1
|
Freeman-Gallant G, McCarthy K, Yates J, Kulas K, Rudolph MJ, Vance DJ, Mantis NJ. A Refined Human Linear B Cell Epitope Map of Outer Surface Protein C (OspC) From the Lyme Disease Spirochete, Borrelia Burgdorferi. Pathog Immun 2025; 10:159-186. [PMID: 40017585 PMCID: PMC11867186 DOI: 10.20411/pai.v10i1.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background A detailed understanding of the human antibody response to outer surface protein C (OspC) of Borrelia burgdorferi has important implications for Lyme disease diagnostics and vaccines. Methods In this report, 13 peptides encompassing 8 reported OspC linear B-cell epitopes from OspC types A, B, and K, including the largely conserved C-terminus (residues 193-210), were evaluated by multiplex immunoassay (MIA) for IgG reactivity with ~700 human serum samples confirmed positive in a 2-tiered Lyme disease diagnostic assay (Bb+) and ~160 post-treatment Lyme disease (PTLD) serum samples. The vmp-like sequence E (VlsE) C6-17 peptide was included as a positive control. Results Serum IgG from Bb+ samples were reactive with 10 of the 13 OspC-derived peptides tested, with the C-terminal peptide (residues 193-210) being the most reactive. Spearman's rank correlation matrices and hierarchical clustering revealed a strong correlation between 193-210 and VlsE C6-17 peptide reactivity but little demonstrable association between 193-210 and the other OspC peptides or recombinant OspC. OspC peptide reactivities (excluding 193-210) were strongly correlated with each other and were disproportionately influenced by a subset of pan-reactive samples. In the PTLD sample set, none of the OspC-derived peptides were significantly reactive over baseline, even though VlsE C6-17 peptide reactivity remained. Conclusions The asynchronous and potentially short-lived serologic response to OspC-derived peptides reveals the complexity of B-cell responses to B. burgdorferi lipoproteins and confounds interpretation of antibody profiles for Lyme disease diagnostics.
Collapse
Affiliation(s)
- Grace Freeman-Gallant
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Kathleen McCarthy
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Jennifer Yates
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Karen Kulas
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | | | - David J. Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| |
Collapse
|
2
|
Body A, Lal L, Srihari S, MacIntyre CR, Buttery J, Ahern ES, Opat S, Leahy MF, Hamad N, Milch V, Turville S, Smith C, Lineburg K, Naing Z, Rawlinson W, Segelov E. Comprehensive humoral and cellular immune responses to COVID-19 vaccination in adults with cancer. Vaccine 2025; 46:126547. [PMID: 39648104 DOI: 10.1016/j.vaccine.2024.126547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The COVID-19 pandemic has significantly impacted people with cancer. Initial vaccine studies excluded patients with malignancy. Immunocompromised individuals remain vulnerable to SARS-CoV-2, necessitating detailed understanding of vaccine response. The epidemiology of COVID-19 in Australia offered unique opportunities to study cancer populations with minimal community exposure to SARS-CoV-2. METHODS SerOzNET prospectively examined previously unvaccinated patients with solid and haematological malignancies receiving up to five COVID-19 vaccine doses. Antibody response was measured by live virus neutralisation assay (neutralising antibody (NAb); positive titre ≥1:20; study primary endpoint) and commercial assay. T cell response was measured by cytometric bead array; positive defined as interferon gamma (IFN-γ) ≥10 pg/mL in response to Spike antigen. Patient and physician-reported adverse events were secondary endpoints. OUTCOMES 395 adults were enrolled prior to receiving mRNA vaccine (BNT162b2 = 347; mRNA-1273 = 1) or viral vector vaccine (ChadOx1-S = 43) for initial two-dose course, plus up to three additional doses. Median age was 58 years (range: 20-85); 60 % were female; 35 % had haematological malignancy, 2/395 (0.5 %) had baseline positive nucleocapsid antibody indicating prior SARS-CoV-2 exposure. NAb response post dose three was demonstrated in 84 % overall; 96 % of patients with solid cancers and 64 % with haematological cancer (p < 0·001). Risk factors for non-response were haematological cancer and anti B-cell therapies. Some patients with haematological cancer seroconverted for the first time after the fourth or fifth dose. IFN-γ response was seen in many patients with haematological cancer who lacked NAb response. Serious adverse events were rare. COVID-19 infection occurred in 29 % with no deaths. INTERPRETATION COVID-19 vaccination elicits B and T cell responses in patients with solid and haematological cancers, with an acceptable safety profile. A significant proportion of haematological cancer patients require >3 doses to elicit NAb, with many demonstrating T cell response, which may be an alternative pathway of immune protection.
Collapse
Affiliation(s)
- Amy Body
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia.
| | - Luxi Lal
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia
| | | | - C Raina MacIntyre
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia; School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia; National Centre for Immunization, Research and Surveillance of Vaccine Preventable Diseases, University of Sydney, Westmead, NSW, Australia
| | - Jim Buttery
- University of Melbourne, Child Health Informatics (Paediatrics), Melbourne, VIC, Australia; Royal Children's Hospital, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Elizabeth Stephanie Ahern
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia
| | - Stephen Opat
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia
| | - Michael Francis Leahy
- Department of Haematology, Royal Perth Hospital, WA, Australia; University of Western Australia, School of Medicine & Pharmacology, School of Pathology, Perth, WA, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital, Kinghorn Cancer Centre, Sydney, NSW, Australia; The University of New South Wales, NSW, Australia
| | - Vivienne Milch
- Cancer Australia, Sydney, NSW, Australia; Caring Futures Institute, Flinders University, Adelaide, SA, Australia; School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia; University of Sydney, NSW, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Queensland Immunology Research Centre, Brisbane, QLD, Australia
| | - Katie Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zin Naing
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia
| | - William Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia; Virology Research Laboratory, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Eva Segelov
- Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia; University of Bern, Department of Clinical Research (Medicine), Bern, Switzerland; University Cancer Centre, Bern, Switzerland
| |
Collapse
|
3
|
Wang CJ, Sin DD. Best in Class: IgG as a Treatable Trait for Exacerbation Prevention in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2025; 211:144-146. [PMID: 39556414 PMCID: PMC11812549 DOI: 10.1164/rccm.202409-1681ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024] Open
Affiliation(s)
- Carolyn J Wang
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation St. Paul's Hospital Vancouver, British Columbia, Canada
- Department of Medicine University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Denise Guerra
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Stichting HIV monitoring, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location Academic Medical Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Mundorf AK, Semmler A, Heidecke H, Schott M, Steffen F, Bittner S, Lackner KJ, Schulze-Bosse K, Pawlitzki M, Meuth SG, Klawonn F, Ruhrländer J, Boege F. Clinical and Diagnostic Features of Post-Acute COVID-19 Vaccination Syndrome (PACVS). Vaccines (Basel) 2024; 12:790. [PMID: 39066428 PMCID: PMC11281408 DOI: 10.3390/vaccines12070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Post-acute COVID-19 vaccination syndrome (PACVS) is a chronic disease triggered by SARS-CoV-2 vaccination (estimated prevalence 0.02%). PACVS is discriminated from the normal post-vaccination state by altered receptor antibodies, most notably angiotensin II type 1 and alpha-2B adrenergic receptor antibodies. Here, we investigate the clinical phenotype using a study registry encompassing 191 PACVS-affected persons (159 females/32 males; median ages: 39/42 years). Unbiased clustering (modified Jaccard index) of reported symptoms revealed a prevalent cross-cohort symptomatology of malaise and chronic fatigue (>80% of cases). Overlapping clusters of (i) peripheral nerve dysfunction, dysesthesia, motor weakness, pain, and vasomotor dysfunction; (ii) cardiovascular impairment; and (iii) cognitive impairment, headache, and visual and acoustic dysfunctions were also frequently represented. Notable abnormalities of standard serum markers encompassing increased interleukins 6 and 8 (>80%), low free tri-iodine thyroxine (>80%), IgG subclass imbalances (>50%), impaired iron storage (>50%), and increased soluble neurofilament light chains (>30%) were not associated with specific symptoms. Based on these data, 131/191 participants fit myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and simultaneously also several other established dysautonomia syndromes. Furthermore, 31/191 participants fit none of these syndromes. In conclusion, PACVS could either be an outlier of ME/CFS or a dysautonomia syndrome sui generis.
Collapse
Affiliation(s)
- Anna Katharina Mundorf
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| | - Amelie Semmler
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| | | | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (F.S.); (S.B.)
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (F.S.); (S.B.)
| | - Karl J. Lackner
- University Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany;
| | - Karin Schulze-Bosse
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.P.); (S.G.M.)
| | - Sven Guenther Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.P.); (S.G.M.)
| | - Frank Klawonn
- Biostatistics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Department of Computer Science, Ostfalia University, 38302 Wolfenbüttel, Germany
| | - Jana Ruhrländer
- Selbsthilfegruppe Post-Vac-Syndrom Deutschland e.V., 34121 Kassel, Germany;
| | - Fritz Boege
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (A.K.M.); (A.S.); (K.S.-B.)
| |
Collapse
|
6
|
Lawrence DA, Jadhav A, Mondal TK, Carson K, Lee WT, Hogan AH, Herbst KW, Michelow IC, Brimacombe M, Salazar JC. Inflammatory and Autoimmune Aspects of Multisystem Inflammatory Syndrome in Children (MIS-C): A Prospective Cohort Study. Viruses 2024; 16:950. [PMID: 38932242 PMCID: PMC11209514 DOI: 10.3390/v16060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a potentially life-threatening complication of COVID-19. The pathophysiological mechanisms leading to severe disease are poorly understood. This study leveraged clinical samples from a well-characterized cohort of children hospitalized with COVID-19 or MIS-C to compare immune-mediated biomarkers. Our objective was to identify selected immune molecules that could explain, in part, why certain SARS-CoV-2-infected children developed MIS-C. We hypothesized that type-2 helper T cell-mediated inflammation can elicit autoantibodies, which may account for some of the differences observed between the moderate-severe COVID-19 (COVID+) and MIS-C cohort. We enumerated blood leukocytes and measured levels of selected serum cytokines, chemokines, antibodies to COVID-19 antigens, and autoantibodies in children presenting to an academic medical center in Connecticut, United States. The neutrophil/lymphocyte and eosinophil/lymphocyte ratios were significantly higher in those in the MIS-C versus COVID+ cohort. IgM and IgA, but not IgG antibodies to SARS-CoV-2 receptor binding domain were significantly higher in the MIS-C cohort than the COVID+ cohort. The serum levels of certain type-2 cytokines (interleukin (IL)-4, IL-5, IL-6, IL-8, IL-10, IL-13, and IL-33) were significantly higher in children with MIS-C compared to the COVID+ and SARS-CoV-2-negative cohorts. IgG autoantibodies to brain antigens and pentraxin were higher in children with MIS-C compared to SARS-CoV-19-negative controls, and children with MIS-C had higher levels of IgG anti-contactin-associated protein-like 2 (caspr2) compared to the COVID+ and SARS-CoV-19-negative controls. We speculate that autoimmune responses in certain COVID-19 patients may induce pathophysiological changes that lead to MIS-C. The triggers of autoimmunity and factors accounting for type-2 inflammation require further investigation.
Collapse
Affiliation(s)
- David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Aishwarya Jadhav
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - Tapan K. Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - Kyle Carson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - William T. Lee
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Alexander H. Hogan
- Division of Hospital Medicine, Connecticut Children’s, Hartford, CT 06106, USA;
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
| | - Katherine W. Herbst
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT 06106, USA
| | - Ian C. Michelow
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
| | - Michael Brimacombe
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT 06106, USA
| | - Juan C. Salazar
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
| | | |
Collapse
|
7
|
Collins E, Galipeau Y, Arnold C, Bhéreur A, Booth R, Buchan AC, Cooper C, Crawley AM, McCluskie PS, McGuinty M, Pelchat M, Rocheleau L, Saginur R, Gravel C, Hawken S, Langlois MA, Little J. Clinical and serological predictors of post COVID-19 condition-findings from a Canadian prospective cohort study. Front Public Health 2024; 12:1276391. [PMID: 38784593 PMCID: PMC11111987 DOI: 10.3389/fpubh.2024.1276391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction More than 3 years into the pandemic, there is persisting uncertainty as to the etiology, biomarkers, and risk factors of Post COVID-19 Condition (PCC). Serological research data remain a largely untapped resource. Few studies have investigated the potential relationships between post-acute serology and PCC, while accounting for clinical covariates. Methods We compared clinical and serological predictors among COVID-19 survivors with (n = 102 cases) and without (n = 122 controls) persistent symptoms ≥12 weeks post-infection. We selected four primary serological predictors (anti-nucleocapsid (N), anti-Spike, and anti-receptor binding domain (RBD) IgG titres, and neutralization efficiency), and specified clinical covariates a priori. Results Similar proportions of PCC-cases (66.7%, n = 68) and infected-controls (71.3%, n = 87) tested positive for anti-N IgG. More cases tested positive for anti-Spike (94.1%, n = 96) and anti-RBD (95.1%, n = 97) IgG, as compared with controls (anti-Spike: 89.3%, n = 109; anti-RBD: 84.4%, n = 103). Similar trends were observed among unvaccinated participants. Effects of IgG titres on PCC status were non-significant in univariate and multivariate analyses. Adjusting for age and sex, PCC-cases were more likely to be efficient neutralizers (OR 2.2, 95% CI 1.11-4.49), and odds was further increased among cases to report deterioration in quality of life (OR 3.4, 95% CI 1.64-7.31). Clinical covariates found to be significantly related to PCC included obesity (OR 2.3, p = 0.02), number of months post COVID-19 (OR 1.1, p < 0.01), allergies (OR 1.8, p = 0.04), and need for medical support (OR 4.1, p < 0.01). Conclusion Despite past COVID-19 infection, approximately one third of PCC-cases and infected-controls were seronegative for anti-N IgG. Findings suggest higher neutralization efficiency among cases as compared with controls, and that this relationship is stronger among cases with more severe PCC. Cases also required more medical support for COVID-19 symptoms, and described complex, ongoing health sequelae. More data from larger cohorts are needed to substantiate results, permit subgroup analyses of IgG titres, and explore for differences between clusters of PCC symptoms. Future assessment of IgG subtypes may also elucidate new findings.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anne Bhéreur
- Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Ronald Booth
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Arianne C. Buchan
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michaeline McGuinty
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Raphael Saginur
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Chris Gravel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Maimela PWM, Smith M, Nel AJM, Bernam SDP, Jonas EG, Blackburn JM. Humoral immunoprofiling identifies novel biomarkers and an immune suppressive autoantibody phenotype at the site of disease in pancreatic ductal adenocarcinoma. Front Oncol 2024; 14:1330419. [PMID: 38450186 PMCID: PMC10917065 DOI: 10.3389/fonc.2024.1330419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease.
Collapse
Affiliation(s)
- Pamela Winnie M. Maimela
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muneerah Smith
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew J. M. Nel
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Eduard G. Jonas
- Department of Surgery, Gastroenterology Unit, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Camacho-Pacheco RT, Hernández-Pineda J, Brito-Pérez Y, Plazola-Camacho N, Coronado-Zarco IA, Arreola-Ramírez G, Bermejo-Haro MY, Najera-Hernández MA, González-Pérez G, Herrera-Salazar A, Olmos-Ortiz A, Soriano-Becerril D, Sandoval-Montes C, Figueroa-Damian R, Rodríguez-Martínez S, Mancilla-Herrera I. Disturbances in the IgG Antibody Profile in HIV-Exposed Uninfected Infants Associated with Maternal Factors. J Immunol Res 2024; 2024:8815767. [PMID: 38375063 PMCID: PMC10876311 DOI: 10.1155/2024/8815767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Over the last 20 years, the incidence of vertical HIV transmission has decreased from 25%-42% to less than 1%. Although there are no signs of infection, the health of HIV-exposed uninfected (HEU) infants is notoriously affected during the first months of life, with opportunistic infections being the most common disease. Some studies have reported effects on the vertical transfer of antibodies, but little is known about the subclass distribution of these antibodies. We proposed to evaluate the total IgG concentration and its subclasses in HIV+ mothers and HEU pairs and to determine which maternal factors condition their levels. In this study, plasma from 69 HEU newborns, their mothers, and 71 control pairs was quantified via immunoassays for each IgG isotype. Furthermore, we followed the antibody profile of HEUs throughout the first year of life. We showed that mothers present an antibody profile characterized by high concentrations of IgG1 and IgG3 but reduced IgG2, and HEU infants are born with an IgG subclass profile similar to that of their maternal pair. Interestingly, this passively transferred profile could remain influenced even during their own antibody production in HEU infants, depending on maternal conditions such as CD4+ T-cell counts and maternal antiretroviral treatment. Our findings indicate that HEU infants exhibit an altered IgG subclass profile influenced by maternal factors, potentially contributing to their increased susceptibility to infections.
Collapse
Affiliation(s)
- Rodrigo T. Camacho-Pacheco
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jessica Hernández-Pineda
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Yesenia Brito-Pérez
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Noemi Plazola-Camacho
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | | | | | - Mextli Y. Bermejo-Haro
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Angel Najera-Hernández
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Gabriela González-Pérez
- Department of Physiology and Cellular Development, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Alma Herrera-Salazar
- Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán Izcalli, Mexico
| | - Andrea Olmos-Ortiz
- Immunobiochemistry Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Diana Soriano-Becerril
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Claudia Sandoval-Montes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Figueroa-Damian
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| |
Collapse
|
10
|
Jain S, Kumar S, Lai L, Linderman S, Malik AA, Ellis ML, Godbole S, Solis D, Sahoo MK, Bechnak K, Paredes I, Tanios R, Kazzi B, Dib SM, Litvack MB, Wimalasena ST, Ciric C, Rostad C, West R, Teng IT, Wang D, Edupuganti S, Kwong PD, Rouphael N, Pinsky BA, Douek DC, Wrammert J, Moreno A, Suthar MS. XBB.1.5 monovalent booster improves antibody binding and neutralization against emerging SARS-CoV-2 Omicron variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578771. [PMID: 38370837 PMCID: PMC10871242 DOI: 10.1101/2024.02.03.578771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (∼1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.
Collapse
|
11
|
Reinig S, Shih SR. Non-neutralizing functions in anti-SARS-CoV-2 IgG antibodies. Biomed J 2024; 47:100666. [PMID: 37778697 PMCID: PMC10825350 DOI: 10.1016/j.bj.2023.100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Most individuals infected with or vaccinated against COVID-19 develop antigenic neutralizing immunoglobulin G (IgG) antibodies against the SARS-CoV-2 spike protein. Although neutralizing antibodies are biomarkers of the adaptive immune response, their mere presence is insufficient to explain the protection afforded against the disease or its pathology. IgG exhibits other secondary effector functions that activate innate immune components, including complement, natural killer cells, and macrophages. The affinity for effector cells depends on the isotypes and glycosylation of IgG antibodies. The anti-spike IgG titer should be sufficient to provide significant Fc-mediated effects in severe COVID-19, mRNA, and protein subunit vaccinations. In combination with aberrant effector cells, pro-inflammatory afucosylated IgG1 and IgG3 may be detrimental in severe COVID-19. The antibody response of mRNA vaccines leads to higher fucosylation and a less inflammatory IgG profile, with a long-term shift to IgG4, which is correlated with protection from disease.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Espino AM, Armina-Rodriguez A, Alvarez L, Ocasio-Malavé C, Ramos-Nieves R, Rodriguez Martinó EI, López-Marte P, Torres EA, Sariol CA. The Anti-SARS-CoV-2 IgG1 and IgG3 Antibody Isotypes with Limited Neutralizing Capacity against Omicron Elicited in a Latin Population a Switch toward IgG4 after Multiple Doses with the mRNA Pfizer-BioNTech Vaccine. Viruses 2024; 16:187. [PMID: 38399963 PMCID: PMC10893502 DOI: 10.3390/v16020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to analyze the profiles of IgG subclasses in COVID-19 convalescent Puerto Rican subjects and compare these profiles with those of non-infected immunocompetent or immunocompromised subjects that received two or more doses of an mRNA vaccine. The most notable findings from this study are as follows: (1) Convalescent subjects that were not hospitalized developed high and long-lasting antibody responses. (2) Both IgG1 and IgG3 subclasses were more prevalent in the SARS-CoV-2-infected population, whereas IgG1 was more prevalent after vaccination. (3) Individuals that were infected and then later received two doses of an mRNA vaccine exhibited a more robust neutralizing capacity against Omicron than those that were never infected and received two doses of an mRNA vaccine. (4) A class switch toward the "anti-inflammatory" antibody isotype IgG4 was induced a few weeks after the third dose, which peaked abruptly and remained at high levels for a long period. Moreover, the high levels of IgG4 were concurrent with high neutralizing percentages against various VOCs including Omicron. (5) Subjects with IBD also produced IgG4 antibodies after the third dose, although these antibody levels had a limited effect on the neutralizing capacity. Knowing that the mRNA vaccines do not prevent infections, the Omicron subvariants have been shown to be less pathogenic, and IgG4 levels have been associated with immunotolerance and numerous negative effects, the recommendations for the successive administration of booster vaccinations to people should be revised.
Collapse
Affiliation(s)
- Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Albersy Armina-Rodriguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Laura Alvarez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Carlimar Ocasio-Malavé
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Riseilly Ramos-Nieves
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Esteban I. Rodriguez Martinó
- Gastroenterology Research Unit, School of Medicine, University of Puerto Rico, San Juan, PR 00925, USA; (E.I.R.M.); (P.L.-M.); (E.A.T.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Paola López-Marte
- Gastroenterology Research Unit, School of Medicine, University of Puerto Rico, San Juan, PR 00925, USA; (E.I.R.M.); (P.L.-M.); (E.A.T.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Esther A. Torres
- Gastroenterology Research Unit, School of Medicine, University of Puerto Rico, San Juan, PR 00925, USA; (E.I.R.M.); (P.L.-M.); (E.A.T.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
13
|
Stern D, Meyer TC, Treindl F, Mages HW, Krüger M, Skiba M, Krüger JP, Zobel CM, Schreiner M, Grossegesse M, Rinner T, Peine C, Stoliaroff-Pépin A, Harder T, Hofmann N, Michel J, Nitsche A, Stahlberg S, Kneuer A, Sandoni A, Kubisch U, Schlaud M, Mankertz A, Schwarz T, Corman VM, Müller MA, Drosten C, de la Rosa K, Schaade L, Dorner MB, Dorner BG. A bead-based multiplex assay covering all coronaviruses pathogenic for humans for sensitive and specific surveillance of SARS-CoV-2 humoral immunity. Sci Rep 2023; 13:21846. [PMID: 38071261 PMCID: PMC10710470 DOI: 10.1038/s41598-023-48581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| | - Tanja C Meyer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Fridolin Treindl
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Hans Werner Mages
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Maren Krüger
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Jan Philipp Krüger
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Christian M Zobel
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Berlin, Germany
| | | | - Marica Grossegesse
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Rinner
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Caroline Peine
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Anna Stoliaroff-Pépin
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Harder
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Natalie Hofmann
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Silke Stahlberg
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Antje Kneuer
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Anna Sandoni
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Ulrike Kubisch
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Martin Schlaud
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Annette Mankertz
- Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients (FG 12), Robert Koch Institute, 13353, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Corporate Member, Freie Universität Berlin, 10117, Berlin, Germany
- Corporate Member, Humboldt-Universität zu Berlin, 14195, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
14
|
Balinsky CA, Jiang L, Jani V, Cheng Y, Zhang Z, Belinskaya T, Qiu Q, Long TK, Schilling MA, Jenkins SA, Corson KS, Martin NJ, Letizia AG, Hontz RD, Sun P. Antibodies to S2 domain of SARS-CoV-2 spike protein in Moderna mRNA vaccinated subjects sustain antibody-dependent NK cell-mediated cell cytotoxicity against Omicron BA.1. Front Immunol 2023; 14:1266829. [PMID: 38077368 PMCID: PMC10702584 DOI: 10.3389/fimmu.2023.1266829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vihasi Jani
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Qi Qiu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Megan A. Schilling
- Virology and Emerging Infectious Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Sarah A. Jenkins
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Karen S. Corson
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | | | | | - Robert D. Hontz
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | - Peifang Sun
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
15
|
Joshi D, Nyhoff LE, Zarnitsyna VI, Moreno A, Manning K, Linderman S, Burrell AR, Stephens K, Norwood C, Mantus G, Ahmed R, Anderson EJ, Staat MA, Suthar MS, Wrammert J. Infants and young children generate more durable antibody responses to SARS-CoV-2 infection than adults. iScience 2023; 26:107967. [PMID: 37822504 PMCID: PMC10562792 DOI: 10.1016/j.isci.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
As SARS-CoV-2 becomes endemic, it is critical to understand immunity following early-life infection. We evaluated humoral responses to SARS-CoV-2 in 23 infants/young children. Antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with spike and RBD IgG antibody half-life nearly 4X as long as in adults. IgG subtype analysis revealed that while IgG1 formed the majority of the response in both groups, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.
Collapse
Affiliation(s)
- Devyani Joshi
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Lindsay E. Nyhoff
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | | | - Alberto Moreno
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University, School of Medicine, Atlanta, GA, USA
| | - Kelly Manning
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Susanne Linderman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Allison R. Burrell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathy Stephens
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Carson Norwood
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Grace Mantus
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory University, School of Medicine, Atlanta, GA, USA
| | - Mary A. Staat
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mehul S. Suthar
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jens Wrammert
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Rubio-Casillas A, Redwan EM, Uversky VN. Does SARS-CoV-2 Induce IgG4 Synthesis to Evade the Immune System? Biomolecules 2023; 13:1338. [PMID: 37759738 PMCID: PMC10526126 DOI: 10.3390/biom13091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2, the virus that causes the COVID-19 disease, has been shown to cause immune suppression in certain individuals. This can manifest as a reduced ability of the host's immune system to effectively control the infection. Studies have reported that patients with COVID-19 can exhibit a decline in white blood cell counts, including natural killer cells and T cells, which are integral components of the immune system's response to viral pathogens. These cells play critical roles in the immune response to viral infections, and their depletion can make it harder for the body to mount an effective defense against the virus. Additionally, the virus can also directly infect immune cells, further compromising their ability to function. Some individuals with severe COVID-19 pneumonia may develop a "cytokine storm", an overactive immune response that may result in tissue damage and organ malfunction. The underlying mechanisms of immune suppression in SARS-CoV-2 are not entirely understood at this time, and research is being conducted to gain a more comprehensive understanding. Research has shown that severe SARS-CoV-2 infection promotes the synthesis of IgG4 antibodies. In this study, we propose the hypothesis that IgG4 antibodies produced by B cells in response to infection by SARS-CoV-2 generate immunological tolerance, which prevents its elimination and leads to persistent and chronic infection. In summary, we believe that this constitutes another immune evasion mechanism that bears striking similarities to that developed by cancer cells to evade immune surveillance.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Bolton MJ, Santos JJS, Arevalo CP, Griesman T, Watson M, Li SH, Bates P, Ramage H, Wilson PC, Hensley SE. IgG3 subclass antibodies recognize antigenically drifted influenza viruses and SARS-CoV-2 variants through efficient bivalent binding. Proc Natl Acad Sci U S A 2023; 120:e2216521120. [PMID: 37603748 PMCID: PMC10469028 DOI: 10.1073/pnas.2216521120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/12/2023] [Indexed: 08/23/2023] Open
Abstract
The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.
Collapse
Affiliation(s)
- Marcus J. Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jefferson J. S. Santos
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Claudia P. Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Trevor Griesman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Megan Watson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Shuk Hang Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Holly Ramage
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Patrick C. Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY10021
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
18
|
Salgado BB, Jordão MF, de Morais TBDN, da Silva DSS, Pereira Filho IV, Salgado Sobrinho WB, Carvalho NO, Dos Santos RO, Forato J, Barbosa PP, Toledo-Teixeira DA, Pinto KR, Correia IS, Cordeiro IB, Souza Neto JND, Assunção END, Val FFA, Melo GC, Sampaio VDS, Monteiro WM, Granja F, Souza WMD, Astolfi Filho S, Proenca-Modena JL, Lalwani JDB, Lacerda MVGD, Nogueira PA, Lalwani P. Antigen-Specific Antibody Signature Is Associated with COVID-19 Outcome. Viruses 2023; 15:v15041018. [PMID: 37112998 PMCID: PMC10143282 DOI: 10.3390/v15041018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have focused on inflammation-related markers to understand COVID-19. In this study, we performed a comparative analysis of spike (S) and nucleocapsid (N) protein-specific IgA, total IgG and IgG subclass response in COVID-19 patients and compared this to their disease outcome. We observed that the SARS-CoV-2 infection elicits a robust IgA and IgG response against the N-terminal (N1) and C-terminal (N3) region of the N protein, whereas we failed to detect IgA antibodies and observed a weak IgG response against the disordered linker region (N2) in COVID-19 patients. N and S protein-specific IgG1, IgG2 and IgG3 response was significantly elevated in hospitalized patients with severe disease compared to outpatients with non-severe disease. IgA and total IgG antibody reactivity gradually increased after the first week of symptoms. Magnitude of RBD-ACE2 blocking antibodies identified in a competitive assay and neutralizing antibodies detected by PRNT assay correlated with disease severity. Generally, the IgA and total IgG response between the discharged and deceased COVID-19 patients was similar. However, significant differences in the ratio of IgG subclass antibodies were observed between discharged and deceased patients, especially towards the disordered linker region of the N protein. Overall, SARS-CoV-2 infection is linked to an elevated blood antibody response in severe patients compared to non-severe patients. Monitoring of antigen-specific serological response could be an important tool to accompany disease progression and improve outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Julia Forato
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Insititute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Priscilla Paschoal Barbosa
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Insititute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Insititute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Kerollen Runa Pinto
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69000-000, Brazil
| | - Ingrid Silva Correia
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69000-000, Brazil
| | | | - Júlio Nino de Souza Neto
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69000-000, Brazil
| | | | | | - Gisely Cardoso Melo
- Fundação de Medicina Tropical, Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69000-000, Brazil
| | | | | | - Fabiana Granja
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima (UFRR), Boa Vista 69300-000, Brazil
| | - William M de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14000-000, Brazil
| | - Spartaco Astolfi Filho
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69000-000, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Insititute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Jaila Dias Borges Lalwani
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus 69000-000, Brazil
| | - Marcus Vinícius Guimarães de Lacerda
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus 69000-000, Brazil
- Fundação de Medicina Tropical, Doutor Heitor Vieira Dourado (FMT-HVD), Manaus 69000-000, Brazil
| | | | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus 69000-000, Brazil
| |
Collapse
|
19
|
Cortés-Sarabia K, Palomares-Monterrubio KH, Velázquez-Moreno JO, Luna-Pineda VM, Leyva-Vázquez MA, Vences-Velázquez A, Dircio-Maldonado R, Del Moral-Hernández O, Illades-Aguiar B. Seroprevalence of IgG and Subclasses against the Nucleocapsid of SARS-CoV-2 in Health Workers. Viruses 2023; 15:v15040955. [PMID: 37112935 PMCID: PMC10141201 DOI: 10.3390/v15040955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The nucleocapsid protein of SARS-CoV-2 participates in viral replication, transcription, and assembly. Antibodies against this protein have been proposed for the epidemiological analysis of the seroprevalence of COVID-19 associated with natural infection by SARS-CoV-2. Health workers were one of the most exposed populations, and some had an asymptomatic form of the disease, so detecting IgG antibodies and subclasses against the N protein can help to reclassify their epidemiological status and obtain information about the effector mechanisms associated with viral elimination. METHODS In this study, we analyzed 253 serum samples collected in 2021 and derived from health workers, and evaluated the presence of total IgG and subclasses against the N protein of SARS-CoV-2 by indirect ELISA. RESULTS From the analyzed samples, 42.69% were positive to anti-N IgG antibodies. A correlation between COVID-19 asymptomatic infection and IgG antibodies was observed (p = 0.006). The detected subclasses were: IgG1 (82.4%), IgG2 (75.9%), IgG3 (42.6%), and IgG4 (72.6%). CONCLUSIONS This work provides evidence about the high seroprevalence of total IgG and subclasses of anti-N and their relations with the asymptomatic infection of SARS-CoV-2 and related symptoms.
Collapse
Affiliation(s)
- Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Kenet Hisraim Palomares-Monterrubio
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Jesús Omar Velázquez-Moreno
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Víctor Manuel Luna-Pineda
- Unidad de Investigación en Inmunología y Proteómica, Laboratorio de Investigación en COVID-19, Hospital Infantil de México "Federico Gómez", Mexico City 06720, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Roberto Dircio-Maldonado
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Berenice Illades-Aguiar
- Unidad de Investigación en Inmunología y Proteómica, Laboratorio de Investigación en COVID-19, Hospital Infantil de México "Federico Gómez", Mexico City 06720, Mexico
| |
Collapse
|
20
|
Joshi D, Nyhoff LE, Zarnitsyna VI, Moreno A, Manning K, Linderman S, Burrell AR, Stephens K, Norwood C, Mantus G, Ahmed R, Anderson EJ, Staat MA, Suthar MS, Wrammert J. Infants and young children generate more durable antibody responses to SARS-CoV-2 infection than adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.10.23288360. [PMID: 37090559 PMCID: PMC10120804 DOI: 10.1101/2023.04.10.23288360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Since the emergence of SARS-CoV-2, research has shown that adult patients mount broad and durable immune responses to infection. However, response to infection remains poorly studied in infants/young children. In this study, we evaluated humoral responses to SARS-CoV-2 in 23 infants/young children before and after infection. We found that antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with Spike and RBD IgG antibody half-life nearly 4X as long as in adults. The functional breadth of adult and infant/young children SARS-CoV-2 responses were comparable, with similar reactivity against panel of recent and previously circulating viral variants. Notably, IgG subtype analysis revealed that while IgG1 formed the majority of both adults' and infants/young children's response, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.
Collapse
|
21
|
Maltz-Matyschsyk M, Melchiorre CK, Herbst KW, Hogan AH, Dibble K, O’Sullivan B, Graf J, Jadhav A, Lawrence DA, Lee WT, Carson KJ, Radolf JD, Salazar JC, Lynes MA. Development of a biomarker signature using grating-coupled fluorescence plasmonic microarray for diagnosis of MIS-C. Front Bioeng Biotechnol 2023; 11:1066391. [PMID: 37064248 PMCID: PMC10102909 DOI: 10.3389/fbioe.2023.1066391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious condition that can develop 4–6 weeks after a school age child becomes infected by SARS-CoV-2. To date, in the United States more than 8,862 cases of MIS-C have been identified and 72 deaths have occurred. This syndrome typically affects children between the ages of 5–13; 57% are Hispanic/Latino/Black/non-Hispanic, 61% of patients are males and 100% have either tested positive for SARS-CoV-2 or had direct contact with someone with COVID-19. Unfortunately, diagnosis of MIS-C is difficult, and delayed diagnosis can lead to cardiogenic shock, intensive care admission, and prolonged hospitalization. There is no validated biomarker for the rapid diagnosis of MIS-C. In this study, we used Grating-coupled Fluorescence Plasmonic (GCFP) microarray technology to develop biomarker signatures in pediatric salvia and serum samples from patients with MIS-C in the United States and Colombia. GCFP measures antibody-antigen interactions at individual regions of interest (ROIs) on a gold-coated diffraction grating sensor chip in a sandwich immunoassay to generate a fluorescent signal based on analyte presence within a sample. Using a microarray printer, we designed a first-generation biosensor chip with the capability of capturing 33 different analytes from 80 μL of sample (saliva or serum). Here, we show potential biomarker signatures in both saliva and serum samples in six patient cohorts. In saliva samples, we noted occasional analyte outliers on the chip within individual samples and were able to compare those samples to 16S RNA microbiome data. These comparisons indicate differences in relative abundance of oral pathogens within those patients. Microsphere Immunoassay (MIA) of immunoglobulin isotypes was also performed on serum samples and revealed MIS-C patients had several COVID antigen-specific immunoglobulins that were significantly higher than other cohorts, thus identifying potential new targets for the second-generation biosensor chip. MIA also identified additional biomarkers for our second-generation chip, verified biomarker signatures generated on the first-generation chip, and aided in second-generation chip optimization. Interestingly, MIS-C samples from the United States had a more diverse and robust signature than the Colombian samples, which was also illustrated in the MIA cytokine data. These observations identify new MIS-C biomarkers and biomarker signatures for each of the cohorts. Ultimately, these tools may represent a potential diagnostic tool for use in the rapid identification of MIS-C.
Collapse
Affiliation(s)
| | - Clare K. Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | | | - Alexander H. Hogan
- Connecticut Children’s Medical Center, Hartford, CT, United States
- University of Connecticut Health Center, Farmington, CT, United States
| | - Kristina Dibble
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Brandon O’Sullivan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Aishwarya Jadhav
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
- University at Albany School of Public Health, Rensselaer, NY, United States
| | - William T. Lee
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
- University at Albany School of Public Health, Rensselaer, NY, United States
| | - Kyle J. Carson
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Justin D. Radolf
- University of Connecticut Health Center, Farmington, CT, United States
| | - Juan C. Salazar
- Connecticut Children’s Medical Center, Hartford, CT, United States
- University of Connecticut Health Center, Farmington, CT, United States
| | - Michael A. Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- *Correspondence: Michael A. Lynes,
| | | |
Collapse
|
22
|
Suresh M, Kumar P, Panda PK, Jain V, Raina R, Saha S, Vivekanandhan S, Omar BJ. Correlation of serum SARS-CoV-2 IgM and IgG serology and clinical outcomes in COVID-19 patients: Experience from a tertiary care centre. World J Biol Chem 2023; 14:52-61. [PMID: 37034133 PMCID: PMC10080546 DOI: 10.4331/wjbc.v14.i2.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a pandemic for the last 2 years. Inflammatory response to the virus leads to organ dysfunction and death. Predicting the severity of inflammatory response helps in managing critical patients using serology tests IgG and IgM. AIM To investigate the correlation of the serology (IgM and IgG) with reverse transcriptase polymerase chain reaction (RT-PCR) status, disease severity [mild to critical], intensive care unit (ICU) admission, septic shock, acute kidney injury, and in-hospital mortality. METHODS We conducted a longitudinal study to correlate serum SARS-CoV-2 immunoglobulin M (IgM) and immunoglobulin G (IgG) serology with clinical outcomes in coronavirus disease 2019 (COVID-19) patients. We analyzed patient data from March to December 2020 for those who were admitted at All India Institute of Medical Sciences Rishikesh. Clinical and laboratory data of these patients were collected from the e-hospital portal and analyzed. A correlation was seen with clinical outcomes and was assessed using MS Excel 2010 and SPSS software. RESULTS Out of 494 patients, the mean age of patients was 48.95 ± 16.40 years and there were more male patients in the study (66.0%). The patients were classified as mild-moderate 328 (67.1%), severe 131 (26.8%), and critical 30 (6.1%). The mean duration from symptom onset to serology testing was 19.87 ± 30.53 d. In-hospital mortality was observed in 25.1% of patients. The seropositivity rate (i.e., either IgG or IgM > 10 AU) was 50%. IgM levels (AU/mL) (W = 33428.000, P ≤ 0.001) and IgG levels (AU/mL) (W = 39256.500, P ≤ 0.001), with the median IgM/ IgG levels (AU/mL), were highest in the RT-PCR-Positive group compared to RT-PCR-Negative clinical COVID-19. There was no significant difference between the two groups in terms of all other clinical outcomes (disease severity, septic shock, ICU admission, mechanical ventilation, and mortality). CONCLUSION The study showed that serology levels are high in RT-PCR positive group compared to clinical COVID-19. However, serology cannot be useful for the prediction of disease outcomes. The study also highlights the importance of doing serology at a particular time as antibody titers vary with the duration of the disease. In week intervals there was a significant correlation between clinical outcomes and serology on week 3.
Collapse
Affiliation(s)
- Mohan Suresh
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Pratap Kumar
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Prasan Kumar Panda
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Vikram Jain
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Rohit Raina
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Subbiah Vivekanandhan
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India
| |
Collapse
|
23
|
Poolchanuan P, Matsee W, Sengyee S, Siripoon T, Dulsuk A, Phunpang R, Pisutsan P, Piyaphanee W, Luvira V, Chantratita N. Dynamics of Different Classes and Subclasses of Antibody Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Variants after Coronavirus Disease 2019 and CoronaVac Vaccination in Thailand. mSphere 2023; 8:e0046522. [PMID: 36688637 PMCID: PMC9942573 DOI: 10.1128/msphere.00465-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
The humoral immune response plays a key role in protecting the population from SARS-CoV-2 transmission. Patients who recovered from COVID-19 as well as fully vaccinated individuals have elevated levels of antibodies. The dynamic levels of the classes and subclasses of antibody responses to new variants that occur in different populations remain unclear. We prospectively recruited 60 participants, including COVID-19 patients and CoronaVac-vaccinated individuals, in Thailand from May to August 2021. Plasma samples were collected on day 0, day 14, and day 28 to determine the dynamic levels of the classes and subclasses of plasma antibodies against the receptor-binding domain (RBD) in the spike protein (S) of four SARS-CoV-2 strains (Wuhan, Alpha, Delta, and Omicron) via enzyme-linked immunosorbent assay. Our results indicated that the patients with SARS-CoV-2 infections had broader class and subclass profiles as well as higher levels of anti-S RBD antibodies to the Wuhan, Alpha, and Delta strains than did the CoronaVac-vaccinated individuals. The median antibody levels increased and subsequently declined in a month in the COVID-19 patients and in the vaccinated group. Correlations of the classes and subclasses of antibodies were observed in the COVID-19 patients but not in the vaccinated individuals. The levels of all of the anti-S RBD antibodies against the Omicron variant were low in the patients and in the vaccinated individuals. Our study revealed distinct antibody profiles between the two cohorts, suggesting different pathways of immune activation. This could have an impact on protection from infections by new variants of concern (VOC). IMPORTANCE The antibody responses to new SARS-CoV-2 variants that occur in different populations remain unclear. In this study, we recruited 60 participants, including COVID-19 patients and CoronaVac-vaccinated individuals, in Thailand and determined the dynamic levels of the IgG, IgA, IgM, and IgG subclasses of antibodies against the spike protein (S) of four SARS-CoV-2 strains. Our results showed that the patients with SARS-CoV-2 infections had broader profiles and higher levels of antibodies to the Wuhan, Alpha, and Delta strains than did the CoronaVac-vaccinated individuals. The antibody levels of both groups increased and subsequently decreased within 1 month. Higher and functional correlations of these antibodies were observed in the COVID-19 patients. The levels of all anti-S RBD antibodies against the Omicron variant were low in patients and vaccinated individuals. Our study revealed distinct antibody responses between the two groups, suggesting different pathways of immune response, which may have an impact on protection from infections by new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Prapassorn Poolchanuan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wasin Matsee
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanaya Siripoon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phimphan Pisutsan
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharapong Piyaphanee
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Wasiluk T, Sredzinska M, Rogowska A, Zebrowska A, Boczkowska-Radziwon B, Stasiak-Barmuta A, Radziwon P. Analysis of the IgG subclass profile and IgG sum-total discrepancy in COVID-19 convalescent plasma donors: A single-centre prospective cohort study. Transfus Apher Sci 2023; 62:103527. [PMID: 36038476 PMCID: PMC9417371 DOI: 10.1016/j.transci.2022.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Although IgG1 and IgG3 have been shown to be the dominant subclasses in the acute phase of SARS-CoV-2 infection, little is known about the distribution of IgG subclasses during the recovery phase of COVID-19. The aim of the study was to analyze the profile of IgG subclasses in COVID-19 convalescent plasma donors. METHODS A total of 36 convalescent plasma donors were included in the analysis. IgG and IgG subclass levels were measured using a nephelometric assay in plasma samples obtained directly from the plasma container. RESULTS Although there was no significant difference in the concentration of IgG subclasses between the study and control groups, the contribution of IgG1 to the total IgG pool between the study and control groups was statistically significant (p = 0.0478). In addition, there was a discrepancy between the total IgG and IgG sum values in the study group, exceeding 15 % in 19,4 % of samples (n = 7), while in the control group no samples with a sum/ total IgG difference > 15 % were observed. CONCLUSIONS The selective affinity of the IgG1 subclass for the polyclonal anti-IgG reagent may interfere with the determination of total IgG and should be considered when interpreting the results of enzyme immunoassays DATA AVAILABILITY: The data that support the findings of this study are available on request from the corresponding author.
Collapse
Affiliation(s)
- Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, Bialystok, Poland.
| | | | - Anna Rogowska
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | | | | | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland,Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Irrgang P, Gerling J, Kocher K, Lapuente D, Steininger P, Habenicht K, Wytopil M, Beileke S, Schäfer S, Zhong J, Ssebyatika G, Krey T, Falcone V, Schülein C, Peter AS, Nganou-Makamdop K, Hengel H, Held J, Bogdan C, Überla K, Schober K, Winkler TH, Tenbusch M. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol 2023; 8:eade2798. [PMID: 36548397 PMCID: PMC9847566 DOI: 10.1126/sciimmunol.ade2798] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA vaccines are efficient preventive measures to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. High levels of neutralizing SARS-CoV-2 antibodies are an important component of vaccine-induced immunity. Shortly after the initial two mRNA vaccine doses, the immunoglobulin G (IgG) response mainly consists of the proinflammatory subclasses IgG1 and IgG3. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of noninflammatory IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. IgG4 antibodies among all spike-specific IgG antibodies rose, on average, from 0.04% shortly after the second vaccination to 19.27% late after the third vaccination. This induction of IgG4 antibodies was not observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. Single-cell sequencing and flow cytometry revealed substantial frequencies of IgG4-switched B cells within the spike-binding memory B cell population [median of 14.4%; interquartile range (IQR) of 6.7 to 18.1%] compared with the overall memory B cell repertoire (median of 1.3%; IQR of 0.9 to 2.2%) after three immunizations. This class switch was associated with a reduced capacity of the spike-specific antibodies to mediate antibody-dependent cellular phagocytosis and complement deposition. Because Fc-mediated effector functions are critical for antiviral immunity, these findings may have consequences for the choice and timing of vaccination regimens using mRNA vaccines, including future booster immunizations against SARS-CoV-2.
Collapse
Affiliation(s)
- Pascal Irrgang
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Juliane Gerling
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - Katharina Kocher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Philipp Steininger
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Katharina Habenicht
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - Monika Wytopil
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Stephanie Beileke
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Simon Schäfer
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - Jahn Zhong
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck; Luebeck, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck; Luebeck, Germany
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg; Freiburg, Germany
| | - Christine Schülein
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg; Freiburg, Germany
| | - Jürgen Held
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Klaus Überla
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany.,Corresponding author. (K.S.); (T.H.W.); (M.T.)
| | - Thomas H. Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany.,Corresponding author. (K.S.); (T.H.W.); (M.T.)
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany.,Corresponding author. (K.S.); (T.H.W.); (M.T.)
| |
Collapse
|
26
|
Lin FJ, Doss AMA, Davis-Adams HG, Adams LJ, Hanson CH, VanBlargan LA, Liang CY, Chen RE, Monroy JM, Wedner HJ, Kulczycki A, Mantia TL, O’Shaughnessy CC, Raju S, Zhao FR, Rizzi E, Rigell CJ, Dy TB, Kau AL, Ren Z, Turner JS, O’Halloran JA, Presti RM, Fremont DH, Kendall PL, Ellebedy AH, Mudd PA, Diamond MS, Zimmerman O, Laidlaw BJ. SARS-CoV-2 booster vaccination rescues attenuated IgG1 memory B cell response in primary antibody deficiency patients. Front Immunol 2022; 13:1033770. [PMID: 36618402 PMCID: PMC9817149 DOI: 10.3389/fimmu.2022.1033770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.
Collapse
Affiliation(s)
- Frank J. Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Hannah G. Davis-Adams
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lucas J. Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher H. Hanson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jennifer Marie Monroy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - H. James Wedner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Anthony Kulczycki
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarisa L. Mantia
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Elise Rizzi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher J. Rigell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiffany Biason Dy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew L. Kau
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhen Ren
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel M. Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Peggy L. Kendall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Philip A. Mudd
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J. Laidlaw
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
27
|
Sajadi MM, Myers A, Logue J, Saadat S, Shokatpour N, Quinn J, Newman M, Deming M, Rikhtegaran Tehrani Z, Magder LS, Karimi M, Abbasi A, Shlyak M, Baracco L, Frieman MB, Crotty S, Harris AD. Mucosal and Systemic Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination Determined by Severity of Primary Infection. mSphere 2022; 7:e0027922. [PMID: 36321826 PMCID: PMC9769618 DOI: 10.1128/msphere.00279-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
With much of the world infected with or vaccinated against severe acute respiratory syndrome coronavirus 2 (commonly abbreviated SARS-CoV-2; abbreviated here SARS2), understanding the immune responses to the SARS2 spike (S) protein in different situations is crucial to controlling the pandemic. We studied the clinical, systemic, mucosal, and cellular responses to two doses of SARS2 mRNA vaccines in 62 individuals with and without prior SARS2 infection that were divided into three groups based on antibody serostatus prior to vaccination and/or degree of disease symptoms among those with prior SARS2 infection: antibody negative (naive), low symptomatic, and symptomatic. Antibody negative were subjects who were antibody negative (i.e., those with no prior infection). Low symptomatic subjects were those who were antibody negative and had minimal or no symptoms at time of SARS2 infection. Symptomatic subjects were those who were antibody positive and symptomatic at time of SARS2 infection. All three groups were then studied when they received their SARS2 mRNA vaccines. In the previously SARS2-infected (based on antibody test) low symptomatic and symptomatic groups, reactogenic symptoms related to a recall response were elicited after the first vaccination. Anti-S trimer IgA and IgG titers, and neutralizing antibody titers, peaked after the 1st vaccination in the previously SARS2-infected groups and were significantly higher than for the SARS2 antibody-negative group in the plasma and nasal samples at most time points. Nasal and plasma IgA antibody responses were significantly higher in the low symptomatic group than in the symptomatic group at most time points. After the first vaccination, differences in cellular immunity were not evident between groups, but the activation-induced cell marker (AIM+) CD4+ cell response correlated with durability of IgG humoral immunity against the SARS2 S protein. In those SARS2-infected subjects, severity of infection dictated plasma and nasal IgA responses in primary infection as well as response to vaccination (peak responses and durability), which could have implications for continued protection against reinfection. Lingering differences between the SARS2-infected and SARS2-naive up to 10 months postvaccination could explain the decreased reinfection rates in the SARS2-infected vaccinees recently reported and suggests that additional strategies (such as boosting of the SARS2-naive vaccinees) are needed to narrow the differences observed between these groups. IMPORTANCE This study on SARS2 vaccination in those with and without previous exposure to the virus demonstrates that severity of infection dictates IgA responses in primary infection as well as response to vaccination (peak responses and durability), which could have implications for continued protection against reinfection.
Collapse
Affiliation(s)
- Mohammad M. Sajadi
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amber Myers
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saman Saadat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narjes Shokatpour
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Quinn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Meagan Deming
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Laurence S. Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maryam Karimi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mike Shlyak
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lauren Baracco
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Anthony D. Harris
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Gregory DJ, Vannier A, Duey AH, Roady TJ, Dzeng RK, Pavlovic MN, Chapin MH, Mukherjee S, Wilmot H, Chronos N, Charles RC, Ryan ET, LaRocque RC, Miller TE, Garcia-Beltran WF, Thierauf JC, Iafrate AJ, Mullenbrock S, Stump MD, Wetzel RK, Polakiewicz RD, Naranbhai V, Poznansky MC. Repertoires of SARS-CoV-2 epitopes targeted by antibodies vary according to severity of COVID-19. Virulence 2022; 13:890-902. [PMID: 35587156 PMCID: PMC9122311 DOI: 10.1080/21505594.2022.2073025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Antibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020. One hundred and twenty-four participants were classified into five groups: previously exposed but without evidence of infection, having no known exposure or evidence of infection, seroconverted without symptoms, previously diagnosed with symptomatic COVID-19, and recovered after hospitalization with COVID-19. Prevalence of IgGs specific to the following antigens was compared between the five groups: recombinant SARS-CoV-2 and betacoronavirus spike and nucleocapsid protein domains, peptides from a tiled array of 22-mers corresponding to the entire spike and nucleocapsid proteins, and peptides corresponding to predicted immunogenic regions from other proteins of SARS-CoV-2. Antibody abundance generally correlated positively with severity of prior illness. A number of specific immunogenic peptides and some that may be associated with milder illness or protection from symptomatic infection were identified. No convincing association was observed between antibodies to Receptor Binding Domain(s) (RBDs) of less pathogenic betacoronaviruses HKU1 or OC43 and COVID-19 severity. However, apparent cross-reaction with SARS-CoV RBD was evident and some predominantly asymptomatic individuals had antibodies to both MERS-CoV and SARS-CoV RBDs. Findings from this pilot study may inform development of diagnostics, vaccines, and therapeutic antibodies, and provide insight into viral pathogenic mechanisms.
Collapse
Affiliation(s)
- David J. Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
- Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Augustin Vannier
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Akiro H. Duey
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tyler J. Roady
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Richard K. Dzeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Maia N. Pavlovic
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael H. Chapin
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Sonia Mukherjee
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Richelle C. Charles
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital Boston, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward T. Ryan
- Cardiology Care Clinics, Eatonton, GA, USA
- Division of Infectious Diseases, Massachusetts General Hospital Boston, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Regina C. LaRocque
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital Boston, Boston, MA, USA
| | - Tyler E. Miller
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Wilfredo F. Garcia-Beltran
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Julia C. Thierauf
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - A. John Iafrate
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - Vivek Naranbhai
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Ardicli O, Carli KT, Satitsuksanoa P, Dreher A, Cusini A, Hutter S, Mirer D, Rückert B, Jonsdottir H, Weber B, Cervia C, Akdis M, Boyman O, Eggel A, Brüggen M, Akdis C, van de Veen W. Exposure to avian coronavirus vaccines is associated with increased levels of SARS-CoV-2-cross-reactive antibodies. Allergy 2022; 77:3648-3662. [PMID: 35869837 PMCID: PMC9467642 DOI: 10.1111/all.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.
Collapse
Affiliation(s)
- Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Department of Microbiology, Faculty of Veterinary MedicineBursa Uludag UniversityBursaTurkey
| | - K. Tayfun Carli
- Department of Microbiology, Faculty of Veterinary MedicineBursa Uludag UniversityBursaTurkey
| | | | - Anita Dreher
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Alexia Cusini
- Division of Infectious DiseasesCantonal Hospital of GrisonsChurSwitzerland
| | - Sandra Hutter
- Central LaboratoryCantonal Hospital of GrisonsChurSwitzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil ProtectionSpiezSwitzerland
- Department of Rheumatology, Immunology, and AllergologyInselspital University HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil ProtectionSpiezSwitzerland
| | - Carlo Cervia
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Onur Boyman
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
| | - Alexander Eggel
- Department of Rheumatology, Immunology, and AllergologyInselspital University HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Marie‐Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
30
|
Goh YS, Fong SW, Hor PX, Amrun SN, Lee CYP, Young BE, Chia PY, Tambyah PA, Kalimuddin S, Pada S, Tan SY, Sun LJ, Chen MIC, Leo YS, Lye DC, Ng LFP, Renia L. Conserved longitudinal alterations of anti-S-protein IgG subclasses in disease progression in initial ancestral Wuhan and vaccine breakthrough Delta infections. Front Microbiol 2022; 13:1043049. [PMID: 36483199 PMCID: PMC9723332 DOI: 10.3389/fmicb.2022.1043049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. METHODS Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. RESULTS We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. DISCUSSION While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.
Collapse
Affiliation(s)
- Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Xiang Hor
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cheryl Yi-Pin Lee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Po Ying Chia
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul A. Tambyah
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Department of Infectious Diseases, National University Health System, Singapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore,Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Surinder Pada
- Division of Infectious Diseases, Ng Teng Fong Hospital, Singapore, Singapore
| | - Seow-Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore, Singapore
| | | | - Mark I-Cheng Chen
- National Centre for Infectious Diseases, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - David C. Lye
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore,*Correspondence: Laurent Renia,
| |
Collapse
|
31
|
Schuster DJ, Karuna S, Brackett C, Wesley M, Li SS, Eisel N, Tenney D, Hilliard S, Yates NL, Heptinstall JR, Williams LD, Shen X, Rolfe R, Cabello R, Zhang L, Sawant S, Hu J, Randhawa AK, Hyrien O, Hural JA, Corey L, Frank I, Tomaras GD, Seaton KE. Lower SARS-CoV-2-specific humoral immunity in people living with HIV-1 recovered from nonhospitalized COVID-19. JCI Insight 2022; 7:e158402. [PMID: 36136590 PMCID: PMC9675463 DOI: 10.1172/jci.insight.158402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
People living with HIV-1 (PLWH) exhibit more rapid antibody decline following routine immunization and elevated baseline chronic inflammation than people without HIV-1 (PWOH), indicating potential for diminished humoral immunity during SARS-CoV-2 infection. Conflicting reports have emerged on the ability of PLWH to maintain humoral protection against SARS-CoV-2 coinfection during convalescence. It is unknown whether peak COVID-19 severity, along with HIV-1 infection status, associates with the quality and quantity of humoral immunity following recovery. Using a cross-sectional observational cohort from the United States and Peru, adults were enrolled 1-10 weeks after SARS-CoV-2 infection diagnosis or symptom resolution. Serum antibodies were analyzed for SARS-CoV-2-specific response rates, binding magnitudes, ACE2 receptor blocking, and antibody-dependent cellular phagocytosis. Overall, (a) PLWH exhibited a trend toward decreased magnitude of SARS-CoV-2-specific antibodies, despite modestly increased overall response rates when compared with PWOH; (b) PLWH recovered from symptomatic outpatient COVID-19 had comparatively diminished immune responses; and (c) PLWH lacked a corresponding increase in SARS-CoV-2 antibodies with increased COVID-19 severity when asymptomatic versus symptomatic outpatient disease was compared.
Collapse
Affiliation(s)
- Daniel J. Schuster
- Center for Human Systems Immunology
- Department of Surgery, and
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Martina Wesley
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Shuying S. Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nathan Eisel
- Center for Human Systems Immunology
- Department of Surgery, and
| | - DeAnna Tenney
- Center for Human Systems Immunology
- Department of Surgery, and
| | | | - Nicole L. Yates
- Center for Human Systems Immunology
- Department of Surgery, and
| | | | | | - Xiaoying Shen
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Robert Rolfe
- Center for Human Systems Immunology
- Department of Surgery, and
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Lu Zhang
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Sheetal Sawant
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - April Kaur Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John A. Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ian Frank
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology
- Department of Surgery, and
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kelly E. Seaton
- Center for Human Systems Immunology
- Department of Surgery, and
| | | |
Collapse
|
32
|
Iles RK, Iles JK, Lacey J, Gardiner A, Zmuidinaite R. Direct Detection of Glycated Human Serum Albumin and Hyperglycosylated IgG3 in Serum, by MALDI-ToF Mass Spectrometry, as a Predictor of COVID-19 Severity. Diagnostics (Basel) 2022; 12:diagnostics12102521. [PMID: 36292212 PMCID: PMC9601263 DOI: 10.3390/diagnostics12102521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The prefusion spike protein of SARS-CoV-2 binds advanced glycation end product (AGE)-glycated human serum albumin (HSA) and a higher mass (hyperglycosylated/glycated) immunoglobulin (Ig) G3, as determined by matrix assisted laser desorption mass spectrometry (MALDI-ToF). We set out to investigate if the total blood plasma of patients who had recovered from acute respiratory distress syndrome (ARDS) as a result of COVID-19, contained more glycated HSA and higher mass (glycosylated/glycated) IgG3 than those with only clinically mild or asymptomatic infections. A direct serum dilution, and disulphide bond reduction, method was developed and applied to plasma samples from SARS-CoV-2 seronegative (n = 30) and seropositive (n = 31) healthcare workers (HCWs) and 38 convalescent plasma samples from patients who had been admitted with acute respiratory distress (ARDS) associated with COVID-19. Patients recovering from COVID-19 ARDS had significantly higher mass AGE-glycated HSA and higher mass IgG3 levels. This would indicate that increased levels and/or ratios of hyper-glycosylation (probably terminal sialic acid) IgG3 and AGE glycated HSA may be predisposition markers for the development of COVID-19 ARDS as a result of SARS-CoV2 infection. Furthermore, rapid direct analysis of serum/plasma samples by MALDI-ToF for such humoral immune correlates of COVID-19 presents a feasible screening technology for the most at risk; regardless of age or known health conditions.
Collapse
Affiliation(s)
- Ray K. Iles
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- NISAD, Sundstorget 2, 252-21 Helsingborg, Sweden
- Correspondence:
| | - Jason K. Iles
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan Lacey
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
| | - Anna Gardiner
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
| | - Raminta Zmuidinaite
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
33
|
Adhikari A, Abayasingam A, Rodrigo C, Agapiou D, Pandzic E, Brasher NA, Fernando BSM, Keoshkerian E, Li H, Kim HN, Lord M, Popovic G, Rawlinson W, Mina M, Post JJ, Hudson B, Gilroy N, Dwyer D, Sasson SC, Grubor-Bauk B, Lloyd AR, Martinello M, Bull RA, Tedla N. Longitudinal Characterization of Phagocytic and Neutralization Functions of Anti-Spike Antibodies in Plasma of Patients after Severe Acute Respiratory Syndrome Coronavirus 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1499-1512. [PMID: 36165172 DOI: 10.4049/jimmunol.2200272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 12/06/2024]
Abstract
Phagocytic responses by effector cells to opsonized viruses have been recognized to play a key role in antiviral immunity. Limited data on coronavirus disease 2019 suggest that the role of Ab-dependent and -independent phagocytosis may contribute to the observed immunological and inflammatory responses; however, their development, duration, and role remain to be fully elucidated. In this study of 62 acute and convalescent patients, we found that patients with acute coronavirus disease 2019 can mount a phagocytic response to autologous plasma-opsonized Spike protein-coated microbeads as early as 10 d after symptom onset, while heat inactivation of this plasma caused 77-95% abrogation of the phagocytic response and preblocking of Fc receptors showed variable 18-60% inhibition. In convalescent patients, phagocytic response significantly correlated with anti-Spike IgG titers and older patients, while patients with severe disease had significantly higher phagocytosis and neutralization functions compared with patients with asymptomatic, mild, or moderate disease. A longitudinal subset of the convalescent patients over 12 mo showed an increase in plasma Ab affinity toward Spike Ag and preservation of phagocytic and neutralization functions, despite a decline in the anti-Spike IgG titers by >90%. Our data suggest that early phagocytosis is primarily driven by heat-liable components of the plasma, such as activated complements, while anti-Spike IgG titers account for the majority of observed phagocytosis at convalescence. Longitudinally, a significant increase in the affinity of the anti-Spike Abs was observed that correlated with the maintenance of both the phagocytic and neutralization functions, suggesting an improvement in the quality of the Abs.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Chaturaka Rodrigo
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - David Agapiou
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas A Brasher
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | | | | | - Hui Li
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Ha Na Kim
- School of Biomedical Engineering, Faculty of Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Megan Lord
- School of Biomedical Engineering, Faculty of Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Gordona Popovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - William Rawlinson
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- Serology and Virology Division, Department of Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Michael Mina
- Northern Beaches Hospital, Sydney, New South Wales, Australia
| | - Jeffrey J Post
- Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales, Australia
| | - Bernard Hudson
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Nicky Gilroy
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Dominic Dwyer
- Blacktown Mt Druitt Hospital, Blacktown, New South Wales, Australia; and
| | - Sarah C Sasson
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia, Australia
| | - Andrew R Lloyd
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Blacktown Mt Druitt Hospital, Blacktown, New South Wales, Australia; and
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | | |
Collapse
|
34
|
Bolton MJ, Arevalo CP, Griesman T, Li SH, Bates P, Wilson PC, Hensley SE. IgG3 subclass antibodies recognize antigenically drifted influenza viruses and SARS-CoV-2 variants through efficient bivalent binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509738. [PMID: 36203556 PMCID: PMC9536032 DOI: 10.1101/2022.09.27.509738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2 or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded, and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 strain of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality, but also for binding and neutralization of antigenically drifted viruses. Significance Influenza viruses and coronaviruses undergo continuous change, successfully evading human antibodies elicited from prior infections or vaccinations. It is important to identify features that allow antibodies to bind with increased breadth. Here we examined the effect that different IgG subclasses have on monoclonal antibody binding and neutralization. We show that IgG subclass is a determinant of antibody breadth, with IgG3 affording increased neutralization of antigenically drifted variants of influenza virus and SARS-CoV-2. Future studies should evaluate IgG3 therapeutic antibodies and vaccination strategies or adjuvants that may skew antibody responses toward broadly reactive isotypes.
Collapse
Affiliation(s)
- Marcus J. Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudia P. Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor Griesman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuk Hang Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, the Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
35
|
Li Q, Humphries F, Girardin RC, Wallace A, Ejemel M, Amcheslavsky A, McMahon CT, Schiller ZA, Ma Z, Cruz J, Dupuis AP, Payne AF, Maryam A, Yilmaz NK, McDonough KA, Pierce BG, Schiffer CA, Kruse AC, Klempner MS, Cavacini LA, Fitzgerald KA, Wang Y. Mucosal nanobody IgA as inhalable and affordable prophylactic and therapeutic treatment against SARS-CoV-2 and emerging variants. Front Immunol 2022; 13:995412. [PMID: 36172366 PMCID: PMC9512078 DOI: 10.3389/fimmu.2022.995412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.
Collapse
Affiliation(s)
- Qi Li
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Roxie C. Girardin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Wallace
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Monir Ejemel
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Alla Amcheslavsky
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Conor T. McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Zachary A. Schiller
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Zepei Ma
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - John Cruz
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alan P. Dupuis
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Anne F. Payne
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Arooma Maryam
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Mark S. Klempner
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Katherine A. Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| | - Yang Wang
- MassBiologics, University of Massachusetts Chan Medical School, Boston, MA, United States
- *Correspondence: Yang Wang, ; Katherine A. Fitzgerald, ; Lisa A. Cavacini,
| |
Collapse
|
36
|
Noninvasive nasopharyngeal proteomics of COVID-19 patient identify abnormalities related to complement and coagulation cascade and mucosal immune system. PLoS One 2022; 17:e0274228. [PMID: 36094909 PMCID: PMC9467311 DOI: 10.1371/journal.pone.0274228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Serum or plasma have been the primary focus of proteomics studies for COVID-19 to identity biomarkers and potential drug targets. The nasal mucosal environment which consists of lipids, mucosal immune cells, and nasal proteome, has been largely neglected but later revealed to have critical role combating SARS-CoV-2 infection. We present a bottom-up proteomics investigation of the host response to SARS-CoV-2 infection in the nasopharyngeal environment, featuring a noninvasive approach using proteins in nasopharyngeal swabs collected from groups of 76 SARS-CoV-2 positive and 76 negative patients. Results showed that 31 significantly down-regulated and 6 up-regulated proteins were identified (p < 0.05, log2 FC > 1.3) in SARS-CoV-2 positive patient samples as compared to the negatives; these proteins carry potential value as markers for the early detection of COVID-19, disease monitoring, as well as be drug targets. The down-regulation of coagulation factor 5 indicates a thrombotic abnormality in COVID-19 patients and the decreased IgG4 suggests an abnormal immune response at the point of entry in human nasopharyngeal environment, which is in consistent with KEGG and GO pathway analysis. Our study also demonstrated that mass spectrometry proteomics analysis of nasopharyngeal swabs can be used as a powerful early approach to evaluate host response to SARS-CoV-2 viral infection.
Collapse
|
37
|
IGHG3 hinge length variation was associated with the risk of critical disease and death in a Spanish COVID-19 cohort. Genes Immun 2022; 23:205-208. [PMID: 36088493 PMCID: PMC9463670 DOI: 10.1038/s41435-022-00179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
IgG3 would play an important role in the immune adaptive response against SARS-CoV-2, and low plasma levels might increase the risk of COVID-19 severity and mortality. The IgG3 hinge sequence has a variable repeat of a 15 amino acid exon with common 4-repeats (M) and 3-repeats (S). This length IGHG3 polymorphism might affect the IgG3 effector functions. The short hinge length would reduce the IgG3 flexibility and impairs the neutralization and phagocytosis compared to larger length-isoforms. We genotyped the IGHG3 length polymorphism in patients with critical COVID-19 (N = 516; 107 death) and 152 moderate-severe but no-critical cases. Carriers of the S allele had an increased risk of critical ICU and mortality (p < 0.001, OR = 2.79, 95% CI = 1.66–4.65). This adverse effect might be explained by a less flexibility and reduced ability to induce phagocytosis or viral neutralization for the short length allele. We concluded that the IgG3 hinge length polymorphism could be a predictor of critical COVID-19 and the risk of death. This study was based on a limited number of patients from a single population, and requires validation in larger cohorts.
Collapse
|
38
|
Emmenegger M, Fiedler S, Brugger SD, Devenish SR, Morgunov AS, Ilsley A, Ricci F, Malik AY, Scheier T, Batkitar L, Madrigal L, Rossi M, Meisl G, Lynn AK, Saleh L, von Eckardstein A, Knowles TP, Aguzzi A. Both COVID-19 infection and vaccination induce high-affinity cross-clade responses to SARS-CoV-2 variants. iScience 2022; 25:104766. [PMID: 35875683 PMCID: PMC9288251 DOI: 10.1016/j.isci.2022.104766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (K A ranges: 122 ± 155, 159 ± 148, 211 ± 307 μM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sean R.A. Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Alexey S. Morgunov
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Alison Ilsley
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Francesco Ricci
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Anisa Y. Malik
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leyla Batkitar
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Marco Rossi
- Department of Laboratory Medicine, University Hospital Zürich, 8091 Zurich, Switzerland
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Andrew K. Lynn
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Lanja Saleh
- Department of Laboratory Medicine, University Hospital Zürich, 8091 Zurich, Switzerland
| | | | - Tuomas P.J. Knowles
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
39
|
Chen W, Zhang L, Li J, Bai S, Wang Y, Zhang B, Zheng Q, Chen M, Zhao W, Wu J. The kinetics of IgG subclasses and contributions to neutralizing activity against SARS-CoV-2 wild-type strain and variants in healthy adults immunized with inactivated vaccine. Immunol Suppl 2022; 167:221-232. [PMID: 35751471 PMCID: PMC9349727 DOI: 10.1111/imm.13531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Neutralizing antibody is an important indicator of vaccine efficacy, of which IgG is the main component. IgG can be divided into four subclasses. Up to now, studies analysing the humoral response to SARS‐CoV‐2 vaccination have mostly focused on measuring total IgG, and the contribution of specific IgG subclasses remains elusive. The aim of this study is to investigate the kinetics of neutralizing antibodies and IgG subclasses, and to explore their relationships in people vaccinated with inactivated COVID‐19 vaccine. We conducted a prospective cohort study in 174 healthy adults aged 18–59 years old who were administrated 2 doses of CoronaVac 14 days apart and a booster dose 1 year after the primary immunization, and followed up for 15 months. Blood samples were collected at various time points after primary and booster immunization. We used live SARS‐CoV‐2 virus neutralizing assay to determine neutralizing ability against the wild‐type strain and 4 variants (Beta, Gamma, Delta and Omicron) and ELISA to quantify SARS‐CoV‐2 RBD‐specific IgG subclasses. The results showed that the 2‐dose primary immunization only achieved low neutralizing ability, while a booster shot can significantly enhance neutralizing ability against the wild‐type strain, Beta, Gamma, Delta and Omicron variants. IgG1 and IgG3 were the most abundant serum antibodies, and IgG2 and IgG4 were hardly detected at any time. The ratio of IgG1/IgG3 was positively associated with the neutralization ability. The underlying mechanism requires further exploration.
Collapse
Affiliation(s)
- Weixin Chen
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lichi Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Juan Li
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Shuang Bai
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yali Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Bing Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Qun Zheng
- Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Meng Chen
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Wei Zhao
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
40
|
The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. mSphere 2022; 7:e0019322. [PMID: 35703544 PMCID: PMC9429934 DOI: 10.1128/msphere.00193-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and “to develop, validate, improve, and implement serological testing and associated technologies” (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.
Collapse
|
41
|
Wieczorek L, Zemil M, Merbah M, Dussupt V, Kavusak E, Molnar S, Heller J, Beckman B, Wollen-Roberts S, Peachman KK, Darden JM, Krebs S, Rolland M, Peel SA, Polonis VR. Evaluation of Antibody-Dependent Fc-Mediated Viral Entry, as Compared With Neutralization, in SARS-CoV-2 Infection. Front Immunol 2022; 13:901217. [PMID: 35711449 PMCID: PMC9193970 DOI: 10.3389/fimmu.2022.901217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Erin Kavusak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jonah Heller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Bradley Beckman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Suzanne Wollen-Roberts
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kristina K. Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice M. Darden
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shelly Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
42
|
Determination of IgG1 and IgG3 SARS-CoV-2 Spike Protein and Nucleocapsid Binding-Who Is Binding Who and Why? Int J Mol Sci 2022; 23:ijms23116050. [PMID: 35682724 PMCID: PMC9181569 DOI: 10.3390/ijms23116050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
The involvement of immunoglobulin (Ig) G3 in the humoral immune response to SARS-CoV-2 infection has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) in COVID-19. The exact molecular mechanism is unknown, but it is thought to involve this IgG subtype’s differential ability to fix, complement and stimulate cytokine release. We examined the binding of convalescent patient antibodies to immobilized nucleocapsids and spike proteins by matrix-assisted laser desorption/ionization–time of flight (MALDI-ToF) mass spectrometry. IgG3 was a major immunoglobulin found in all samples. Differential analysis of the spectral signatures found for the nucleocapsid versus the spike protein demonstrated that the predominant humoral immune response to the nucleocapsid was IgG3, whilst for the spike protein it was IgG1. However, the spike protein displayed a strong affinity for IgG3 itself, as it would bind from control plasma samples, as well as from those previously infected with SARS-CoV-2, similar to the way protein G binds IgG1. Furthermore, detailed spectral analysis indicated that a mass shift consistent with hyper-glycosylation or glycation was a characteristic of the IgG3 captured by the spike protein.
Collapse
|
43
|
Fcγ-Receptor-Based Enzyme-Linked Immunosorbent Assays for Sensitive, Specific, and Persistent Detection of Anti-SARS-CoV-2 Nucleocapsid Protein IgG Antibodies in Human Sera. J Clin Microbiol 2022; 60:e0007522. [PMID: 35574677 PMCID: PMC9199419 DOI: 10.1128/jcm.00075-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensitive and specific serological tests are mandatory for epidemiological studies evaluating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence as well as coronavirus disease 2019 (COVID-19) morbidity and mortality rates. The accuracy of results is challenged by antibody waning after convalescence and by cross-reactivity induced by previous infections with other pathogens. By employing a patented platform technology based on capturing antigen-antibody complexes with a solid-phase-bound Fcγ receptor (FcγR) and truncated nucleocapsid protein as the antigen, two SARS-CoV-2 IgG enzyme-linked immunosorbent assays (ELISAs), featuring different serum and antigen dilutions, were developed. Validation was performed using a serum panel comprising 213 longitudinal samples from 35 COVID-19 patients and a negative-control panel consisting of 790 pre-COVID-19 samples from different regions of the world. While both assays show similar diagnostic sensitivities in the early convalescent phase, ELISA 2 (featuring a higher serum concentration) enables SARS-CoV-2 IgG antibody detection for a significantly longer time postinfection (≥15 months). Correspondingly, analytical sensitivity referenced to indirect immunofluorescence testing (IIFT) is significantly higher for ELISA 2 in samples with a titer of ≤1:640; for high-titer samples, a prozone effect is observed for ELISA 2. The specificities of both ELISAs were excellent not only for pre-COVID-19 serum samples from Europe, Asia, and South America but also for several challenging African sample panels. The SARS-CoV-2 IgG FcγR ELISAs, methodically combining antigen-antibody binding in solution and isotype-specific detection of immune complexes, are valuable tools for seroprevalence studies requiring the (long-term) detection of anti-SARS-CoV-2 IgG antibodies in populations with a challenging immunological background and/or in which spike-protein-based vaccine programs have been rolled out.
Collapse
|
44
|
The Effect of Waning on Antibody Levels and Memory B Cell Recall following SARS-CoV-2 Infection or Vaccination. Vaccines (Basel) 2022; 10:vaccines10050696. [PMID: 35632452 PMCID: PMC9143792 DOI: 10.3390/vaccines10050696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vaccination. Participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to higher antibody levels, which were maintained at higher levels than in previously infected, unvaccinated participants. Older participants exhibited lower level of antibodies after vaccination, but a higher level after infection than younger people. The rate of antibody waning was not affected by pre-immunity or age. Participants who received a third dose of an mRNA vaccine not only increased their antibody levels ~14-fold, but also had ~3 times more antibodies compared to when they received their primary vaccine series. PBMC-derived memory B cells from 13 participants who lost all circulating antibodies were differentiated into antibody secreting cells (ASCs). There was a significant recall of memory B cell ASCs in the absence of serum antibodies in 5–8 of the 10 vaccinated participants, but not in any of the 3 infected participants, suggesting a strong connection between antibody levels and the effectiveness of memory B cell recall.
Collapse
|
45
|
Changes in Anti-SARS-CoV-2 IgG Subclasses over Time and in Association with Disease Severity. Viruses 2022; 14:v14050941. [PMID: 35632683 PMCID: PMC9143443 DOI: 10.3390/v14050941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
IgG is the most prominent marker of post-COVID-19 immunity. Not only does this subtype mark the late stages of infection, but it also stays in the body for a timespan of at least 6 months. However, different IgG subclasses have different properties, and their roles in specific anti-COVID-19 responses have yet to be determined. We assessed the concentrations of IgG1, IgG2, IgG3, and IgG4 against different SARS-CoV-2 antigens (N protein, S protein RBD) using a specifically designed method and samples from 348 COVID-19 patients. We noted a statistically significant association between severity of COVID-19 infection and IgG concentrations (both total and subclasses). When assessing anti-N protein and anti-RBD IgG subclasses, we noted the importance of IgG3 as a subclass. Since it is often associated with early antiviral response, we presumed that the IgG3 subclass is the first high-affinity IgG antibody to be produced during COVID-19 infection.
Collapse
|
46
|
Tajuelo A, Carretero O, García-Ríos E, López-Siles M, Cano O, Vázquez M, Más V, Rodríguez-Goncer I, Lalueza A, López-Medrano F, San Juan R, Fernández-Ruiz M, Aguado JM, McConnell MJ, Pérez-Romero P. Brief Research Report: Virus-Specific Humoral Immunity at Admission Predicts the Development of Respiratory Failure in Unvaccinated SARS-CoV-2 Patients. Front Immunol 2022; 13:878812. [PMID: 35547738 PMCID: PMC9082065 DOI: 10.3389/fimmu.2022.878812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION There is robust evidence indicating that the SARS-CoV-2-specific humoral response is associated with protection against severe disease. However, relatively little data exist regarding how the humoral immune response at the time of hospital admission correlates with disease severity in unimmunized patients. Our goal was toidentify variables of the humoral response that could potentially serve as prognostic markers for COVID-19 progressionin unvaccinated SARS-CoV-2 patients. METHODS A prospective cross-sectional study was carried out in a cohort of 160 unimmunized, adult COVID-19 patients from the Hospital Universitario 12Octubre. Participants were classified into four clinical groups based on disease severity: non-survivors with respiratory failure (RF), RF survivors, patients requiring oxygen therapy and those not receiving oxygen therapy. Serum samples were taken on admission and IgM, IgG, IgG subclass antibody titers were determined by ELISA, and neutralizing antibody titersusing a surrogate neutralization assay. The differences in the antibody titers between groups and the association between the clinical and analytical characteristics of the patients and the antibody titers were analyzed. RESULTS Patients that developed RF and survived had IgM titers that were 2-fold higher than non-survivors (p = 0.001), higher levels of total IgG than those who developed RF and succumbed to infection (p< 0.001), and than patients who required oxygen therapy (p< 0.05), and had 5-fold higher IgG1 titers than RF non-survivors (p< 0.001) and those who needed oxygen therapy (p< 0.001), and 2-fold higher than patients that did not require oxygen therapy during admission (p< 0.05). In contrast, RF non-survivorshad the lowest neutralizing antibodylevels, which were significantly lower compared those with RF that survived (p = 0.03). A positive correlation was found between IgM, total IgG, IgG1 and IgG3 titers and neutralizing antibody titers in the total cohort (p ≤ 0.0036). CONCLUSIONS We demonstrate that patients with RF that survived infection had significantly higher IgM, IgG, IgG1 and neutralizing titers compared to patients with RF that succumb to infection, suggesting that using humoral response variables could be used as a prognostic marker for guiding the clinical management of unimmunized patients admitted to the hospital for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ana Tajuelo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Octavio Carretero
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Estéfani García-Ríos
- Infecciones Víricas e Inmunidad en Enfermos Inmunodeprimidos, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universidad Internacional de Valencia – VIU, Valencia, Spain
| | - Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Olga Cano
- Biología Viral, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mónica Vázquez
- Biología Viral, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vicente Más
- Biología Viral, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Antonio Lalueza
- Department of Internal Medicine, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, Universidad Complutense, Madrid, Spain
| | - José Mᵃ Aguado
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Michael J. McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Pérez-Romero
- Infecciones Víricas e Inmunidad en Enfermos Inmunodeprimidos, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
47
|
Schwedler C, Grzeski M, Kappert K, Rust J, Heymann G, Hoppe B, Blanchard V. Coronavirus Disease 2019-Related Alterations of Total and Anti-Spike IgG Glycosylation in Relation to Age and Anti-Spike IgG Titer. Front Microbiol 2022; 13:775186. [PMID: 35495660 PMCID: PMC9051488 DOI: 10.3389/fmicb.2022.775186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/02/2022] [Indexed: 01/02/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been affecting the world since January 2020 and has caused millions of deaths. To gain a better insight into molecular changes underlying the COVID-19 disease, we investigated here the N-glycosylation of three immunoglobulin G (IgG) fractions isolated from plasma of 35 severe COVID-19 patients, namely total IgG1, total IgG2, and anti-Spike IgG, by means of MALDI-TOF-MS. All analyses were performed at the glycopeptide level to assure subclass- and site-specific information. For each COVID-19 patient, the analyses included three blood withdrawals at different time-points of hospitalization, which allowed profiling longitudinal alterations in IgG glycosylation. The COVID-19 patients presented altered IgG N-glycosylation profiles in all investigated IgG fractions. The most pronounced COVID-19-related changes were observed in the glycosylation profiles of antigen-specific anti-Spike IgG1. Anti-Spike IgG1 fucosylation and galactosylation showed the strongest variation during the disease course, with the difference in anti-Spike IgG1 fucosylation being significantly correlated with patients’ age. Decreases in anti-Spike IgG1 galactosylation and sialylation in the course of the disease were found to be significantly correlated with the difference in anti-Spike IgG plasma concentration. The present findings suggest that patients’ age and anti-S IgG abundance might influence IgG N-glycosylation alterations occurring in COVID-19.
Collapse
Affiliation(s)
- Christian Schwedler
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Christian Schwedler, ,
| | - Marta Grzeski
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai Kappert
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| | - Jörn Rust
- Department of Anaesthesiology, Critical Care, and Pain Medicine, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany
| | - Guido Heymann
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany
| | - Berthold Hoppe
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Véronique Blanchard,
| |
Collapse
|
48
|
Bobcakova A, Barnova M, Vysehradsky R, Petriskova J, Kocan I, Diamant Z, Jesenak M. Activated CD8 +CD38 + Cells Are Associated With Worse Clinical Outcome in Hospitalized COVID-19 Patients. Front Immunol 2022; 13:861666. [PMID: 35392095 PMCID: PMC8982066 DOI: 10.3389/fimmu.2022.861666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that spread around the world during the past 2 years, has infected more than 260 million people worldwide and has imposed an important burden on the healthcare system. Several risk factors associated with unfavorable outcome were identified, including elderly age, selected comorbidities, immune suppression as well as laboratory markers. The role of immune system in the pathophysiology of SARS-CoV-2 infection is indisputable: while an appropriate function of the immune system is important for a rapid clearance of the virus, progression to the severe and critical phases of the disease is related to an exaggerated immune response associated with a cytokine storm. We analyzed differences and longitudinal changes in selected immune parameters in 823 adult COVID-19 patients hospitalized in the Martin University Hospital, Martin, Slovakia. Examined parameters included the differential blood cell counts, various parameters of cellular and humoral immunity (serum concentration of immunoglobulins, C4 and C3), lymphocyte subsets (CD3+, CD4+, CD8+, CD19+, NK cells, CD4+CD45RO+), expression of activation (HLA-DR, CD38) and inhibition markers (CD159/NKG2A). Besides already known changes in the differential blood cell counts and basic lymphocyte subsets, we found significantly higher proportion of CD8+CD38+ cells and significantly lower proportion of CD8+NKG2A+ and NK NKG2A+ cells on admission in non-survivors, compared to survivors; recovery in survivors was associated with a significant increase in the expression of HLA-DR and with a significant decrease of the proportion of CD8+CD38+cells. Furthermore, patients with fatal outcome had significantly lower concentrations of C3 and IgM on admission. However, none of the examined parameters had sufficient sensitivity or specificity to be considered a biomarker of fatal outcome. Understanding the dynamic changes in immune profile of COVID-19 patients may help us to better understand the pathophysiology of the disease, potentially improve management of hospitalized patients and enable proper timing and selection of immunomodulator drugs.
Collapse
Affiliation(s)
- Anna Bobcakova
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Martina Barnova
- Department of Clinical Immunology and Allergology, Martin University Hospital, Martin, Slovakia
| | - Robert Vysehradsky
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Jela Petriskova
- Department of Clinical Immunology and Allergology, Martin University Hospital, Martin, Slovakia
| | - Ivan Kocan
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Milos Jesenak
- Centre for Primary Immunodeficiencies, Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
- Department of Clinical Immunology and Allergology, Martin University Hospital, Martin, Slovakia
- Centre for Primary Immunodeficiencies, Clinic of Pediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| |
Collapse
|
49
|
Karger AB, Brien JD, Christen JM, Dhakal S, Kemp TJ, Klein SL, Pinto LA, Premkumar L, Roback JD, Binder RA, Boehme KW, Boppana S, Cordon-Cardo C, Crawford JM, Daiss JL, Dupuis AP, Espino AM, Firpo-Betancourt A, Forconi C, Forrest JC, Girardin RC, Granger DA, Granger SW, Haddad NS, Heaney CD, Hunt DT, Kennedy JL, King CL, Krammer F, Kruczynski K, LaBaer J, Lee FEH, Lee WT, Liu SL, Lozanski G, Lucas T, Mendu DR, Moormann AM, Murugan V, Okoye NC, Pantoja P, Payne AF, Park J, Pinninti S, Pinto AK, Pisanic N, Qiu J, Sariol CA, Simon V, Song L, Steffen TL, Stone ET, Styer LM, Suthar MS, Thomas SN, Thyagarajan B, Wajnberg A, Yates JL, Sobhani K. The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.27.22271399. [PMID: 35262095 PMCID: PMC8902887 DOI: 10.1101/2022.02.27.22271399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.
Collapse
Affiliation(s)
- Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - James D. Brien
- Department of Molecular Microbiology & Immunology, Saint Louis University, Saint Louis, Missouri
| | - Jayne M. Christen
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Troy J. Kemp
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ligia A. Pinto
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Raquel A. Binder
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Karl W. Boehme
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | | | - Alan P. Dupuis
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Catherine Forconi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - J. Craig Forrest
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Roxie C. Girardin
- Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | - Natalie S. Haddad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Danielle T. Hunt
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Joshua L. Kennedy
- Departments of Pediatrics and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| | - Christopher L. King
- Department of Pathology, Case Western Reserve School of Medicine, Cleveland, Ohio
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kate Kruczynski
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joshua LaBaer
- Virginia G Piper Center for Personalized Diagnostics, Arizona State University Biodesign Institute, Tempe, Arizona
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - William T. Lee
- Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York
| | - Shan-Lu Liu
- Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, Viruses and Emerging Pathogens Program, Infectious Disease Institute, The Ohio State University, Columbus, Ohio
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Todd Lucas
- Division of Public Health and Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Damodara Rao Mendu
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ann M. Moormann
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Vel Murugan
- Virginia G Piper Center for Personalized Diagnostics, Arizona State University Biodesign Institute, Tempe, Arizona
| | - Nkemakonam C. Okoye
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Anne F. Payne
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jin Park
- Virginia G Piper Center for Personalized Diagnostics, Arizona State University Biodesign Institute, Tempe, Arizona
| | - Swetha Pinninti
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amelia K. Pinto
- Department of Molecular Microbiology & Immunology, Saint Louis University, Saint Louis, Missouri
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ji Qiu
- Virginia G Piper Center for Personalized Diagnostics, Arizona State University Biodesign Institute, Tempe, Arizona
| | - Carlos A. Sariol
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lusheng Song
- Virginia G Piper Center for Personalized Diagnostics, Arizona State University Biodesign Institute, Tempe, Arizona
| | - Tara L. Steffen
- Department of Molecular Microbiology & Immunology, Saint Louis University, Saint Louis, Missouri
| | - E. Taylor Stone
- Department of Molecular Microbiology & Immunology, Saint Louis University, Saint Louis, Missouri
| | - Linda M. Styer
- Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia
| | - Stefani N. Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ania Wajnberg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jennifer L. Yates
- Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York
| | - Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
50
|
Wieland E. Immunological Biomarkers in Blood to Monitor the Course and Therapeutic Outcomes of COVID-19. Ther Drug Monit 2022; 44:148-165. [PMID: 34840314 DOI: 10.1097/ftd.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The COVID-19 pandemic has posed a great challenge to the medical community because little is known about its clinical course, therapeutic options, and laboratory monitoring tools for diagnosis, prognosis, and surveillance. This review focuses on immune biomarkers that can be measured in peripheral blood in a clinical laboratory under routine conditions to monitor the innate immune system response in the acute phase, as well as the adaptive immune response established both after infection and vaccination. METHODS A PubMed search was performed covering January 2020 to June 2021 to extract biomarkers suitable for monitoring the immune response and outcome of COVID-19 and therapeutic interventions, including vaccination. RESULTS To monitor the innate immune response, cytokines such as interleukin-6 or acute phase reactants such as C-reactive protein or procalcitonin can be measured on autoanalyzers complemented by automated white blood cell differential counts. The adaptive immune response can be followed by commercially available enzyme-linked immune spot assays to assess the specific activation of T cells or by monitoring immunoglobulin A (IgA), IgM, and IgG antibodies in serum to follow B-cell activation. As antigens of the SARS-CoV-2 virus, spike and nucleocapsid proteins are particularly suitable and allow differentiation between the immune response after infection or vaccination. CONCLUSIONS Routine immune monitoring of COVID-19 is feasible in clinical laboratories with commercially available instruments and reagents. Strategies such as whether biomarkers reflecting the response of the innate and adaptive immune system can be used to make predictions and assist in individualizing therapeutic interventions or vaccination strategies need to be determined in appropriate clinical trials. Promising preliminary data are already available based on single-center reports and completed or ongoing vaccination trials.
Collapse
|