1
|
Meng TT, Ding MJ, Yu WY, Song XM, Ni S, Zhang K, Xu FX, Bai FY, Pan XM, Zhao Z. Transformation mechanism, kinetics and ecotoxicity of kaempferol and quercetin in the gaseous and aqueous phases: A theoretical combined experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178352. [PMID: 39754958 DOI: 10.1016/j.scitotenv.2024.178352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH3, ∙OOH, and 1O2 in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed. The results show that RAF and HAT are the main reaction mechanisms for the neutral kaempferol/quercetin, and SET mechanism is important for the anionic kaempferol/quercetin. The overall rate coefficient of kaempferol and quercetin with ∙OH were calculated at 273-323 K, and the aqueous rate coefficients are calculated by considering the rates of neutral and monoanionic forms multiplied with the molar fractions of each form. The values are 2.81 × 1010 and 8.63 × 1010 M-1 s-1 in the aqueous environment, and 2.31 × 10-10 and 1.18 × 10-10 cm3 molecule-1 s-1 in the gaseous environment at 298 K. Fluorescence probe and flow cytometry results show that kaempferol and quercetin can be efficiently degraded by free radicals, and quercetin has a better effect, which is consistent with the theoretical results in the aqueous environment. The transformation mechanism of Q-OH-P7a with ∙OH, O2 and NO was studied, and the stable product is Q-P1. Toxicology results show that most of the subsequent products of quercetin do not bioaccumulate and can be biodegraded, but most products still have toxic properties or harmful properties and show positive mutagenicity. This study provides new guidance for flavonoid degradation behavior and environmental risks.
Collapse
Affiliation(s)
- Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Meng-Jiao Ding
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wan-Ying Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Xiao-Ming Song
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ke Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Fan-Xing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| |
Collapse
|
2
|
Cheng X, Sai D, Luo X, Chang H, Li P, Xu J, Wu D, Liang H. Ferrate(VI)-based oxidation for ultrafiltration membrane fouling mitigation in shale gas produced water pretreatment: Role of high-valent iron intermediates and hydroxyl radicals. WATER RESEARCH 2024; 261:122013. [PMID: 38981354 DOI: 10.1016/j.watres.2024.122013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Ultrafiltration (UF) is increasingly used in the pretreatment of shale gas produced water (SGPW), whereas severe membrane fouling hampers its actual operation. In this work, ferrate(VI)-based oxidation was proposed for membrane fouling alleviation in SGPW pretreatment, and the activation strategies of calcium peroxide (CaO2) and ultraviolet (UV) were selected for comparison. The findings indicated that UV/Fe(VI) was more effective in removing fluorescent components, and the concentration of dissolved organic carbon was reduced by 24.1 %. With pretreatments of CaO2/Fe(VI) and UV/Fe(VI), the terminal specific membrane flux was elevated from 0.196 to 0.385 and 0.512, and the total fouling resistance diminished by 52.7 % and 76.2 %, respectively. Interfacial free energy analysis indicated that the repulsive interactions between pollutants and membrane were notably enhanced by Fe(VI)-based oxidation, thereby delaying the deposition of cake layers on the membrane surface. Quenching and probe experiments revealed that high-valent iron intermediates (Fe(IV)/Fe(V)) played significant roles in both CaO2/Fe(VI) and UV/Fe(VI) processes. Besides, hydroxyl radicals (•OH) were also important reactive species in the UV/Fe(VI) treatment, and the synergistic effect of Fe(IV)/Fe(V) and •OH showed a positive influence on SGPW fouling mitigation. In general, these findings establish a theoretical underpinning for the application of Fe(VI)-based oxidation for UF membrane fouling mitigation in SGPW pretreatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Dongshun Sai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, PR China.
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
3
|
Su Q, Yuan D, Wan S, Sun L. A novel visible light-driven oxygen doped C 3N 4/Bi 12O 17Cl 2/ferrate(VI) system for Bisphenol A degradation: Radical and nonradical pathways. CHEMOSPHERE 2024; 364:143227. [PMID: 39218258 DOI: 10.1016/j.chemosphere.2024.143227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, visible light-activated photocatalyst oxygen-doped C3N4@Bi12O17Cl2 (OCN@BOC) and Fe(VI) coupling system was proposed for the efficient degradation of bisphenol A (BPA). The comprehensive characterization of the OCN@BOC photocatalyst revealed its excellent photogenerated carrier separation rate in heterogeneous structures. The OCN@BOC/Fe(VI)/Vis system exhibited a remarkable BPA removal efficiency of over 84% within 5 min. Comparatively, only 37% and 59% of BPA were degraded by single OCN@BOC and Fe(VI) in 5 min, respectively. Reactive species scavenging experiments, phenyl sulfoxide transformation experiments, and electron paramagnetic resonance experiments confirmed the involvement of superoxide radicals (⋅O2-), singlet oxygen (1O2), as well as iron(V)/iron(IV) (Fe(V)/Fe(IV)) species in the degradation process of BPA. Furthermore, density functional theoretical calculations and identification of intermediates provided insights into the potential degradation mechanism of BPA during these reactions. Additionally, simulation evaluations using an ecological structure activity relationship model demonstrated that the toxicity of BPA to the ecological environment was mitigated during its degradation process. This study presented a novel strategy for removing BPA utilizing visible light photocatalysts, highlighting promising applications for practical water environment remediation with the OCN@BOC/Fe(VI)/Vis system.
Collapse
Affiliation(s)
- Qinhua Su
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Dan Yuan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shungang Wan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection of Haikou City, Haikou, 570228, China
| | - Lei Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China; Key Laboratory of Solid Waste Resource Utilization and Environmental Protection of Haikou City, Haikou, 570228, China.
| |
Collapse
|
4
|
Gao S, Wang X, Wang X, Chen X, Liang S, Zhou Z, Xu S, Fang Y, Gao J, Gu C. Role of low-molecular-weight organic compounds on photochemical formation of Mn(III)-ligands in aqueous systems: Implications for BPA removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172468. [PMID: 38615762 DOI: 10.1016/j.scitotenv.2024.172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Aqueous trivalent manganese [Mn(III)], an important reactive intermediate, is ubiquitous in natural surface water containing humic acid (HA). However, the effect of low-molecular-weight organic acids (LMWOAs) on the formation, stability and reactivity of Mn(III) intermediate is still unknown. In this study, six LMWOAs, including oxalic acid (Oxa), salicylic acid (Sal), catechol (Cat), caffeic acid (Caf), gallic acid (Gal) and ethylene diamine tetraacetic acid (EDTA), were selected to investigate the effects of LMWOAs on the degradation of BPA induced by in situ formed Mn(III)-L in the HA/Mn(II) system under light irradiation. The chromophoric constituents of HA could absorb light radiation and generate superoxide radical to promote the oxidation of Mn(II) to form Mn(III), which was further involved in transformation of BPA. Our results implied that different LMWOAs did significantly impact on Mn(III) production and its degradation of BPA due to their different functional group. EDTA, Oxa and Sal extensively increased the Mn(III) concentration from 50 to 100 μM compared to the system without LMWOAs, following the order of EDTA > Oxa > Sal, and also enhanced the degradation of BPA with the similar patterns. In contrast, Cat, Caf and Gal had an inhibitory effect on the formation of Mn(III), which is likely because they consumed the superoxide radicals generated from irradiated HA, resulting in the inhibition of Mn(II) oxidation and further BPA removal. The product identification and theoretical calculation indicated that a single electron transfer process occurred between Mn(III)-L and BPA, forming BPA radicals and subsequent self-coupling products. Our results demonstrated that the LMWOAs with different structures could alter the cycling process of Mn via complexation and redox reactions, which would provide new implications for the removal of organic pollutants in surface water.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinghao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiru Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ziyan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanfen Fang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Juan Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Lei Y, Pu R, Tian Y, Wang R, Naidu R, Deng S, Shen F. Novel enhanced defluorination of perfluorooctanoic acids by biochar-assisted ultrasound coupling ferrate: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130790. [PMID: 38703964 DOI: 10.1016/j.biortech.2024.130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
An ultrasound (US)/biochar (BC)/ferrate (Fe (VI)) system was firstly proposed to enhance perfluorooctanoic acid (PFOA) defluorination. It achieved 93 % defluorination optimally, higher than the sum of 77 % (28 % and 49 % for US/BC and US/Fe (VI) respectively), implying synergistic effect. Besides, the mechanism study confirmed that, this system can not only increase the specific surface area of BC and the generation of reactive oxidant species (ROS), enriching the active sites and forming new oxygen-containing functional groups, but also promote the formation of intermediate iron species. The PFOA degradation in the US/BC/Fe (VI) was probably an adsorption-degradation process, both ROS and electron transfer promoted the defluorination. Additionally, its sustainability was also demonstrated with 14 % reduced defluorination percentage after five cycles of BC. Overall, the synergistic effect of the US/BC/Fe (VI) and its enhancing mechanism for PFOA defluorination were clarified firstly, which contributes to the development of biochar for assisting polyfluoroalkyl substances degradation.
Collapse
Affiliation(s)
- Yongjia Lei
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ruoqi Pu
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ruixiang Wang
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shihuai Deng
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Fei Shen
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Wang J, Guo Z, Guo Y, Zhang Y, Yu P, Ye Z, Qian Y, Yoshimura C, Wang T, Zhang L. Photochemical fate of β-blocker pindolol in riverine and its downstream coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172236. [PMID: 38582123 DOI: 10.1016/j.scitotenv.2024.172236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Pindolol (PIN) is a commonly used β-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingqi Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yao Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
7
|
Liu Y, Yuan Y, Wang Y, Ngo HH, Wang J. Research and application of active species based on high-valent iron for the degradation of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171430. [PMID: 38458457 DOI: 10.1016/j.scitotenv.2024.171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Fe(VI), as a new green treatment agent, has two indispensable processes in water treatment: coagulation and oxidation. Fe(VI) has a strong oxidation ability. The intermediate iron species (Fe(V) and Fe(IV)) and reactive radical species (H2O2, •OH, and O2•-) produced by decomposition and reduction reaction have strong oxidation ability, in addition, the hydrolyzed product formed in situ with core (γ-Fe2O3)-shell (γ-FeOOH) structure also has good coagulation effect. Because Fe(VI) is easy to decompose and challenging to preserve, it limits the application and sometimes significantly reduces the subsequent processing effect. How to make Fe(VI) more efficient use is a hot spot in current research. This article summarizes the distribution of active substances during the hydrolysis of Fe(VI), distinguish the differences mechanisms in the similar regulation methods, reviews the current preparation methods of Fe(VI), and finally reviews the applications of Fe(VI) in the field of environmental remediation.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
8
|
Li J, Fu C, Zhu M, Huang X, Song S, Dong F. Mechanical energy triggered piezo-catalyzation of Bi 2WO 6 nanoplates on ferrate (Fe(VI)) oxidation in alkaline media: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123862. [PMID: 38537799 DOI: 10.1016/j.envpol.2024.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Piezo-electricity, as a unique physical phenomenon, demonstrates high effectiveness in capturing the environmental mechanical energy into polarization charges, offering the possibility to activate the advanced oxidation processes via the electron pathway. However, information regarding the intensification of Fe(VI) through piezo-catalysis is limited. Therefore, our study is the first to apply Bi2WO6 nanoplates for piezo-catalyzation of Fe(VI) to enhance bisphenol A (BPA) degradation. Compared to Fe(VI) alone, the Fe(VI)/piezo/Bi2WO6 system exhibited excellent BPA removal ability, with the degradation rate increased by 32.6% at pH 9.0. Based on the experimental and theoretical results, Fe(VI), Fe(V), Fe(IV) and •OH were confirmed as reaction active species in the reaction, and the increased BPA removal mainly resulted from the enhanced formation of Fe(IV)/Fe(V) species. Additionally, effects of coexisting anions (e.g., Cl-, NO3-, SO42- and HCO3-), humic acid and different water matrixes (e.g., deionized water, tap water and lake water) on BPA degradation were studied. Results showed the Fe(VI)/piezo/Bi2WO6 system still maintained satisfactory BPA degradation efficiencies under these conditions, guaranteeing future practical applications in surface water treatment. Furthermore, the results of intermediates identification, ECOSAR calculation and cytotoxicity demonstrated that BPA degradation by Fe(VI)/piezo/Bi2WO6 posed a diminishing ecological risk. Overall, these findings provide a novel mechanical energy-driven piezo-catalytic approach for Fe(VI) activation, enabling highly efficient pollutant removal under alkaline condition.
Collapse
Affiliation(s)
- Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312085, China.
| |
Collapse
|
9
|
Zhang S, Liu Y, Mohisn A, Zhang G, Wang Z, Wu S. Biodegradation of penicillin G sodium by Sphingobacterium sp. SQW1: Performance, degradation mechanism, and key enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133485. [PMID: 38377898 DOI: 10.1016/j.jhazmat.2024.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Biodegradation is an efficient and cost-effective approach to remove residual penicillin G sodium (PGNa) from the environment. In this study, the effective PGNa-degrading strain SQW1 (Sphingobacterium sp.) was screened from contaminated soil using enrichment technique. The effects of critical operational parameters on PGNa degradation by strain SQW1 were systematically investigated, and these parameters were optimized by response surface methodology to maximize PGNa degradation. Comparative experiments found the extracellular enzyme to completely degrade PGNa within 60 min. Combined with whole genome sequencing of strain SQW1 and LC-MS analysis of degradation products, penicillin acylase and β-lactamase were identified as critical enzymes for PGNa biodegradation. Moreover, three degradation pathways were postulated, including β-lactam hydrolysis, penicillin acylase hydrolysis, decarboxylation, desulfurization, demethylation, oxidative dehydrogenation, hydroxyl reduction, and demethylation reactions. The toxicity of PGNa biodegradation intermediates was assessed using paper diffusion method, ECOSAR, and TEST software, which showed that the biodegradation products had low toxicity. This study is the first to describe PGNa-degrading bacteria and detailed degradation mechanisms, which will provide new insights into the PGNa biodegradation.
Collapse
Affiliation(s)
- Sinan Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - YuXuan Liu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ali Mohisn
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zejian Wang
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Cui J, Tang Z, Lin Q, Yang L, Deng Y. Interactions of ferrate(VI) and aquatic humic substances in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170919. [PMID: 38354807 DOI: 10.1016/j.scitotenv.2024.170919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Aquatic humic substances, encompassing humic acid (HA) and fulvic acid (FA), can influence the treatment of ferrate(VI), an emerging water treatment agent, by scavenging Fe(VI) to accelerate its decomposition and hinder the elimination of target micro-pollutants. Meanwhile, HA and FA degrade the water quality through the transformation to disinfection byproducts over disinfection, contribution to water color, and enhanced mobility of toxic metals. However, the interplay with ferrate(VI) and humic substances is not well understood. This study aims to elucidate the interactions of ferrate(VI) with HA and FA for harnessing ferrate(VI) in water treatment. Laboratory investigations revealed distinctive biphasic kinetic profiles of ferrate(VI) decomposition in the presence of HA or FA, involving a 2nd order kinetic reaction followed by a 1st-order kinetic reaction. Both self-decay and reactions with the humic substances governed the ferrate(VI) decomposition in the initial phase. With increasing dissolved organic carbon (DOC), the contribution of self-decomposition to ferrate(VI) decay declined, while humic substance-induced ferrate(VI) consumption increased. To assess relative contributions of the two factors, DOC50% was first introduced to represent the level at which the two factors equally contribute to the ferrate(VI) loss. Notably, DOC50% (11.90 mg/L for HA and 13.10 mg/L for FA) exceeded typical DOC in raw water, implying that self-decay predominantly governs ferrate(VI) consumption. Meanwhile, ferrate(VI) could degrade and remove HA and FA across different molecular weight (MW) ranges, exhibiting treatment capabilities that are either better or, at least, equivalent to ozone. The ferrate(VI) treatment attacked high MW, hydrophobic organic molecules, accompanied by the production of low MW, more hydrophilic compounds. Particularly, FA was more effectively removed due to its smaller molecular sizes, higher solubility, and lower carbon contents. This study provides valuable insights into the effective utilization of ferrate(VI) in water treatment in presence of humic substances.
Collapse
Affiliation(s)
- Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Zepei Tang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Lisitai Yang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
11
|
Zhang S, Wei J, Liu B, Wang W, Wang Z, Wang C, Wang L, Zhang W, Andersen HR, Qu R. Enhanced permanganate oxidation of phenolic pollutants by alumina and potential industrial application. WATER RESEARCH 2024; 251:121170. [PMID: 38277831 DOI: 10.1016/j.watres.2024.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
In this study, we found that alumina (Al2O3) may improve the degradation of phenolic pollutants by KMnO4 oxidation. In KMnO4/Al2O3 system, the removal efficiency of 2,4-Dibromophenol (2,4-DBP) was increased by 26.5%, and the apparent activation energy was decreased from 44.5 kJ/mol to 30.9 kJ/mol. The mechanism of Al2O3-catalytic was elucidated by electrochemical processes, X-ray photoelectron spectroscopy (XPS) characterization and theoretical analysis that the oxidation potential of MnO4- was improved from 0.46 V to 0.49 V. The improvement was attributed to the formation of coordination bonds between the O atoms in MnO4- and the empty P orbitals of the Al atoms in Al2O3 crystal leading to the even-more electron deficient state of MnO4-. The excellent reusability of Al2O3, the good performance on degradation of 2,4-DBP in real water, the satisfactory degradation of fixed-bed reactor, and the enhanced removal of 6 other phenolic pollutants demonstrated that the KMnO4/Al2O3 system has satisfactory potential industrial application value. This study offers evidence for the improvement of highly-efficient MnO4- oxidation systems.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Wei Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Wenjing Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
12
|
Guo R, Zhang S, Xiao X, Liang Y, Wang Z, Qu R. Potassium permanganate oxidation enhanced by infrared light and its application to natural water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133012. [PMID: 37984145 DOI: 10.1016/j.jhazmat.2023.133012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Photocoupled permanganate (PM) is an effective way to enhance the oxidation efficiency of PM, however, the activation of PM by infrared has received little attention. This study aimed to investigate the ability of infrared light to activate PM. When coupled with infrared, the degradation rate of 4-chlorophenol (4-CP) is increased to 3.54 times of PM oxidation alone. The accelerated reaction was due to the formation of vibrationally excited PM by absorbing 3.1 kJ mol-1 infrared energy, which also leads to the primary reactive intermediates Mn(V/IV) in the reaction system. The infrared coupled PM system also showed 1.14-2.34 times promotion effect on other organic pollutants. Furthermore, solar composed of 45% infrared, coupled PM system showed excellent degradation performance, where the degradation of 4-CP in 10 L of tap water and river water was 68 and 23 times faster than in ultrapure water, respectively. The faster-increased degradation rate in natural waters is mainly due to the abundant inorganic ions, which can stabilize the manganese species, and then has a positive effect on 4-CP degradation. In summary, this work develops a energy-efficient photoactivated PM technology that utilizes infrared and provides new insights into the design of novel sunlight-powered oxidation processes for water treatment.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yeping Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
13
|
Tian J, Qi Y, Wei J, Rady A, Maodaa S, Allam AA, Wang Z, Qu R. Enhanced removal of bisphenol S in ozone/peroxymonosulfate system: Kinetics, intermediates and reaction mechanism. CHEMOSPHERE 2024; 349:140952. [PMID: 38101481 DOI: 10.1016/j.chemosphere.2023.140952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The degradation process of bisphenol S (BPS) in ozone/peroxymonosulfate (O3/PMS) system was systematically explored. The results showed that the removal efficiency of BPS by O3 could be significantly improved with addition of PMS. Compared with ozonation alone, the pseudo-first-order constant (kobs) was increased by 2-5 times after adding 400 μM PMS. In O3/PMS system, accelerated removal of BPS was observed under neutral and alkaline conditions. The removal efficiency of BPS reached 100% after 40 s of reaction at pH 7.0, with the kobs of 0.098 s-1. Moreover, Cu2+ had a catalytic effect on the O3/PMS system, because it could catalyze the decomposition of ozone and PMS to produce •OH and SO4•-, respectively. Electron paramagnetic resonance illustrated that •OH and SO4•- were the reactive species in O3/PMS system. Twelve intermediates were identified by mass spectrometry, and the degradation reactions in O3/PMS system mainly included hydroxylation, sulfate addition, polymerization and β-scission. Finally, the toxicity of the products was evaluated by the EOCSAR program. Our results introduce an efficient method for BPS removal and would provide some guidance for the development of O3-based advanced oxidation technology.
Collapse
Affiliation(s)
- Jie Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Beni-suef University, Beni-suef, 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
14
|
Shi P, Yue X, Teng X, Qu R, Rady A, Maodaa S, Allam AA, Wang Z, Huo Z. Degradation of Butylated Hydroxyanisole by the Combined Use of Peroxymonosulfate and Ferrate(VI): Reaction Kinetics, Mechanism and Toxicity Evaluation. TOXICS 2024; 12:54. [PMID: 38251010 PMCID: PMC10818440 DOI: 10.3390/toxics12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 μM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.
Collapse
Affiliation(s)
- Peiduan Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Xin Yue
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.R.); (S.M.)
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.R.); (S.M.)
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt;
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, China
| |
Collapse
|
15
|
Yuan T, Ding S, Xue F, Du Z, Yang X, Han Q, Ma M, Chen X. Reactivity and reaction pathways of peroxymonosulfate and peroxydisulfate with neonicotinoid insecticides. WATER RESEARCH 2024; 248:120852. [PMID: 37976950 DOI: 10.1016/j.watres.2023.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Neonicotinoid insecticides (NNIs), which have been detected across diverse aquatic environments, have sparked substantial concerns regarding their potential adverse ecological and health risks. In this study, the removal of NNIs by unactivated peroxymonosulfate (PMS) and peroxydisulfate (PDS) was systematically investigated. Results showed that PMS/PDS direct oxidation is mainly responsible for the degradation of imidacloprid (IMD), and the degradation kinetics can be well described by a second-order kinetics model, first-order in both IMD and PMS/PDS concentration. The species-specific reaction rate constants of HSO5- and SO52- with IMD were calculated to be 429.36 ± 15.41 M-1h-1 and 9.72 ± 35.48 M-1h-1, while the corresponding rate constant between S2O82- and IMD is 25.04 ± 3.04 M-1h-1. Over 100 transformation products in the degradation of IMD by PMS/PDS were identified by HPLC/Q-Orbitrap HRMS, and five major reaction pathways were proposed thereafter: hydroxylation on imidazolidine ring, olefin reaction on imidazolidine ring, desnitro reaction on nitroguanidine moiety, and two chain-breaking reactions between imidazolidine ring and chloro-pyridyl moiety. Toxicity evaluation on the transformation products found that their ecotoxicity is various at a wide range with an overall indeterminacy, while their bioconcentration factors show a definite decrease. The reactivity of six NNIs with PMS/PDS was found varied by structures but generally low, indicating that in-situ oxidation with unactivated PMS/PDS is safe but inefficiency for the mitigation of NNIs. It is thus suggested that further investigations into activated PMS/PDS systems involving radicals promise enhanced remediation of NNIs, and fundamental data in this study has laid the groundwork.
Collapse
Affiliation(s)
- Taoyue Yuan
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Shunke Ding
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fei Xue
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Zhenqi Du
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyu Yang
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Qingzhi Han
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
16
|
Wang X, Xiong Y, Yuan B, Wu Y, Hu W, Wang X, Liu W. Performances and mechanisms of the peroxymonosulfate/ferrate(VI) oxidation process in real shale gas flowback water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119355. [PMID: 37857222 DOI: 10.1016/j.jenvman.2023.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Shale gas flowback water (SGFW), which is an inevitable waste product generated after hydraulic fracturing during development, poses a severe threat to the environment and human health. Managing high-salinity wastewater with complex physicochemical compositions is critical for ensuring environmental sustainability of shale gas development. Desalination processes have been recommended to treat SGFW to adhere to the discharge limits. However, organic fouling has become a significant concern in the steady operation of desalination processes, and the effective removal of organic compounds is challenging. This study aimed to develop an effective oxidation method to mitigate membrane fouling in real SGFW treatment process. It adopted the peroxymonosulfate (PMS)/ferrate (Fe(VI)) process, involving both free and non-free radical pathways that can alleviate the negative effects of high-salinity environments on oxidation. The operating parameters were optimized and removal effects were examined, while the synergistic oxidation mechanism and organic conversion of the PMS/Fe(VI) process were also analyzed. The results showed that the PMS/Fe(VI) process exhibited a synergistic effect compared with the PMS and Fe(VI) processes alone, with a total organic carbon (TOC) removal efficiency of 46.8% under optimal reaction conditions in real SGFW. In the Fe(VI)/PMS process, active species such as Fe(V)/Fe(IV), ·OH, and SO4-· were jointly involved in the oxidation of organic matter. Additionally, 99.5% of the total suspended solids and 95.2% of Ba2+ in the SGFW were removed owing to the formation of a coagulant (Fe3+) and SO42- during the reaction. Finally, an ultrafiltration membrane fouling experiment proved that oxidation processes can increase the membrane-specific flux and alleviate fouling resistance. This study can serve as a reference for the design of real SGFW treatment processes and is significant for the environmental management of shale gas development.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Xiong
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, 610095, China
| | - Bo Yuan
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - You Wu
- Sichuan Zaojing Baicui Environmental Protection Technology Co., Ltd., Chengdu, 610095, China
| | - Wanjin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wenshi Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
17
|
Guo B, Wang J, Sathiyan K, Ma X, Lichtfouse E, Huang CH, Sharma VK. Enhanced Oxidation of Antibiotics by Ferrate Mediated with Natural Organic Matter: Role of Phenolic Moieties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19033-19042. [PMID: 37384585 PMCID: PMC10862540 DOI: 10.1021/acs.est.3c03165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
The increasing presence of antibiotics in water sources threatens public health and ecosystems. Various treatments have been previously applied to degrade antibiotics, yet their efficiency is commonly hindered by the presence of natural organic matter (NOM) in water. On the contrary, we show here that nine types of NOM and NOM model compounds improved the removal of trimethoprim and sulfamethoxazole by ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. This is probably associated with the presence of phenolic moieties in NOMs, as suggested by first-order kinetics using NOM, phenol, and hydroquinone. Electron paramagnetic resonance reveals that NOM radicals are generated within milliseconds in the Fe(VI)-NOM system via single-electron transfer from NOM to Fe(VI) with the formation of Fe(V). The dominance of the Fe(V) reaction with antibiotics resulted in their enhanced removal despite concurrent reactions between Fe(V) and NOM moieties, the radicals, and water. Kinetic modeling considering Fe(V) explains the enhanced kinetics of antibiotics abatement at low phenol concentrations. Experiments with humic and fulvic acids of lake and river waters show similar results, thus supporting the enhanced abatement of antibiotics in real water situations.
Collapse
Affiliation(s)
- Binglin Guo
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, USA
- Department
of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Krishnamoorthy Sathiyan
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, USA
| | - Xingmao Ma
- Department
of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Eric Lichtfouse
- Aix-Marseille
Université, CNRS, IRD, INRAE, College de France, CEREGE, Aix-en-Provence 13100, France
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Virender K. Sharma
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
18
|
Tian B, Wu N, Liu M, Wang Z, Qu R. Promoting Effect of Silver Oxide Nanoparticles on the Oxidation of Bisphenol B by Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15715-15724. [PMID: 37807513 DOI: 10.1021/acs.est.3c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Bisphenol B (BPB, 2,2-bis(4-hydroxyphenyl) butane), as a substitute for bisphenol A, has been widely detected in the environment and become a potential threat to environmental health. This work found that silver oxide nanoparticles (Ag2O) could greatly promote the removal of BPB by ferrate (Fe(VI)). With the presence of 463 mg/L Ag2O, the amount of Fe(VI) required for the complete removal of 10 μM BPB will be reduced by 70%. Meanwhile, the recyclability and stability of Ag2O have been verified by recycling experiments. The characterization results and in situ electrochemical analyses showed that Ag(II) was produced from Ag(I) in the Fe(VI)-Ag2O system, which has a higher electrode potential to oxidize BPB to enhance its removal. A total of 13 intermediates were identified by high-resolution mass spectrometry, and three main reaction pathways were proposed, including oxygen transfer, bond breaking, and polymerization. Based on the toxicity assessment through the ECOSAR program, it is considered that the presence of Ag2O reduced the toxicity of BPB oxidation intermediates to aquatic organisms. These results would deepen our understanding of the interaction between Fe(VI) and Ag2O, which may provide an efficient and environmentally friendly method for water and wastewater treatment.
Collapse
Affiliation(s)
- Bingru Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
19
|
Yu P, Guo Z, Wang T, Wang J, Guo Y, Zhang L. Insights into the mechanisms of natural organic matter on the photodegradation of indomethacin under natural sunlight and simulated light irradiation. WATER RESEARCH 2023; 244:120539. [PMID: 37659181 DOI: 10.1016/j.watres.2023.120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Indomethacin (INDO) is an antipyretic and analgesic pharmaceutical that has been widely detected in the aquatic environment. Photodegradation is an essential pathway for removal of INDO in sunlit surface water, however the effect of dissolved organic matter (DOM) on its photodegradation and the ecotoxicity of photodegradation products are largely unknown. In this study, the effect of DOM on the photodegradation of INDO under both natural and simulated light irradiation was studied. The results showed that indirect photolysis is the main photodegradation pathway of INDO in presence of DOM where 3DOM* plays the most important promoting role. Compared to commercial DOM (SRNOM and SRFA), DOM extracted from local-lake water (SLDOM) promoted the photodegradation to the highest extent. Although the steady-state concentrations of 3DOM* of SRNOM and SRFA were higher than SLDOM, their inhibition effect surpassed SLDOM namely higher light screening effect and phenolic antioxidant concentrations. The photodegradation pathway in pure water is different from that in DOM system where the decarboxylation of acetic acid chain and the oxidative fracture of indole ring are the main degradation pathways. Density Functional Theory (DFT) calculation further supports the proposed degradation pathways of INDO. ECOSAR calculation showed that the toxicity of INDO photodegradation products to aquatic organisms may maintain or even exceed its parent compound. Therefore, comprehensive understanding of the impact of DOM on the photodegradation of INDO is of crucial significance for evaluating its ecological risk in the natural environment.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuchen Guo
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
20
|
Yang T, An L, Zeng G, Mai J, Li Y, Lian J, Zhang H, Li J, Cheng X, Jia J, Liu M, Ma J. Enhanced hydroxyl radical generation for micropollutant degradation in the In 2O 3/Vis-LED process through the addition of periodate. WATER RESEARCH 2023; 243:120401. [PMID: 37536249 DOI: 10.1016/j.watres.2023.120401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Periodate (PI) as an oxidant has been extensively studied for organic foulants removal in advanced oxidation processes. Here PI was introduced into In2O3/Vis-LED process to enhance the formation of ·OH for promoting the degradation of organic foulants. Results showed that the addition of PI would significantly promote the removal of sulfamethoxazole (SMX) in the In2O3/Vis-LED process (from 9.26% to 100%), and ·OH was proved to be the dominant species in the system. Besides, the process exhibited non-selectivity in the removal of different organic foulants. Comparatively, various oxidants (e.g., peroxymonosulfate, peroxydisulfate, and hydrogen peroxide) did not markedly promote the removal of SMX in the In2O3/Vis-LED process. Electrochemical analyses demonstrated that PI could effectively receive photoelectrons, thus inhibiting the recombination of photogenerated electron-hole (e-/h+) pairs. The holes then oxidized the adsorbed H2O to generate ·OH, and the PI converted to iodate at the same time. Additionally, the removal rate of SMX reduced from 100% to 17.2% as Vis-LED wavelengths increased from 440 to 560 nm, because of the low energy of photons produced at longer wavelengths. Notably, the species of PI do not affect its ability to accept electrons, resulting in the degradation efficiency of SMX irrespective of pH (4.0-10.0). The coexistence of inorganic cations and anions (such as Cl-, CO32-/HCO3-, SO42-, Ca2+, and Mg2+) also had an insignificant effect on SMX degradation. Furthermore, the process also showed excellent degradation potential in real water. The proposed strategy provides a new insight for visible light-catalyzed activation of PI and guidance to explore green catalytic processes for high-efficiency removal of various organic foulants.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Yuying Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| | - Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai 519087, P R China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Minchao Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
21
|
Conceição JCS, Alvarega AD, Mercante LA, Correa DS, Silva EO. Endophytic fungus from Handroanthus impetiginosus immobilized on electrospun nanofibrous membrane for bioremoval of bisphenol A. World J Microbiol Biotechnol 2023; 39:261. [PMID: 37500990 DOI: 10.1007/s11274-023-03715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The current industrial and human activities scenario has accelerated the widespread use of endocrine-disrupting compounds (EDCs), which can be found in everyday products, including plastic containers, bottles, toys, cosmetics, etc., but can pose a severe risk to human health and the environment. In this regard, fungal bioremediation appears as a green and cost-effective approach to removing pollutants from water resources. Besides, immobilizing fungal cells onto nanofibrous membranes appears as an innovative strategy to improve remediation performance by allowing the adsorption and degradation to occur simultaneously. Herein, we developed a novel nanostructured bioremediation platform based on polyacrylonitrile nanofibrous membrane (PAN NFM) as supporting material for immobilizing an endophytic fungus to remove bisphenol A (BPA), a typical EDC. The endophytic strain was isolated from Handroanthus impetiginosus leaves and identified as Phanerochaete sp. H2 by molecular methods. The successful assembly of fungus onto the PAN NFM surface was confirmed by scanning electron microscopy (SEM). Compared with free fungus cells, the PAN@H2 NFM displayed a high BPA removal efficiency (above 85%) at an initial concentration of 5 ppm, suggesting synergistic removal by simultaneous adsorption and biotransformation. Moreover, the biotransformation pathway was investigated, and the chemical structures of fungal metabolites of BPA were identified by ultra-high performance liquid chromatography - high-resolution mass (UHPLC-HRMS) analysis. In general, our results suggest that by combining the advantages of enzymatic activity and nanofibrous structure, the novel platform has the potential to be applied in the bioremediation of varied EDCs or even other pollutants found in water resources.
Collapse
Affiliation(s)
- João Carlos Silva Conceição
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Augusto D Alvarega
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil.
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil.
| |
Collapse
|
22
|
Liu B, Wei J, Zhang S, Shad A, Tang X, Allam AA, Wang Z, Qu R. Insights into oxidation of pentachlorophenol (PCP) by low-dose ferrate(VI) catalyzed with α-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131983. [PMID: 37406528 DOI: 10.1016/j.jhazmat.2023.131983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Asam Shad
- Department of Environmental Sciences, Comsats University, Abbottabad Campus, Islamabad, Pakistan
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou 213100, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
23
|
Li J, Fu C, Lin Q, Zeng T, Wang D, Huang X, Song S, Li C, Dong F. Fe(VI) activation system mediated by a solar-driven TiO 2 nanotubes electrode for CLQ degradation: Performances, mechanisms and pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131274. [PMID: 36989796 DOI: 10.1016/j.jhazmat.2023.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Ferrate (Fe(VI), FeO42-) has been widely used in the degradation of micropollutants with the advantages of high redox potential, no secondary pollution and inhibition of disinfection byproducts. However, the low transformation of Fe(V) and/or Fe(IV) by Fe(VI) and incomplete mineralization of pollutants limit their application. In this work, we designed a photo electric cell with TiO2 nanotubes (TNTs) and Pt serving as the anode and cathode to enhance the utilization of Fe(VI) (Fe(VI)-TNTs system). TNTs accelerated the generation of •OH via hVB+ oxidation of OH- and photogenerated electrons at Pt boosted the transformation of Fe(VI) to Fe(V) and/or Fe(IV), resulting in a 22.2 % enhancement of chloroquine (CLQ) removal compared to Fe(VI) alone. The results from EPR and quenching tests showed that Fe(VI), Fe(V), Fe(IV), •OH, O2•- and hVB+ coexisted in the Fe(VI)-TNTs system, among which Fe(V) and Fe(IV) were testified as the primary reactive substances accounting for 59 % of CLQ removal. The performance tests and recycling tests demonstrated that the Fe(VI)-TNTs system maintained excellent performance in an authentic water environment. The plausible degradation pathway of CLQ oxidized in the Fe(VI)-TNTs system was proposed with nine identified oxidation products via N-C cleavage, electrophilic addition and carboxylation processes. Based on the ECOSAR calculation, the constructed reaction system allowed a decrease in acute and chronic toxicity. Our findings provide a highly efficient and cost-effective strategy to enhance Fe(VI) application for micropollutant degradation in the future.
Collapse
Affiliation(s)
- Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| |
Collapse
|
24
|
Qi Y, Yu Y, Allam AA, Ajarem JS, Altoom NG, Dar AA, Tang X, Wang Z, Qu R. Comparative study on the removal of 1- naphthol and 2-naphthol by ferrate (VI): Kinetics, reaction mechanisms and theoretical calculations. CHEMOSPHERE 2023:139189. [PMID: 37307926 DOI: 10.1016/j.chemosphere.2023.139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
In this study, the oxidation of 1-naphthol (1-NAP) and 2-T (2-NAP) by Fe(VI) was investigated. The impacts of operating factors were investigated through a series of kinetic experiments, including Fe(VI) dosages, pH and coexisting ions (Ca2+, Mg2+, Cu2+, Fe3+, Cl-, SO42-, NO3- and CO32-). Almost 100% elimination of both 1-NAP and 2-NAP could be achieved within 300 s at pH 9.0 and 25 °C. Cu2+ could significantly improve the degradation efficiency of 1-NAP and 2-NAP, but the impacts of other ions were negligible. The liquid chromatography-mass spectrometry was used to identify the transformation products of 1-NAP and 2-NAP in Fe(VI) system, and the degradation pathways were proposed accordingly. Electron transfer mediated polymerization reaction was the dominant transformation pathway in the elimination of NAP by Fe(VI) oxidation. After 300 s of oxidation, heptamers and hexamers were found as the final coupling products during the removal of 1-NAP and 2-NAP, respectively. Theoretical calculations demonstrated that the hydrogen abstraction and electron transfer reaction would easily occur at the hydroxyl groups of 1-NAP and 2-NAP, producing NAP phenoxy radicals for subsequent coupling reaction. Moreover, since the electron transfer reactions between Fe(VI) and NAP molecules were barrierless and could occur spontaneously, the theoretical calculation results also confirmed the priority of coupling reaction in Fe(VI) system. This work indicated that the Fe(VI) oxidation was an effective way for removing naphthol, which may help us understand the reaction mechanism between phenolic compounds with Fe(VI).
Collapse
Affiliation(s)
- Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif G Altoom
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Afzal Ahmed Dar
- Department of Physics, Polytechnique Montreal, C.P. 6079, Succ Centre-ville, Montreal, QC H3C 3A7, Canada
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, 213100, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
25
|
Wu G, Qian Y, Fan F, Zhang Z, Zhang Y, Yu Q, Zhang X, Ren H, Geng J, Liu H. Revealing specific transformation pattern of sulfonamides during wastewater biological treatment processes by molecular networking nontarget screening. WATER RESEARCH 2023; 235:119895. [PMID: 36989798 DOI: 10.1016/j.watres.2023.119895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Biotransformation of emerging contaminants (ECs) is of importance in various natural and engineered systems to eliminate the adverse effects of ECs toward organisms. In wastewater, structurally similar ECs may transform through similar reactions triggered by common enzymes. However, the transformation pattern for them was scarcely studied. To fill the research gaps, five sulfonamides were chosen as the targeted ECs with similar structure to explore the transformation pattern in wastewater biological treatment experiments at lab scale. Through molecular networking based nontarget screening, 45 transformation products (TPs) of sulfonamides were identified and 14 of them were newly found. On the basis, five specific transformation patterns were summarized for sulfonamides by transformation pathways comparing, reaction frequency analyzing and dominant TPs comparing. Results suggested that pterin-chelation and formylation (dominant transformation pathway) and acetylation, methylation and deamination reactions were commonly occurred for sulfonamides in wastewater. Among them, the role of formylation as the dominant transformation pathway for sulfonamides transformed in wastewater was firstly reported in present study. Subsequent frontier molecular orbital calculation suggested the active site of amino (N1H2-) may contribute the specific transformation pattern of sulfonamides. Present study reveals the specific transformation pattern of sulfonamides from the aspect of TPs and transformation pathways. In the future, knowledge on the specific transformation pattern can be used to regulate and enhance the removal of a class of ECs with similar structure rather than just one of ECs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Fan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zhizhao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Hualiang Liu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
26
|
Liu M, Wu N, Li X, Zhang S, Sharma VK, Ajarem JS, Allam AA, Qu R. Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products. WATER RESEARCH 2023; 238:120034. [PMID: 37150061 DOI: 10.1016/j.watres.2023.120034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and •OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - ShengNan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, United States.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, P. R. China.
| |
Collapse
|
27
|
Qi X, Liu N, Tang Z, Ou W, Jian C, Lei Y. Quantitative structure-activity relationship models for predicting apparent rate constants of organic compounds with ferrate (VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162043. [PMID: 36754322 DOI: 10.1016/j.scitotenv.2023.162043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Ferrate (VI) (Fe (VI)) is a promising, environmentally friendly multifunctional oxidant widely applied in organic compound degradation. Oxidative kinetics of the apparent second-order rate constants (kapp) of Fe (VI) with organic compounds are critical for modeling oxidation processes. Herein, a quantitative structure-activity relationship (QSAR) model was developed using particle swarm optimization and an extreme learning machine to better understand the laws of the kapp values of organic compounds, including 33 aliphatic and aromatic hydrocarbon derivatives, during degradation by Fe (VI). Seven components-electronic hardness (H), electronic softness (S), ratio of oxygen to carbon atoms (On/Cn), energy of the highest occupied molecular orbital (EHOMO), vertical ionization potential (VIP), maximum nucleophilic reaction index (f(+)x), and minimum relative electrophilicity index (REn) constitute the critical molecular parameters. The developed QSAR model was verified on the basis of the coefficient of determination (R2) and the root mean square error (RMSE): for the training set, R2 = 0.924 and RMSE = 1.186, whereas for the test set, R2 = 0.996, and RMSE = 0.352. The applicability, reliability, and predictability of the model were verified by estimating the applicability domain (AD) of the model. Furthermore, QSAR models constructed using different methods were compared, and the main impact descriptors and conclusions obtained from previous studies were theoretically analyzed. Results indicate that constructing the QSAR model facilitates kapp prediction for Fe (VI) in the degradation of various organic compounds, improves the understanding of the degradation mechanism, and reduces the pressure on human and material resources caused by experiments.
Collapse
Affiliation(s)
- Xiaochen Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhongen Tang
- Anew Global Consulting Limited, Guangzhou 510075, Guangdong, China
| | - Wenjuan Ou
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chuanqi Jian
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yutao Lei
- South China Institute of Environmental Sciences, Guangzhou 510655, Guangdong, China.
| |
Collapse
|
28
|
Suhag MH, Khatun A, Tateishi I, Furukawa M, Katsumata H, Kaneco S. One-Step Fabrication of the ZnO/g-C 3N 4 Composite for Visible Light-Responsive Photocatalytic Degradation of Bisphenol E in Aqueous Solution. ACS OMEGA 2023; 8:11824-11836. [PMID: 37033806 PMCID: PMC10077555 DOI: 10.1021/acsomega.2c06678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
The ZnO/g-C3N4 composite was successfully synthesized by a simple one-step calcination of a urea and zinc acetate mixture. The photocatalytic activity of the synthesized composite was evaluated in the degradation of bisphenol E (BPE). The morphology, crystallinity, optical properties, and composition of the synthesized composite were characterized by using various analytical techniques such as scanning electron microscopy (SEM), transmitted electron microscopy (TEM), field emission-electron probe microanalysis (FE-EPMA), nitrogen adsorption and desorption isotherm measurement, Fourier-transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The degradation rate of BPE with the ZnO/g-C3N4 composite was 8 times larger than that obtained with pure g-C3N4 at the optimal conditions. The excellent photocatalytic activity was attributed to the synergistic effect between the g-C3N4 and ZnO, which enhanced the efficiency of charge separations, reduced the e-/h+ pairs recombination, and increased the visible light absorption ability. The radical scavenger studies indicated that the •O2 - and h+ species were mainly responsible for the degradation of BPE. The stability test suggested the chemical and photostability of the synthesized composite. Two possible photocatalytical mechanisms have been suggested.
Collapse
Affiliation(s)
- Mahmudul Hassan Suhag
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
- Department
of Chemistry, University of Barishal, Barishal 8254, Bangladesh
| | - Aklima Khatun
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Ikki Tateishi
- Environmental
Preservation Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Mai Furukawa
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Hideyuki Katsumata
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Satoshi Kaneco
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
29
|
Sharma VK, Wang J, Feng M, Huang CH. Oxidation of Pharmaceuticals by Ferrate(VI)-Amino Acid Systems: Enhancement by Proline. J Phys Chem A 2023; 127:2314-2321. [PMID: 36862970 PMCID: PMC10848263 DOI: 10.1021/acs.jpca.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Indexed: 03/04/2023]
Abstract
The occurrence of micropollutants in water threatens public health and ecology. Removal of micropollutants such as pharmaceuticals by a green oxidant, ferrate(VI) (FeVIO42-, Fe(VI)) can be accomplished. However, electron-deficient pharmaceuticals, such as carbamazepine (CBZ) showed a low removal rate by Fe(VI). This work investigates the activation of Fe(VI) by adding nine amino acids (AA) of different functionalities to accelerate the removal of CBZ in water under mild alkaline conditions. Among the studied amino acids, proline, a cyclic AA, had the highest removal of CBZ. The accelerated effect of proline was ascribed by demonstrating the involvement of highly reactive intermediate Fe(V) species, generated by one-electron transfer by the reaction of Fe(VI) with proline (i.e., Fe(VI) + proline → Fe(V) + proline•). The degradation kinetics of CBZ by a Fe(VI)-proline system was interpreted by kinetic modeling of the reactions involved that estimated the rate of the reaction of Fe(V) with CBZ as (1.03 ± 0.21) × 106 M-1 s-1, which was several orders of magnitude greater than that of Fe(VI) of 2.25 M-1 s-1. Overall, natural compounds such as amino acids may be applied to increase the removal efficiency of recalcitrant micropollutants by Fe(VI).
Collapse
Affiliation(s)
- Virender K. Sharma
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mingbao Feng
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
You J, Li J, Zhang H, Luo M, Xing B, Ren Y, Liu Y, Xiong Z, He C, Lai B. Removal of Bisphenol A via peroxymonosulfate activation over graphite carbon nitride supported NiCx nanoclusters catalyst: Synergistic oxidation of high-valent nickel-oxo species and singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130440. [PMID: 36446311 DOI: 10.1016/j.jhazmat.2022.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this work, a g-C3N4 supported NiCx nanoclusters catalyst (NiCx-CN) was developed, and its performance in activating peroxymonosulfate (PMS) was evaluated. Mechanism investigation stated that although singlet oxygen (1O2) was formed in the catalytic process, its contribution to BPA elimination was weeny. Interestingly, through the experiment with dimethyl sulfoxide as the probe, it was considered that the high-valent nickel-oxo species (Ni&+=O), generated after the interaction of NiCx-CN and PMS, was the dominating reactive oxygen species (ROS). Theoretical calculations (DFT) implied that NiCx-CN might lose electrons to generate high-valent Ni, which was consistent with the detection of Ni3+ on the surface of the used NiCx-CN. Besides, the prepared NiCx-CN showed advantages in resisting the interference of inorganic anions. Meanwhile, three BPA degradation routes had been proposed based on the transformation intermediates. This study will establish a new protocol for PMS activation using heterogeneous Ni-based catalysts to efficiently degrade organic pollutants via a nonradical mechanism.
Collapse
Affiliation(s)
- Junjie You
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Junyi Li
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Xing
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Arulanandam CD, Hwang JS, Rathinam AJ, Dahms HU. Evaluating different web applications to assess the toxicity of plasticizers. Sci Rep 2022; 12:19684. [PMID: 36385271 PMCID: PMC9668977 DOI: 10.1038/s41598-022-18327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Plasticizers increase the flexibility of plastics. As environmental leachates they lead to increased water and soil pollution, as well as to serious harm to human health. This study was set out to explore various web applications to predict the toxicological properties of plasticizers. Web-based tools (e.g., BOILED-Egg, LAZAR, PROTOX-II, CarcinoPred-EL) and VEGA were accessed via an 5th-10th generation computer in order to obtain toxicological predictions. Based on the LAZAR mutagenicity assessment was only bisphenol F predicted as mutagenic. The BBP and DBP in RF; DEHP in RF and XGBoost; DNOP in RF and XGBoost models were predicted as carcinogenic in the CarcinoPred-EL web application. From the bee predictive model (KNN/IRFMN) BPF, di-n-propyl phthalate, diallyl phthalate, dibutyl phthalate, and diisohexyl phthalate were predicted as strong bee toxicants. Acute toxicity for fish using the model Sarpy/IRFMN predicted 19 plasticizers as strong toxicants with LC50 values of less than 1 mg/L. This study also considered plasticizer effects on gastrointestinal absorption and other toxicological endpoints.
Collapse
Affiliation(s)
- Charli Deepak Arulanandam
- grid.412019.f0000 0000 9476 5696Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC ,grid.412019.f0000 0000 9476 5696Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
| | - Jiang-Shiou Hwang
- grid.260664.00000 0001 0313 3026Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224 Taiwan, ROC ,grid.260664.00000 0001 0313 3026Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224 Taiwan, ROC ,grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224 Taiwan, ROC
| | - Arthur James Rathinam
- grid.411678.d0000 0001 0941 7660Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Hans-Uwe Dahms
- grid.412019.f0000 0000 9476 5696Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC ,grid.412019.f0000 0000 9476 5696Research Center of Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan ,grid.412036.20000 0004 0531 9758Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, No. 70, Lienhai Road, Kaohsiung, 80424 Taiwan, ROC
| |
Collapse
|
33
|
Teng X, Qi Y, Qin C, Tang X, Yan C, Wang Z, Qu R. Mixed oxidation of chlorophene and 4-tert-butylphenol by ferrate(VI): Reaction kinetics, cross-coupling products and improved utilization efficiency of ferrate(VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Guo R, Qi Y, Li B, Tian J, Wang Z, Qu R. Efficient degradation of alkyl imidazole ionic liquids in simulated sunlight irradiated periodate system: Kinetics, reaction mechanisms, and toxicity evolution. WATER RESEARCH 2022; 226:119316. [PMID: 36369691 DOI: 10.1016/j.watres.2022.119316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
As a class of emerging aquatic pollutants, alkylimidazole-based ionic liquids (AM-ILs) have received extensive attention due to the large acute toxicity to aquatic organisms. Therefore, in order to protect both aquatic organisms and human beings, it is necessary to seek an efficient and environmental-friendly technology for removal of AM-ILs from water bodies. In this work, we found that under simulated sunlight (Xe lamp) irradiation, periodate (KIO4, PI) could efficiently degrade 1-hexyl-2,3-dimethylimidazolium bromide ([HMMIm]Br), a representative AM-ILs with six carbon atoms in the side chain. Kinetics experiments on the degradation of [HMMIm]Br were performed, and the results showed that a high degradation efficiency (≥90.00%) of the cation ([HMMIm]+) was still maintained under harsh water conditions of strong acidity/alkaliny or with various non-target inorganic ions. More importantly, the anion of bromide ion (Br-) was not oxidized to the carcinogenic bromate (BrO3-) in current reaction system. The excited stated PI (marked as PI*) was detected by Laser flash photolysis, and it was an important reactive species for [HMMIm]+ degradation. As rationalized by theoretical calculations and scavenging experiments, the main oxidation mechanisms of [HMMIm]+ were hydroxyl radicals induced substitution reaction, PI* initiated electron and double oxygen transfer, and direct photolysis mediated chemical bond cleavage reaction, which contributed to 73%, 21%, and 6% of [HMMIm]+ degradation, respectively. Moreover, toxicity evaluation by ECOSAR software indicated that the oxidation products were generally less toxic to three aquatic organisms (fish, water flea, and green algae) than the target molecule [HMMIm]Br. In conclusion, this work proposed novel oxidation mechanisms of sunlight-activated PI system, and the findings may inspire further researches on the application of photoactivated hypervalent acids in water purification.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China 210023
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China 210023
| | - Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China 210023
| | - Jie Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China 210023
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China 210023.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China 210023
| |
Collapse
|
35
|
Pan B, Zhou L, Qin J, Wang C, Ma X, Sharma VK. Oxidation of micropollutants by visible light active graphitic carbon nitride and ferrate(VI): Delineating the role of surface delocalized electrons. CHEMOSPHERE 2022; 307:135886. [PMID: 35926741 DOI: 10.1016/j.chemosphere.2022.135886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The treatment of recalcitrant micropollutants in water remains challenging. Ferrate(VI) (FeVIO42-, Fe(VI)) has emerged as a green oxidant to oxidize organic molecules, however, its reactivity with recalcitrant micropollutants are sluggish. Our results demonstrate enhanced oxidation of carbamazepine (CBZ) by three types of visible light-responsive graphitic carbon nitride (g-C3N4) photocatalyst in absence and presence of ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. The g-C3N4 photocatalysts were prepared by thermal process using urea, thiourea, and melamine and were named as CN-U, CN-T, and CN-M, respectively. The degradation efficiency of CBZ, in both visible light-g-C3N4 and visible light-g-C3N4-FeVIO42- systems followed the order of CN-U > CN-T > CN-M. The mechanisms for this trend was elucidated by measuring physiochemical properties of the microstructures with various surface and analytical techniques. Results suggest the dominating role of specific surface area and surface delocalized electrons of microstructures in degrading CBZ. Crystallinity, morphology, and surface functional groups may not directly associate with CBZ degradation. The CN-U has higher specific surface area and surface delocalized electrons than CN-T and CN-M and therefore the highest degradation efficiency of CBZ. The surface electrons likely generated O2●- and 1O2 in the visible light-g-C3N4 system. The additional oxidants, FeV and FeIV in the visible light-g-C3N4- FeVIO42- system led to higher degradation efficiency than the visible light-g-C3N4 system. Results suggest that the surfaces of g-C3N4 may be prepared preferentially with high levels of delocalized electrons at the surface of microstructures to enhance degradation of micropollutants.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX, 77843, USA
| | - Linxing Zhou
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX, 77843, USA.
| |
Collapse
|
36
|
Karim S, Hao R, Pinto C, Gustafsson JÅ, Grimaldi M, Balaguer P, Bondesson M. Bisphenol A analogues induce a feed-forward estrogenic response in zebrafish. Toxicol Appl Pharmacol 2022; 455:116263. [DOI: 10.1016/j.taap.2022.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|
37
|
Luo M, Zhang H, Zhou P, Peng J, Du Y, Xiong Z, Lai B. Graphite (GP) induced activation of ferrate(VI) for degradation of micropollutants: The crucial reduction role of carbonyl groups on GP surface. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128827. [PMID: 35405605 DOI: 10.1016/j.jhazmat.2022.128827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The sluggish oxidation kinetics of ferrate (Fe(VI)) at neutral and slightly alkaline pH impedes its rapid abatement of micropollutants in practical application. This work discovers that graphite (GP), a metal-free carbonaceous material, can be a promising material to improve the reactivity of Fe(VI) in the pH range of 7.0 - 9.0. The performance of the GP/Fe(VI) process for sulfamethoxazole (SMX) removal was further evaluated via altering the dosages of Fe(VI), GP, and SMX. Probe analysis and quenching experiments identified Fe(IV) and Fe(V) as the primary active species responsible for the removal of organic compounds in the GP/Fe(VI) system. The detailed activation mechanism of GP is discussed via analyzing the surface chemical changes of GP exposed to Fe(VI). It is found that the carbonyl groups on GP surface execute a critical role in Fe(VI) activation. The GP/Fe(VI) system shows powerful anti-interference ability to environmental background substances. Therefore, the new oxidation process proposed in this work holds a great application prospect for contamination remediation. Finally, we discuss the underlying degradation pathways of SMX by the GP/Fe(VI) system. This study not only develops a promising system for the removal of micropollutants but also provides an in-depth insight into the activation mechanism of metal-free carbonaceous material in Fe(VI) oxidation process.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|