1
|
Huang R, Zhang C, Zheng Y, Zhang W, Huang H, Qiu M, Li J, Li F. ISL1 regulates lung branching morphogenesis via Shh signaling pathway. J Biol Chem 2023; 299:105034. [PMID: 37442233 PMCID: PMC10406864 DOI: 10.1016/j.jbc.2023.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung branching morphogenesis relies on a complex coordination of multiple signaling pathways and transcription factors. Here, we found that ablation of the LIM homeodomain transcription factor Islet1 (Isl1) in lung epithelium resulted in defective branching morphogenesis and incomplete formation of five lobes. A reduction in mesenchymal cell proliferation was observed in Isl1ShhCre lungs. There was no difference in apoptosis between the wild-type (ShhCre) and Isl1ShhCre embryos. RNA-Seq and in situ hybridization analysis showed that Shh, Ptch1, Sox9, Irx1, Irx2, Tbx2, and Tbx3 were downregulated in the lungs of Isl1ShhCre embryos. ChIP assay implied the Shh gene served as a direct target of ISL1, since the transcription factor ISL1 could bind to the Shh epithelial enhancer sequence (MACS1). Also, activation of the Hedgehog pathway via ectopic gene expression rescued the defects caused by Isl1 ablation, confirming the genetic integration of Hedgehog signaling. In conclusion, our works suggest that epithelial Isl1 regulates lung branching morphogenesis through administrating the Shh signaling mediated epithelial-mesenchymal communications.
Collapse
Affiliation(s)
- Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yuting Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Li B, Yan YP, He YY, Liang C, Li MY, Wang Y, Yang ZM. IHH, SHH, and primary cilia mediate epithelial-stromal cross-talk during decidualization in mice. Sci Signal 2023; 16:eadd0645. [PMID: 36853961 DOI: 10.1126/scisignal.add0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The establishment of pregnancy depends on interactions between the epithelial and stromal cells of the endometrium that drive the decidual reaction that remodels the stroma and enables embryo implantation. Decidualization in mice also depends on ovarian hormones and the presence of a blastocyst. Hedgehog signaling is transduced by primary cilia in many tissues and is involved in epithelial-stromal cross-talk during decidualization. We found that primary cilia on mouse uterine stromal cells increased in number and length during early pregnancy and were required for decidualization. In vitro and in vivo, progesterone promoted stromal ciliogenesis and the production of Indian hedgehog (IHH) in the epithelium and Sonic hedgehog (SHH) in the stroma. Blastocyst-derived TNF-α also induced epithelial IHH, which stimulated the production of SHH in the stroma through a mechanism that may involve the release of arachidonic acid from epithelial cells. In the stroma, SHH activated canonical Hedgehog signaling through primary cilia and promoted decidualization through a mechanism that depended on interleukin-11 (IL-11) and primary cilia. Our findings identify a primary cilia-dependent network that controls endometrial decidualization and suggest primary cilia as a candidate therapeutic target for endometrial diseases.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
3
|
Tang C, Wang J, Yao M, Ji X, Shi W, Xu C, Zeng LH, Wu X. Hippo signaling activates hedgehog signaling by Taz-driven Gli3 processing. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:3. [PMID: 36720733 PMCID: PMC9889595 DOI: 10.1186/s13619-022-00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 02/02/2023]
Abstract
The overlapping roles of Hippo and Hedgehog signaling in biological functions and diseases prompt us to investigate their potential interactions. Activation of Hippo signaling enhances the transcriptional output of Hedgehog signaling, and the role of Hippo signaling in regulating Hedgehog signaling relies on the Hippo pathway key effector, Taz. Interestingly, Taz exhibits a gradient expression across the posterior-to-anterior of limb bud mesoderms, similar to Sonic hedgehog (Shh). Importantly, Taz drives PKA to phosphorylate Gli3, resulting in the Gli3 processing into its repressor and attenuation of Hedgehog signaling in the Shh-independent manner. Specifically, Taz deletion in mouse embryonic limb bud mesenchyme not only enhances the Hedgehog signaling but partially restores the phenotypes from Shh deletion in causing severe defects of anteroposterior patterning and digit number and identity. Together, these results uncover Taz-dependent Gli3 processing as a hitherto uncharacterized mechanism controlling Hedgehog signaling, highlighting its cross-regulation by Hippo signaling.
Collapse
Affiliation(s)
- Chao Tang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XNational Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310052 China
| | - Jirong Wang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Minli Yao
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Xing Ji
- grid.239552.a0000 0001 0680 8770Translational Research Program in Pediatric Orthopaedics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Wei Shi
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Chengyun Xu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou, 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058, China. .,Department of Orthopeadic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
5
|
Yin W, Liontos A, Koepke J, Ghoul M, Mazzocchi L, Liu X, Lu C, Wu H, Fysikopoulos A, Sountoulidis A, Seeger W, Ruppert C, Günther A, Stainier DYR, Samakovlis C. An essential function for autocrine hedgehog signaling in epithelial proliferation and differentiation in the trachea. Development 2022; 149:274222. [PMID: 35112129 PMCID: PMC8918789 DOI: 10.1242/dev.199804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development. Summary: A conserved autocrine role for HH signaling in tracheal epithelial cell proliferation and differentiation is revealed, suggesting potential new interventions for airway epithelial proliferation and differentiation defects.
Collapse
Affiliation(s)
- Wenguang Yin
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Janine Koepke
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Maroua Ghoul
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Luciana Mazzocchi
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Athanasios Fysikopoulos
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Alexandros Sountoulidis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Werner Seeger
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Andreas Günther
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
6
|
PRMT7: A Pivotal Arginine Methyltransferase in Stem Cells and Development. Stem Cells Int 2021; 2021:6241600. [PMID: 34712331 PMCID: PMC8548130 DOI: 10.1155/2021/6241600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9, have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7 deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7 causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in life sciences and medicine.
Collapse
|
7
|
Lee H, Ko HW. Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development. BMB Rep 2021. [PMID: 32317081 PMCID: PMC7396919 DOI: 10.5483/bmbrep.2020.53.7.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.
Collapse
Affiliation(s)
- Hankyu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
8
|
Nasr T, Holderbaum AM, Chaturvedi P, Agarwal K, Kinney JL, Daniels K, Trisno SL, Ustiyan V, Shannon JM, Wells JM, Sinner D, Kalinichenko VV, Zorn AM. Disruption of a hedgehog-foxf1-rspo2 signaling axis leads to tracheomalacia and a loss of sox9+ tracheal chondrocytes. Dis Model Mech 2020; 14:dmm.046573. [PMID: 33328171 PMCID: PMC7875488 DOI: 10.1242/dmm.046573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Congenital tracheomalacia, resulting from incomplete tracheal cartilage development, is a relatively common birth defect that severely impairs breathing in neonates. Mutations in the Hedgehog (HH) pathway and downstream Gli transcription factors are associated with tracheomalacia in patients and mouse models; however, the underlying molecular mechanisms are unclear. Using multiple HH/Gli mouse mutants including one that mimics Pallister-Hall Syndrome, we show that excessive Gli repressor activity prevents specification of tracheal chondrocytes. Lineage tracing experiments show that Sox9+ chondrocytes arise from HH-responsive splanchnic mesoderm in the fetal foregut that expresses the transcription factor Foxf1. Disrupted HH/Gli signaling results in 1) loss of Foxf1 which in turn is required to support Sox9+ chondrocyte progenitors and 2) a dramatic reduction in Rspo2, a secreted ligand that potentiates Wnt signaling known to be required for chondrogenesis. These results reveal a HH-Foxf1-Rspo2 signaling axis that governs tracheal cartilage development and informs the etiology of tracheomalacia.
Collapse
Affiliation(s)
- Talia Nasr
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Andrea M Holderbaum
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Kunal Agarwal
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Jessica L Kinney
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Keziah Daniels
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Stephen L Trisno
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| | - Debora Sinner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267
| |
Collapse
|
9
|
Zhang L, Chen X, Xu L, Guan S, Wang D, Lin Y, Wang Z. Novel frameshift mutations of ANKUB1, GLI3, and TAS2R3 associated with polysyndactyly in a Chinese family. Mol Genet Genomic Med 2020; 8:e1223. [PMID: 32253825 PMCID: PMC7284028 DOI: 10.1002/mgg3.1223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Polysyndactyly (PSD) is an autosomal dominant genetic limb malformation caused by mutations. METHODS Whole exome sequencing and Sanger sequencing were used to determine the mutations in PSD patients. Luciferase reporter assay was performed to determine the effect of GLI3 mutation on its transcriptional activity. RESULTS In this study, we investigated the gene mutations of three affected individuals across three generations. The frameshift mutations of GLI3 (NM_000168:c.4659del, NP_000159.3: p.Ser1553del), ANKUB1 (NM_001144960:c.1385del, NP_001138432.1: p.Pro462del), and TAS2R3 (NM_016943:c.128_131del, NP_058639.1: p.Leu43del) were identified in the three affected individuals, but not in three unaffected members by whole exome sequencing and sanger sequencing. Luciferase reporter assay demonstrated that GLI3 mutation reduced the transcriptional activity of GLI3. The results from SMART analysis showed that the frameshift mutation of TAS2R3 altered most protein sequence, which probably destroyed protein function. Although the frameshift mutation of ANKUB1 did not locate in ankyrin repeat domain and ubiquitin domain, it might influence the interaction between ANKUB1 and other proteins, and further affected the ubiquitinylation. CONCLUSION These results indicated that the frameshift mutations of GLI3, ANKUB1, and TAS2R3 might alter the functions of these proteins, and accelerated PSD progression.
Collapse
Affiliation(s)
- Lishan Zhang
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaobin Chen
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lanwei Xu
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dehua Wang
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yanliang Lin
- Center Laboratory, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zengtao Wang
- Department of Hand and Foot Surgery, Shandong provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
10
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
11
|
Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD, Prakash YS. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol 2019; 316:L826-L842. [PMID: 30785345 PMCID: PMC6589594 DOI: 10.1152/ajplung.00424.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence results in cell cycle arrest with secretion of cytokines, chemokines, growth factors, and remodeling proteins (senescence-associated secretory phenotype; SASP) that have autocrine and paracrine effects on the tissue microenvironment. SASP can promote remodeling, inflammation, infectious susceptibility, angiogenesis, and proliferation, while hindering tissue repair and regeneration. While the role of senescence and the contributions of senescent cells are increasingly recognized in the context of aging and a variety of disease states, relatively less is known regarding the portfolio and influences of senescent cells in normal lung growth and aging per se or in the induction or progression of lung diseases across the age spectrum such as bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, or pulmonary fibrosis. In this review, we introduce concepts of cellular senescence, the mechanisms involved in the induction of senescence, and the SASP portfolio that are relevant to lung cells, presenting the potential contribution of senescent cells and SASP to inflammation, hypercontractility, and remodeling/fibrosis: aspects critical to a range of lung diseases. The potential to blunt lung disease by targeting senescent cells using a novel class of drugs (senolytics) is discussed. Potential areas for future research on cellular senescence in the lung are identified.
Collapse
Affiliation(s)
- Pavan Parikh
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karl Khandalavala
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rodney D. Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Jin H, Zhang Y, Ding Q, Wang SS, Rastogi P, Dai DF, Lu D, Purvis M, Cao C, Wang A, Liu D, Ren C, Elhadi S, Hu MC, Chai Y, Zepeda-Orozco D, Campisi J, Attanasio M. Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 2019; 4:125490. [PMID: 30674725 DOI: 10.1172/jci.insight.125490] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition of growing incidence. Patients who suffer severe AKI have a higher risk of developing interstitial fibrosis, chronic kidney disease, and end-stage renal disease later in life. Cellular senescence is a persistent cell cycle arrest and altered gene expression pattern evoked by multiple stressors. The number of senescent cells increases with age and even in small numbers these cells can induce chronic inflammation and fibrosis; indeed, in multiple organs including kidneys, the accumulation of such cells is a hallmark of aging. We hypothesized that cellular senescence might be induced in the kidney after injury and that this might contribute to progressive organ fibrosis. Testing this hypothesis, we found that tubular epithelial cells (TECs) in mice senesce within a few days of kidney injury and that this response is mediated by epithelial Toll-like and interleukin 1 receptors (TLR/IL-1R) of the innate immune system. Epithelial cell-specific inhibition of innate immune signaling in mice by knockout of myeloid differentiation 88 (Myd88) reduced fibrosis as well as damage to kidney tubules, and also prevented the accumulation of senescent TECs. Importantly, although inactivation of Myd88 after injury ameliorated fibrosis, it did not reduce damage to the tubules. Selectively induced apoptosis of senescent cells by two different approaches only partially reduced kidney fibrosis, without ameliorating damage to the tubules. Our data reveal a cell-autonomous role for epithelial innate immunity in controlling TEC senescence after kidney injury, and additionally suggest that early therapeutic intervention is required for effective reduction of long-term sequelae of AKI.
Collapse
Affiliation(s)
- Heng Jin
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Ding
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Dao-Fu Dai
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison Purvis
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chao Cao
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Angela Wang
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dingxiao Liu
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah Elhadi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ming-Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Massimo Attanasio
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Ho UY, Wainwright BJ. Patched1 patterns Fibroblast growth factor 10 and Forkhead box F1 expression during pulmonary branch formation. Mech Dev 2017; 147:37-48. [PMID: 28939119 DOI: 10.1016/j.mod.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
Hedgehog (Hh) signalling, Fibroblast growth factor 10 (Fgf10) and Forkhead box F1 (Foxf1) are each individually important for directing pulmonary branch formation but their interactions are not well understood. Here we demonstrate that Hh signalling is vital in regulating Foxf1 and Fgf10 expression during branching. The Hedgehog receptor Patched1 (Ptch1) was conditionally inactivated in the lung mesenchyme by Dermo1-Cre in vivo or using a recombinant Cre recombinase protein (HNCre) in lung cultures resulting in cell autonomous activation of Hh signalling. Homozygous mesenchymal Ptch1 deleted embryos (Dermo1Cre+/-;Ptch1lox/lox) showed secondary branching and lobe formation defects. Fgf10 expression is spatially reduced in the distal tip of Dermo1Cre+/-;Ptch1lox/lox lungs and addition of Fgf10 recombinant protein to these lungs in culture has shown partial restoration of branching, indicating Ptch1 function patterns Fgf10 to direct lung branching. Foxf1 expression is upregulated in Dermo1Cre+/-;Ptch1lox/lox lungs, suggesting Foxf1 may mediate Hh signalling effects in the lung mesenchyme. In vitro HNCre-mediated Ptch1 deleted lung explants support the in vivo observations, with evidence of mesenchyme hyperproliferation and this is consistent with the previously reported role of Hh signalling in maintaining mesenchymal cell survival. Consequently it is concluded that during early pseudoglandular stage of lung development Ptch1 patterns Fgf10 and regulates Foxf1 expression in the lung mesenchyme to direct branch formation and this is essential for proper lobe formation and lung function.
Collapse
Affiliation(s)
- Uda Y Ho
- Institute for Molecular Bioscience, The University of Queensland, Australia.
| | | |
Collapse
|
14
|
Han L, Xu J, Grigg E, Slack M, Chaturvedi P, Jiang R, Zorn AM. Osr1 functions downstream of Hedgehog pathway to regulate foregut development. Dev Biol 2017; 427:72-83. [PMID: 28501478 PMCID: PMC5519324 DOI: 10.1016/j.ydbio.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023]
Abstract
During early fetal development, paracrine Hedgehog (HH) ligands secreted from the foregut epithelium activate Gli transcription factors in the surrounding mesenchyme to coordinate formation of the respiratory system, digestive track and the cardiovascular network. Although disruptions to this process can lead to devastating congenital defects, the underlying mechanisms and downstream targets, are poorly understood. We show that the zinc finger transcription factor Osr1 is a novel HH target as Osr1 expression in the foregut mesenchyme depends on HH signaling and the effector of HH pathway Gli3 binds to a conserved genomic loci near Osr1 promoter region. Molecular analysis of mouse germline Osr1 mutants reveals multiple functions of Osr1 during foregut development. Osr1 mutants exhibit fewer lung progenitors in the ventral foregut. Osr is then required for the proper branching of the primary lung buds, with mutants exhibiting miss-located lung lobes. Finally, Osr1 is essential for proper mesenchymal differentiation including pulmonary arteries, esophageal and tracheal smooth muscle as well as tracheal cartilage rings. Tissue specific conditional knockouts in combination with lineage tracing indicate that Osr1 is required cell autonomously in the foregut mesenchyme. We conclude that Osr1 is a novel downstream target of HH pathway, required for lung specification, branching morphogenesis and foregut mesenchymal differentiation.
Collapse
Affiliation(s)
- Lu Han
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | - Jingyue Xu
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | - Emily Grigg
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | - Megan Slack
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA.
| |
Collapse
|
15
|
El Agha E, Kheirollahi V, Moiseenko A, Seeger W, Bellusci S. Ex vivo analysis of the contribution of FGF10 + cells to airway smooth muscle cell formation during early lung development. Dev Dyn 2017; 246:531-538. [PMID: 28387977 DOI: 10.1002/dvdy.24504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+ ) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. RESULTS FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. CONCLUSIONS Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung. Developmental Dynamics 246:531-538, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Vahid Kheirollahi
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Alena Moiseenko
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
16
|
Higashiyama H, Ozawa A, Sumitomo H, Uemura M, Fujino K, Igarashi H, Imaimatsu K, Tsunekawa N, Hirate Y, Kurohmaru M, Saijoh Y, Kanai-Azuma M, Kanai Y. Embryonic cholecystitis and defective gallbladder contraction in the Sox17-haploinsufficient mouse model of biliary atresia. Development 2017; 144:1906-1917. [PMID: 28432216 DOI: 10.1242/dev.147512] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
Abstract
The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/- embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/- embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/- gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/- embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Aisa Ozawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Sumitomo
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Center for Experimental Animals, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ko Fujino
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hitomi Igarashi
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Hirate
- Center for Experimental Animals, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, The University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Canonical Sonic Hedgehog Signaling in Early Lung Development. J Dev Biol 2017; 5:jdb5010003. [PMID: 29615561 PMCID: PMC5831770 DOI: 10.3390/jdb5010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
Collapse
|
18
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
19
|
Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J Dev Biol 2016; 4:jdb4030027. [PMID: 29615591 PMCID: PMC5831775 DOI: 10.3390/jdb4030027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.
Collapse
|
20
|
Abstract
The respiratory endoderm develops from a small cluster of cells located on the ventral anterior foregut. This population of progenitors generates the myriad epithelial lineages required for proper lung function in adults through a complex and delicately balanced series of developmental events controlled by many critical signaling and transcription factor pathways. In the past decade, understanding of this process has grown enormously, helped in part by cell lineage fate analysis and deep sequencing of the transcriptomes of various progenitors and differentiated cell types. This review explores how these new techniques, coupled with more traditional approaches, have provided a detailed picture of development of the epithelial lineages in the lung and insight into how aberrant development can lead to lung disease.
Collapse
|
21
|
Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, Wongboonsin J, Ikeda Y, Heckl D, Chang SL, Rennke HG, Waikar SS, Humphreys BD. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 2015; 125:2935-51. [PMID: 26193634 PMCID: PMC4563736 DOI: 10.1172/jci74929] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease is characterized by interstitial fibrosis and proliferation of scar-secreting myofibroblasts, ultimately leading to end-stage renal disease. The hedgehog (Hh) pathway transcriptional effectors GLI1 and GLI2 are expressed in myofibroblast progenitors; however, the role of these effectors during fibrogenesis is poorly understood. Here, we demonstrated that GLI2, but not GLI1, drives myofibroblast cell-cycle progression in cultured mesenchymal stem cell-like progenitors. In animals exposed to unilateral ureteral obstruction, Hh pathway suppression by expression of the GLI3 repressor in GLI1+ myofibroblast progenitors limited kidney fibrosis. Myofibroblast-specific deletion of Gli2, but not Gli1, also limited kidney fibrosis, and induction of myofibroblast-specific cell-cycle arrest mediated this inhibition. Pharmacologic targeting of this pathway with darinaparsin, an arsenical in clinical trials, reduced fibrosis through reduction of GLI2 protein levels and subsequent cell-cycle arrest in myofibroblasts. GLI2 overexpression rescued the cell-cycle effect of darinaparsin in vitro. While darinaparsin ameliorated fibrosis in WT and Gli1-KO mice, it was not effective in conditional Gli2-KO mice, supporting GLI2 as a direct darinaparsin target. The GLI inhibitor GANT61 also reduced fibrosis in mice. Finally, GLI1 and GLI2 were upregulated in the kidneys of patients with high-grade fibrosis. Together, these data indicate that GLI inhibition has potential as a therapeutic strategy to limit myofibroblast proliferation in kidney fibrosis.
Collapse
Affiliation(s)
- Rafael Kramann
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne V. Fleig
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Rebekka K. Schneider
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven L. Fabian
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek P. DiRocco
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Omar Maarouf
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Janewit Wongboonsin
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoichiro Ikeda
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Dirk Heckl
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Helmut G. Rennke
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin D. Humphreys
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Dharmadhikari AV, Szafranski P, Kalinichenko VV, Stankiewicz P. Genomic and Epigenetic Complexity of the FOXF1 Locus in 16q24.1: Implications for Development and Disease. Curr Genomics 2015; 16:107-16. [PMID: 26085809 PMCID: PMC4467301 DOI: 10.2174/1389202916666150122223252] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/09/2015] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
The FOXF1 (Forkhead box F1) gene, located on chromosome 16q24.1 encodes a member of the FOX family of transcription factors characterized by a distinct forkhead DNA binding domain. FOXF1 plays an important role in epithelium-mesenchyme signaling, as a downstream target of Sonic hedgehog pathway. Heterozygous point mutations and genomic deletions involving FOXF1 have been reported in newborns with a lethal lung developmental disorder, Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV). In addition, genomic deletions upstream to FOXF1 identified in ACDMPV patients have revealed that FOXF1 expression is tightly regulated by distal tissue-specific enhancers. Interestingly, FOXF1 has been found to be incompletely paternally imprinted in human lungs; characterized genomic deletions arose de novo exclusively on maternal chromosome 16, with most of them being Alu-Alu mediated. Regulation of FOXF1 expression likely utilizes a combination of chromosomal looping, differential methylation of an upstream CpG island overlapping GLI transcription factor binding sites, and the function of lung-specific long non-coding RNAs (lncRNAs). FOXF1 knock-out mouse models demonstrated its critical role in mesoderm differentiation and in the development of pulmonary vasculature. Additionally, epigenetic inactivation of FOXF1 has been reported in breast and colorectal cancers, whereas overexpression of FOXF1 has been associated with a number of other human cancers, e.g. medulloblastoma and rhabdomyosarcoma. Constitutional duplications of FOXF1 have recently been reported in congenital intestinal malformations. Thus, understanding the genomic and epigenetic complexity at the FOXF1 locus will improve diagnosis, prognosis, and treatment of ACDMPV and other human disorders associated with FOXF1 alterations.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Molecular and Human Genetics; ; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Vladimir V Kalinichenko
- Divisions of Pulmonary Biology and Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics; ; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4. [PMID: 25803487 PMCID: PMC4370217 DOI: 10.7554/elife.05098] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.
Collapse
Affiliation(s)
- Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - David R Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Michael A H Ferguson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Melinda S Nagy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Rachel Dyal
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Roy Nattiv
- Institute for Human Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ophir D Klein
- Institute for Human Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Eric S White
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Gail H Deutsch
- Department of Laboratories, Seattle Children's Hospital and University of Washington, Seattle, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
24
|
Kugler MC, Joyner AL, Loomis CA, Munger JS. Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 2015; 52:1-13. [PMID: 25068457 DOI: 10.1165/rcmb.2014-0132tr] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.
Collapse
|
25
|
Pan YB, Gong Y, Ruan HF, Pan LY, Wu XK, Tang C, Wang CJ, Zhu HB, Zhang ZM, Tang LF, Zou CC, Wang HB, Wu XM. Sonic hedgehog through Gli2 and Gli3 is required for the proper development of placental labyrinth. Cell Death Dis 2015; 6:e1653. [PMID: 25695606 PMCID: PMC4669788 DOI: 10.1038/cddis.2015.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/20/2023]
Abstract
Sonic hedgehog (Shh) functions as a conserved morphogen in the development of various organs in metazoans ranging from Drosophila to humans. Here, we have investigated the potential roles and underlying mechanisms of Shh signaling in murine placentation. Immunostaining revealed the abundant expression of the main components of Shh pathway in both the trophectoderm of blastocysts and developing placentas. Disruption of Shh led to impaired vascularogenesis of yolk sac, less branching and malformation of placental labyrinth, thereby leading to a robust decrease in capacity of transplacental passages. Moreover, placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts and blastocyst transplantation robustly knocked down the expression of Gli3 and Gli2 in placenta but not in embryos. Finally, Gli3 knockdown in Shh−/− placentas partially rescued the defects of both yolk sac and placental labyrinth, and robustly restored the capacity of transplacental passages. Gli2 knockdown in Shh+/− placentas affected neither the capacity of tranplacental passages nor the vascularogenesis of yolk sac, however, it partially phenocopied the labyrinthine defects of Shh−/− placentas. Taken together, these results uncover that both Shh/Gli2 and Shh/Gli3 signals are required for proper development of murine placentas and are possibly essential for pregnant maintenance.
Collapse
Affiliation(s)
- Y B Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y Gong
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - H F Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Y Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - X K Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C J Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Zhu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Z M Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L F Tang
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - C C Zou
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X M Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
27
|
Jiang Z, Cushing L, Ai X, Lü J. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened. Am J Respir Cell Mol Biol 2014; 51:273-83. [PMID: 24617895 DOI: 10.1165/rcmb.2013-0127oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.
Collapse
Affiliation(s)
- Zhihua Jiang
- 1 Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; and
| | | | | | | |
Collapse
|
28
|
Poulin EJ, Powell AE, Wang Y, Li Y, Franklin JL, Coffey RJ. Using a new Lrig1 reporter mouse to assess differences between two Lrig1 antibodies in the intestine. Stem Cell Res 2014; 13:422-30. [PMID: 25460603 DOI: 10.1016/j.scr.2014.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/08/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Lrig1 is an intestinal stem cell marker important for epithelial homeostasis. However, the position of the Lrig1(+) population in the intestinal crypt has been debated, largely due to discrepant staining patterns using two Lrig1 antibodies. Here, we set out to decipher the differences between these Lrig1 antibodies to clarify their use for Lrig1-related studies. We confirmed that the commercially available Lrig1-R&D antibody stained the bottom third of the colonic crypt, whereas an independently generated Lrig1-VU antibody recognized a subset of anti-Lrig1-R&D(+) cells. Biochemically, we found that anti-Lrig1-VU recognized a non-glycosylated form of Lrig1; in contrast, anti-Lrig1-R&D recognized both glycosylated and non-glycosylated forms of Lrig1. In addition, we generated a reporter mouse (Lrig1-Apple) as an independent readout of Lrig1 transcriptional activity. Flow cytometry of isolated colonic epithelial cells from Lrig1-Apple mice demonstrated anti-Lrig1-R&D recognized mostly RFP-hi cells, while anti-Lrig1-VU recognized cells that were largely RFP-mid. Of note, by qRT-PCR, Lgr5 was expressed in the RFP-hi population, but not in the RFP-mid population. We conclude that anti-Lrig1-R&D appears to recognize all Lrig1(+) cells, while anti-Lrig1-VU recognizes a subpopulation of Lrig1(+) cells.
Collapse
Affiliation(s)
- Emily J Poulin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anne E Powell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yina Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Mondrinos MJ, Jones PL, Finck CM, Lelkes PI. Engineering de novo assembly of fetal pulmonary organoids. Tissue Eng Part A 2014; 20:2892-907. [PMID: 24825442 DOI: 10.1089/ten.tea.2014.0085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induction of morphogenesis by competent lung progenitor cells in a 3D environment is a central goal of pulmonary tissue engineering, yet little is known about the microenvironmental signals required to induce de novo assembly of alveolar-like tissue in vitro. In extending our previous reports of alveolar-like tissue formation by fetal pulmonary cells stimulated by exogenous fibroblast growth factors (FGFs), we identified some of the key endogenous mediators of FGF-driven morphogenesis (organoid assembly), for example, epithelial sacculation, endothelial network assembly, and epithelial-endothelial interfacing. Sequestration of endogenously secreted vascular endothelial growth factor-A (VEGF-A) potently inhibited endothelial network formation, with little or no effect on epithelial morphogenesis. Inhibition of endogenous sonic hedgehog (SHH) partially attenuated FGF-driven endothelial network formation, while the addition of exogenous SHH in the absence of FGFs was able to induce epithelial and endothelial morphogenesis, although with distinct morphological characteristics. Notably, SHH-induced endothelial networks exhibited fewer branch points, reduced sprouting behavior, and a periendothelial extracellular matrix (ECM) virtually devoid of tenascin-C (TN-C). By contrast, focal deposition of endogenous TN-C was observed in the ECM-surrounding endothelial networks of FGF-induced organoids, especially around sprouting tips. In the FGF-induced organoids, TN-C was also observed in the clefts of sacculated epithelium and at the epithelial-endothelial interface. In support of a critical role in the formation of alveolar-like tissue in vitro, TN-C blocking inhibited endothelial network formation and epithelial sacculation. Upon engraftment of in-vitro-generated pulmonary organoids beneath the renal capsule of syngeneic mice, robust neovascularization occurred in 5 days with a large contribution of patent vessels from engrafted organoids, providing proof of principle for exploring intrapulmonary engraftment of prevascularized hydrogel constructs. Expression of proSpC, VEGF-A, and TN-C following 1 week in vivo mirrored the patterns observed in vitro. Taken together, these findings advance our understanding of endogenous growth factor and ECM signals important for de novo formation of pulmonary tissue structures in vitro and demonstrate the potential of an organoid-based approach to lung tissue augmentation.
Collapse
Affiliation(s)
- Mark J Mondrinos
- 1 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
30
|
Liu C, Yang L, Dang H, Fang F, Xu F. Effect of Substance P on type II alveolar epithelial cells exposed to hyperoxia and its regulation of the Sonic hedgehog signaling pathway. Mol Med Rep 2014; 10:1604-8. [PMID: 24938870 DOI: 10.3892/mmr.2014.2330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress injury and cell death in alveolar epithelial cells may lead to abnormal repair, further resulting in acute and chronic pulmonary diseases. Substance P (SP) has multiple biological activities. The Sonic hedgehog (SHH) pathway is important in lung development and decreasing epithelial injury. To investigate the effects of SP on alveolar epithelial type II cells (AEC IIs), AEC IIs were exposed to 95% oxygen and the SHH signaling pathway was examined. Primary AEC IIs were isolated and purified from premature rats. The cells were divided into four groups: The air (21% oxygen) group, hyperoxia (95% oxygen) group, hyperoxia + SP group and hyperoxia + SP + L703.606 group. The activity of AEC IIs was examined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. The apoptotic rate of AEC IIs was analyzed by flow cytometry. The oxidative damage was evaluated by flow cytometry and reactive oxygen species (ROS) were detected using a 2',7'‑dichlorodihydrofluorescein diacetate probe. Quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression of the SHH signaling molecule Smoothened (SMO). The results demonstrated that exposure to 95% oxygen for 24 h significantly increased the level of ROS, contributed to apoptosis and markedly decreased the proliferation of AEC IIs. Compared with hyperoxia exposure, SP treatment decreased the level of ROS, reduced AEC II apoptosis and improved the cell survival sequentially. SMO was found to be expressed in AEC IIs and its expression increased when the cells were in hyperoxic conditions. These effects were enhanced by treatment with SP, which was able to significantly increase the expression of SMO. The aforementioned protective effect was weakened following treatment with L703.606. These findings suggested that SP was a protective regulatory factor that was able to decrease the hyperoxia‑induced cell injury and death, and improve the survival of AEC IIs exposed to hyperoxia, which may be associated with the activation of the SHH signaling pathway.
Collapse
Affiliation(s)
- Cong Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lin Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongxing Dang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Fang Fang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Feng Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
31
|
Yang L, Liu C, Dang H, Fang F, Tan L, Zhao P, Xu F, Liu C. Substance P attenuates hyperoxia‑induced lung injury in neonatal rats. Mol Med Rep 2013; 9:595-9. [PMID: 24247295 DOI: 10.3892/mmr.2013.1809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 11/13/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to investigate the effects of substance P (SP) in hyperoxia‑induced lung injury in newborn rats and to elucidate its protective mechanism of action via the sonic hedgehog (SHH) signaling pathway. Twelve‑hour‑old neonatal Sprague‑Dawley rats were randomly divided into one of four groups: air, hyperoxia, air + SP and hyperoxia + SP. In a separate set of experiments, the neonatal rat pups were exposed to 21 or 95% O2 for 14 days with or without intraperitoneal administration of rat SP. The animals were sacrificed at 3, 7 and 14 days, respectively, of hyperoxia exposure. Lung pathology and grade of lung tissue injury were examined by light microscopy. Oxidative stress was evaluated by malondialdehyde (MDA) and antioxidant activity was measured by superoxide dismutase (SOD) in tissue homogenates. The expression of SHH mRNA and protein were detected by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. In the hyperoxia group, marked characteristics of acute lung injury (ALI) were observed. Compared with the simple hyperoxia treatment, the lung damage was significantly ameliorated following the addition of SP. Furthermore, the levels of MDA were decreased and SOD was significantly increased following the addition of SP. SP stimulation may result in activation of the SHH signaling pathway and the expression of SHH markedly increased following treatment with SP. The present study demonstrated that SP protected against the hyperoxia‑induced lung damage by attenuating oxidative stress, elevating the antioxidant activities and upregulating the signaling pathway of SHH.
Collapse
Affiliation(s)
- Lin Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Cong Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongxing Dang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Fang Fang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lingping Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ping Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Feng Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Chenjun Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, and PICU, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
32
|
Chandramouli A, Hatsell SJ, Pinderhughes A, Koetz L, Cowin P. Gli activity is critical at multiple stages of embryonic mammary and nipple development. PLoS One 2013; 8:e79845. [PMID: 24260306 PMCID: PMC3832531 DOI: 10.1371/journal.pone.0079845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023] Open
Abstract
Gli3 is a transcriptional regulator of Hedgehog (Hh) signaling that functions as a repressor (Gli3R) or activator (Gli3A) depending upon cellular context. Previously, we have shown that Gli3R is required for the formation of mammary placodes #3 and #5. Here, we report that this early loss of Gli3 results in abnormal patterning of two critical regulators: Bmp4 and Tbx3, within the presumptive mammary rudiment (MR) #3 zone. We also show that Gli3 loss leads to failure to maintain mammary mesenchyme specification and loss of epithelial Wnt signaling, which impairs the later development of remaining MRs: MR#2 showed profound evagination and ectopic hairs formed within the presumptive areola; MR#4 showed mild invagination defects and males showed inappropriate retention of mammary buds in Gli3xt/xt mice. Importantly, mice genetically manipulated to misactivate Hh signaling displayed the same phenotypic spectrum demonstrating that the repressor function of Gli3R is essential during multiple stages of mammary development. In contrast, positive Hh signaling occurs during nipple development in a mesenchymal cuff around the lactiferous duct and in muscle cells of the nipple sphincter. Collectively, these data show that repression of Hh signaling by Gli3R is critical for early placodal patterning and later mammary mesenchyme specification whereas positive Hh signaling occurs during nipple development.
Collapse
Affiliation(s)
- Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah J. Hatsell
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Alicia Pinderhughes
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Lisa Koetz
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Liu J, Li Q, Kuehn MR, Litingtung Y, Vokes SA, Chiang C. Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 2013; 375:160-71. [PMID: 23313125 DOI: 10.1016/j.ydbio.2012.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/17/2023]
Abstract
Sonic hedgehog (Shh) signal, mediated by the Gli family of transcription factors, plays an essential role in the growth and patterning of the limb. Through analysis of the early limb bud transcriptome, we identified a posteriorly-enriched gene, Hyaluronic Acid Synthase 2 (Has2), which encodes a key enzyme for the synthesis of hyaluronan (HA), as a direct target of Gli transcriptional regulation during early mouse limb development. Has2 expression in the limb bud is lost in Shh null and expanded anteriorly in Gli3 mutants. We identified an ∼3kb Has2 promoter fragment that contains two strong Gli-binding consensus sequences, and mutation of either site abrogated the ability of Gli1 to activate Has2 promoter in a cell-based assay. Additionally, this promoter fragment is sufficient to direct expression of a reporter gene in the posterior limb mesenchyme. Chromatin immunoprecipitation of DNA-Gli3 protein complexes from limb buds indicated that Gli3 strongly binds to the Has2 promoter region, suggesting that Has2 is a direct transcriptional target of the Shh signaling pathway. We also showed that Has2 conditional mutant (Has2cko) hindlimbs display digit-specific patterning defects with longitudinally shifted phalangeal joints and impaired chondrogenesis. Has2cko limbs show less capacity for mesenchymal condensation with mislocalized distributions of chondroitin sulfate proteoglycans (CSPGs), aggrecan and link protein. Has2cko limb phenotype displays striking resemblance to mutants with defective chondroitin sulfation suggesting tight developmental control of HA on CSPG function. Together, our study identifies Has2 as a novel downstream target of Shh signaling required for joint patterning and chondrogenesis.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
34
|
DeSouza KR, Saha M, Carpenter AR, Scott M, McHugh KM. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development. PLoS One 2013; 8:e53675. [PMID: 23308271 PMCID: PMC3538723 DOI: 10.1371/journal.pone.0053675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we examined the expression of Sonic Hedgehog, Patched, Gli1, Gli2, Gli3 and Myocardin in the developing bladders of male and female normal and megabladder (mgb-/-) mutant mice at embryonic days 12 through 16 by in situ hybridization. This analysis indicated that each member of the Sonic Hedgehog signaling pathway as well as Myocardin displayed distinct temporal and spatial patterns of expression during normal bladder development. In contrast, mgb-/- bladders showed both temporal and spatial changes in the expression of Patched, Gli1 and Gli3 as well as a complete lack of Myocardin expression. These changes occurred primarily in the outer mesenchyme of developing mgb-/- bladders consistent with the development of an amuscular bladder phenotype in these animals. These results provide the first comprehensive analysis of the Sonic Hedgehog signaling pathway during normal bladder development and provide strong evidence that this key signaling cascade is critical in establishing radial patterning in the developing bladder. In addition, the lack of detrusor smooth muscle development observed in mgb-/- mice is associated with bladder-specific temporospatial changes in Sonic Hedgehog signaling coupled with a lack of Myocardin expression that appears to result in altered patterning of the outer mesenchyme and poor initiation and differentiation of smooth muscle cells within this region of the developing bladder.
Collapse
Affiliation(s)
- Kristin R DeSouza
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America.
| | | | | | | | | |
Collapse
|
35
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
36
|
Significance of sonic hedgehog signaling after massive hepatectomy in a rat. Surg Today 2012; 43:300-7. [PMID: 22790641 DOI: 10.1007/s00595-012-0248-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/15/2012] [Indexed: 01/11/2023]
Abstract
PURPOSE To clarify the functional involvement of hedgehog signaling, especially sonic hedgehog (Shh) and glioma-associated oncogene (Gli)-1 which are known to play an important role in embryonic development and cancer, in the regeneration of a hepatectomized rat liver. METHODS Six-week-old male Wistar rats were subjected to 70 or 90 % hepatectomy (Hx). Animals were killed at 24, 48 and 72 h after Hx. The liver/body weight ratio was measured as an index of regeneration. Formalin-fixed liver samples were embedded in paraffin, stained for immunohistochemistry with proliferating cell nuclear antigen (PCNA) antibody, and the labeling index was calculated. Immunohistochemistry was also performed with Shh and Gli-1 antibodies. RESULTS The liver/body weight ratio gradually increased in both the 70 and 90 % Hx, groups. The hepatocytes were strongly stained for PCNA at 24 h after Hx. Non-parenchymal cells were gradually stained by PCNA from 24 to 72 h after Hx. Shh and Gli-1 expression in hepatocytes was higher after 24 h than at other times and then gradually decreased. Shh and Gli-1 expression in non-parenchymal cells increased gradually, and was found mainly in liver zone I at 72 h after 70 and 90 % Hx. CONCLUSIONS The expression of both markers suggested that Shh signaling contributes to tissue reconstruction after Hx.
Collapse
|
37
|
Veenma DCM, de Klein A, Tibboel D. Developmental and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol 2012; 47:534-45. [PMID: 22467525 DOI: 10.1002/ppul.22553] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/17/2012] [Indexed: 12/21/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a frequent occurring cause of neonatal respiratory distress and occurs 1 in every 3,000 liveborns. Ventilatory support and pharmaceutical treatment of the co-occurring lung hypoplasia and pulmonary hypertension are insufficient in, respectively, 20% of isolated cases and 60% of complex ones leading to early perinatal death. The exact cause of CDH remains to be identified in the majority of human CDH patients and prognostic factors predicting treatment refraction are largely unknown. Their identification is hampered by the multifactorial and heterogenic nature of this congenital anomaly. However, application of high-resolution molecular cytogenetic techniques to patients' DNA now enables detection of chromosomal aberrations in 30% of the patients. Furthermore, recent insights in rodent embryogenesis pointed to a specific disruption of the early mesenchymal structures in the primordial diaphragm of CDH-induced offspring. Together, these data allowed for the introduction of new hypotheses on CDH pathogenesis, although many issues remain to be resolved. In this review, we have combined these new insights and remaining questions on diaphragm pathogenesis with a concise overview of the clinical, embryological, and genetic data available.
Collapse
Affiliation(s)
- D C M Veenma
- Department of Paediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Ornitz DM, Yin Y. Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol 2012; 4:4/5/a008318. [PMID: 22550231 DOI: 10.1101/cshperspect.a008318] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lungs serve the primary function of air-blood gas exchange in all mammals and in terrestrial vertebrates. Efficient gas exchange requires a large surface area that provides intimate contact between the atmosphere and the circulatory system. To achieve this, the lung contains a branched conducting system (the bronchial tree) and specialized air-blood gas exchange units (the alveoli). The conducting system brings air from the external environment to the alveoli and functions to protect the lung from debris that could obstruct airways, from entry of pathogens, and from excessive loss of fluids. The distal lung enables efficient exchange of gas between the alveoli and the conducting system and between the alveoli and the circulatory system. In this article, we highlight developmental and physiological mechanisms that specify, pattern, and regulate morphogenesis of this complex and essential organ. Recent advances have begun to define molecular mechanisms that control many of the important processes required for lung organogenesis; however, many questions remain. A deeper understanding of these molecular mechanisms will aid in the diagnosis and treatment of congenital lung disease and in the development of strategies to enhance the reparative response of the lung to injury and eventually permit regeneration of functional lung tissue.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
39
|
Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL, Coffey RJ. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149:146-58. [PMID: 22464327 PMCID: PMC3563328 DOI: 10.1016/j.cell.2012.02.042] [Citation(s) in RCA: 550] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/12/2012] [Accepted: 02/01/2012] [Indexed: 12/20/2022]
Abstract
Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.
Collapse
Affiliation(s)
- Anne E. Powell
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Wang
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yina Li
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily J. Poulin
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L. Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mary K. Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James N. Higginbotham
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alwin Juchheim
- Molecular Pathology Unit, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806
| | - Shawn E. Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806
| | - Yan Guo
- Department of Biostatistics, Vanderbilt University, Nashville, TN, 37232
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN, 37232
| | - Bruce J. Aronow
- Departments of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kevin M. Haigis
- Molecular Pathology Unit, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey L. Franklin
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
40
|
Zhang J, Jeradi S, Strähle U, Akimenko MA. Laser ablation of the sonic hedgehog-a-expressing cells during fin regeneration affects ray branching morphogenesis. Dev Biol 2012; 365:424-33. [PMID: 22445510 DOI: 10.1016/j.ydbio.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 02/21/2012] [Accepted: 03/08/2012] [Indexed: 01/16/2023]
Abstract
The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of the shha-expressing cells in the patterning of fin ray branches. The shha expression domain in the basal epidermis of each fin ray splits into two prior to ray bifurcation. In addition, the osteoblast proliferation profile follows the dynamic expression pattern of shha. A zebrafish transgenic line, 2.4shh:gfpABC#15, in which GFP expression recapitulates the endogenous expression of shha, was used to specifically ablate shha-expressing cells with a laser beam. Such ablations lead to a delay in the sequence of events leading to ray bifurcation without affecting the overall growth of the fin ray. These results suggest that shha-expressing cells direct localized osteoblast proliferation and thus regulate branching morphogenesis. This study reveals the fin ray as a new accessible system to investigate epithelial-mesenchymal interactions leading to organ branching.
Collapse
Affiliation(s)
- Jing Zhang
- CAREG, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
41
|
Kwon YJ, Hurst DR, Steg AD, Yuan K, Vaidya KS, Welch DR, Frost AR. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines. Clin Exp Metastasis 2011; 28:437-49. [PMID: 21442356 PMCID: PMC3081062 DOI: 10.1007/s10585-011-9382-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 03/12/2011] [Indexed: 02/06/2023]
Abstract
Gli1 is an established oncogene and its expression in Estrogen Receptor (ER) α negative and triple negative breast cancers is predictive of a poor prognosis; however, the biological functions regulated by Gli1 in breast cancer have not been extensively evaluated. Herein, Gli1 was over-expressed or down-regulated (by RNA interference and by expression of the repressor form of Gli3) in the ERα negative, human breast cancer cell lines MDA-MB-231 and SUM1315. Reduced expression of Gli1 in these two cell lines resulted in a decrease in migration and invasion. Gli1 over-expression increased the migration and invasion of MDA-MB-231 cells with a corresponding increase in expression of MMP-11. Silencing MMP-11 in MDA-MB-231 cells that over-expressed Gli1 abrogated the Gli1-induced enhancement of migration and invasion. Sustained suppression of Gli1 expression decreased growth of MDA-MB-231 in vitro by increasing apoptosis and decreasing proliferation. In addition, silencing of Gli1 reduced the numbers and sizes of pulmonary metastases of MDA-MB-231 in an in vivo experimental metastasis assay. In summary, Gli1 promotes the growth, survival, migration, invasion and metastasis of ERα negative breast cancer. Additionally, MMP-11 is up-regulated by Gli1 and mediates the migration and invasion induced by Gli1 in MDA-MB-231.
Collapse
Affiliation(s)
- Yeon-Jin Kwon
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Douglas R. Hurst
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Adam D. Steg
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
| | - Kun Yuan
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
| | - Kedar S. Vaidya
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
| | - Danny R. Welch
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Andra R. Frost
- Department of Pathology, University of Alabama at Birmingham, Kaul Human Genetics Building, 720 20th Street South, Birmingham, AL 35294 USA
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
42
|
Potvin É, Beuret L, Cadrin-Girard JF, Carter M, Roy S, Tremblay M, Charron J. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3. Mol Cell Biol 2010; 30:5348-63. [PMID: 20855530 PMCID: PMC2976382 DOI: 10.1128/mcb.00353-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/02/2009] [Accepted: 08/07/2010] [Indexed: 01/05/2023] Open
Abstract
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Collapse
Affiliation(s)
- Éric Potvin
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Laurent Beuret
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean-François Cadrin-Girard
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Marcelle Carter
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Sophie Roy
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Michel Tremblay
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| |
Collapse
|
43
|
Liou GY, Zhang H, Miller EM, Seibold SA, Chen W, Gallo KA. Induced, selective proteolysis of MLK3 negatively regulates MLK3/JNK signalling. Biochem J 2010; 427:435-43. [PMID: 20158498 DOI: 10.1042/bj20091077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MLK3 (mixed lineage kinase 3) is a MAP3K [MAPK (mitogen-activated protein kinase) kinase kinase] that activates multiple MAPK pathways, including the JNK (c-Jun N-terminal kinase) pathway. Immunoblotting of lysates from cells ectopically expressing active MLK3 revealed an additional immunoreactive band corresponding to a CTF (C-terminal fragment) of MLK3. In the present paper we provide evidence that MLK3 undergoes proteolysis to generate a stable CTF in response to different stimuli, including PMA and TNFalpha (tumour necrosis factor alpha). The cleavage site was deduced by Edman sequencing as between Gln251 and Pro252, which is within the kinase domain of MLK3. Based on our homology model of the kinase domain of MLK3, the region containing the cleavage site is predicted to reside on a flexible solvent-accessible loop. Site-directed mutagenesis studies revealed that Leu250 and Gln251 are required for recognition by the 'MLK3 protease', reminiscent of the substrate specificity of the coronavirus 3C and 3CL proteases. Whereas numerous mammalian protease inhibitors have no effect on MLK3 proteolysis, blockade of the proteasome through epoxomicin or MG132 abolishes PMA-induced production of the CTF of MLK3. This CTF is able to heterodimerize with full-length MLK3, and interact with the active form of the small GTPase Cdc42, resulting in diminished activation loop phosphorylation of MLK3 and reduced signalling to JNK. Thus this novel proteolytic processing of MLK3 may negatively control MLK3 signalling to JNK.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | |
Collapse
|
44
|
Hirashima T, Iwasa Y, Morishita Y. Mechanisms for split localization of Fgf10 expression in early lung development. Dev Dyn 2010; 238:2813-22. [PMID: 19842186 DOI: 10.1002/dvdy.22108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In early lung development, epithelial tubes (lung buds) intrude into mesenchyme covered with pleural cells (lung border), and form tree-like networks, by means of repeated use of morphogenetic processes: "elongation," "terminal bifurcation," and "lateral budding." When a bud is elongating, a peak of Fgf10 expression is formed in the mesenchyme near the tip; whereas when terminal bifurcation and lateral budding occur, two separate peaks are formed instead. To explain the spatial pattern of Fgf10 expression, we developed a mathematical model for the regulation of Fgf10 expression with geometrical conditions including shapes of the lung buds and the lung border. Different localization patterns of Fgf10 expression can be explained by the geometrical conditions. Fgf10 expression has a single peak when a length between the tip of lung bud and the lung border is large. When the length is small, Fgf10 expression has two peaks, whose location depends on the curvature of lung border.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
45
|
Bresson E, Seaborn T, Côté M, Cormier G, Provost PR, Piedboeuf B, Tremblay Y. Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod Biol Endocrinol 2010; 8:2. [PMID: 20064212 PMCID: PMC2822783 DOI: 10.1186/1477-7827-8-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/08/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. METHODS To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. RESULTS Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. CONCLUSION Our results show clearly that there is a real delay in lung maturation between male and female in this period, the latter pursuing already lung maturation while the proper is not yet fully engaged in the differentiation processes at GD17. In addition, this study provides a list of genes which are under the control of androgens within the lung at the moment of surge of surfactant production in murine fetal lung.
Collapse
Affiliation(s)
- Eva Bresson
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Tommy Seaborn
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
- INSERM U413/EA4310, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP), International Associated Laboratory Samuel de Champlain, University of Rouen, France
| | - Mélissa Côté
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Geneviève Cormier
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Pierre R Provost
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Bruno Piedboeuf
- Department of Pediatrics, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Yves Tremblay
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
46
|
Dieguez-Acuña F, Kodama S, Okubo Y, Paz AC, Gygi SP, Faustman DL. Proteomics identifies multipotent and low oncogenic risk stem cells of the spleen. Int J Biochem Cell Biol 2009; 42:1651-60. [PMID: 20005973 DOI: 10.1016/j.biocel.2009.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/01/2009] [Indexed: 01/31/2023]
Abstract
The adult spleen harbors a population of naturally occurring multipotent stem cells of non-lymphoid lineage (CD45-). In animal models, these splenic stem cells can directly or indirectly contribute to regeneration of bone, inner ear, cranial nerves, islets, hearts and salivary glands. Here we characterize the CD45- stem cell proteome to determine its potential broader multipotency versus its protection from malignant transformation. Using state-of-the-art proteomics and in vivo testing, we performed functional analyses of unique proteins of CD45- (non-lymphoid) splenic stem cells, as compared with CD45+ (lymphoid) cells. CD45- stem cell-specific proteins were identical to those in iPS, including OCT3/4, SOX2, KLF4, c-MYC and NANOG. They also expressed Hox11, Gli3, Wnt2, and Adam12, the benchmark transcription factors of embryonic stem cells. These transcription factors were functional because their mRNA was upregulated in the spleen in association with ongoing damage to the pancreas and salivary glands, organs to which they normally contribute stem cells. We also show low likelihood of malignant transformation. Our proteomic and functional analyses reveals that naturally occurring CD45- stem cells of the spleen are the first-ever candidates for naturally occurring population of embryonic and iPS cells with low oncogenic risk. Given their presence in normal humans and mice, splenic stem cells are poised for translational research.
Collapse
|
47
|
Cao D, Jin C, Ren M, Lin C, Zhang X, Zhao N. The expression of Gli3, regulated by HOXD13, may play a role in idiopathic congenital talipes equinovarus. BMC Musculoskelet Disord 2009; 10:142. [PMID: 19925654 PMCID: PMC2784749 DOI: 10.1186/1471-2474-10-142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 11/19/2009] [Indexed: 11/10/2022] Open
Abstract
Background Idiopathic congenital talipes equinovarus (ICTEV) is a congenital limb deformity. Based on extended transmission disequilibrium testing, Gli-Kruppel family member 3 (Gli3) has been identified as a candidate gene for ICTEV. Here, we verify the role of Gli3 in ICTEV development. Methods Using the rat ICTEV model, we analyzed the differences in Gli3 expression levels between model rats and normal control rats. We used luciferase reporter gene assays and ChIP/EMSA assays to analyze the regulatory elements of Gli3. Results Gli3 showed higher expression levels in ICTEV model rats compared to controls (P < 0.05). We identified repressor and activator regions in the rat Gli3 promoter. The Gli3 promoter also contains two putative Hoxd13 binding sites. Using EMSA, the Hoxd13 binding site 2 was found to directly interact with Hoxd13 in vitro. ChIP assays of the Hoxd13-Gli3 promoter complex from a developing limb confirmed that endogenous Hoxd13 interacts with this region in vivo. Conclusion Our findings suggest that HoxD13 directly interacts with the promoter of Gli3. The increase of Gli3 expression in ICTEV model animal might result from the low expression of HoxD13.
Collapse
Affiliation(s)
- DongHua Cao
- Department of Medical Genetics, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Joeng KS, Long F. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 2009; 136:4177-85. [PMID: 19906844 DOI: 10.1242/dev.041624] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Indian hedgehog (Ihh) critically regulates multiple aspects of endochondral bone development. Although it is generally believed that all Ihh functions are mediated by the Gli family of transcription activators and repressors, formal genetic proof for this notion has not been provided. Moreover, the extent to which different Gli proteins contribute to Ihh functions is not fully understood. Previous work has shown that de-repression of the Gli3 repressor is the predominant mode through which Ihh controls chondrocyte proliferation and maturation, but that osteoblast differentiation and hypertrophic cartilage vascularization require additional mechanisms. To test the involvement of Gli2 activation in these processes, we have generated a mouse strain that expresses a constitutive Gli2 activator in a Cre-dependent manner, and have attempted to rescue the Ihh-null mouse with the Gli2 activator, either alone or in combination with Gli3 removal. Here, we report that the Gli2 activator alone is sufficient to induce vascularization of the hypertrophic cartilage in the absence of Ihh but requires simultaneous removal of Gli3 to restore osteoblast differentiation. These results therefore provide direct genetic evidence that Gli2 and Gli3 collectively mediate all major aspects of Ihh function during endochondral skeletal development.
Collapse
Affiliation(s)
- Kyu Sang Joeng
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
49
|
Chung MK, Kim HJ, Lee YS, Han ME, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO. Hedgehog signaling regulates proliferation of prostate cancer cells via stathmin1. Clin Exp Med 2009; 10:51-7. [PMID: 19779961 DOI: 10.1007/s10238-009-0068-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/31/2009] [Indexed: 12/17/2022]
Abstract
Hedgehog (Hh) signaling is an essential pathway in embryonic development of prostate. Hh also plays roles in the proliferation of progenitor cells and cancer cells of adult prostate. However, how Hh signaling contributes to carcinogenesis of prostate is poorly understood. Stathmin1 is a microtubule-regulating protein that plays an important role in the assembly and disassembly of the mitotic spindle. Stathmin1 is expressed in normal developing mouse prostate and in prostate cancer. The expression pattern of stathmin1 is similar to that of Shh in prostate development and cancer, suggesting a connection between these two proteins. In this study, we examined the relationship between stathmin1 and Hh signaling. Here, we show that stathmin1 expression is regulated by Hh signaling in prostate cancer cells. Cyclopamine, a specific inhibitor of Hh signaling, reduced the expression of stathmin1 in prostate cancer cells. However, the Shh peptide induced stathmin1 expression. Overexpression of Gli1 further confirmed the relationship. Co-expression of stathmin1 and Patched 1, a receptor for Hh signaling was observed in prostate cancer tissues. Cyclopamine and stathmin1 siRNA both decreased proliferation of prostate cancer cells but did not produce an additive effect, suggesting a common pathway. These results suggest that Hh signaling regulates proliferation of prostate cancer cells by controlling stathmin1 expression.
Collapse
Affiliation(s)
- Moon-Kee Chung
- Department of Urology, Pusan National University, Mulgeum-Eup, Beomeo-Ri, Yangsan, 626-870, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim WK, Meliton V, Park KW, Hong C, Tontonoz P, Niewiadomski P, Waschek JA, Tetradis S, Parhami F. Negative regulation of Hedgehog signaling by liver X receptors. Mol Endocrinol 2009; 23:1532-43. [PMID: 19608643 DOI: 10.1210/me.2008-0453] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hedgehog (Hh) signaling is indispensable in embryonic development, and its dysregulated activity results in severe developmental disorders as shown by genetic models of naturally occurring mutations in animal and human pathologies. Hh signaling also functions in postembryonic development and adult tissue homeostasis, and its aberrant activity causes various human cancers. Better understanding of molecular regulators of Hh signaling is of fundamental importance in finding new strategies for pathway modulation. Here, we identify liver X receptors (LXRs), members of the nuclear hormone receptor family, as previously unrecognized negative regulators of Hh signaling. Activation of LXR by specific pharmacological ligands, TO901317 and GW3965, inhibited the responses of pluripotent bone marrow stromal cells and calvaria organ cultures to sonic Hh, resulting in the inhibition of expression of Hh-target genes, Gli1 and Patched1, and Gli-dependent transcriptional activity. Moreover, LXR ligands inhibited sonic Hh-induced differentiation of bone marrow stromal cells into osteoblasts. Elimination of LXRs by small interfering RNA inhibited ligand-induced inhibition of Hh target gene expression. Furthermore, LXR ligand did not inhibit Hh responsiveness in mouse embryonic fibroblasts that do not express LXRs, whereas introduction of LXR into these cells reestablished the inhibitory effects. Daily oral administration of TO901317 to mice after 3 d significantly inhibited baseline Hh target-gene expression in liver, lung, and spleen. Given the importance of modulating Hh signaling in various physiological and pathological settings, our findings suggest that pharmacological targeting of LXRs may be a novel strategy for Hh pathway modulation.
Collapse
Affiliation(s)
- Woo-Kyun Kim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|