1
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Pahlavan Y, Yeganeh O, Asghariazar V, Karami C. Multi-epitope vaccine against SARS-CoV-2 targeting the spike RBD: an immunoinformatics approach. Future Sci OA 2024; 10:FSO939. [PMID: 38827807 PMCID: PMC11140640 DOI: 10.2144/fsoa-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/07/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: We designed a SARS-CoV-2 epitope vaccine based on the receptor-binding domain (RBD) in virus spike protein. Methods: RT-PCR performed on nasopharyngeal swab COVID-19 patients. After registering RBD region in the GenBank, physicochemical parameters, secondary structure, homology modeling, 3D structure of RBD region and antigenicity were determined using ProtParam ExPASy, PSIPRED, MolProbity, IEDB and Vaxijen online tools, respectively. Results: B and T cell epitopes were predicted in terms of non-allergenicity and antigenicity. MolProbity analysis provided a qualitative model for RBD. The homology model showed that most of the residues are in optimal district of energy. Conclusion: High immunogenicity score of epitopes indicates promising candidates for the development of multi-epitope vaccines. It may help to develop an effective vaccine.
Collapse
Affiliation(s)
- Yasamin Pahlavan
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran
| | - Omid Yeganeh
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, 16511-53311, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran
| | - Chiman Karami
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran
| |
Collapse
|
3
|
Mohebbi F, Zelikovsky A, Mangul S, Chowell G, Skums P. Early detection of emerging viral variants through analysis of community structure of coordinated substitution networks. Nat Commun 2024; 15:2838. [PMID: 38565543 PMCID: PMC10987511 DOI: 10.1038/s41467-024-47304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The emergence of viral variants with altered phenotypes is a public health challenge underscoring the need for advanced evolutionary forecasting methods. Given extensive epistatic interactions within viral genomes and known viral evolutionary history, efficient genomic surveillance necessitates early detection of emerging viral haplotypes rather than commonly targeted single mutations. Haplotype inference, however, is a significantly more challenging problem precluding the use of traditional approaches. Here, using SARS-CoV-2 evolutionary dynamics as a case study, we show that emerging haplotypes with altered transmissibility can be linked to dense communities in coordinated substitution networks, which become discernible significantly earlier than the haplotypes become prevalent. From these insights, we develop a computational framework for inference of viral variants and validate it by successful early detection of known SARS-CoV-2 strains. Our methodology offers greater scalability than phylogenetic lineage tracing and can be applied to any rapidly evolving pathogen with adequate genomic surveillance data.
Collapse
Affiliation(s)
- Fatemeh Mohebbi
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gerardo Chowell
- School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
- School of Computing, College of Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
4
|
Khalid K, Lim HX, Anwar A, Tan SH, Hwang JS, Ong SK, Poh CL. Preclinical Development of a Novel Epitope-based DNA Vaccine Candidate against SARS-CoV-2 and Evaluation of Immunogenicity in BALB/c Mice. AAPS PharmSciTech 2024; 25:60. [PMID: 38472523 DOI: 10.1208/s12249-024-02778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Rabienia M, Mortazavidehkordi N, Roudbari Z, Daneshi R, Abdollahi A, Yousefian Langeroudi M, Behmard E, Farjadfar A. Designing of a new multi-epitope vaccine against Leishmania major using Leish-F1 epitopes: An In-silico study. PLoS One 2024; 19:e0295495. [PMID: 38165973 PMCID: PMC10760699 DOI: 10.1371/journal.pone.0295495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2023] [Indexed: 01/04/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is the most common form of the disease which can cause malignant lesions on the skin. Vaccination for the prevention and treatment of leishmaniasis can be the most effective way to combat this disease. In this study, we designed a novel multi-epitope vaccine against Leishmania major (L. major) using immunoinformatics tools to assess its efficacy in silico. Sequences of Leish-F1 protein (TSA, Leif, and LMSTI1) of L. major were taken from GenBank. The helper T (Th) and cytotoxic T (Tc) epitopes of the protein were predicted. The final multi-epitope consisted of 18 CTL epitopes joined by AAY linker. There were also nine HTL epitopes in the structure of the vaccine construct, joined by GPGPG linker. The profilin adjuvant (the toll-like receptor 11 agonist) was also added into the construct by AAY Linker. There were 613 residues in the structure of the vaccine construct. The multi-epitope vaccine candidate was stable and non-allergic. The data obtained from the binding of final multi-epitope vaccine-TLR11 residues (band lengths and weighted scores) unveiled the ligand and the receptor high score of binding affinity. Moreover, in silico assessment of the vaccine construct cloning achieved its suitable expression in E. coli host. Based on these results, the current multi-epitope vaccine prevents L. major infection in silico, while further confirmatory assessments are required.
Collapse
Affiliation(s)
- Mahsa Rabienia
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Rasoul Daneshi
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Abdollahi
- Department of Medical Microbiology, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Li L, Zhao Z, Yang X, Su Z, Li W, Chen S, Wang L, Sun T, Du C, Li Z, Yang Z, Li M, Wang T, Wang Y, Fan Y, Wang H, Zhang J. A Newly Identified Spike Protein Targeted Linear B-Cell Epitope Based Dissolvable Microneedle Array Successfully Eliciting Neutralizing Activities against SARS-CoV-2 Wild-Type Strain in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207474. [PMID: 37162232 PMCID: PMC10369230 DOI: 10.1002/advs.202207474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Vaccination is a cost-effective medical intervention. Inactivated whole virusor large protein fragments-based severe acute respiratory syndrome coronavirus (SARS-CoV-2) vaccines have high unnecessary antigenic load to induce allergenicity and/orreactogenicity, which can be avoided by peptide vaccines of short peptide fragments that may induce highly targeted immune response. However, epitope identification and peptide delivery remain the major obstacles in developing peptide vaccines. Here, a multi-source data integrated linear B-cell epitope screening strategy is presented and a linear B-cell epitope enriched hotspot region is identified in Spike protein, from which a monomeric peptide vaccine (Epitope25) is developed and applied to subcutaneously immunize wildtype BALB/c mice. Indirect ELISA assay reveals specific and dose-dependent binding between Epitope25 and serum IgG antibodies from immunized mice. The neutralizing activity of sera from vaccinated mice is validated by pseudo and live SARS-CoV-2 wild-type strain neutralization assays. Then a dissolvable microneedle array (DMNA) is developed to pain-freely deliver Epitope25. Compared with intramuscular injection, DMNA and subcutaneous injection elicit neutralizing activities against SARS-CoV-2 wild-type strain as demonstrated by live SARS-CoV-2 virus neutralization assay. No obvious damages are found in major organs of immunized mice. This study may lay the foundation for developing linear B-cell epitope-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Zhongyi Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Wendong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Chen Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Ziyi Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Zeqian Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Min Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Tiecheng Wang
- Institute of Military VeterinaryAcademy of Military Medical Sciences666 West Liuying RoadChangchunJilin130122P. R. China
| | - Ying Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Hui Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| |
Collapse
|
8
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
9
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
10
|
Celikgil A, Massimi AB, Nakouzi A, Herrera NG, Morano NC, Lee JH, Yoon HA, Garforth SJ, Almo SC. SARS-CoV-2 multi-antigen protein microarray for detailed characterization of antibody responses in COVID-19 patients. PLoS One 2023; 18:e0276829. [PMID: 36757919 PMCID: PMC9910743 DOI: 10.1371/journal.pone.0276829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target multiple epitopes on different domains of the spike protein, and other SARS-CoV-2 proteins. We developed a SARS-CoV-2 multi-antigen protein microarray with the nucleocapsid, spike and its domains (S1, S2), and variants with single (D614G, E484K, N501Y) or double substitutions (N501Y/Deletion69/70), allowing a more detailed high-throughput analysis of the antibody repertoire following infection. The assay was demonstrated to be reliable and comparable to ELISA. We analyzed antibodies from 18 COVID-19 patients and 12 recovered convalescent donors. The S IgG level was higher than N IgG in most of the COVID-19 patients, and the receptor-binding domain of S1 showed high reactivity, but no antibodies were detected against the heptad repeat domain 2 of S2. Furthermore, antibodies were detected against S variants with single and double substitutions in COVID-19 patients who were infected with SARS-CoV-2 early in the pandemic. Here we demonstrated that the SARS-CoV-2 multi-antigen protein microarray is a powerful tool for detailed characterization of antibody responses, with potential utility in understanding the disease progress and assessing current vaccines and therapies against evolving SARS-CoV-2.
Collapse
Affiliation(s)
- Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aldo B. Massimi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Antonio Nakouzi
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - James H. Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hyun ah Yoon
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
11
|
Hisham Y, Seo SM, Kim S, Shim S, Hwang J, Yoo ES, Kim NW, Song CS, Jhun H, Park HY, Lee Y, Shin KC, Han SY, Seong JK, Choi YK, Kim S. COVID-19 spike polypeptide vaccine reduces the pathogenesis and viral infection in a mouse model of SARS-CoV-2. Front Immunol 2023; 14:1098461. [PMID: 36936979 PMCID: PMC10020603 DOI: 10.3389/fimmu.2023.1098461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
The SARS-CoV-2 coronavirus, which causes a respiratory disease called COVID-19, has been declared a pandemic by the World Health Organization (WHO) and is still ongoing. Vaccination is the most important strategy to end the pandemic. Several vaccines have been approved, as evidenced by the ongoing global pandemic, but the pandemic is far from over and no fully effective vaccine is yet available. One of the most critical steps in vaccine development is the selection of appropriate antigens and their proper introduction into the immune system. Therefore, in this study, we developed and evaluated two proposed vaccines composed of single and multiple SARS-CoV-2 polypeptides derived from the spike protein, namely, vaccine A and vaccine B, respectively. The polypeptides were validated by the sera of COVID-19-vaccinated individuals and/or naturally infected COVID-19 patients to shortlist the starting pool of antigens followed by in vivo vaccination to hACE2 transgenic mice. The spike multiple polypeptide vaccine (vaccine B) was more potent to reduce the pathogenesis of organs, resulting in higher protection against the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yasmin Hisham
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jihyeong Hwang
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Eun-Seon Yoo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na-Won Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyunjhung Jhun
- Food Industry Infrastructure Team, Korea Food Research Institute, Wanju, Republic of Korea
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, Republic of Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kyeong-Cheol Shin
- Center for Respiratory Disease, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center, Interdisciplinary Program for Bioinformatics, and BioMAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- *Correspondence: Yang-Kyu Choi, ; Soohyun Kim,
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- *Correspondence: Yang-Kyu Choi, ; Soohyun Kim,
| |
Collapse
|
12
|
Immunogenetic Predisposition to SARS-CoV-2 Infection. BIOLOGY 2022; 12:biology12010037. [PMID: 36671730 PMCID: PMC9855425 DOI: 10.3390/biology12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Herein, we included 527 individuals from two Hospitals, Chemnitz and University-Hospital Leipzig. In total, 199 were negative for PCR and 328 were positive upon first admission. We used next generation sequencing for HLA-A, B, C, DRB1, DRB345, DQA1, DQB1, DPA1, and DPB1, and in some cases, HLA-E, F, G, and H. Furthermore, we molecularly defined 22 blood group systems comprising 26 genes and 5 platelet antigen genes. We observed a significant enrichment of homozygosity for DQA/DQB in the positive group. Within the negative subjects, HLA-B*57:01, HLA-B*55:01, DRB1*13:01, and DRB1*01:01 were enriched, and in the positive group, homozygosity for DQA/DQB, DRB1*09:01, and DRB1*15:01 was observed. DQA1*01:01, DQA1*02:01, and DQA1*01:03 were enriched in the negative group. HLA-DQB1*06:02 was enriched in the positive group, and HLA-DQB1*05:01 and HLA-DQB1*06:03 were enriched in the negative group. For the blood group systems MNS, RH, LE, FY, JK, YT, DO, and KN, enrichment was seen in both groups, depending on the antigen under observation. Homozygosity for D-positive RHD alleles, as well as the phenotypes M-N+ of the MNS blood group system and Yk(a-) of the KN system, were enriched in the positive group. All of these significances disappeared upon correction. Subjects who carried homozygous HPA-1a were more frequent in the negative group, contrasting with the finding that HPA-1ab was enriched in the positive group.
Collapse
|
13
|
Fischer JC, Balz V, Jazmati D, Bölke E, Freise NF, Keitel V, Feldt T, Jensen BEO, Bode J, Lüdde T, Häussinger D, Adams O, Schneider EM, Enczmann J, Rox JM, Hermsen D, Schulze-Bosse K, Kindgen-Milles D, Knoefel WT, van Griensven M, Haussmann J, Tamaskovics B, Plettenberg C, Scheckenbach K, Corradini S, Pedoto A, Maas K, Schmidt L, Grebe O, Esposito I, Ehrhardt A, Peiper M, Buhren BA, Calles C, Stöhr A, Gerber PA, Lichtenberg A, Schelzig H, Flaig Y, Rezazadeh A, Budach W, Matuschek C. Prognostic markers for the clinical course in the blood of patients with SARS-CoV-2 infection. Eur J Med Res 2022; 27:255. [PMID: 36411478 PMCID: PMC9676819 DOI: 10.1186/s40001-022-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The presentation of peptides and the subsequent immune response depend on the MHC characteristics and influence the specificity of the immune response. Several studies have found an association between HLA variants and differential COVID-19 outcomes and have shown that HLA genotypes are associated with differential immune responses against SARS-CoV-2, particularly in severely ill patients. Information, whether HLA haplotypes are associated with the severity or length of the disease in moderately diseased individuals is absent. METHODS Next-generation sequencing-based HLA typing was performed in 303 female and 231 male non-hospitalized North Rhine Westphalian patients infected with SARS-CoV2 during the first and second wave. For HLA-Class I, we obtained results from 528 patients, and for HLA-Class II from 531. In those patients, who became ill between March 2020 and January 2021, the 22 most common HLA-Class I (HLA-A, -B, -C) or HLA-Class II (HLA -DRB1/3/4, -DQA1, -DQB1) haplotypes were determined. The identified HLA haplotypes as well as the presence of a CCR5Δ32 mutation and number of O and A blood group alleles were associated to disease severity and duration of the disease. RESULTS The influence of the HLA haplotypes on disease severity and duration was more pronounced than the influence of age, sex, or ABO blood group. These associations were sex dependent. The presence of mutated CCR5 resulted in a longer recovery period in males. CONCLUSION The existence of certain HLA haplotypes is associated with more severe disease.
Collapse
Affiliation(s)
- Johannes C. Fischer
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Vera Balz
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Danny Jazmati
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Edwin Bölke
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Noemi F. Freise
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Verena Keitel
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Torsten Feldt
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Björn-Erik Ole Jensen
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Johannes Bode
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Tom Lüdde
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Dieter Häussinger
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Ortwin Adams
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - E. Marion Schneider
- grid.410712.10000 0004 0473 882XDivision of Experimental Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Jürgen Enczmann
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Jutta M. Rox
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Derik Hermsen
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Karin Schulze-Bosse
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Detlef Kindgen-Milles
- grid.14778.3d0000 0000 8922 7789Department of Anesthesiology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wolfram Trudo Knoefel
- grid.14778.3d0000 0000 8922 7789Department of Surgery and Interdisciplinary Surgical Intensive Care Unit, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Martijn van Griensven
- grid.5012.60000 0001 0481 6099Department cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan Haussmann
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Balint Tamaskovics
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Plettenberg
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Kathrin Scheckenbach
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Stefanie Corradini
- grid.5252.00000 0004 1936 973XDepartment of Radiation Oncology, LMU University of Munich, Munich, Germany
| | - Alessia Pedoto
- grid.51462.340000 0001 2171 9952Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Kitti Maas
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Livia Schmidt
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Olaf Grebe
- Department of Cardiology and Rhythmology, Petrus Hospital, Wuppertal, Germany
| | - Irene Esposito
- grid.14778.3d0000 0000 8922 7789Institute of Pathology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Anja Ehrhardt
- grid.412581.b0000 0000 9024 6397Institute of Virology, University of Witten/Herdecke, Witten, Germany
| | - Matthias Peiper
- grid.14778.3d0000 0000 8922 7789Medical Faculty, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Bettina Alexandra Buhren
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Calles
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Andreas Stöhr
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Peter Arne Gerber
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Artur Lichtenberg
- grid.14778.3d0000 0000 8922 7789Department of Cardiac Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Hubert Schelzig
- grid.14778.3d0000 0000 8922 7789Department of Vascular Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Yechan Flaig
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Amir Rezazadeh
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wilfried Budach
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christiane Matuschek
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
14
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
15
|
Yang L, Liang T, Pierson LM, Wang H, Fletcher JK, Wang S, Bao D, Zhang L, Huang Z, Zheng W, Zhang X, Park H, Li Y, Robinson JE, Feehan AK, Lyon CJ, Cao J, Morici LA, Li C, Roy CJ, Yu X, Hu T. SARS-CoV-2 Epitopes following Infection and Vaccination Overlap Known Neutralizing Antibody Sites. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9769803. [PMID: 35928300 PMCID: PMC9297724 DOI: 10.34133/2022/9769803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites, but can be laborious. Herein, we employed peptide microarrays to map linear peptide epitopes (LPEs) recognized following SARS-CoV-2 infection and vaccination. LPEs detected by nonhuman primate (NHP) and patient IgMs after SARS-CoV-2 infection extensively overlapped, localized to functionally important virus regions, and aligned with reported neutralizing antibody binding sites. Similar LPE overlap occurred after infection and vaccination, with LPE clusters specific to each stimulus, where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function. Vaccine-specific LPEs tended to map to sites known or likely to be affected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein. Mapping LPEs to regions of known functional importance in this manner may accelerate vaccine evaluation and discovery of targets for site-specific therapeutic interventions.
Collapse
Affiliation(s)
- Li Yang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Te Liang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lane M. Pierson
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jesse K. Fletcher
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Shu Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Heewon Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Yuwen Li
- Hayward Genetics Center, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Amy K. Feehan
- Infectious Disease Department, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jing Cao
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Lisa A. Morici
- Department of Microbiology & Immunology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Chenzhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Chad J. Roy
- Department of Microbiology & Immunology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Pondé RAA. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology 2022; 572:44-54. [PMID: 35580380 PMCID: PMC9096574 DOI: 10.1016/j.virol.2022.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023]
Abstract
The spike protein comprises one of the main structural components of SARS-CoV-2 because it is directly involved in the infection process and viral transmission, and also because of its immunogenic properties, as an inducer of the protective antibodies production and as a vaccine component. The occurrence of mutations in this region or in other the virus genome regions, comprises a natural phenomenon in its evolution. However, they also occur due to the selective immune pressure, to which the agent is continuously subjected, especially in the spike protein immunodominant regions, such as the RBD. Mutations in the spike protein can change the virus' fitness, increasing its affinity for target cells, its transmissibility and its virulence. In addition, these mutations can giving it the potential ability to evade the protective antibodies action obtained from convalescent sera or vaccine origin, as well as those used in therapy, which may favor the virus expansion and compromise the infection control. Five mutations N501Y, E484K/Q, K417N/T, L452R and T478K, located in the spike protein RBD, have had a greater impact because they are associated with new attributes developed by the virus, which characterize the emerging variants of concern (VOCs) of SARS-Cov-2 identified so far. The occurrence of these mutations induces complex physicochemical effects that can alter the spike protein's structure and its function, which in turn, lead to changes in the agents' fitness. This manuscript discusses the attributes of VOCs associated with the physicochemical effects caused by the aforementioned mutations.
Collapse
Affiliation(s)
- R A A Pondé
- State Department of Health SES/Superintendence of Health Surveillance SUVISA/GO, Management of Epidemiological Surveillance-GVE/Coordination of Analysis and Research-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
17
|
Patarroyo MA, Patarroyo ME, Pabón L, Alba MP, Bermudez A, Rugeles MT, Díaz-Arevalo D, Zapata-Builes W, Zapata MI, Reyes C, Suarez CF, Agudelo W, López C, Aza-Conde J, Melo M, Escamilla L, Oviedo J, Guzmán F, Silva Y, Forero M, Flórez-Álvarez L, Aguilar-Jimenez W, Moreno-Vranich A, Garry J, Avendaño C. SM-COLSARSPROT: Highly Immunogenic Supramutational Synthetic Peptides Covering the World's Population. Front Immunol 2022; 13:859905. [PMID: 35693819 PMCID: PMC9175637 DOI: 10.3389/fimmu.2022.859905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Fifty ~20-amino acid (aa)-long peptides were selected from functionally relevant SARS-CoV-2 S, M, and E proteins for trial B-21 and another 53 common ones, plus some new ones derived from the virus' main genetic variants for complementary trial C-21. Peptide selection was based on tremendous SARS-CoV-2 genetic variability for analysing them concerning vast human immunogenetic polymorphism for developing the first supramutational, Colombian SARS-protection (SM-COLSARSPROT), peptide mixture. Specific physicochemical rules were followed, i.e., aa predilection for polyproline type II left-handed (PPIIL) formation, replacing β-branched, aromatic aa, short-chain backbone H-bond-forming residues, π-π interactions (n→π* and π-CH), aa interaction with π systems, and molecular fragments able to interact with them, disrupting PPIIL propensity formation. All these modified structures had PPIIL formation propensity to enable target peptide interaction with human leukocyte antigen-DRβ1* (HLA-DRβ1*) molecules to mediate antigen presentation and induce an appropriate immune response. Such modified peptides were designed for human use; however, they induced high antibody titres against S, M, and E parental mutant peptides and neutralising antibodies when suitably modified and chemically synthesised for immunising 61 major histocompatibility complex class II (MHCII) DNA genotyped Aotus monkeys (matched with their corresponding HLA-DRβ1* molecules), predicted to cover 77.5% to 83.1% of the world's population. Such chemically synthesised peptide mixture represents an extremely pure, stable, reliable, and cheap vaccine for COVID-19 pandemic control, providing a new approach for a logical, rational, and soundly established methodology for other vaccine development.
Collapse
Affiliation(s)
- Manuel A. Patarroyo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel E. Patarroyo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Pabón
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha P. Alba
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Adriana Bermudez
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Díaz-Arevalo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María Isabel Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - César Reyes
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Carlos F. Suarez
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - William Agudelo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Carolina López
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jorge Aza-Conde
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Miguel Melo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Luis Escamilla
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jairo Oviedo
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Fanny Guzmán
- Núcleo de Biotecnología, Pontificia U. Católica de Valparaíso, Valparaíso, Chile
| | - Yolanda Silva
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha Forero
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Armando Moreno-Vranich
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jason Garry
- Grupos: Síntesis Química, Resonancia Magnética Nuclear y Cálculo Estructural, Biología Molecular e Inmunología e Inmuno-Química, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Facultad de Ciencias Agropecualrias, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| |
Collapse
|
18
|
Srivastava S, Verma S, Kamthania M, Agarwal D, Saxena AK, Kolbe M, Singh S, Kotnis A, Rathi B, Nayar SA, Shin HJ, Vashisht K, Pandey KC. Computationally validated SARS-CoV-2 CTL and HTL Multi-Patch vaccines, designed by reverse epitomics approach, show potential to cover large ethnically distributed human population worldwide. J Biomol Struct Dyn 2022; 40:2369-2388. [PMID: 33155524 PMCID: PMC7651196 DOI: 10.1080/07391102.2020.1838329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is responsible for the COVID-19 outbreak. The highly contagious COVID-19 disease has spread to 216 countries in less than six months. Though several vaccine candidates are being claimed, an effective vaccine is yet to come. A novel reverse epitomics approach, 'overlapping-epitope-clusters-to-patches' method is utilized to identify the antigenic regions from the SARS-CoV-2 proteome. These antigenic regions are named as 'Ag-Patch or Ag-Patches', for Antigenic Patch or Patches. The identification of Ag-Patches is based on the clusters of overlapping epitopes rising from SARS-CoV-2 proteins. Further, we have utilized the identified Ag-Patches to design Multi-Patch Vaccines (MPVs), proposing a novel method for the vaccine design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties and cDNA constructs. We identified 73 CTL (Cytotoxic T-Lymphocyte) and 49 HTL (Helper T-Lymphocyte) novel Ag-Patches from the proteome of SARS-CoV-2. The identified Ag-Patches utilized to design MPVs cover 768 overlapping epitopes targeting 55 different HLA alleles leading to 99.98% of world human population coverage. The MPVs and Toll-Like Receptor ectodomain complex shows stable complex formation tendency. Further, the cDNA analysis favors high expression of the MPVs constructs in a human cell line. We identified highly immunogenic novel Ag-Patches from the entire proteome of SARS CoV-2 by a novel reverse epitomics approach and utilized them to design MPVs. We conclude that the novel MPVs could be a highly potential novel approach to combat SARS-CoV-2, with greater effectiveness, high specificity and large human population coverage worldwide. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Molecular Medicine Lab., School of Life Science, Jawaharlal Nehru University, New Delhi, India
- Infection Biology Group, Indian Foundation for Fundamental Research, RaeBareli, India
| | - Sonia Verma
- Parasite-Host Biology Group, Protein Biochemistry & Engineering Lab, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mohit Kamthania
- Infection Biology Group, Indian Foundation for Fundamental Research, RaeBareli, India
| | - Deepa Agarwal
- Infection Biology Group, Indian Foundation for Fundamental Research, RaeBareli, India
| | - Ajay Kumar Saxena
- Molecular Medicine Lab., School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Michael Kolbe
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Sarman Singh
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Brijesh Rathi
- Laboratory For Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, New Delhi, India
| | - Seema A. Nayar
- Department of Microbiology, Government Medical College, Trivandrum, India
- Department of Microbiology, Sree Gokulam Medical College, Trivandrum, India
| | - Ho-Joon Shin
- Department of Microbiology, School of Medicine, Ajou University, Suwon, South Korea
| | - Kapil Vashisht
- Parasite-Host Biology Group, Protein Biochemistry & Engineering Lab, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C. Pandey
- Parasite-Host Biology Group, Protein Biochemistry & Engineering Lab, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
19
|
Devi SS, Kardam V, Dubey KD, Dwivedi M. Deciphering the immunogenic T-cell epitopes from spike protein of SARS-CoV-2 concerning the diverse population of India. J Biomol Struct Dyn 2022; 41:2713-2732. [PMID: 35132938 DOI: 10.1080/07391102.2022.2037462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scientists are rigorously looking for an efficient vaccine against the current pandemic due to the SARS-CoV-2 virus. The reverse vaccinology approach may provide us with significant therapeutic leads in this direction and further determination of T-cell/B-cell response to antigen. In the present study, we conducted a population coverage analysis referring to the diverse Indian population. From the Immune epitope database (IEDB), HLA- distribution analysis was performed to find the most promiscuous T-cell epitope out of In silico determined epitope of Spike protein from SARS-CoV-2. Epitopes were selected based on their binding affinity with the maximum number of HLA alleles belonging to the highest population coverage rate values for the chosen geographical area in India. 404 cleavage sites within the 1288 amino acids sequence of spike glycoprotein were determined by NetChop proteasomal cleavage prediction suggesting the presence of adequate sites in the protein sequence for cleaving into appropriate epitopes. For population coverage analysis, 179 selected epitopes present the projected population coverage up to 97.45% with 56.16 average hit and 15.07 pc90. 54 epitopes are found with the highest coverage among the Indian population and highly conserved within the given spike RBD domain sequence. Among all the predicted epitopes, 9-mer TRFASVYAW and RFDNPVLPF along with 12-mer LLAGTITSGWTF and VSQPFLMDLEGK epitopes are observed as the best due to their decent docking score and best binding affinity to corresponding HLA alleles during MD simulations. Outcomes from this study could be critical to design a vaccine against SARS-CoV-2 for a different set of populations within the country.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vandana Kardam
- Department of Chemistry, Shiv Nadar University, Greater Noida, India
| | | | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
20
|
Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes. Proc Natl Acad Sci U S A 2022; 119:2113118119. [PMID: 35022216 PMCID: PMC8795541 DOI: 10.1073/pnas.2113118119] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
During the COVID pandemic, new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerge and spread, some being of major concern due to their increased infectivity or capacity to reduce vaccine efficiency. Anticipating mutations, which might give rise to new variants, would be of great interest. We construct sequence models predicting how mutable SARS-CoV-2 positions are, using a single SARS-CoV-2 sequence and databases of other coronaviruses. Predictions are tested against available mutagenesis data and the observed variability of SARS-CoV-2 proteins. Interestingly, predictions agree increasingly with observations, as more SARS-CoV-2 sequences become available. Combining predictions with immunological data, we find an overrepresentation of mutations in current variants of concern. The approach may become relevant for potential outbreaks of future viral diseases. The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.
Collapse
|
21
|
Immunoinformatics prediction of potential immunodominant epitopes from human coronaviruses and association with autoimmunity. Immunogenetics 2022; 74:213-229. [PMID: 35006282 PMCID: PMC8744044 DOI: 10.1007/s00251-021-01250-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Cross-reactivity between different human coronaviruses (HCoVs) might contribute to COVID-19 outcomes. Here, we aimed to predict conserved peptides among different HCoVs that could elicit cross-reacting B cell and T cell responses. Three hundred fifty-one full-genome sequences of HCoVs, including SARS-CoV-2 (51), SARS-CoV-1 (50), MERS-CoV (50), and common cold species OC43 (50), NL63 (50), 229E (50), and HKU1 (50) were downloaded aligned using Geneious Prime 20.20. Identification of epitopes in the conserved regions of HCoVs was carried out using the Immune Epitope Database (IEDB) to predict B- and T-cell epitopes. Further, we identified sequences that bind multiple common MHC and modeled the three-dimensional structures of the protein regions. The search yielded 73 linear and 35 discontinuous epitopes. A total of 16 B-cell and 19 T-cell epitopes were predicted through a comprehensive bioinformatic screening of conserved regions derived from HCoVs. The 16 potentially cross-reactive B-cell epitopes included 12 human proteins and four viral proteins among the linear epitopes. Likewise, we identified 19 potentially cross-reactive T-cell epitopes covering viral proteins. Interestingly, two conserved regions: LSFVSLAICFVIEQF (NSP2) and VVHSVNSLVSSMEVQSL (spike), contained several matches that were described epitopes for SARS-CoV. Most of the predicted B cells were buried within the SARS-CoV-2 protein regions’ functional domains, whereas T-cell stretched close to the functional domains. Additionally, most SARS-CoV-2 predicted peptides (80%) bound to different HLA types associated with autoimmune diseases. We identified a set of potential B cell and T cell epitopes derived from the HCoVs that could contribute to different diseases manifestation, including autoimmune disorders.
Collapse
|
22
|
Wang S, Zou X, Li Z, Fu J, Fan H, Yu H, Deng F, Huang H, Peng J, Zhao K, Cui L, Zhu L, Bao C. Analysis of Clinical Characteristics and Virus Strains Variation of Patients Infected With SARS-CoV-2 in Jiangsu Province-A Retrospective Study. Front Public Health 2021; 9:791600. [PMID: 35004593 PMCID: PMC8739897 DOI: 10.3389/fpubh.2021.791600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background: At present, the global sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) situation is still grim, and the risk of local outbreaks caused by imported viruses is high. Therefore, it is necessary to monitor the genomic variation and genetic evolution characteristics of SARS-CoV-2. The main purpose of this study was to detect the entry of different SARS-CoV-2 variants into Jiangsu Province, China. Methods: First, oropharyngeal swabs were collected from 165 patients (55 locally confirmed cases and 110 imported cases with confirmed and asymptomatic infection) diagnosed with SARS-CoV-2 infection in Jiangsu Province, China between January 2020 and June 2021. Then, whole genome sequencing was used to explore the phylogeny and find potential mutations in genes of the SARS-CoV-2. Last, association analysis among clinical characteristics and SARS-CoV-2 Variant of Concern, pedigree surveillance analysis of SARS-COV-2, and single nucleotide polymorphisms (SNPs) detection in SARS-COV-2 samples was performed. Results: More men were infected with the SARS-CoV-2 when compared with women. The onset of the SARS-CoV-2 showed a trend of younger age. Moreover, the number of asymptomatic infected patients was large, similar to the number of common patients. Patients infected with Alpha (50%) and Beta (90%) variants were predominantly asymptomatic, while patients infected with Delta (17%) variant presented severe clinical features. A total of 935 SNPs were detected in 165 SARS-COV-2 samples. Among which, missense mutation (58%) was the dominant mutation type. About 56% of SNPs changes occurred in the open reading frame 1ab (ORF1ab) gene. Approximately, 20% of SNP changes occurred in spike glycoprotein (S) gene, such as p.Asp501Tyr, p.Pro681His, and p.Pro681Arg. In total, nine SNPs loci in S gene were significantly correlated with the severity of patients. It is worth mentioning that amino acid substitution of p.Asp614Gly was significantly positively correlated with the clinical severity of patients. The amino acid replacements of p.Ser316Thr and p.Lu484Lys were significantly negatively correlated with the course of disease. Conclusion: Sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may further undergo a variety of mutations in different hosts, countries, and weather conditions. Detecting the entry of different virus variants of SARS-CoV-2 into Jiangsu Province, China may help to monitor the spread of infection and the diversity of eventual recombination or genomic mutations.
Collapse
Affiliation(s)
- Shenjiao Wang
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xin Zou
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhifeng Li
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianguang Fu
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Huan Fan
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Huiyan Yu
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Fei Deng
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haodi Huang
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jiefu Peng
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Kangcheng Zhao
- Institute of Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lunbiao Cui
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - LiGuo Zhu
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Changjun Bao
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Srivastava S, Chatziefthymiou SD, Kolbe M. Vaccines Targeting Numerous Coronavirus Antigens, Ensuring Broader Global Population Coverage: Multi-epitope and Multi-patch Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2410:149-175. [PMID: 34914046 DOI: 10.1007/978-1-0716-1884-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronaviruses are causative agents of different zoonosis including SARS, MERS, or COVID-19 in humans. The high transmission rate of coronaviruses, the time-consuming development of efficient anti-infectives and vaccines, the possible evolutionary adaptation of the virus to conventional vaccines, and the challenge to cover broad human population worldwide are the major reasons that made it challenging to avoid coronaviruses outbreaks. Although, a plethora of different approaches are being followed to design and develop vaccines against coronaviruses, most of them target subunits, full-length single, or only a very limited number of proteins. Vaccine targeting multiple proteins or even the entire proteome of the coronavirus is yet to come. In the present chapter, we will be discussing multi-epitope vaccine (MEV) and multi-patch vaccine (MPV) approaches to design and develop efficient and sustainably successful strategies against coronaviruses. MEV and MPV utilize highly conserved, potentially immunogenic epitopes and antigenic patches, respectively, and hence they have the potential to target large number of coronavirus proteins or even its entire proteome, allowing us to combat the challenge of its evolutionary adaptation. In addition, the large number of human leukocyte antigen (HLA) alleles targeted by the chosen specific epitopes enables MEV and MPV to cover broader global population.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection Biology Group, Indian Foundation for Fundamental Research, Raebareli, Uttar Pradesh, India.
| | - Spyros D Chatziefthymiou
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany
| | - Michael Kolbe
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany. .,MIN-Faculty University Hamburg, Hamburg, Germany.
| |
Collapse
|
24
|
de la Fuente J, Contreras M. Vaccinomics: a future avenue for vaccine development against emerging pathogens. Expert Rev Vaccines 2021; 20:1561-1569. [PMID: 34582295 DOI: 10.1080/14760584.2021.1987222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Vaccines are a major achievement in medical sciences, but the development of more effective vaccines against infectious diseases is essential for prevention and control of emerging pathogens worldwide. The application of omics technologies has advanced vaccinology through the characterization of host-vector-pathogen molecular interactions and the identification of candidate protective antigens. However, major challenges such as host immunity, pathogen and environmental factors, vaccine efficacy and safety need to be addressed. Vaccinomics provides a platform to address these challenges and improve vaccine efficacy and safety. AREAS COVERED In this review, we summarize current information on vaccinomics and propose quantum vaccinomics approaches to further advance vaccine development through the identification and combination of antigen protective epitopes, the immunological quantum. The COVID-19 pandemic caused by SARS-CoV-2 is an example of emerging infectious diseases with global impact on human health. EXPERT OPINION Vaccines are required for the effective and environmentally sustainable intervention for the control of emerging infectious diseases worldwide. Recent advances in vaccinomics provide a platform to address challenges in improving vaccine efficacy and implementation. As proposed here, quantum vaccinomics will contribute to vaccine development, efficacy, and safety by facilitating antigen combinations to target pathogen infection and transmission in emerging infectious diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto De Investigación En Recursos Cinegéticos Irec-csic-uclm-jccm, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, Spain
| |
Collapse
|
25
|
Laha S, Chatterjee R. Temporal variations of country-specific mutational profile of SARS-CoV-2: effect on vaccine efficacy. Future Virol 2021; 0:10.2217/fvl-2021-0062. [PMID: 34824595 PMCID: PMC8603786 DOI: 10.2217/fvl-2021-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Aim: In order to curb the transmission of SARS-CoV-2, nation-wide travel restrictions at different levels were implemented in different countries. Country-specific mutational profile may exist and have an impact on vaccine efficacy. Materials & methods: We identified nonsynonymous mutations in approximately 215,000 SARS-CoV-2 sequences during the 1st year of the pandemic in 35 countries. Mutational profiles on a bimonthly basis were traced over time. We also examined the mutations that overlapped with the spike protein vaccine epitopes. Results: Several new mutations emerged over time and were dominating in specific countries. Many nonsynonymous mutations were within multiple spike protein epitopes that might impact the vaccine efficacy. Conclusion: Our study advocates requirement of active monitoring of country-specific mutations and vaccine efficacies in respective countries.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700108, India
| |
Collapse
|
26
|
Mei LC, Jin Y, Wang Z, Hao GF, Yang GF. Web resources facilitate drug discovery in treatment of COVID-19. Drug Discov Today 2021; 26:2358-2366. [PMID: 33892145 PMCID: PMC8056987 DOI: 10.1016/j.drudis.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
The infectious disease Coronavirus 2019 (COVID-19) continues to cause a global pandemic and, thus, the need for effective therapeutics remains urgent. Global research targeting COVID-19 treatments has produced numerous therapy-related data and established data repositories. However, these data are disseminated throughout the literature and web resources, which could lead to a reduction in the levels of their use. In this review, we introduce resource repositories for the development of COVID-19 therapeutics, from the genome and proteome to antiviral drugs, vaccines, and monoclonal antibodies. We briefly describe the data and usage, and how they advance research for therapies. Finally, we discuss the opportunities and challenges to preventing the pandemic from developing further.
Collapse
Affiliation(s)
- Long-Can Mei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Yin Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550000, China
| | - Zheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550000, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550000, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
27
|
Fischer JC, Schmidt AG, Bölke E, Uhrberg M, Keitel V, Feldt T, Jensen B, Häussinger D, Adams O, Schneider EM, Balz V, Enczmann J, Rox J, Hermsen D, Schulze-Bosse K, Kindgen-Milles D, Knoefel WT, van Griensven M, Haussmann J, Tamaskovics B, Plettenberg C, Scheckenbach K, Corradini S, Pedoto A, Maas K, Schmidt L, Grebe O, Esposito I, Ehrhardt A, Peiper M, Buhren BA, Calles C, Stöhr A, Lichtenberg A, Freise NF, Lutterbeck M, Rezazadeh A, Budach W, Matuschek C. Association of HLA genotypes, AB0 blood type and chemokine receptor 5 mutant CD195 with the clinical course of COVID-19. Eur J Med Res 2021; 26:107. [PMID: 34530915 PMCID: PMC8444184 DOI: 10.1186/s40001-021-00560-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND COVID-19, the pandemic disease caused by infection with SARS-CoV-2, may take highly variable clinical courses, ranging from symptom-free and pauci-symptomatic to fatal disease. The goal of the current study was to assess the association of COVID-19 clinical courses controlled by patients' adaptive immune responses without progression to severe disease with patients' Human Leukocyte Antigen (HLA) genetics, AB0 blood group antigens, and the presence or absence of near-loss-of-function delta 32 deletion mutant of the C-C chemokine receptor type 5 (CCR5). PATIENT AND METHODS An exploratory observational study including 157 adult COVID-19 convalescent patients was performed with a median follow-up of 250 days. The impact of different HLA genotypes, AB0 blood group antigens, and the CCR5 mutant CD195 were investigated for their role in the clinical course of COVID-19. In addition, this study addressed levels of severity and morbidity of COVID-19. The association of the immunogenetic background parameters were further related to patients' humoral antiviral immune response patterns by longitudinal observation. RESULTS Univariate HLA analyses identified putatively protective HLA alleles (HLA class II DRB1*01:01 and HLA class I B*35:01, with a trend for DRB1*03:01). They were associated with reduced durations of disease instead decreased (rather than increased) total anti-S IgG levels. They had a higher virus neutralizing capacity compared to non-carriers. Conversely, analyses also identified HLA alleles (HLA class II DQB1*03:02 und HLA class I B*15:01) not associated with such benefit in the patient cohort of this study. Hierarchical testing by Cox regression analyses confirmed the significance of the protective effect of the HLA alleles identified (when assessed in composite) in terms of disease duration, whereas AB0 blood group antigen heterozygosity was found to be significantly associated with disease severity (rather than duration) in our cohort. A suggestive association of a heterozygous CCR5 delta 32 mutation status with prolonged disease duration was implied by univariate analyses but could not be confirmed by hierarchical multivariate testing. CONCLUSION The current study shows that the presence of HLA class II DRB1*01:01 and HLA class I B*35:01 is of even stronger association with reduced disease duration in mild and moderate COVID-19 than age or any other potential risk factor assessed. Prospective studies in larger patient populations also including novel SARS-CoV-2 variants will be required to assess the impact of HLA genetics on the capacity of mounting protective vaccination responses in the future.
Collapse
Affiliation(s)
- Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University, 40225, Dusseldorf, Germany
| | - Albrecht G Schmidt
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Edwin Bölke
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany.
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University, 40225, Dusseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Ortwin Adams
- Institute for Virology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Universitaetsstr. 1, 40225, Dusseldorf, Germany
| | - E Marion Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University, 40225, Dusseldorf, Germany
| | - Jürgen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University, 40225, Dusseldorf, Germany
| | - Jutta Rox
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University, 40225, Dusseldorf, Germany
| | - Derik Hermsen
- Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty Heinrich-Heine University, Dusseldorf, Germany
| | - Karin Schulze-Bosse
- Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty Heinrich-Heine University, Dusseldorf, Germany
| | - Detlef Kindgen-Milles
- Medical Faculty, Department of Anesthesiology, Heinrich Heine University, Dusseldorf, Germany
| | - Wolfram Trudo Knoefel
- Medical Faculty, Department of Surgery and Interdisciplinary Surgical Intensive Care Unit, Heinrich Heine University, Dusseldorf, Germany
| | - Martijn van Griensven
- Department cBITE, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Jan Haussmann
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Balint Tamaskovics
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Christian Plettenberg
- Medical Faculty, Department of Ear, Nose and Throat Disease, Heinrich Heine University, Dusseldorf, Germany
| | - Kathrin Scheckenbach
- Medical Faculty, Department of Ear, Nose and Throat Disease, Heinrich Heine University, Dusseldorf, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Alessia Pedoto
- Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kitti Maas
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Livia Schmidt
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Olaf Grebe
- Department of Cardiology and Rhythmology, Petrus Hospital, Wuppertal, Germany
| | - Irene Esposito
- Institute of Pathology, University of Dusseldorf, Dusseldorf, Germany
| | - Anja Ehrhardt
- Institute of Virology, University of Witten/Herdecke, Witten, Germany
| | - Matthias Peiper
- Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Bettina Alexandra Buhren
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Christian Calles
- Medical Faculty, Coordination Center for Clinical Studies, University of Dusseldorf, Dusseldorf, Germany
| | - Andreas Stöhr
- Medical Faculty, Coordination Center for Clinical Studies, University of Dusseldorf, Dusseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Noemi F Freise
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Matthias Lutterbeck
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Amir Rezazadeh
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Wilfried Budach
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Christiane Matuschek
- Department of Radiation Oncology, University Hospital Dusseldorf, Medical Faculty, Heinrich-Heine-University Dusseldorf, Moorenstr. 5, 40225, Dusseldorf, Germany
| |
Collapse
|
28
|
Koncz B, Balogh GM, Papp BT, Asztalos L, Kemény L, Manczinger M. Self-mediated positive selection of T cells sets an obstacle to the recognition of nonself. Proc Natl Acad Sci U S A 2021; 118:e2100542118. [PMID: 34507984 PMCID: PMC8449404 DOI: 10.1073/pnas.2100542118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by the binding of peptide-human leukocyte antigen complexes by T cells. Positive selection of T cells in the thymus is a fundamental step in the generation of a responding T cell repertoire: only those T cells survive that recognize human peptides presented on the surface of cortical thymic epithelial cells. We propose that while this step is essential for optimal immune function, the process results in a defective T cell repertoire because it is mediated by self-peptides. To test our hypothesis, we focused on amino acid motifs of peptides in contact with T cell receptors. We found that motifs rarely or not found in the human proteome are unlikely to be recognized by the immune system just like the ones that are not expressed in cortical thymic epithelial cells or not presented on their surface. Peptides carrying such motifs were especially dissimilar to human proteins. Importantly, we present our main findings on two independent T cell activation datasets and directly demonstrate the absence of naïve T cells in the repertoire of healthy individuals. We also show that T cell cross-reactivity is unable to compensate for the absence of positively selected T cells. Additionally, we show that the proposed mechanism could influence the risk for different infectious diseases. In sum, our results suggest a side effect of T cell positive selection, which could explain the nonresponsiveness to many nonself peptides and could improve the understanding of adaptive immune recognition.
Collapse
Affiliation(s)
- Balázs Koncz
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Gergő M Balogh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Benjamin T Papp
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
- Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Leó Asztalos
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
- Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
- Magyar Tudományos Akadémia - Szegedi Tudományegyetem (MTA-SZTE) Dermatological Research Group, Eötvös Loránd Research Network (ELKH), University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) Skin Research Group, 6720 Szeged, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary;
- Magyar Tudományos Akadémia - Szegedi Tudományegyetem (MTA-SZTE) Dermatological Research Group, Eötvös Loránd Research Network (ELKH), University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) Skin Research Group, 6720 Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| |
Collapse
|
29
|
Rostaminia S, Aghaei SS, Farahmand B, Nazari R, Ghaemi A. Computational Design and Analysis of a Multi-epitope Against Influenza A virus. Int J Pept Res Ther 2021; 27:2625-2638. [PMID: 34539293 PMCID: PMC8435298 DOI: 10.1007/s10989-021-10278-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
Influenza A viruses are among the most studied viruses, however no effective prevention against influenza infection has been developed. So, designing an effective vaccine against Influenza A virus is a critical issue in the field of medical biotechnology. For this reason, to combat this disease, we have designed a novel multi-epitope vaccine candidate based on the several conserved and potential linear B-cell and T-cell binding epitopes by using the in silico approach. This vaccine consists of an ER signal conserved sequence, the PADRE conserved epitope and two conserved epitopes of Influenza matrix protein 2. T-cell binding epitopes from Matrix protein 2 were predicted by in silico tools of epitope prediction. The selected epitopes were joined by flexible linkers and physicochemical properties, toxicity, and allergenecity were investigated. The designed vaccine was antigenic, immunogenic, and non-allergenic with suitable physicochemical properties and has higher solubility. The final multi-epitope construct was modeled, confirmed by different programs and the molecular interactions with immune receptors were considered. The molecular docking assay indicated the interactions with immune-stimulatory toll-like receptor 3 (TLR3) and major histocompatibility complex class I (MHCI). The HADDOCK and H DOCK servers were used to make docking analysis, respectively. The docking analysis indicated a strong and stable binding interaction between the vaccine construct with major histocompatibility complex (MHC) class I and toll-like receptor 3. Overall, the findings suggest that the current vaccine may be a promising vaccine to prevent Influenza infection.
Collapse
Affiliation(s)
- Samaneh Rostaminia
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, P.O.Box: 1316943551, Tehran, Iran
| | - Raziye Nazari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, P.O.Box: 1316943551, Tehran, Iran
| |
Collapse
|
30
|
Cai X, Li JJ, Liu T, Brian O, Li J. Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design. Brief Funct Genomics 2021; 20:289-303. [PMID: 34089044 PMCID: PMC8194884 DOI: 10.1093/bfgp/elab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have recently emerged as a new type of vaccine technology, showing strong potential to combat the COVID-19 pandemic. In addition to SARS-CoV-2 which caused the pandemic, mRNA vaccines have been developed and tested to prevent infectious diseases caused by other viruses such as Zika virus, the dengue virus, the respiratory syncytial virus, influenza H7N9 and Flavivirus. Interestingly, mRNA vaccines may also be useful for preventing non-infectious diseases such as diabetes and cancer. This review summarises the current progresses of mRNA vaccines designed for a range of diseases including COVID-19. As epitope study is a primary component in the in silico design of mRNA vaccines, we also survey on advanced bioinformatics and machine learning algorithms which have been used for epitope prediction, and review on user-friendly software tools available for this purpose. Finally, we discuss some of the unanswered concerns about mRNA vaccines, such as unknown long-term side effects, and present with our perspectives on future developments in this exciting area.
Collapse
Affiliation(s)
- Xinhui Cai
- Data Science Institute, Faculty of Engineering & IT, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| | - Tao Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| | - Oliver Brian
- Children’s Cancer Institute Australia, University of New South Wales Sydney, Children’s Cancer Institute Australia, Randwick, Sydney, 2031, New South Wales, Australia
| | - Jinyan Li
- Data Science Institute, Faculty of Engineering & IT, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| |
Collapse
|
31
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
32
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
33
|
Copley HC, Gragert L, Leach AR, Kosmoliaptsis V. Influence of HLA Class II Polymorphism on Predicted Cellular Immunity Against SARS-CoV-2 at the Population and Individual Level. Front Immunol 2021; 12:669357. [PMID: 34349756 PMCID: PMC8327207 DOI: 10.3389/fimmu.2021.669357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Development of adaptive immunity after COVID-19 and after vaccination against SARS-CoV-2 is predicated on recognition of viral peptides, presented on HLA class II molecules, by CD4+ T-cells. We capitalised on extensive high-resolution HLA data on twenty five human race/ethnic populations to investigate the role of HLA polymorphism on SARS-CoV-2 immunogenicity at the population and individual level. Within populations, we identify wide inter-individual variability in predicted peptide presentation from structural, non-structural and accessory SARS-CoV-2 proteins, according to individual HLA genotype. However, we find similar potential for anti-SARS-CoV-2 cellular immunity at the population level suggesting that HLA polymorphism is unlikely to account for observed disparities in clinical outcomes after COVID-19 among different race/ethnic groups. Our findings provide important insight on the potential role of HLA polymorphism on development of protective immunity after SARS-CoV-2 infection and after vaccination and a firm basis for further experimental studies in this field.
Collapse
Affiliation(s)
- Hannah C. Copley
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Loren Gragert
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, United States
- Bioinformatics Research, National Marrow Donor Program, Minneapolis, MN, United States
| | - Andrew R. Leach
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
34
|
Smith CC, Olsen KS, Gentry KM, Sambade M, Beck W, Garness J, Entwistle S, Willis C, Vensko S, Woods A, Fini M, Carpenter B, Routh E, Kodysh J, O'Donnell T, Haber C, Heiss K, Stadler V, Garrison E, Sandor AM, Ting JPY, Weiss J, Krajewski K, Grant OC, Woods RJ, Heise M, Vincent BG, Rubinsteyn A. Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Med 2021; 13:101. [PMID: 34127050 PMCID: PMC8201469 DOI: 10.1186/s13073-021-00910-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kelly S Olsen
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kaylee M Gentry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Maria Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Wolfgang Beck
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jason Garness
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Sarah Entwistle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Caryn Willis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Allison Woods
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Misha Fini
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Brandon Carpenter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Eric Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Erik Garrison
- Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
- Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Division of Medical Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Heise
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Alex Rubinsteyn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Hwang W, Lei W, Katritsis NM, MacMahon M, Chapman K, Han N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Adv Drug Deliv Rev 2021; 172:249-274. [PMID: 33561453 PMCID: PMC7871111 DOI: 10.1016/j.addr.2021.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2, which causes COVID-19, was first identified in humans in late 2019 and is a coronavirus which is zoonotic in origin. As it spread around the world there has been an unprecedented effort in developing effective vaccines. Computational methods can be used to speed up the long and costly process of vaccine development. Antigen selection, epitope prediction, and toxicity and allergenicity prediction are areas in which computational tools have already been applied as part of reverse vaccinology for SARS-CoV-2 vaccine development. However, there is potential for computational methods to assist further. We review approaches which have been used and highlight additional bioinformatic approaches and PK modelling as in silico methods which may be useful for SARS-CoV-2 vaccine design but remain currently unexplored. As more novel viruses with pandemic potential are expected to arise in future, these techniques are not limited to application to SARS-CoV-2 but also useful to rapidly respond to novel emerging viruses.
Collapse
Affiliation(s)
- Woochang Hwang
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Winnie Lei
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Nicholas M Katritsis
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Méabh MacMahon
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Centre for Therapeutics Discovery, LifeArc, Stevenage, UK
| | - Kathryn Chapman
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Hisham Y, Ashhab Y, Hwang SH, Kim DE. Identification of Highly Conserved SARS-CoV-2 Antigenic Epitopes with Wide Coverage Using Reverse Vaccinology Approach. Viruses 2021; 13:787. [PMID: 33925069 PMCID: PMC8145845 DOI: 10.3390/v13050787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most effective strategies for eliminating new and emerging infectious diseases is effective immunization. The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) warrants the need for a maximum coverage vaccine. Moreover, mutations that arise within the virus have a significant impact on the vaccination strategy. Here, we built a comprehensive in silico workflow pipeline to identify B-cell- and T-cell-stimulating antigens of SARS-CoV-2 viral proteins. Our in silico reverse vaccinology (RV) approach consisted of two parts: (1) analysis of the selected viral proteins based on annotated cellular location, antigenicity, allele coverage, epitope density, and mutation density and (2) analysis of the various aspects of the epitopes, including antigenicity, allele coverage, IFN-γ induction, toxicity, host homology, and site mutational density. After performing a mutation analysis based on the contemporary mutational amino acid substitutions observed in the viral variants, 13 potential epitopes were selected as subunit vaccine candidates. Despite mutational amino acid substitutions, most epitope sequences were predicted to retain immunogenicity without toxicity and host homology. Our RV approach using an in silico pipeline may potentially reduce the time required for effective vaccine development and can be applicable for vaccine development for other pathogenic diseases as well.
Collapse
Affiliation(s)
- Yasmin Hisham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron 90100, Palestine
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
37
|
Nel AE, Miller JF. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS NANO 2021; 15:5793-5818. [PMID: 33793189 PMCID: PMC8029448 DOI: 10.1021/acsnano.1c01845] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
At the time of preparing this Perspective, large-scale vaccination for COVID-19 is in progress, aiming to bring the pandemic under control through vaccine-induced herd immunity. Not only does this vaccination effort represent an unprecedented scientific and technological breakthrough, moving us from the rapid analysis of viral genomes to design, manufacture, clinical trial testing, and use authorization within the time frame of less than a year, but it also highlights rapid progress in the implementation of nanotechnology to assist vaccine development. These advances enable us to deliver nucleic acid and conformation-stabilized subunit vaccines to regional lymph nodes, with the ability to trigger effective humoral and cellular immunity that prevents viral infection or controls disease severity. In addition to a brief description of the design features of unique cationic lipid and virus-mimicking nanoparticles for accomplishing spike protein delivery and presentation by the cognate immune system, we also discuss the importance of adjuvancy and design features to promote cooperative B- and T-cell interactions in lymph node germinal centers, including the use of epitope-based vaccines. Although current vaccine efforts have demonstrated short-term efficacy and vaccine safety, key issues are now vaccine durability and adaptability against viral variants. We present a forward-looking perspective of how vaccine design can be adapted to improve durability of the immune response and vaccine adaptation to overcome immune escape by viral variants. Finally, we consider the impact of nano-enabled approaches in the development of COVID-19 vaccines for improved vaccine design against other infectious agents, including pathogens that may lead to future pandemics.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jeff F. Miller
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|
38
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
39
|
Sohail MS, Ahmed SF, Quadeer AA, McKay MR. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv Drug Deliv Rev 2021; 171:29-47. [PMID: 33465451 PMCID: PMC7832442 DOI: 10.1016/j.addr.2021.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that T cells may play a critical role in combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, COVID-19 vaccines that can elicit a robust T cell response may be particularly important. The design, development and experimental evaluation of such vaccines is aided by an understanding of the landscape of T cell epitopes of SARS-CoV-2, which is largely unknown. Due to the challenges of identifying epitopes experimentally, many studies have proposed the use of in silico methods. Here, we present a review of the in silico methods that have been used for the prediction of SARS-CoV-2 T cell epitopes. These methods employ a diverse set of technical approaches, often rooted in machine learning. A performance comparison is provided based on the ability to identify a specific set of immunogenic epitopes that have been determined experimentally to be targeted by T cells in convalescent COVID-19 patients, shedding light on the relative performance merits of the different approaches adopted by the in silico studies. The review also puts forward perspectives for future research directions.
Collapse
Affiliation(s)
- Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
40
|
Alai S, Gujar N, Joshi M, Gautam M, Gairola S. Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon 2021; 7:e06564. [PMID: 33758785 PMCID: PMC7972664 DOI: 10.1016/j.heliyon.2021.e06564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mortality rates due to COVID-19 have been found disproportionate globally and are currently being researched. India mortality rate with a population of 1.3 billion people is relatively lowest to other countries with high infection rates. Genetic composition of circulating isolates continues to be a key determinant of virulence and pathogenesis. This study aimed to analyse the extent of divergence between genomes of Indian isolates (n = 2525 as compared to reference Wuhan-1 strain and isolates from countries showing higher fatality rates including France, Italy, Belgium, and the USA. The study also analyses the impact of key mutations on interactions with angiotensin converting enzyme 2 (ACE2) and panel of neutralizing monoclonal antibodies. Using 1,44,605 spike protein sequences, global prevalence of mutations in spike protein was observed. The study suggests that SARS-CoV-2 genomes from India share consensus with global trends with respect to D614G as most prevalent mutational event (81.66% among 2525 Indian isolates). Indian isolates did not reported prevalence of N439K mutation in receptor binding motif (RBM) as compared to global isolates (0.54%). Computational docking and molecular dynamics simulation analysis of N439K mutation with respect to ACE 2 binding and reactivity with RBM targeted antibodies viz., B38, BD23, CB6, P2B-F26 and EY6A suggests that variant have relatively higher affinity with ACE 2 receptor which may support higher infectivity. The study warrants large scale monitoring of Indian isolates as SARS-CoV-2 virus is expected to evolve and mutations may appear in unpredictable way.
Collapse
Affiliation(s)
- Shweta Alai
- Department of Health and Biological Sciences, Symbiosis International University, Pune, Maharashtra, 412115, India
| | - Nidhi Gujar
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Manali Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Manish Gautam
- Serum Institute of India Pvt Ltd, Pune, Maharashtra, 411028, India
| | - Sunil Gairola
- Serum Institute of India Pvt Ltd, Pune, Maharashtra, 411028, India
| |
Collapse
|
41
|
Maison DP, Ching LL, Shikuma CM, Nerurkar VR. Genetic Characteristics and Phylogeny of 969-bp S Gene Sequence of SARS-CoV-2 from Hawai'i Reveals the Worldwide Emerging P681H Mutation. HAWAI'I JOURNAL OF HEALTH & SOCIAL WELFARE 2021; 80:52-61. [PMID: 33718878 PMCID: PMC7953241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic has ravaged the world, caused over 1.8 million deaths in its first year, and severely affected the global economy. Hawai'i has not been spared from the transmission of SARS-CoV-2 in the local population, including high infection rates in racial and ethnic minorities. Early in the pandemic, we described in this journal various technologies used for the detection of SARS-CoV-2. Herein we characterize a 969-bp SARS-CoV-2 segment of the S gene downstream of the receptor-binding domain. At the John A. Burns School of Medicine Biocontainment Facility, RNA was extracted from an oropharyngeal swab and a nasal swab from 2 patients from Hawai'i who were infected with SARS-CoV-2 in August 2020. Following PCR, the 2 viral strains were sequenced using Sanger sequencing, and phylogenetic trees were generated using MEGAX. Phylogenetic tree results indicate that the virus has been introduced to Hawai'i from multiple sources. Further, we decoded 13 single nucleotide polymorphisms across 13 unique SARS-CoV-2 genomes within this region of the S gene, with 1 non-synonymous mutation (P681H) found in the 2 Hawai'i strains. The P681H mutation has unique and emerging characteristics with a significant exponential increase in worldwide frequency when compared to the plateauing of the now universal D614G mutation. The P681H mutation is also characteristic of the new SARS-CoV-2 variants from the United Kingdom and Nigeria. Additionally, several mutations resulting in cysteine residues were detected, potentially resulting in disruption of the disulfide bridges in and around the receptor-binding domain. Targeted sequence characterization is warranted to determine the origin of multiple introductions of SARS-CoV-2 circulating in Hawai'i.
Collapse
Affiliation(s)
- David P. Maison
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, CMS, VRN)
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, VRN)
| | - Lauren L. Ching
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, CMS, VRN)
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, VRN)
| | - Cecilia M. Shikuma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, CMS, VRN)
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (CMS)
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, CMS, VRN)
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI (DPM, LLC, VRN)
| |
Collapse
|
42
|
Warren RL, Birol I. HLA predictions from the bronchoalveolar lavage fluid and blood samples of eight COVID-19 patients at the pandemic onset. Bioinformatics 2021; 36:5271-5273. [PMID: 32853340 PMCID: PMC7540287 DOI: 10.1093/bioinformatics/btaa756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- René L Warren
- Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inanç Birol
- Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
43
|
Mohammad MHS. Immune response scenario and vaccine development for SARS-CoV-2 infection. Int Immunopharmacol 2021; 94:107439. [PMID: 33571745 PMCID: PMC7846221 DOI: 10.1016/j.intimp.2021.107439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/23/2021] [Indexed: 12/28/2022]
Abstract
COVID-19 pandemic has started in December 2019 in China and quickly extended to become a worldwide health and economic emergency issue. It is caused by the novel coronavirus; SARS-CoV-2. COVID-19 patients’ clinical presentations vary from asymptomatic infection or flu like symptoms to serious pneumonia which could be associated with multiple organ failure possibly leading to death. It is understood that the immune response to SARS-CoV-2 includes all elements of the immune system which could altogether succeed in viral elimination and complete cure. Meanwhile, this immune response may also lead to disease progression and could be responsible for the patient’s death. Many trials have been done recently to create therapies and vaccines against human coronavirus infections such as MERS or SARS, however, till now, there is some controversy about the effectiveness and safety of antiviral drugs and vaccines which have been developed to treat and prevent this disease and its management depends mainly on supportive care. The spike glycoprotein or protein S of SARS-CoV-2 is the main promoter that induces development of neutralizing antibodies; hence, many attempts of vaccines and antiviral drugs development have been designed to be directed specifically against this protein. While some of these attempts have been proved to be efficient in in vitro settings, only few of them have been proceeded to randomized animal trials and human studies which makes COVID-19 prevention an ongoing challenge. This review describes the natural immune response scenario during COVID-19 and the vaccines development trials to create efficient vaccines thus helping to build more effective approaches for prophylaxis and management.
Collapse
Affiliation(s)
- Mai H S Mohammad
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, P.O. 41522, Egypt.
| |
Collapse
|
44
|
Scourfield DO, Reed SG, Quastel M, Alderson J, Bart VMT, Teijeira Crespo A, Jones R, Pring E, Richter FC, Burnell SEA. The role and uses of antibodies in COVID-19 infections: a living review. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab003. [PMID: 34192270 PMCID: PMC7928637 DOI: 10.1093/oxfimm/iqab003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity.
Collapse
Affiliation(s)
- D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sophie G Reed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Max Quastel
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jennifer Alderson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 FTY, UK
| | - Valentina M T Bart
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alicia Teijeira Crespo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK
| | - Ruth Jones
- Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Ellie Pring
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Felix Clemens Richter
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 FTY, UK
| | - Stephanie E A Burnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
45
|
Maison DP, Ching LL, Shikuma CM, Nerurkar VR. Genetic Characteristics and Phylogeny of 969-bp S Gene Sequence of SARS-CoV-2 from Hawaii Reveals the Worldwide Emerging P681H Mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.06.425497. [PMID: 33442699 PMCID: PMC7805472 DOI: 10.1101/2021.01.06.425497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
COVID-19 pandemic has ravaged the world, caused over 1.8 million deaths in the first year, and severely affected the global economy. Hawaii is not spared from the transmission of SARS-CoV-2 in the local population, including high infection rates in racial and ethnic minorities. Early in the pandemic, we described in this journal various technologies used for the detection of SARS-CoV-2. Herein we characterize a 969-bp SARS-CoV-2 segment of the S gene downstream of the receptor-binding domain. At the John A. Burns School of Medicine Biocontainment Facility, RNA was extracted from an oropharyngeal swab and a nasal swab from two patients from Hawaii who were infected with the SARS-CoV-2 in August 2020. Following PCR, the two viral strains were sequenced using Sanger sequencing, and phylogenetic trees were generated using MEGAX. Phylogenetic tree results indicate that the virus has been introduced to Hawaii from multiple sources. Further, we decoded 13 single nucleotide polymorphisms across 13 unique SARS-CoV-2 genomes within this region of the S gene, with one non-synonymous mutation (P681H) found in the two Hawaii strains. The P681H mutation has unique and emerging characteristics with a significant exponential increase in worldwide frequency when compared to the plateauing of the now universal D614G mutation. The P681H mutation is also characteristic of the new SARS-CoV-2 variants from the United Kingdom and Nigeria. Additionally, several mutations resulting in cysteine residues were detected, potentially resulting in disruption of the disulfide bridges in and around the receptor-binding domain. Targeted sequence characterization is warranted to determine the origin of multiple introductions of SARS-CoV-2 circulating in Hawaii.
Collapse
Affiliation(s)
- David P. Maison
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
| | - Lauren L. Ching
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
| | - Cecilia M. Shikuma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai i at Mānoa, Honolulu, Hawaii 96813
| |
Collapse
|
46
|
Kim DS, Rowland-Jones S, Gea-Mallorquí E. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Front Immunol 2020; 11:571481. [PMID: 33362759 PMCID: PMC7756008 DOI: 10.3389/fimmu.2020.571481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China resulted in the current COVID-19 global pandemic. The human immune system has not previously encountered this virus, raising the important question as to whether or not protective immunity is generated by infection. Growing evidence suggests that protective immunity can indeed be acquired post-infection-although a handful of reinfection cases have been reported. However, it is still unknown whether the immune response to SARS-CoV-2 leads to some degree of long-lasting protection against the disease or the infection. This review draws insights from previous knowledge regarding the nature and longevity of immunity to the related virus, SARS-CoV, to fill the gaps in our understanding of the immune response to SARS-CoV-2. Deciphering the immunological characteristics that give rise to protective immunity against SARS-CoV-2 is critical to guiding vaccine development and also predicting the course of the pandemic. Here we discuss the recent evidence that characterises the adaptive immune response against SARS-CoV-2 and its potential implications for the generation of memory responses and long-term protection.
Collapse
Affiliation(s)
- David S. Kim
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Li W, Li L, Sun T, He Y, Liu G, Xiao Z, Fan Y, Zhang J. Spike protein-based epitopes predicted against SARS-CoV-2 through literature mining. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020; 8:100048. [PMID: 33052325 PMCID: PMC7543752 DOI: 10.1016/j.medntd.2020.100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND With the diffusion of SARS-CoV-2 around the world, human health is being threatened. As there is no effective vaccine yet, the development of the vaccine is urgently in progress. MATERIALS AND METHODS Immunoinformatics methods were applied to predict epitopes from the Spike protein through mining literature associated with B- and T-cell epitopes prediction published or preprinted since the outbreak of the virus till June 1, 2020. 3D structure of the Spike protein were obtained (PDB ID: 6VSB) for prediction of discontinuous B-cell epitopes and localization of epitopes in the hotspot regions. RESULTS Methods provided by the Immune Epitope Database (IEDB) server were the most frequently used to predict epitopes. Sequence alignment of the epitopes extracted from literature with the Spike protein demonstrated that the epitopes in different studies converged to multiple short hotspot regions. There were three hotspot regions found in RBD of the Spike protein harboring B-cell linear epitopes ('RQIAPGQTGKIADYNYKLPD', 'SYGFQPTNGVGYQ' and 'YAWNRKRISNCVA') predicted to have high antigenicity score. Two T-cell epitopes ('KPFERDISTEIYQ' and 'NYNYLYRLFR') predicted to be highly antigenic in the original studies were discovered in the hotspot region. Toxicity and allergenicity analysis confirmed all the five epitopes are of non-toxin, and four of them are of non-allergen. The five epitopes identified in hotspot regions of RBD were found fully exposed based on the 3D structure of the Spike protein. CONCLUSION The five epitopes we discovered from literature mining may be potential candidates for diagnostics and vaccine development against SARS-CoV-2.
Collapse
Affiliation(s)
- Wendong Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lin Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ting Sun
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yufei He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zixuan Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
48
|
Varghese PM, Tsolaki AG, Yasmin H, Shastri A, Ferluga J, Vatish M, Madan T, Kishore U. Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 2020; 225:152008. [PMID: 33130519 PMCID: PMC7434692 DOI: 10.1016/j.imbio.2020.152008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The current coronavirus pandemic, COVID-19, is the third outbreak of disease caused by the coronavirus family, after Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. It is an acute infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This severe disease is characterised by acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and multiple organ dysfunction syndromes. Currently, no drugs or vaccines exist against the disease and the only course of treatment is symptom management involving mechanical ventilation, immune suppressants, and repurposed drugs. The severe form of the disease has a relatively high mortality rate. The last six months have seen an explosion of information related to the host receptors, virus transmission, virus structure-function relationships, pathophysiology, co-morbidities, immune response, treatment and the most promising vaccines. This review takes a critically comprehensive look at various aspects of the host-pathogen interaction in COVID-19. We examine the genomic aspects of SARS-CoV-2, modulation of innate and adaptive immunity, complement-triggered microangiopathy, and host transmission modalities. We also examine its pathophysiological impact during pregnancy, in addition to emphasizing various gaps in our knowledge. The lessons learnt from various clinical trials involving repurposed drugs have been summarised. We also highlight the rationale and likely success of the most promising vaccine candidates.
Collapse
Affiliation(s)
- Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Manu Vatish
- Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Oxford University Hospital, Oxford, OX3 9DU, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR - National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom.
| |
Collapse
|
49
|
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5:237. [PMID: 33051445 PMCID: PMC7551521 DOI: 10.1038/s41392-020-00352-y] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/06/2020] [Accepted: 09/27/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that is highly pathogenic and has caused the recent worldwide pandemic officially named coronavirus disease (COVID-19). Currently, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Vaccines, such as inactivated vaccines, nucleic acid-based vaccines, and vector vaccines, have already entered clinical trials. In this review, we provide an overview of the experimental and clinical data obtained from recent SARS-CoV-2 vaccines trials, and highlight certain potential safety issues that require consideration when developing vaccines. Furthermore, we summarize several strategies utilized in the development of vaccines against other infectious viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with the aim of aiding in the design of effective therapeutic approaches against SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Middle East Respiratory Syndrome Coronavirus/drug effects
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/drug effects
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
Collapse
Affiliation(s)
- Yetian Dong
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Hangzhou, 310058, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
50
|
Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, Gifford DK. Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions. Cell Syst 2020; 11:131-144.e6. [PMID: 32721383 PMCID: PMC7384425 DOI: 10.1016/j.cels.2020.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations for SARS-CoV-2. Our approach optimizes the presentation likelihood of a diverse set of vaccine peptides conditioned on a target human-population HLA haplotype distribution and expected epitope drift. Our proposed SARS-CoV-2 MHC class I vaccine formulations provide 93.21% predicted population coverage with at least five vaccine peptide-HLA average hits per person (≥ 1 peptide: 99.91%) with all vaccine peptides perfectly conserved across 4,690 geographically sampled SARS-CoV-2 genomes. Our proposed MHC class II vaccine formulations provide 97.21% predicted coverage with at least five vaccine peptide-HLA average hits per person with all peptides having an observed mutation probability of ≤ 0.001. We provide an open-source implementation of our design methods (OptiVax), vaccine evaluation tool (EvalVax), as well as the data used in our design efforts here: https://github.com/gifford-lab/optivax.
Collapse
Affiliation(s)
- Ge Liu
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; MIT Electrical Engineering and Computer Science, Cambridge, MA, USA
| | - Brandon Carter
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; MIT Electrical Engineering and Computer Science, Cambridge, MA, USA
| | | | - Siddhartha Jain
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA
| | - David K Gifford
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; MIT Electrical Engineering and Computer Science, Cambridge, MA, USA; MIT Biological Engineering, Cambridge, MA, USA.
| |
Collapse
|