1
|
Shen C, Ding X, Rao W, Hu J, Lin T, Zhou XZ, Zheng Y, Dong F, Fan G. Prediction of Potential Risk for Ten Azole and Benzimidazole Fungicides with the Aryl Hydrocarbon Receptor Agonistic Activity to Aquatic Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1167-1181. [PMID: 39811929 DOI: 10.1021/acs.jafc.4c09545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides. Some fungicides and their TPs (approximately 26.7%) exhibited the potential AhR agonistic activity and toxicity to different aquatic species. Meanwhile, some compounds with the chlorine element and benzene ring structure exhibited environmental persistence and mobile ability. Several of them were frequently detected in aquatic environments, posing potential risks to aquatic ecosystems. These harmful fungicides and their TPs should be given attention. This study provides important insight into the aquatic ecological risks caused by azole and benzimidazole fungicides, which can provide theoretical guidance for their pollution control.
Collapse
Affiliation(s)
- Chao Shen
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xian-Zhi Zhou
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
2
|
Hu J, Xu TW, Zhang Y, Xiao MY, Meng B, Kolodeznikov VE, Petrova NN, Mukhin VV, Zhang ZF, Tang ZH, Li YF. Amine antioxidants in water, ice, sediment and soil from the Songhua Wetland, Northeast China: Occurrence and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178199. [PMID: 39719766 DOI: 10.1016/j.scitotenv.2024.178199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Amine antioxidants (ANs) are emerging organic pollutants that are widely used in industrial products. The extensive use of ANs has polluted the environments. At present, there is no report on the pollution situation of ANs in wetland environment. In this study, samples of water, ice, sediment, and soil were collected in the Songhua Wetland to study the behavior of ANs. Total concentrations of ANs ranged from 27.4 to 137 ng L-1 in water, 88.8-127 ng L-1 in ice, 46.0-169 ng g-1 dw in sediment, and 43.7-191 ng g-1 dw in soil. The concentrations of ANs were higher in water during the ice-covered period (108-137 ng L-1) than that in the non-ice-covered (49.0-83.9 ng L-1). The Spearman correlation analysis suggests that most ANs were positively correlated with each other, indicating they were from the similar source. The overall enrichment of ANs in ice relative to water may relate to factors such as salt concentration and turbulence intensity. Since Kd is much <100, it suggests that ANs were more distributed in water compared to sediment. These results provided new perspectives for subsequent related studies.
Collapse
Affiliation(s)
- Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tian-Wei Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Meng-Yuan Xiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Meng
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin 150086, China
| | | | - Natalia Nikolaevna Petrova
- Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University (NEFU), Yakutsk 677000, Russia
| | - Vasilii Vasilevich Mukhin
- Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University (NEFU), Yakutsk 677000, Russia
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|
3
|
Cai F, Shen J, Wang X, Feng J, Wang T, Wang R. Pesticide dynamics and risk assessment in a plateau lake: Multiphase partitioning, drivers, and distribution in Southwestern China. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137171. [PMID: 39823872 DOI: 10.1016/j.jhazmat.2025.137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Erhai Lake, a vital drinking water source for Dali, a highland agricultural city, faces potential contamination from pesticide residues, yet limited studies have assessed their distribution and impacts. This study investigates the occurrence, transport, partitioning, and ecological risks of pesticides in the lake's dissolved phase (DP), suspended particulate matter (SPM), and sediment (SD) samples collected from 22 sites across different seasons. The results showed significant temporal variations across different media, with spatial variations driven by crop-related patterns. Atrazine, etridiazole, and cis-permethrin were identified as the most abundant pesticides in DP, SPM, and SD, respectively. Notably, the source-sink dynamics were not only driven by deposition and resuspension but influenced by multiple sources and hydrodynamic processes such as precipitation, phytoplankton biomass, organic carbon, and winds. Ecotoxicological assessments indicated that permethrin, endrin, and endosulfan sulfate posed significant ecological risks to aquatic organisms. Although human health risks from pesticides were low, ongoing monitoring of atrazine is recommended due to its extensive use around Dali City.
Collapse
Affiliation(s)
- Feixuan Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China.
| | - Jimeng Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Tiantian Wang
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Ronghui Wang
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| |
Collapse
|
4
|
Viana JLM, Dos Santos SRV, Santos LHMLM, Jaén-Gil A, Rodríguez-Mozaz S, Barceló D, Franco TCRDS. Pesticide contamination and associated ecological risks in estuarine waters of Brazil's Legal Amazon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:617-633. [PMID: 39695039 DOI: 10.1007/s11356-024-35778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Pesticide contamination remains a significant environmental concern globally, with important implications for aquatic ecosystems. Despite being one of the world's largest pesticide consumers, monitoring and assessment of pesticide pollution are limited in Brazil, especially in sensitive regions like the Amazon. In this study, the occurrence and environmental risks of 8 pesticides of different classes, namely alachlor, atrazine, chlorfenvinphos, isoproturon, irgarol, simazine, diuron, and its transformation product DCPMU (1-(3,4-dichlorophenyl)-3-methyl urea) were analysed in surface water of the São Marcos Estuarine Complex (SMEC) in two consecutive years. The quantification of the target compounds was performed using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Suspected and untargeted screening analyses with ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was also conducted to identify transformation products (TPs) and additional pesticides in water samples. All target pesticides, except for alachlor, were found in at least one sampling campaign. The antifouling biocides irgarol and diuron were ubiquitous in 2018 and 2019, with detection frequencies varying between 81 and 100% and maximum concentrations of 13.6 ng L-1 and 17.1 ng L-1, respectively. In 2019, the detection frequencies of the target pesticides were considerably higher than in 2018, with atrazine, isoproturon, and DCPMU being found in 100% of the samples. In 2019, chlorfenvinphos and isoproturon were the pesticides with the highest levels, reaching 48.6 ng L-1 and 44.6 ng L-1, respectively. The UHPLC-HRMS analysis showed the presence of the pesticides DEET (N,N-diethyl-meta-toluamide), octhilinone (2-Octyl-4-isothiazolin-3-one), and cyprodinil (4-cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine) in water samples. Additionally, the TPs 2-hydroxy-atrazine, didemethylisoproturon (1-(4-isopropylphenyl)urea) and M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) were found. The environmental risk assessment showed that irgarol was the primary contributor to the global risk quotient in the SMEC region. Similarly, chlorfenvinphos also showed a high risk to the local aquatic biota, especially in 2019. This research not only highlights the urgent need for improved pesticide monitoring in Brazil but also establishes a baseline for future studies and environmental management efforts in SMEC. We emphasize the importance of prioritising pollutants and implementing effective mitigation strategies to protect the fragile aquatic ecosystems of the Brazilian Amazon.
Collapse
Affiliation(s)
- José Lucas Martins Viana
- Environmental Studies Centre, São Paulo State University (UNESP), Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
- Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil.
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain.
| | - Sara Raiane Viana Dos Santos
- Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Girona, Spain
| | - Adrián Jaén-Gil
- Norwegian Research Centre (NORCE), Climate & Environment Division, Mekjarvik 12, 4072, Randaberg, Norway
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Girona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | | |
Collapse
|
5
|
Wu K, Liao Q, Fu C, Luo W, Lu Q, Li B, Fu H, Li Z, Liao G, Tang B, Zheng J. Impact of land covers on pesticide contamination and the associated ecological risk in a major tributary of the Pearl River, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178097. [PMID: 39693658 DOI: 10.1016/j.scitotenv.2024.178097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/17/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Pesticide contamination in the river basins is closely associated with land covers. However, the impact of land covers on the pesticide contamination remains unclear. In this study, concentrations of 14 pesticides (10 insecticides, 3 fungicides, and 1 herbicide) in water were investigated along a major tributary of the Pearl River in wet and dry seasons in 2023. Thirteen pesticides were found in wet season, while all for dry season. Correlation analyses indicated that herbaceous cropland and grassland covers predominantly positively affected the overall pesticide concentrations in both seasons. Irrigated cropland cover positively affected the concentrations of 3 pesticides only in wet season, suggesting their use for the crops. Closed evergreen broadleaved forest cover negatively affected the overall pesticide concentration in only wet season, indicating the mitigation effect of forest. In dry season, positive effect of open evergreen broadleaved forest was found only for malathion, suggesting its usage in the forest. Additionally, ecological risks of the pesticides were low to moderate, with similar dominant pesticides in both seasons. Finally, the investigation of pesticide used in croplands, grasslands, and forests, and forest protection are recommended for pesticide contamination management. These outcomes will deepen our understanding of pesticide contamination control in the river basins.
Collapse
Affiliation(s)
- Kaiyi Wu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qilong Liao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chengzhong Fu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Gui'an New Area, Guiyang 561113, China
| | - Weikeng Luo
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qiyuan Lu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bowen Li
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyu Fu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Gui'an New Area, Guiyang 561113, China
| | - Zhongwen Li
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Gui'an New Area, Guiyang 561113, China
| | - Guangyu Liao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Gui'an New Area, Guiyang 561113, China
| | - Bin Tang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
6
|
Liu X, Cao J, Zhao W, Jiang J, Cai M, Wu H, Zhu H, Liu X, Li L. Pollution of organophosphorus pesticides in the Dongting Lake, China and its relationship with dissolved organic matter: Occurrence, source identification and risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:120162. [PMID: 39414108 DOI: 10.1016/j.envres.2024.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
The escalating global demand for food and industrialization has placed significant pressure on the integrity and management of inland lake ecosystems. Herein, the organophosphorus pesticides (OPPs) pollution status and their relationship with dissolved organic matter (DOM) in Dongting Lake were investigated to identify the ecological risks and potential sources of OPPs. The total concentrations of 18 detected OPPs were in the range of 13.49-375.24 ng/L, with higher concentration observed in east and west lake regions. Among these, fenthion was the dominant contributor, accounting for 64% of total OPPs, posing significant ecological risk to aquatic organisms. Nearly all of sites showed high combined risk of total OPPs. Parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI) technique showed that DOM was mainly composed of terrestrial humic-like and tryptophan-like substances. Moreover, correlation analysis revealed a close association between DOM optical parameters and OPP concentrations. Specifically, OPPs exhibited a significantly positive correlation with tyrosine-like substances, while displaying a negative correlation with fulvic acid-like substances. These results indicated that OPP concentrations may decrease with increasing humification levels and declining tyrosine-like substance contents. This study underscores the critical role of DOM in assessing the occurrence and sources of OPPs in aquatic environments, providing valuable insights for effective environmental management strategies.
Collapse
Affiliation(s)
- Xiangcheng Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China.
| | - Wenyu Zhao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Minghong Cai
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, PR China
| | - Haipeng Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Huipeng Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Xiaona Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| | - Lei Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China
| |
Collapse
|
7
|
Jin R, Li B, Wu Y, Li Y, Du X, Xia C, Zhao H, Liu M. Unpuzzling spatio-vertical and multi-media patterns of aniline accelerators/antioxidants in an urban estuary. WATER RESEARCH 2024; 266:122427. [PMID: 39276472 DOI: 10.1016/j.watres.2024.122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Aniline accelerators and antioxidants (AAs) are high-production-volume industrial additives that have recently attracted emerging concern given their ubiquity in environmental compartments and the associated (eco)toxic effects. Nonetheless, available information on the multi-media behavior of AAs and their transformation products (TPs) remains scarce. Therefore, we determined the residues of twenty-four AA(TP)s in paired dissolved phases (i.e., filtered water), suspended particulate matter (SPM), and sediment samples collected from the Yangtze River Estuary (YRE), a highly urbanized estuary in the East China. The median total concentrations of targeted compounds were 0.73 ng/g dw, 34.4 ng/L, and 39.6 ng/L in sediments, surface and bottom water, respectively. Diphenylamine (DPA) was the most abundant congener in SPM, while 1,3-diphenylguanidine (DPG) and dicyclohexylamine (DChA) dominated in the dissolved phases and sediments. Various anthropogenic emissions and (a)biotic degradation may collectively shape the matrix-specific accumulation patterns and spatial trends of these compounds across the YRE. However, the vertical patterns of AA(TP)s were obscure, probably due to the estuarine hydrodynamics and/or the modest sample size. The SPM fractions of AA(TP)s in water (Ф: 7.9-100%) and the sediment sorption coefficients (KOC: 0.01-6.56) both positively correlated with their hydrophobicity as indicated by the octanol-water partition coefficient (KOW). Moreover, risk quotients implied moderate to high aquatic toxicity posed by several AA(TP)s at certain YRE sites. The estimated total annual fluxes of our analytes transported via water and sediments towards the East China Sea were 5.90-365.5 tons and 4.23-1,100 kg, respectively. This work provides a systematic investigation of multi-media processes and ecological risks of AA(TP)s in a highly-urbanized estuary, contributing to holistic comprehension of these emerging contaminants in estuarine environments.
Collapse
Affiliation(s)
- Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Bao Li
- Changjiang River Estuary Bureau of Hydrological and Water Resources Survey, Ministry of Water Resources, Shanghai 200136, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Yue Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyu Du
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Heng Zhao
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai 200125, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
8
|
Zhang L, Song Z, He L, Zhong S, Ju X, Sha H, Xu J, Qin Q, Peng J, Liang H. Unveiling the toxicological effects and risks of prometryn on red swamp crayfish (Procambarus clarkii): Health assessments, ecological, and molecular insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175512. [PMID: 39151629 DOI: 10.1016/j.scitotenv.2024.175512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prometryn is commonly used in agricultural and non-agricultural settings. However, possible harm to aquatic organisms remains a persistent concern. Prometryn was also the only one of the 26 triazine herbicides detected in this study. Numerous studies have assessed the harmful effects of prometryn in teleost fish and shrimp. There is a lack of information regarding the ecological and human health risks, as well as the toxic mechanisms affecting crayfish. In this study, human health risk assessment (THQ) and ecological risk assessment (RQ) were conducted on P. clarkii in the rice-crayfish co-culture (IRCC) farming model. The 96 h of exposure to 0.286 mg/L and 1.43 mg/L prometryn was conducted to investigate the potential effects and molecular mechanisms of hepatopancreatic resistance to prometryn in P. clarkii. The original sample analysis revealed that the THQ calculated from the prometryn levels in the muscle and hepatopancreas was below 0.1, suggesting no threat to human health. However, the calculated RQ values were >0.1, indicating a risk to P. clarkii. Histological analysis and biochemical index detection of the experimental samples revealed that the hepatopancreatic injury and oxidative damage in P. clarkii were caused by prometryn. Moreover, transcriptome analysis identified 2512 differentially expressed genes (DEGs) after 96 h of prometryn exposure. Prometryn exposure caused significant changes in metabolic pathways, including oxoacid metabolic processes and cytochrome P450-associated drug metabolism. Further hub gene analysis via PPI indicated that exposure to prometryn may inhibit lipid synthesis, storage, and amino acid transport and affect glucose metabolic pathways and hormone synthesis. Additionally, we hypothesized that prometryn-triggered cell death could be linked to the PI3K-Akt signaling cascade. This study's findings have significant meaning for the efficient and logical application of herbicides in IRCC, ultimately aiding in advancing a highly productive agricultural system.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Ziwei Song
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Xiaoqian Ju
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jing Xu
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Qiuying Qin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Jie Peng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| |
Collapse
|
9
|
Zhang Z, Feng Y, Wang W, Ru S, Zhao L, Ma Y, Song X, Liu L, Wang J. Pollution level and ecological risk assessment of triazine herbicides in Laizhou Bay and derivation of seawater quality criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135270. [PMID: 39053056 DOI: 10.1016/j.jhazmat.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 μg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan 063000, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 264006, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuanqing Ma
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Xiukai Song
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Qiu Y, Liu L, Xu C, Zhao B, Lin H, Liu H, Xian W, Yang H, Wang R, Yang X. Farmland's silent threat: Comprehensive multimedia assessment of micropollutants through non-targeted screening and targeted analysis in agricultural systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135064. [PMID: 38968823 DOI: 10.1016/j.jhazmat.2024.135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Intricate agricultural ecosystems markedly influence the dynamics of organic micropollutants, posing substantial threats to aquatic organisms and human health. This study examined the occurrence and distribution of organic micropollutants across soils, ditch sediment, and water within highly intensified farming setups. Using a non-targeted screening method, we identified 405 micropollutants across 10 sampling sites, which mainly included pesticides, pharmaceuticals, industrial chemicals, and personal care products. This inventory comprised emerging contaminants, banned pesticides, and controlled pharmaceuticals that had eluded detection via conventional monitoring. Targeted analysis showed concentrations of 3.99-1021 ng/g in soils, 4.67-2488 ng/g in sediment, and 12.5-9373 ng/L in water, respectively, for Σ40pesticides, Σ8pharmaceuticals, and Σ3industrial chemicals, indicating notable spatial variability. Soil organic carbon content and wastewater discharge were likely responsible for their spatial distribution. Principal component analysis and correlation analysis revealed a potential transfer of micropollutants across the three media. Particularly, a heightened correlation was decerned between soil and sediment micropollutant levels, highlighting the role of sorption processes. Risk quotients surpassed the threshold of 1 for 13-23 micropollutants across the three media, indicating high environmental risks. This study highlights the importance of employing non-targeted and targeted screening in assessing and managing environmental risks associated with micropollutants.
Collapse
Affiliation(s)
- Yang Qiu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lijun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Caifei Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Weixuan Xian
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Han Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
11
|
Dashti A, Navidpour AH, Amirkhani F, Zhou JL, Altaee A. Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts. CHEMOSPHERE 2024; 362:142792. [PMID: 38971434 DOI: 10.1016/j.chemosphere.2024.142792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/16/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Pesticide pollution has been posing a significant risk to human and ecosystems, and photocatalysis is widely applied for the degradation of pesticides. Machine learning (ML) emerges as a powerful method for modeling complex water treatment processes. For the first time, this study developed novel ML models that improved the estimation of the photocatalytic degradation of various pesticides using ZnO-based photocatalysts. The input parameters encompassed the source of light, mass proportion of dopants to Zn, initial pesticide concentration (C0), pH of the solution, catalyst dosage and irradiation time. Additionally, physicochemical properties such as the molecular weight of the dopants and pesticides, as well as the water solubility of both dopants and pesticides, were considered. Notably, the numerical data were extracted from the literature via relevant tables (directly) or graphs (indirectly) using the web-based tool WebPlotDigitizer. Four ML models including multi-layer perceptron artificial neural network (MLP-ANN), particle swarm optimization-adaptive neuro fuzzy inference system (PSO-ANFIS), radial basis function (RBF), and coupled simulated annealing-least squares support vector machine (CSA-LSSVM) were developed. In comparison, RBF showed the best accuracy of modeling among all models, with the highest determination coefficient (R2) of 0.978 and average absolute relative deviation (AARD) of 4.80%. RBF model was effective in estimating the photocatalytic degradation of pesticides except for 2-chlorophenol, triclopyr and lambda-cyhalothrin, where CSA-LSSVM model demonstrated superior performance. Dichlorvos was completely degraded by ZnO photocatalyst under visible light. The sensitivity analysis by relevancy factor exhibited that light irradiation time and initial pesticide concentration were the most important parameters influencing photocatalytic degradation of pesticides positively and negatively, respectively. The new ML models provide a powerful tool for predicting pesticide degradation in wastewater treatment, which will reduce photochemical experiments and promote sustainable development.
Collapse
Affiliation(s)
- Amir Dashti
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Amir Hossein Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Farid Amirkhani
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| |
Collapse
|
12
|
Lv L, Jia F, Deng M, Di S, Chu T, Wang Y. Toxic mechanisms of imazalil, azoxystrobin and their mixture to hook snout carp (Opsariichthys bidens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172022. [PMID: 38552970 DOI: 10.1016/j.scitotenv.2024.172022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
While combinations of pesticides better represent actual conditions within aquatic ecosystems, the specific toxic effects of these combinations have not been determined yet. The objective of this research was to assess the combined impact of imazalil and azoxystrobin on the hook snout carp (Opsariichthys bidens) and delve into the underlying causes. Our findings indicated that the 4-day LC50 value for imazalil (1.85 mg L-1) was greater than that for azoxystrobin (0.90 mg L-1). When imazalil and azoxystrobin were combined, they presented a heightened effect on the species. Enzyme activities like SOD, CAT, GST, and CarE, along with androgen and estrogen levels, displayed marked differences in most single and combined treatments in comparison to the baseline group. Moreover, four genes (mn-sod, cu-sod, il-1, and esr) related to oxidative stress, immunity, and the endocrine system exhibited more pronounced expression changes when exposed to combined pesticides rather than individual ones. Our tests revealed that the combined use of imazalil and azoxystrobin had more detrimental effect on aquatic vertebrates than when evaluated individually. This finding suggested that future ecological hazard analyses based only on individual tests might not sufficiently safeguard our aquatic ecosystems.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
13
|
Navarro I, de la Torre A, Sanz P, Abrantes N, Campos I, Alaoui A, Christ F, Alcon F, Contreras J, Glavan M, Pasković I, Pasković MP, Nørgaard T, Mandrioli D, Sgargi D, Hofman J, Aparicio V, Baldi I, Bureau M, Vested A, Harkes P, Huerta-Lwanga E, Mol H, Geissen V, Silva V, Martínez MÁ. Assessing pesticide residues occurrence and risks in water systems: A Pan-European and Argentina perspective. WATER RESEARCH 2024; 254:121419. [PMID: 38484551 DOI: 10.1016/j.watres.2024.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Freshwater ecosystems face a particularly high risk of biodiversity loss compared to marine and terrestrial systems. The use of pesticides in agricultural fields is recognized as a relevant stressor for freshwater environments, exerting a negative impact worldwide on the overall status and health of the freshwater communities. In the present work, part of the Horizon 2020 funded SPRINT project, the occurrence of 193 pesticide residues was investigated in 64 small water bodies of distinct typology (creeks, streams, channels, ditches, rivers, lakes, ponds and reservoirs), located in regions with high agricultural activity in 10 European countries and in Argentina. Mixtures of pesticide residues were detected in all water bodies (20, median; 8-40 min-max). Total pesticide levels found ranged between 6.89 and 5860 ng/L, highlighting herbicides as the dominant type of pesticides. Glyphosate was the compound with the highest median concentration followed by 2,4-D and MCPA, and in a lower degree by dimethomorph, fluopicolide, prothioconazole and metolachlor(-S). Argentina was the site with the highest total pesticide concentration in water bodies followed by The Netherlands, Portugal and France. One or more pesticides exceeded the threshold values established in the European Water Framework Directive for surface water in 9 out of 11 case study sites (CSS), and the total pesticide concentration surpassed the reference value of 500 ng/L in 8 CSS. Although only 5 % (bifenthrin, dieldrin, fipronil sulfone, permethrin, and terbutryn) of the individual pesticides denoted high risk (RQ > 1), the ratios estimated for pesticide mixtures suggested potential environmental risk in the aquatic compartment studied.
Collapse
Affiliation(s)
- Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Portugal
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Florian Christ
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Francisco Alcon
- Department of Business Economics, Universidad Politécnica de Cartagena, Spain
| | - Josefina Contreras
- Department Agricultural Engineering, Universidad Politécnica de Cartagena, Spain
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Trine Nørgaard
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bologna, Italy
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, the Czech Republic
| | - Virginia Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Isabelle Baldi
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Mathilde Bureau
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Anne Vested
- Department of Public Health - Unit for Environment, Occupation, and Health, Danish Ramazzini Centre, Aarhus University, Denmark
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Esperanza Huerta-Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Mol
- Wageningen Food Safety Research - Part of Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| |
Collapse
|
14
|
Saha A, Das BK, Sarkar DJ, Samanta S, Vijaykumar ME, Khan MF, Kayal T, Jana C, Kumar V, Gogoi P, Chowdhury AR. Trace metals and pesticides in water-sediment and associated pollution load indicators of Netravathi-Gurupur estuary, India: Implications on coastal pollution. MARINE POLLUTION BULLETIN 2024; 199:115950. [PMID: 38183833 DOI: 10.1016/j.marpolbul.2023.115950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Various environmental indicators were used to evaluate the water and sediment quality of the Netravathi-Gurupur estuary, India, for trace metals and pesticide pollution. The descended order of studied metal concentrations (μg/L) in the water was Fe (592.71) > Mn (98.35) > Zn (54.69) > Cu (6.64) > Cd (3.24) > Pb (2.38) > Cr (0.82) and in sediment (mg/kg) was Fe (11,396.53) > Mn (100.61) > Cr (75.41) > Zn (20.04) > Cu (12.77) > Pb (3.46) > Cd (0.02). However, pesticide residues were not detected in this estuarine environment. The various metal indexes categorised the water as uncontaminated, whereas contamination factor, enrichment factor, geo-accumulation index, degree of contamination and pollution load index indicated low to moderate sediment contamination. Multivariate statistics showed that the dominance of natural sources of trace metals with little anthropogenic impact. Improvement in water/sediment quality during the study period might be due to COVID-19 imposed lockdown.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - D J Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
15
|
Gu W, Xing W, Liang M, Wang Z, Zhang B, Sun S, Fan D, Wang L. Occurrence, distribution, and risk assessment of pesticides in surface water and sediment in Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118418-118429. [PMID: 37907825 DOI: 10.1007/s11356-023-30416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
The occurrence and distribution of 157 pesticides were investigated in surface water and sediment in Jiangsu Province, China. Gas chromatography-mass spectrometry was used to analyze and quantify these pesticides, and the risk quotient method was used to evaluate their respective environmental risk. The results showed that 91 pesticides were detected in surface water. The organophosphates (OPPs), fungicides, and amide herbicides were predominant. The total concentration in surface water ranged from 63.7 to 22,463 ng/L, 3.90 to 7262 ng/L, and ND to 34,120 ng/L, respectively. The mean concentration was 3479 ng/L, 1644 ng/L, and 1878 ng/L, respectively. The concentration range of detected pesticides in the Yangtze River Basin was generally lower than that in the Huai River Basin. In sediment samples, a total of 63 pesticides were detected. OPPs and amide herbicides were also ranked highest; the total concentration in sediment samples ranged from 2951 to 47,739 ng/g and 106 to 12,996 ng/g, respectively. And the mean concentrations was 6971 ng/g and 5130 ng/g, respectively. Suqian City had the highest concentration for OPPs and amide herbicides in the Huai River Basin, followed by Huai'an City, while Nanjing City and Yangzhou City ranked highest in the Yangtze River Basin. The spatial distribution of pesticides in Jiangsu Province indicated a concentration significantly higher in the western and northern regions than in the eastern and southern regions, and a concentration generally higher in lakes than in rivers. The risk assessment results showed that OPPs, fungicides, amide herbicides, organochlorines, and triazine herbicides in most surface water samples posed a high risk and had regional pollution characteristics. In sediment samples, organochlorines, carbamates, other herbicides, and other insecticides posed a high risk in northern Jiangsu Province, whereas OPPs, amide herbicides, and triazine herbicides posed high risks everywhere in Jiangsu Province.
Collapse
Affiliation(s)
- Wen Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weilong Xing
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bing Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuai Sun
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|