1
|
Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Hassanzadeh MA, Yasamineh S, Afkhami H, Kheirkhah AH, Gholizadeh O, Moghadam HZ. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol 2025; 67:54-79. [PMID: 38393630 DOI: 10.1007/s12033-024-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription-polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.
Collapse
Affiliation(s)
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Javid Adabi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Science, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Omid Gholizadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Azad Researcher, Virology and Biotechnology, Tehran, Iran.
| | - Hesam Zendehdel Moghadam
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Seo Y, Zhou A, Nguyen TH, Wei N. Yeast Surface-Displayed Quenchbody as a Novel Whole-Cell Biosensor for One-Step Detection of Influenza A (H1N1) Virus. ACS Synth Biol 2024; 13:2926-2937. [PMID: 39256183 DOI: 10.1021/acssynbio.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast Saccharomyces cerevisiae for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 104 to 1.5 × 107 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Yu D, Zi M, Dou Y, Tashpulatov K, Zeng JB, Wen CY. An Fe 3O 4-Au heterodimer nanoparticle-based lateral flow assay for rapid and simultaneous detection of multiple influenza virus nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5777-5784. [PMID: 39145405 DOI: 10.1039/d4ay01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Sensitive, convenient and rapid detection and subtyping of influenza viruses are crucial for timely treatment and management of infected people. Compared with antigen detection, nucleic acid detection has higher specificity and can shorten the detection window. Hence, in this work, we improved the lateral flow assay (LFA, one of the most promising user-friendly and on-site methods) to achieve detection and subtyping of H1N1, H3N2 and H9N2 influenza virus nucleic acids. Firstly, the antigen-antibody recognition mode was transformed into a nucleic acid hybridization reaction. Secondly, Fe3O4-Au heterodimer nanoparticles were prepared to replace frequently used Au nanoparticles to obtain better coloration. Thirdly, four lines were arranged on the LFA strip, which were three test (T) lines and one control (C) line. Three T lines were respectively sprayed by the DNA sequences complementary to one end of H1N1, H3N2 and H9N2 influenza virus nucleic acids, while Fe3O4-Au nanoparticles were respectively coupled with the DNA sequences complementary to the other end of H1N1, H3N2 and H9N2 nucleic acids to construct three kinds of probes. The C line was sprayed by the complementary sequences to the DNAs on all three kinds of probes. In the detection, by hybridization reaction, the probes were combined with their target nucleic acids which were captured by the corresponding T lines to form color bands. Finally, according to the position of the color bands and their grey intensity, simultaneous qualitative and semi-quantitative detection of the three influenza virus nucleic acids was realized. The detection results showed that this multi-channel LFA had good specificity, and there was no significant cross reactivity among the three subtypes of influenza viruses. The simultaneous detection achieved comparable detection limits with individual detections. Therefore, this multi-channel LFA had good application potential for sensitive and rapid detection and subtyping of influenza viruses.
Collapse
Affiliation(s)
- Dong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Min Zi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Yue Dou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | | | - Jing-Bin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| | - Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China.
| |
Collapse
|
4
|
Khan MQ, Khan J, Alvi MAH, Nawaz H, Fahad M, Umar M. Nanomaterial-based sensors for microbe detection: a review. DISCOVER NANO 2024; 19:120. [PMID: 39080121 PMCID: PMC11289191 DOI: 10.1186/s11671-024-04065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Airborne microorganisms pose a significant health threat, causing various illnesses. Traditional detection methods are often slow and complex. This review highlights the potential of nanomaterial-based biosensors, particularly colorimetric sensors, for rapid and on-site detection of airborne microbes. Colorimetric sensors offer real-time visual detection without complex instrumentation. We explore the integration of these sensors with Lab-on-a-Chip technology using PDMS microfluidics. This review also proposes a novel PDMS-based colorimetric biosensor for real-time detection of airborne microbes. The sensor utilizes a color change phenomenon easily observable with the naked eye, simplifying analysis and potentially enabling point-of-care applications.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan.
| | - Jahangir Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Abbas Haider Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Muhammad Fahad
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
5
|
Varvařovská L, Kudrna P, Sopko B, Jarošíková T. The Development of a Specific Nanofiber Bioreceptor for Detection of Escherichia coli and Staphylococcus aureus from Air. BIOSENSORS 2024; 14:234. [PMID: 38785708 PMCID: PMC11117719 DOI: 10.3390/bios14050234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Polluted air and the presence of numerous airborne pathogens affect our daily lives. The sensitive and fast detection of pollutants and pathogens is crucial for environmental monitoring and effective medical diagnostics. Compared to conventional detection methods (PCR, ELISA, metabolic tests, etc.), biosensors bring a very attractive possibility to detect chemicals and organic particles with the mentioned reliability and sensitivity in real time. Moreover, by integrating nanomaterials into the biosensor structure, it is possible to increase the sensitivity and specificity of the device significantly. However, air quality monitoring could be more problematic even with such devices. The greatest challenge with conservative and sensing methods for detecting organic matter such as bacteria is the need to use liquid samples, which slows down the detection procedure and makes it more difficult. In this work, we present the development of a polyacrylonitrile nanofiber bioreceptor functionalized with antibodies against bacterial antigens for the specific interception of bacterial cells directly from the air. We tested the presented novel nanofiber bioreceptor using a unique air filtration system we had previously created. The prepared antibody-functionalized nanofiber membranes for air filtration and pathogen detection (with model organisms E. coli and S. aureus) show a statistically significant increase in bacterial interception compared to unmodified nanofibers. Creating such a bioreceptor could lead to the development of an inexpensive, fast, sensitive, and incredibly selective bionanosensor for detecting bacterial polluted air in commercial premises or medical facilities.
Collapse
Affiliation(s)
- Leontýna Varvařovská
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic; (P.K.); (T.J.)
| | - Petr Kudrna
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic; (P.K.); (T.J.)
| | - Bruno Sopko
- Laboratory of Advanced Biomaterials, University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Buštěhrad, Czech Republic;
- Department of Medical Chemistry and Biomedical Biochemistry, Second Faculty of Medicine, Charles University, 150 00 Prague, Czech Republic
| | - Taťána Jarošíková
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic; (P.K.); (T.J.)
| |
Collapse
|
6
|
Hooshiar MH, Moghaddam MA, Kiarashi M, Al-Hijazi AY, Hussein AF, A Alrikabi H, Salari S, Esmaelian S, Mesgari H, Yasamineh S. Recent advances in nanomaterial-based biosensor for periodontitis detection. J Biol Eng 2024; 18:28. [PMID: 38637787 PMCID: PMC11027550 DOI: 10.1186/s13036-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Periodontitis, a chronic inflammatory condition caused by bacteria, often causes gradual destruction of the components that support teeth, such as the alveolar bone, cementum, periodontal ligament, and gingiva. This ultimately results in teeth becoming loose and eventually falling out. Timely identification has a crucial role in preventing and controlling its progression. Clinical measures are used to diagnose periodontitis. However, now, there is a hunt for alternative diagnostic and monitoring methods due to the progress of technology. Various biomarkers have been assessed using multiple bodily fluids as sample sources. Furthermore, conventional periodontal categorization factors do not provide significant insights into the present disease activity, severity and amount of tissue damage, future development, and responsiveness to treatment. In recent times, there has been a growing utilization of nanoparticle (NP)-based detection strategies to create quick and efficient detection assays. Every single one of these platforms leverages the distinct characteristics of NPs to identify periodontitis. Plasmonic NPs include metal NPs, quantum dots (QDs), carbon base NPs, and nanozymes, exceptionally potent light absorbers and scatterers. These find application in labeling, surface-enhanced spectroscopy, and color-changing sensors. Fluorescent NPs function as photostable and sensitive instruments capable of labeling various biological targets. This article presents a comprehensive summary of the latest developments in the effective utilization of various NPs to detect periodontitis.
Collapse
Affiliation(s)
| | - Masoud Amiri Moghaddam
- Assistant Professor of Periodontics, Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Hassan Mesgari
- Department, Faculty of Dentistry Oral and Maxillofacial Surgery, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
7
|
Ganganboina AB, Park EY. Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:381-412. [PMID: 38337075 DOI: 10.1007/10_2023_244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, Ibaraki, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
8
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
9
|
John P, Vasa NJ, Zam A. Optical Biosensors for the Diagnosis of COVID-19 and Other Viruses-A Review. Diagnostics (Basel) 2023; 13:2418. [PMID: 37510162 PMCID: PMC10378272 DOI: 10.3390/diagnostics13142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The sudden outbreak of the COVID-19 pandemic led to a huge concern globally because of the astounding increase in mortality rates worldwide. The medical imaging computed tomography technique, whole-genome sequencing, and electron microscopy are the methods generally used for the screening and identification of the SARS-CoV-2 virus. The main aim of this review is to emphasize the capabilities of various optical techniques to facilitate not only the timely and effective diagnosis of the virus but also to apply its potential toward therapy in the field of virology. This review paper categorizes the potential optical biosensors into the three main categories, spectroscopic-, nanomaterial-, and interferometry-based approaches, used for detecting various types of viruses, including SARS-CoV-2. Various classifications of spectroscopic techniques such as Raman spectroscopy, near-infrared spectroscopy, and fluorescence spectroscopy are discussed in the first part. The second aspect highlights advances related to nanomaterial-based optical biosensors, while the third part describes various optical interferometric biosensors used for the detection of viruses. The tremendous progress made by lab-on-a-chip technology in conjunction with smartphones for improving the point-of-care and portability features of the optical biosensors is also discussed. Finally, the review discusses the emergence of artificial intelligence and its applications in the field of bio-photonics and medical imaging for the diagnosis of COVID-19. The review concludes by providing insights into the future perspectives of optical techniques in the effective diagnosis of viruses.
Collapse
Affiliation(s)
- Pauline John
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Nilesh J Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Azhar Zam
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
10
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
11
|
Song M, Wong MC, Li L, Guo F, Liu Y, Ma Y, Lao X, Wang P, Chen H, Yang M, Hao J. Rapid point-of-care detection of SARS-CoV-2 RNA with smartphone-based upconversion luminescence diagnostics. Biosens Bioelectron 2023; 222:114987. [PMID: 36495722 PMCID: PMC9721270 DOI: 10.1016/j.bios.2022.114987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Accurate COVID-19 screening via molecular technologies is still hampered by bulky instrumentation, complicated procedure, high cost, lengthy testing time, and the need for specialized personnel. Herein, we develop point-of-care upconversion luminescence diagnostics (PULD), and a streamlined smartphone-based portable platform facilitated by a ready-to-use assay for rapid SARS-CoV-2 nucleocapsid (N) gene testing. With the complementary oligo-modified upconversion nanoprobes and gold nanoprobes specifically hybridized with the target N gene, the luminescence resonance energy transfer effect leads to a quenching of fluorescence intensity that can be detected by the easy-to-use diagnostic system. A remarkable detection limit of 11.46 fM is achieved in this diagnostic platform without the need of target amplification, demonstrating high sensitivity and signal-to-noise ratio of the assay. The capability of the developed PULD is further assessed by probing 9 RT-qPCR-validated SARS-CoV-2 variant clinical samples (B.1.1.529/Omicron) within 20 min, producing reliable diagnostic results consistent with those obtained from a standard fluorescence spectrometer. Importantly, PULD is capable of identifying the positive COVID-19 samples with superior sensitivity and specificity, making it a promising front-line tool for rapid, high-throughput screening and infection control of COVID-19 or other infectious diseases.
Collapse
Affiliation(s)
- Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Feng Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Yuan Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Yingjing Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China,Corresponding author
| |
Collapse
|
12
|
Hou S, Xu C, Ju X, Jin Y. Interfacial Assembly of Ti 3 C 2 T x /ZnIn 2 S 4 Heterojunction for High-Performance Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204687. [PMID: 36285673 PMCID: PMC9762283 DOI: 10.1002/advs.202204687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) materials have emerged as prospective candidates for electronics and optoelectronics applications as they can be easily fabricated through liquid exfoliation and used to fabricate various structures by further subsequent processing methods in addition to their extraordinary and unique optoelectronic properties. Herein, the Ti3 C2 Tx /ZIS heterostructure with nanometer-thick Ti3 C2 Tx -MXene and ZnIn2 S4 (ZIS) films is fabricated by successive interfacial assembly of liquid exfoliated 2D MXene and ZnIn2 S4 nanoflakes. Benefiting from the superior light-harvesting capability and low dark current of ZnIn2 S4 , the limited absorbance, large scattering coefficient, and high dark current disadvantages of MXene are ameliorated. Meanwhile, the separation and transport of photogenerated carriers in ZnIn2 S4 are improved due to the excellent electrical conductivity of Ti3 C2 Tx nanoflakes. As a result, the as-prepared Ti3 C2 Tx /ZIS heterostructure photodetector has excellent optoelectronic characteristics in terms of a high responsivity of 1.04 mA W-1 , a large specific detectivity up to 1 × 1011 Jones, a huge on/off ratio at around 105 , and an ultralow dark current at ≈10-12 A. This work demonstrates a convenient method to construct heterostructured photodetectors by liquid exfoliated 2D nanoflakes, the as-fabricated Ti3 C2 Tx /ZIS heterostructured photodetectors show promising application potential for low-cost, reliable, and high-performance photodetectors.
Collapse
Affiliation(s)
- Shuping Hou
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Chen Xu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Xingkai Ju
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
13
|
Bannur Nanjunda S, Seshadri VN, Krishnan C, Rath S, Arunagiri S, Bao Q, Helmerson K, Zhang H, Jain R, Sundarrajan A, Srinivasan B. Emerging nanophotonic biosensor technologies for virus detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5041-5059. [PMID: 39634299 PMCID: PMC11501160 DOI: 10.1515/nanoph-2022-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2024]
Abstract
Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics. This review paper critically and comprehensively reviews various emerging nanophotonic biosensor mechanisms and biosensor technologies for virus detection, with a particular focus on detection of the SARS-CoV-2 (COVID-19) virus. The photonic biosensing mechanisms and technologies that we have focused on include: (a) plasmonic field enhancement via localized surface plasmon resonances, (b) surface enhanced Raman scattering, (c) nano-Fourier transform infrared (nano-FTIR) near-field spectroscopy, (d) fiber Bragg gratings, and (e) microresonators (whispering gallery modes), with a particular emphasis on the emerging impact of nanomaterials and two-dimensional materials in these photonic sensing technologies. This review also discusses several quantitative issues related to optical sensing with these biosensing and transduction techniques, notably quantitative factors that affect the limit of detection (LoD), sensitivity, specificity, and response times of the above optical biosensing diagnostic technologies for virus detection. We also review and analyze future prospects of cost-effective, lab-on-a-chip virus sensing solutions that promise ultrahigh sensitivities, rapid detection speeds, and mass manufacturability.
Collapse
Affiliation(s)
- Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | - Venkatesh N. Seshadri
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Department of Life Science, Indian Academy, Bangalore, India
| | - Chitra Krishnan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - Sweta Rath
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | | | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC, Australia
| | - Kristian Helmerson
- School of Physics and Astronomy, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC3800, Australia
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Ravi Jain
- Optical Science and Engineering Program, Center for High Technology Materials, Departments of ECE, Physics Astronomy, and Nanoscience Microsystems, University of New Mexico, Albuquerque, NM87106, USA
| | - Asokan Sundarrajan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Balaji Srinivasan
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
14
|
Ma Y, Song M, Li L, Lao X, Wong M, Hao J. Advances in upconversion luminescence nanomaterial-based biosensor for virus diagnosis. EXPLORATION (BEIJING, CHINA) 2022; 2:20210216. [PMID: 36713024 PMCID: PMC9874449 DOI: 10.1002/exp.20210216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
Various infectious viruses have been posing a major threat to global public health, especially SARS-CoV-2, which has already claimed more than six million lives up to now. Tremendous efforts have been made to develop effective techniques for rapid and reliable pathogen detection. The unique characteristics of upconversion nanoparticles (UCNPs) pose numerous advantages when employed in biosensors, and they are a promising candidate for virus detection. Herein, this Review will discuss the recent advancement in the UCNP-based biosensors for virus and biomarkers detection. We summarize four basic principles that guide the design of UCNP-based biosensors, which are utilized with luminescent or electric responses as output signals. These strategies under fundamental mechanisms facilitate the enhancement of the sensitivity of UCNP-based biosensors. Moreover, a detailed discussion and benefits of applying UCNP in various virus bioassays will be presented. We will also address some obstacles in these detection techniques and suggest routes for progress in the field. These progressions will undoubtedly pose UCNP-based biosensors in a prominent position for providing a convenient, alternative approach to virus detection.
Collapse
Affiliation(s)
- Yingjin Ma
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Menglin Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Lihua Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Xinyue Lao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Man‐Chung Wong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| |
Collapse
|
15
|
Chen Z, Yildizbasi A, Wang Y, Sarkis J. Safety Concerns for the Management of End-of-Life Lithium-Ion Batteries. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200049. [PMID: 36532238 PMCID: PMC9749076 DOI: 10.1002/gch2.202200049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Indexed: 06/17/2023]
Abstract
Lithium-ion battery (LIB) usage is growing dramatically worldwide. Relatedly, there is a need for the management of end-of-life (EOL) LIBs. EOL requires closed-loop systems and supply chains. Although many studies related to managing EOL in closed-loop supply chains exist, one especially pernicious issue is overlooked-safety. This study seeks to address this major safety oversight for EOL LIBs using closed-loop supply chains that are critical to a larger circular economy environment. The evaluation is completed along a technology-organization-environment (TOE) framework; potential research directions for mitigating safety issues are part of the analysis of this study. Specific and general research questions pertaining to secure management of EOL LIBs are put forward to help advance academic research. Practical concerns are also described for policymakers and organizations. This study reveals implications of these questions for the intersection of materials science, supply chain management, and fire-protection engineering.
Collapse
Affiliation(s)
- Zhuowen Chen
- School of BusinessWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | - Abdullah Yildizbasi
- School of BusinessWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
- Department of Industrial EngineeringAnkara Yıldırım Beyazıt UniversityAnkara06010Turkey
| | - Yan Wang
- Department of Mechanical & Materials EngineeringWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | - Joseph Sarkis
- School of BusinessWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
- LAMIH LaboratoryUniversité Polytechnique Hauts‐de‐FranceCampus Mont HouyValenciennes59313France
| |
Collapse
|
16
|
Song M, Ma Y, Li L, Wong MC, Wang P, Chen J, Chen H, Wang F, Hao J. Multiplexed detection of SARS-CoV-2 based on upconversion luminescence nanoprobe/MXene biosensing platform for COVID-19 point-of-care diagnostics. MATERIALS & DESIGN 2022; 223:111249. [PMID: 36248181 PMCID: PMC9550287 DOI: 10.1016/j.matdes.2022.111249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Multiplexed detection is essential in biomedical sciences since it is more efficient and accurate than single-analyte detection. For an accurate early diagnosis of COVID-19, a multiplexed detection strategy is required to avoid false negatives with the existing gold standard assay. Nb2CTx nanosheets were found to efficiently quench the fluorescence emission of lanthanide-doped upconversion luminescence nanoparticles at wavelengths ranging from visible to near-infrared spectrum. Using this broad-spectrum quencher, we developed a label-free FRET-based biosensor for rapid and accurate detection of SARS-CoV-2 RNA. To target ORF and N genes, two types of oligo-modified lanthanide-doped upconversion nanoparticles can be used simultaneously to identify-two sites in one assay via upconversion fluorescence enhancement intensity measurement with detection limits of 15 pM and 914 pM, respectively. Moreover, with multisite cross-validation, this multiplexed and sensitive biosensor is capable of simultaneous and multicolor analysis of two gene fragments of SARS-CoV-2 Omicron variant within minutes in a single homogeneous solution, which significantly improves the detection efficiency. The diagnosis result via our assay is consistent with the PCR result, demonstrating its application in the rapid and accurate screening of multiple genes of SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Yingjing Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
17
|
Li L, Song M, Lao X, Pang SY, Liu Y, Wong MC, Ma Y, Yang M, Hao J. Rapid and ultrasensitive detection of SARS-CoV-2 spike protein based on upconversion luminescence biosensor for COVID-19 point-of-care diagnostics. MATERIALS & DESIGN 2022; 223:111263. [PMID: 36275835 PMCID: PMC9575549 DOI: 10.1016/j.matdes.2022.111263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Here, we firstly introduce a detection system consisting of upconversion nanoparticles (UCNPs) and Au nanorods (AuNRs) for an ultrasensitive, rapid, quantitative and on-site detection of SARS-CoV-2 spike (S) protein based on Förster resonance energy transfer (FRET) effect. Briefly, the UCNPs capture the S protein of lysed SARS-CoV-2 in the swabs and subsequently they are bound with the anti-S antibodies modified AuNRs, resulting in significant nonradiative transitions from UCNPs (donors) to AuNRs (acceptors) at 480 nm and 800 nm, respectively. Notably, the specific recognition and quantitation of S protein can be realized in minutes at 800 nm because of the low autofluorescence and high Yb-Tm energy transfer in upconversion process. Inspiringly, the limit of detection (LOD) of the S protein can reach down to 1.06 fg mL-1, while the recognition of nucleocapsid protein is also comparable with a commercial test kit in a shorter time (only 5 min). The established strategy is technically superior to those reported point-of-care biosensors in terms of detection time, cost, and sensitivity, which paves a new avenue for future on-site rapid viral screening and point-of-care diagnostics.
Collapse
Affiliation(s)
- Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuan Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yingjin Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Omidifar N, Lai CW, Vijayakameswara Rao N, Gholami A, Chiang WH. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals (Basel) 2022; 15:880. [PMID: 35890178 PMCID: PMC9319763 DOI: 10.3390/ph15070880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses. Biosensors are used worldwide to detect viral infections associated with the molecular detection of biomarkers. Thus, detecting viruses based on quantum dots biomarkers is inexpensive and has great potential. To detect the ultrasensitive biomarkers of viral infections, QDs appear to be a promising option as biological probes, while physiological components have been used directly to detect multiple biomarkers simultaneously. The simultaneous measurement of numerous clinical parameters of the same sample volume is possible through multiplex detection of human viral infections, which reduces the time and cost required to record any data point. The purpose of this paper is to review recent studies on the effectiveness of the quantum dot as a detection tool for human pandemic viruses. In this review study, different types of quantum dots and their valuable properties in the structure of biomarkers were investigated. Finally, a vision for recent advances in quantum dot-based biomarkers was presented, whereby they can be integrated into super-sensitive probes for the multiplex detection of human viral infections.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | | | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
19
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. CHEMOSPHERE 2022; 288:132533. [PMID: 34655646 DOI: 10.1016/j.chemosphere.2021.132533] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The unprecedented setbacks and environmental complications, faced by global agro-farming industry, have led to the advent of nanotechnology in agriculture, which has been recognized as a novel and innovative approach in development of sustainable farming practices. The agricultural regimen is the "head honcho" of the world, however presently certain approaches have been imposing grave danger to the environment and human civilization. The nano-farming paradigm has successfully elevated the growth and development of plants, parallel to the production, quality, germination/transpiration index, photosynthetic machinery, genetic progression, and so on. This has optimized the traditional farming into precision farming, utilising nano-based sensors and nanobionics, smart delivery tools, nanotech facets in plant disease management, nanofertilizers, enhancement of plant adaptive potential to external stress, role in bioenergy conservation and so on. These applications portray nanorevolution as "the big cheese" of global agriculture, mitigating the bottlenecks of conventional practices. Besides the applications of nanotechnology, the review identifies the limitations, like possible harmful impact on environment, mankind and plants, as the "Achilles heel" in agro-industry, aiming to establish its defined role in agriculture, while simultaneously considering the risks, in order to resolve them, thus abiding by "technology-yes, but safety-must". The authors aim to provide a significant opportunity to the nanotech researchers, Botanists and environmentalists, to promote judicial use of nanoparticles and establish a secure and safe environment.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| |
Collapse
|
20
|
Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals (Basel) 2022; 15:ph15010090. [PMID: 35056148 PMCID: PMC8781427 DOI: 10.3390/ph15010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.
Collapse
|
21
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Pakbin B, Basti AA, Khanjari A, Brück WM, Azimi L, Karimi A. Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples. Sci Rep 2022; 12:473. [PMID: 35013489 PMCID: PMC8748861 DOI: 10.1038/s41598-021-04484-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Sierre, Switzerland.,Department of Food Hygiene and Quality of Control, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Afshin Akhondzadeh Basti
- Department of Food Hygiene and Quality of Control, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran.
| | - Ali Khanjari
- Department of Food Hygiene and Quality of Control, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Sierre, Switzerland
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute of Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute of Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Song M, Lyu Y, Guo F, Pang SY, Wong MC, Hao J. One-Step, DNA-Programmed, and Flash Synthesis of Anisotropic Noble Metal Nanostructures on MXene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52978-52986. [PMID: 34699164 DOI: 10.1021/acsami.1c16377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise morphological control over anisotropic noble metal nanoparticles (ANPs) is one of the key issues in the nano-research field owing to their unique optoelectronic, magnetic, mechanical, and catalytic properties. Although nanostructures fabricated by the directed assembly of adsorbate have been widely demonstrated recently, facile yet universal synthesis of nanocrystal with tunable morphologies, green templates, no seeds, and high yield remains challenging. Herein, we develop a versatile method, allowing for the rapid, one-step, seedless, surfactant-free synthesis of a noble metal nanostructure with tunable anisotropy on MXene in a sequence-dependent manner through a single-DNA molecular regulator. Based on the mild reducibility of MXene and the selective affinity of the DNA to the specific facets in the crystals, oriented aggregations and the growth of ANPs (Au, Pt, Pd) can be achieved and the resulting asymmetric morphology from polyhedrons, or flowers, or nanoplates to dendrites is observed. The ability to align such ANPs on the MXene surface is expected to lead to improved photothermal effect and surface-enhanced Raman scattering. Furthermore, our work makes the fabrication of the ANPs or ANP-MXene heterostructure easier, stimulating further explorations of physical, chemical, and biological applications.
Collapse
Affiliation(s)
- Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Yongxin Lyu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Feng Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| |
Collapse
|
24
|
Filik H, Avan AA. Nanotechnology-based Colorimetric Approaches for Pathogenic Virus Sensing: A review. Curr Med Chem 2021; 29:2691-2718. [PMID: 34269661 DOI: 10.2174/0929867328666210714154051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Fast and inexpensive virus identification protocols are paramount to hinder the further extent of pandemic diseases, minimize economic and social damages, and expedite proper clinical rehabilitation. Until now, various biosensors have been fabricated for the identification of pathogenic particles. But, they offer many difficulties. Nanotechnology resolves these difficulties and offers direct identification of pathogenic species in real-time. Among them, nanomaterial based-colorimetric sensing approach of pathogenic viruses by the naked eye has attracted much awareness because of their simplicity, speed, and low cost. In this review, the latest tendencies and advancements are overviewed in detecting pathogenic viruses using colorimetric concepts. We focus on and reconsider the use of distinctive nanomaterials such as metal nanoparticles, carbon nanotubes, graphene oxide, and conducting polymer to form colorimetric pathogenic virus sensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| |
Collapse
|
25
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing coronavirus disease 2019 (COVID-19) is highly required to fight the current and future global health threats due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|