precipitation-based three-step centrifugation method was developed, including low-speed centrifugation for large particles removal and the recovery of viral nucleic acid, and medium-speed centrifugation for the concentration of viral nucleic acid. This method could process over 100 samples by two persons per day to reach the process limit of detection (PLoD) of 3286 copies/L wastewater. Additionally, it was found that the testing capacity could be further increased by decreasing incubation and centrifugation time without significantly influencing the method sensitivity. The entire procedure uses ubiquitous reagents and instruments found in most laboratories to obtain robust testing results. This high-throughput, cost-effective, and sensitive tool will promote the establishment of nearly real-time wastewater surveillance networks for valuable public health information.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Mengying Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Danxi Lin
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chung In Yau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
37
|
Ransome E, Hobbs F, Jones S, Coleman CM, Harris ND, Woodward G, Bell T, Trew J, Kolarević S, Kračun-Kolarević M, Savolainen V. Evaluating the transmission risk of SARS-CoV-2 from sewage pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159161. [PMID: 36191696 PMCID: PMC9525188 DOI: 10.1016/j.scitotenv.2022.159161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/02/2023]
Abstract
The presence of SARS-CoV-2 in untreated sewage has been confirmed in many countries but its incidence and infection risk in contaminated waters is poorly understood. The River Thames in the UK receives untreated sewage from 57 Combined Sewer Overflows (CSOs), with many discharging dozens of times per year. This study investigated if such discharges provide a pathway for environmental transmission of SARS-CoV-2. Samples of wastewater, surface water, and sediment collected close to six CSOs on the River Thames were assayed over eight months for SARS-CoV-2 RNA and infectious virus. Bivalves were also sampled as an indicator species of viral bioaccumulation. Sediment and water samples from the Danube and Sava rivers in Serbia, where raw sewage is also discharged in high volumes, were assayed as a positive control. No evidence of SARS-CoV-2 RNA or infectious virus was found in UK samples, in contrast to RNA positive samples from Serbia. Furthermore, this study shows that infectious SARS-CoV-2 inoculum is stable in Thames water and sediment for <3 days, while SARS-CoV-2 RNA is detectable for at least seven days. This indicates that dilution of wastewater likely limits environmental transmission, and that detection of viral RNA alone is not an indication of pathogen spillover.
Collapse
Affiliation(s)
- E Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK.
| | - F Hobbs
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - S Jones
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - C M Coleman
- Wolfson Centre for Global Virus Research, Department of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - N D Harris
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - G Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - T Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - J Trew
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - S Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - M Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - V Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
38
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
39
|
Boyd E, Coombe M, Prystajecky N, Caleta JM, Sekirov I, Tyson J, Himsworth C. Hands off the Mink! Using Environmental Sampling for SARS-CoV-2 Surveillance in American Mink. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1248. [PMID: 36674005 PMCID: PMC9858792 DOI: 10.3390/ijerph20021248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Throughout the COVID-19 pandemic, numerous non-human species were shown to be susceptible to natural infection by SARS-CoV-2, including farmed American mink. Once infected, American mink can transfer the virus from mink to human and mink to mink, resulting in a high rate of viral mutation. Therefore, outbreak surveillance on American mink farms is imperative for both mink and human health. Historically, disease surveillance on mink farms has consisted of a combination of mortality and live animal sampling; however, these methodologies have significant limitations. This study compared PCR testing of both deceased and live animal samples to environmental samples on an active outbreak premise, to determine the utility of environmental sampling. Environmental sampling mirrored trends in both deceased and live animal sampling in terms of percent positivity and appeared more sensitive in some low-prevalence instances. PCR CT values of environmental samples were significantly different from live animal samples' CT values and were consistently high (mean CT = 36.2), likely indicating a low amount of viral RNA in the samples. There is compelling evidence in favour of environmental sampling for the purpose of disease surveillance, specifically as an early warning tool for SARS-CoV-2; however, further work is needed to ultimately determine whether environmental samples are viable sources for molecular epidemiology investigations.
Collapse
Affiliation(s)
- Ellen Boyd
- Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, BC V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle Coombe
- Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, BC V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Natalie Prystajecky
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | | | - Inna Sekirov
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - John Tyson
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Chelsea Himsworth
- Ministry of Agriculture and Food, Government of British Columbia, Abbotsford, BC V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
40
|
Gitter A, Oghuan J, Godbole AR, Chavarria CA, Monserrat C, Hu T, Wang Y, Maresso AW, Hanson BM, Mena KD, Wu F. Not a waste: Wastewater surveillance to enhance public health. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Domestic wastewater, when collected and evaluated appropriately, can provide valuable health-related information for a community. As a relatively unbiased and non-invasive approach, wastewater surveillance may complement current practices towards mitigating risks and protecting population health. Spurred by the COVID-19 pandemic, wastewater programs are now widely implemented to monitor viral infection trends in sewersheds and inform public health decision-making. This review summarizes recent developments in wastewater-based epidemiology for detecting and monitoring communicable infectious diseases, dissemination of antimicrobial resistance, and illicit drug consumption. Wastewater surveillance, a quickly advancing Frontier in environmental science, is becoming a new tool to enhance public health, improve disease prevention, and respond to future epidemics and pandemics.
Collapse
|
41
|
Demongeot J, Fougère C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines (Basel) 2022; 11:40. [PMID: 36679885 PMCID: PMC9864138 DOI: 10.3390/vaccines11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The adventure of the mRNA vaccine began thirty years ago in the context of influenza. This consisted in encapsulating the mRNA coding for a viral protein in a lipid particle. We show how the mRNA encoding S protein has been modified for that purpose in the context of the anti-SARS-CoV-2 vaccination. RESULTS by using data coming from genetic and epidemiologic databases, we show the theoretical possibility of fragmentation of this mRNA into small RNA sequences capable of inhibiting important bio-syntheses such as the production of beta-globin. DISCUSSION we discuss two aspects related to mRNA vaccine: (i) the plausibility of mRNA fragmentation, and (ii) the role of liposomal nanoparticles (LNPs) used in the vaccine and their impact on mRNA biodistribution. CONCLUSION we insist on the need to develop lipid nanoparticles allowing personalized administration of vaccines and avoiding adverse effects due to mRNA fragmentation and inefficient biodistribution. Hence, we recommend (i) adapting the mRNA of vaccines to the least mutated virus proteins and (ii) personalizing its administration to the categories of chronic patients at risk most likely to suffer from adverse effects.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGEIS & Telecom4Health, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| | | |
Collapse
|
42
|
Levy A, Gazeley J, Lee T, Jardine A, Gordon C, Cooper N, Theobald R, Huppatz C, Sjollema S, Hodge M, Speers D. Whole genome sequencing of SARS-CoV-2 from wastewater links to individual cases in catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158266. [PMID: 36028041 PMCID: PMC9398818 DOI: 10.1016/j.scitotenv.2022.158266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/07/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
After a limited first wave of community transmission in March 2020 and until 2022, Western Australia was largely free of COVID-19, with cases restricted to hotel quarantine, commercial vessels, and small, infrequent community clusters. Despite the low case load setting, sequencing of wastewater samples from large municipal treatment plants produced SARS-CoV-2 genomes with coverage up to 99.7 % and depth to 4000×, which was sufficient to link wastewater sequences to those of active cases in the catchment at the time. This study demonstrates that ≤5 positive individuals can be enough to produce high genomic coverage (>90 %) assemblies even in catchments of up to a quarter of a million people. Genomic analysis of wastewater contemporaneous with clinical cases can also be used to rule out transmission between cases in different catchments, when their SARS-CoV-2 genomes have distinguishing nucleotide polymorphisms. These findings reveal a greater potential of wastewater WGS to inform outbreak management and disease surveillance than previously recognized.
Collapse
Affiliation(s)
- Avram Levy
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia.
| | - Jake Gazeley
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Terence Lee
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Andrew Jardine
- Public Health Emergency Operations Centre, Health Department of Western Australia, Western Australia, Australia
| | | | - Natalie Cooper
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Richard Theobald
- Environmental Health Directorate, Health Department of Western Australia, Western Australia, Australia
| | - Clare Huppatz
- Public Health Emergency Operations Centre, Health Department of Western Australia, Western Australia, Australia
| | - Sandra Sjollema
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Meredith Hodge
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - David Speers
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
43
|
Zhang X, Zhang L, Wang Y, Zhang M, Zhou J, Liu X, Wang Y, Qu C, Han W, Hou M, Deng F, Luo Y, Mao Y, Gu W, Dong Z, Pan Y, Zhang D, Tang S, Zhang L. Detection of the SARS-CoV-2 Delta Variant in the Transboundary Rivers of Yunnan, China. ACS ES&T WATER 2022; 2:2367-2377. [PMID: 37552741 PMCID: PMC9631342 DOI: 10.1021/acsestwater.2c00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 05/30/2023]
Abstract
Ruili and Longchuan, two border counties in southwestern China, are facing epidemic control challenges due to the high rate of COVID-19 infections originating from neighboring Myanmar. Here, we aimed to establish the applicability of wastewater and environmental water surveillance of SARS-CoV-2 and conduct whole-genome sequencing (WGS) to trace the possible infection origin. In August 2021, total 72 wastewater and river water samples were collected from 32 sampling sites. SARS-CoV-2 ORF1ab and N genes were measured by RT-qPCR. We found that 19 samples (26.39%) were positive, and the viral loads of ORF1ab and N genes were 6.62 × 102-2.55×105 and 1.86 × 103-2.32 × 105 copies/L, respectively. WGS further indicated the sequences in two transboundary river samples, and one hospital wastewater sample belonged to the delta variant, suggesting that the infection source might be areas with high COVID-19 delta variant incidence in Southeast Asia (e.g., Myanmar). We reported for the first time the detection and quantification of SARS-CoV-2 RNA in the transboundary rivers of Myanmar-China. Our findings demonstrate that wastewater and environmental water may provide independent and nonintrusive surveillance points to monitor the global spread of emerging COVID-19 variants of concern, particularly in high-risk regions or border areas with considerable epidemic challenges and poor wastewater treatment facilities.
Collapse
Affiliation(s)
- Xiao Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Liang Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Meiling Zhang
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Jienan Zhou
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Xin Liu
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Yan Wang
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Changsheng Qu
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Wenxiang Han
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yueyun Luo
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yixin Mao
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Zhaomin Dong
- School of Space and Environment, Beihang
University, Beijing100191, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| |
Collapse
|
44
|
Sridhar J, Parit R, Boopalakrishnan G, Rexliene MJ, Praveen R, Viswananathan B. Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100241. [PMID: 37520919 PMCID: PMC9341170 DOI: 10.1016/j.cscee.2022.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 08/01/2023]
Abstract
Coronavirus disease caused by the SARS-CoV-2 virus has emerged as a global challenge in terms of health and disease monitoring. COVID-19 infection is mainly spread through the SARS-CoV-2 infection leading to the development of mild to severe clinical manifestations. The virus binds to its cognate receptor ACE2 which is widely expressed among different tissues in the body. Notably, SARS-CoV-2 shedding in the fecal samples has been reported through the screening of sewage water across various countries. Wastewater screening for the presence of SARS-CoV-2 provides an alternative method to monitor infection threat, variant identification, and clinical evaluation to restrict the virus progression. Multiple cohort studies have reported the application of wastewater treatment approaches and epidemiological significance in terms of virus monitoring. Thus, the manuscript outlines consolidated and systematic information regarding the application of wastewater-based epidemiology in terms of monitoring and managing a viral disease outbreak like COVID-19.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | | | - M Johni Rexliene
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rajkumar Praveen
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Balaji Viswananathan
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| |
Collapse
|
45
|
Corpuz MVA, Buonerba A, Zarra T, Hasan SW, Korshin GV, Belgiorno V, Naddeo V. Advances in virus detection methods for wastewater-based epidemiological applications. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100238. [PMID: 37520925 PMCID: PMC9339091 DOI: 10.1016/j.cscee.2022.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool that has the potential to reveal the extent of an ongoing disease outbreak or to predict an emerging one. Recent studies have shown that SARS-CoV-2 concentration in wastewater may be correlated with the number of COVID-19 cases in the corresponding population. Most of the recent studies and applications of wastewater-based surveillance of SARS-CoV-2 applied the "gold standard" real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) detection method. However, this method also has its limitations. The paper aimed to present recent improvements and applications of the PCR-based methods for SARS-CoV-2 monitoring in wastewater. Furthermore, it aimed to review alternative methods utilized and/or proposed for the detection of the virus in wastewater matrices. From the review, it was found that several studies have investigated the use of reverse-transcription digital polymerase reaction (RT-dPCR), which was generally shown to have a lower limit of detection (LOD) over the RT-qPCR. Aside from this, non-PCR-based and non-RNA based methods have also been explored for the detection of SARS-CoV-2 in wastewater, with detailed attention given to the detection of SARS-CoV-2 proteins. The potential methods for protein detection include mass spectrometry, the use of immunosensors, and nanotechnological applications. In addition, the review of recent studies also revealed two types of emerging methods related to the detection of SARS-CoV-2 in wastewater: i) capsid-integrity assays to infer about the infectivity of SARS-CoV-2 present in wastewater, and ii) alternative methods for detection of SARS-CoV-2 variants of concern (VOCs) in wastewater. The recent studies on proposed methods of SARS-CoV-2 detection in wastewater have considered improving this approach in one or more of the following aspects: rapidity, simplicity, cost, sensitivity, and specificity. However, further studies are needed in order to realize the full application of these methods for WBE in the field.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| |
Collapse
|
46
|
Parra-Arroyo L, Martinez-Ruiz M, Lucero S, Oyervides-Muñoz MA, Wilkinson M, Melchor-Martínez EM, Araújo RG, Coronado-Apodaca KG, Velasco Bedran H, Buitrón G, Noyola A, Barceló D, Iqbal HM, Sosa-Hernández JE, Parra-Saldívar R. Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Langan LM, O’Brien M, Rundell ZC, Back JA, Ryan BJ, Chambliss CK, Norman RS, Brooks BW. Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T WATER 2022; 2:1929-1943. [PMID: 37552714 PMCID: PMC9063990 DOI: 10.1021/acsestwater.1c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Zach C. Rundell
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Jeffrey A. Back
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Benjamin J. Ryan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Chemistry and Biochemistry,
Baylor University, One Bear Place #97348, Waco, Texas 76798,
United States
| | - R. Sean Norman
- Environmental Health Sciences, Arnold
School of Public Health, South Carolina, 921 Assembly Street, Columbia,
South Carolina 29208, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Institute of Biomedical Studies, Baylor
University, One Bear Place #97224, Waco, Texas 76798, United
States
| |
Collapse
|
48
|
Roldan-Hernandez L, Graham KE, Duong D, Boehm AB. Persistence of Endogenous SARS-CoV-2 and Pepper Mild Mottle Virus RNA in Wastewater-Settled Solids. ACS ES&T WATER 2022; 2:1944-1952. [PMID: 36380769 PMCID: PMC8938836 DOI: 10.1021/acsestwater.2c00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Limited information is available on the decay rate of endogenous SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA in wastewater and primary settled solids, potentially limiting an understanding of how transit or holding times within wastewater infrastructure might impact RNA measurements and their relationship to community COVID-19 infections. In this study, primary settled solids samples were collected from two wastewater treatment plants in the San Francisco Bay Area. Samples were thoroughly mixed, aliquoted into subsamples, and stored at 4, 22, and 37 °C for 10 days. The concentrations of SARS-CoV-2 (N1 and N2 targets) and PMMoV RNA were measured using an RT-ddPCR. Limited decay (<1 log10 reduction) was observed in the detection of viral RNA targets at all temperature conditions, suggesting that SARS-CoV-2 and PMMoV RNA can be highly persistent in solids. First-order decay rate constants ranged from 0.011 to 0.098 day-1 for SARS-CoV-2 RNA and from 0.010 to 0.091 day-1 for PMMoV RNA depending on the temperature conditions. A slower decay was observed for SARS-CoV-2 RNA in primary settled solids compared to previously reported decay in wastewater influent. Further research is needed to understand if solid content and wastewater characteristics might influence the persistence of viral RNA targets.
Collapse
Affiliation(s)
- Laura Roldan-Hernandez
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| | - Katherine E. Graham
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| | - Dorothea Duong
- Verily
Life Sciences, San Francisco, California 94080, United States
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| |
Collapse
|
49
|
Birnbaum DP, Vilardi KJ, Anderson CL, Pinto AJ, Joshi NS. Simple Affinity-Based Method for Concentrating Viruses from Wastewater Using Engineered Curli Fibers. ACS ES&T WATER 2022; 2:1836-1843. [PMID: 36778666 PMCID: PMC9916486 DOI: 10.1021/acsestwater.1c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.
Collapse
Affiliation(s)
- Daniel P Birnbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher L Anderson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
Adelodun B, Kumar P, Odey G, Ajibade FO, Ibrahim RG, Alamri SAM, Alrumman SA, Eid EM, Kumar V, Adeyemi KA, Arya AK, Bachheti A, Oliveira MLS, Choi KS. A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. GEOSCIENCE FRONTIERS 2022; 13:101373. [PMID: 37521134 PMCID: PMC8861126 DOI: 10.1016/j.gsf.2022.101373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 05/11/2023]
Abstract
The novel coronavirus, SARS-CoV-2, which has caused millions of death globally is recognized to be unstable and recalcitrant in the environment, especially in the way it has been evolving to form new and highly transmissible variants. Of particular concerns are human-environment interactions and the handling and reusing the environmental materials, such as effluents, sludge, or biosolids laden with the SARS-CoV-2 without adequate treatments, thereby suggesting potential transmission and health risks. This study assesses the prevalence of SARS-CoV-2 RNA in effluents, sludge, and biosolids. Further, we evaluate the environmental, ecological, and health risks of reusing these environmental materials by wastewater/sludge workers and farmers. A systematic review of literature from the Scopus database resulted in a total of 21 articles (11 for effluents, 8 for sludge, and 2 for biosolids) that met the criteria for meta-analysis, which are then subdivided into 30 meta-analyzed studies. The prevalence of SAR-CoV-2 RNA in effluent and sludge based on random-effect models are 27.51 and 1012.25, respectively, with a 95% CI between 6.14 and 48.89 for the effluent, and 104.78 and 1019.71 for the sludge. However, the prevalence of SARS-CoV-2 RNA in the biosolids based on the fixed-effect model is 30.59, with a 95% CI between 10.10 and 51.08. The prevalence of SARS-CoV-2 RNA in environmental materials indicates the inefficiency in some of the treatment systems currently deployed to inactivate and remove the novel virus, which could be a potential health risk concern to vulnerable wastewater workers in particular, and the environmental and ecological issues for the population at large. This timely review portends the associated risks in handling and reusing environmental materials without proper and adequate treatments.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria
| | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Saad A M Alamri
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Khalid Adeola Adeyemi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ashish Kumar Arya
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Archana Bachheti
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu 41566, South Korea
| |
Collapse
|