1
|
Short KM, Tortelote GG, Jones LK, Diniz F, Edgington-Giordano F, Cullen-McEwen LA, Schröder J, Spencer A, Keniry A, Polo JM, Bertram JF, Blewitt ME, Smyth IM, El-Dahr SS. The Impact of Low Protein Diet on the Molecular and Cellular Development of the Fetal Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569988. [PMID: 38106143 PMCID: PMC10723346 DOI: 10.1101/2023.12.04.569988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. Methods We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development to affect nephron number. Results Single cell analysis at E14.5 and P0 revealed differences in the expression of genes and pathways involved in metabolism, cell cycle, epigenetic regulators and reciprocal inductive signals in most cell types analyzed, yielding imbalances and shifts in cellular energy production and cellular trajectories. In the nephron progenitor cells, LPD impeded cellular commitment and differentiation towards pre-tubular and renal vesicle structures. Confocal microscopy revealed a reduction in the number of pre-tubular aggregates and proliferation in nephron progenitor cells. We also found changes in branching morphogenesis, with a reduction in cell proliferation in the ureteric tips as well as reduced tip and tip parent lengths by optical projection tomography which causes patterning defects. Conclusions This unique profiling demonstrates how a fetal programming defect leads to low nephron endowment which is intricately linked to changes in both branching morphogenesis and the commitment of nephron progenitor cells. The commitment of progenitor cells is pivotal for nephron formation and is significantly influenced by nutritional factors, with a low protein diet driving alterations in this program which directly results in a reduced nephron endowment. Significance Statement While a mother's diet can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal developmental programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.
Collapse
|
2
|
Kano M. Parathyroid Gland Generation from Pluripotent Stem Cells. Endocrinol Metab (Seoul) 2024; 39:552-558. [PMID: 38853617 PMCID: PMC11375298 DOI: 10.3803/enm.2024.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Patients with permanent hypoparathyroidism require lifelong treatment. Current replacement therapies sometimes have adverse effects (e.g., hypercalciuria and chronic kidney disease). Generating parathyroid glands (PTGs) from the patient's own induced pluripotent stem cells (PSCs), with transplantation of these PTGs, would be an effective treatment option. Multiple methods for generating PTGs from PSCs have been reported. One major trend is in vitro differentiation of PSCs into PTGs. Another is in vivo generation of PSC-derived PTGs by injecting PSCs into PTG-deficient embryos. This review discusses current achievements and challenges in present and future PTG regenerative medicine.
Collapse
Affiliation(s)
- Mayuko Kano
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
3
|
Wang G, Du Y, Cui X, Xu T, Li H, Dong M, Li W, Li Y, Cai W, Xu J, Li S, Yang X, Wu Y, Chen H, Li X. Directed differentiation of human embryonic stem cells into parathyroid cells and establishment of parathyroid organoids. Cell Prolif 2024; 57:e13634. [PMID: 38494923 PMCID: PMC11294423 DOI: 10.1111/cpr.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Differentiation of human embryonic stem cells (hESCs) into human embryonic stem cells-derived parathyroid-like cells (hESC-PT) has clinical significance in providing new therapies for congenital and acquired parathyroid insufficiency conditions. However, a highly reproducible, well-documented method for parathyroid differentiation remains unavailable. By imitating the natural process of parathyroid embryonic development, we proposed a new hypothesis about the in vitro differentiation of parathyroid-like cells. Transcriptome, differentiation marker protein detection and parathyroid hormone (PTH) secretion assays were performed after the completion of differentiation. To optimize the differentiation protocol and further improve the differentiation rate, we designed glial cells missing transcription factor 2 (GCM2) overexpression lentivirus transfection assays and constructed hESCs-derived parathyroid organoids. The new protocol enabled hESCs to differentiate into hESC-PT. HESC-PT cells expressed PTH, GCM2 and CaSR proteins, low extracellular calcium culture could stimulate hESC-PT cells to secrete PTH. hESC-PT cells overexpressing GCM2 protein secreted PTH earlier than their counterpart hESC-PT cells. Compared with the two-dimensional cell culture environment, hESCs-derived parathyroid organoids secreted more PTH. Both GCM2 lentiviral transfection and three-dimensional cultures could make hESC-PT cells functionally close to human parathyroid cells. Our study demonstrated that hESCs could differentiate into hESC-PT in vitro, which paves the road for applying the technology to treat hypoparathyroidism and introduces new approaches in the field of regenerative medicine.
Collapse
Affiliation(s)
- Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenjun Cai
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yonglin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Venkat A, Carlino MJ, Lawton BR, Prasad ML, Amodio M, Gibson CE, Zeiss CJ, Youlten SE, Krishnaswamy S, Krause DS. Single-cell analysis reveals transcriptional dynamics in healthy primary parathyroid tissue. Genome Res 2024; 34:837-850. [PMID: 38977309 PMCID: PMC11293540 DOI: 10.1101/gr.278215.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
Studies on human parathyroids are generally limited to hyperfunctioning glands owing to the difficulty in obtaining normal human tissue. We therefore obtained non-human primate (NHP) parathyroids to provide a suitable alternative for sequencing that would bear a close semblance to human organs. Single-cell RNA expression analysis of parathyroids from four healthy adult M. mulatta reveals a continuous trajectory of epithelial cell states. Pseudotime analysis based on transcriptomic signatures suggests a progression from GCM2 hi progenitors to mature parathyroid hormone (PTH)-expressing epithelial cells with increasing core mitochondrial transcript abundance along pseudotime. We sequenced, as a comparator, four histologically characterized hyperfunctioning human parathyroids with varying oxyphil and chief cell abundance and leveraged advanced computational techniques to highlight similarities and differences from non-human primate parathyroid expression dynamics. Predicted cell-cell communication analysis reveals abundant endothelial cell interactions in the parathyroid cell microenvironment in both human and NHP parathyroid glands. We show abundant RARRES2 transcripts in both human adenoma and normal primate parathyroid cells and use coimmunostaining to reveal high levels of RARRES2 protein (also known as chemerin) in PTH-expressing cells, which could indicate that RARRES2 plays an unrecognized role in parathyroid endocrine function. The data obtained are the first single-cell RNA transcriptome to characterize nondiseased parathyroid cell signatures and to show a transcriptomic progression of cell states within normal parathyroid glands, which can be used to better understand parathyroid cell biology.
Collapse
Affiliation(s)
- Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut 06511, USA
| | - Maximillian J Carlino
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Betty R Lawton
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Manju L Prasad
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA
| | - Matthew Amodio
- Department of Computer Science, Yale University, New Haven, Connecticut 06511, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Courtney E Gibson
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Scott E Youlten
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Smita Krishnaswamy
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut 06511, USA;
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06511, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA;
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA
| |
Collapse
|
5
|
Lee S, Jung HI, Lee J, Kim Y, Chung J, Kim HS, Lim J, Nam KC, Lim YS, Choi HS, Kwak BS. Parathyroid-on-a-chip simulating parathyroid hormone secretion in response to calcium concentration. LAB ON A CHIP 2024; 24:3243-3251. [PMID: 38836406 DOI: 10.1039/d4lc00249k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The parathyroid gland is an endocrine organ that plays a crucial role in regulating calcium levels in blood serum through the secretion of parathyroid hormone (PTH). Hypoparathyroidism is a chronic disease that can occur due to parathyroid defects, but due to the difficulty of creating animal models of this disease or obtaining human normal parathyroid cells, the evaluation of parathyroid functionality for drug development is limited. Although parathyroid-like cells that secrete PTH have recently been reported, their functionality may be overestimated using traditional culture methods that lack in vivo similarities, particularly vascularization. To overcome these limitations, we obtained parathyroid organoids from tonsil-derived mesenchymal stem cells (TMSCs) and fabricated a parathyroid-on-a-chip, capable of simulating PTH secretion based on calcium concentration. This chip exhibited differences in PTH secretion according to calcium concentration and secreted PTH within the range of normal serum levels. In addition, branches of organoids, which are difficult to observe in animal models, were observed in this chip. This could serve as a guideline for successful engraftment in implantation therapies in the future.
Collapse
Affiliation(s)
- Sunghan Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul, 13722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul, 13722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaehun Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul, 13722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| | - Youngwon Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul, 13722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| | - Jaewoo Chung
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Ewha Womans University, School of Medicine, Seoul 158-710, Republic of Korea
| | - Jiseok Lim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Ki Chang Nam
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| | - Yun-Sung Lim
- Department of Otorhinolaryngology -Head and Neck Surgery, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Han Seok Choi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Bong Seop Kwak
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| |
Collapse
|
6
|
Horackova A, Pospisilova A, Stundl J, Minarik M, Jandzik D, Cerny R. Pre-mandibular pharyngeal pouches in early non-teleost fish embryos. Proc Biol Sci 2023; 290:20231158. [PMID: 37700650 PMCID: PMC10498051 DOI: 10.1098/rspb.2023.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
The vertebrate pharynx is a key embryonic structure with crucial importance for the metameric organization of the head and face. The pharynx is primarily built upon progressive formation of paired pharyngeal pouches that typically develop in post-oral (mandibular, hyoid and branchial) domains. However, in the early embryos of non-teleost fishes, we have previously identified pharyngeal pouch-like outpocketings also in the pre-oral domain of the cranial endoderm. This pre-oral gut (POG) forms by early pouching of the primitive gut cavity, followed by the sequential formation of typical (post-oral) pharyngeal pouches. Here, we tested the pharyngeal nature of the POG by analysing expression patterns of selected core pharyngeal regulatory network genes in bichir and sturgeon embryos. Our comparison revealed generally shared expression patterns, including Shh, Pax9, Tbx1, Eya1, Six1, Ripply3 or Fgf8, between early POG and post-oral pharyngeal pouches. POG thus shares pharyngeal pouch-like morphogenesis and a gene expression profile with pharyngeal pouches and can be regarded as a pre-mandibular pharyngeal pouch. We further suggest that pre-mandibular pharyngeal pouches represent a plesiomorphic vertebrate trait inherited from our ancestor's pharyngeal metameric organization, which is incorporated in the early formation of the pre-chordal plate of vertebrate embryos.
Collapse
Affiliation(s)
- Agata Horackova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Jan Stundl
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Martin Minarik
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - David Jandzik
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| |
Collapse
|
7
|
Washausen S, Knabe W. Patterns of senescence and apoptosis during development of branchial arches, epibranchial placodes, and pharyngeal pouches. Dev Dyn 2023; 252:1189-1223. [PMID: 37345578 DOI: 10.1002/dvdy.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Many developmental processes are coregulated by apoptosis and senescence. However, there is a lack of data on the development of branchial arches, epibranchial placodes, and pharyngeal pouches, which harbor epibranchial signaling centers. RESULTS Using immunohistochemical, histochemical, and 3D reconstruction methods, we show that in mice, senescence and apoptosis together may contribute to the invagination of the branchial clefts and the deepening of the cervical sinus floor, in antagonism to the proliferation acting in the evaginating branchial arches. The concomitant apoptotic elimination of lateral line rudiments occurs in the absence of senescence. In the epibranchial placodes, senescence and apoptosis appear to (1) support invagination or at least indentation by immobilizing the margins of the centrally proliferating pit, (2) coregulate the number and fate of Pax8+ precursors, (3) progressively narrow neuroblast delamination sites, and (4) contribute to placode regression. Putative epibranchial signaling centers in the pharyngeal pouches are likely deactivated by rostral senescence and caudal apoptosis. CONCLUSIONS Our results reveal a plethora of novel patterns of apoptosis and senescence, some overlapping, some complementary, whose functional contributions to the development of the branchial region, including the epibranchial placodes and their signaling centers, can now be tested experimentally.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
8
|
Kameda Y. Cellular and molecular mechanisms of the organogenesis and development, and function of the mammalian parathyroid gland. Cell Tissue Res 2023; 393:425-442. [PMID: 37410127 DOI: 10.1007/s00441-023-03785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/12/2023] [Indexed: 07/07/2023]
Abstract
Serum calcium homeostasis is mainly regulated by parathormone (PTH) secreted by the parathyroid gland. Besides PTH and Gcm2, a master gene for parathyroid differentiation, many genes are expressed in the gland. Especially, calcium-sensing receptor (CaSR), vitamin D receptor (VDR), and Klotho function to prevent increased secretion of PTH and hyperplasia of the parathyroid gland under chronic hypocalcemia. Parathyroid-specific dual deletion of Klotho and CaSR induces a marked enlargement of the glandular size. The parathyroid develops from the third and fourth pharyngeal pouches except murine species in which the gland is derived from the third pouch only. The development of the murine parathyroid gland is categorized as follows: (1) formation and differentiation of the pharyngeal pouches, (2) appearance of parathyroid domain in the third pharyngeal pouch together with thymus domain, (3) migration of parathyroid primordium attached to the top of thymus, and (4) contact with the thyroid lobe and separation from the thymus. The transcription factors and signaling molecules involved in each of these developmental stages are elaborated. In addition, mesenchymal neural crest cells surrounding the pharyngeal pouches and parathyroid primordium and invading the parathyroid parenchyma participate in the development of the gland.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
9
|
Riedhammer KM, Nguyen TMT, Koşukcu C, Calzada-Wack J, Li Y, Saygılı S, Wimmers V, Kim GJ, Chrysanthou M, Bakey Z, Kraiger M, Sanz-Moreno A, Amarie OV, Rathkolb B, Klein-Rodewald T, Garrett L, Hölter SM, Seisenberger C, Haug S, Marschall S, Wurst W, Fuchs H, Gailus-Durner V, Wuttke M, de Angelis MH, Ćomić J, Doğan ÖA, Özlük Y, Taşdemir M, Ağbaş A, Canpolat N, Ćalışkan S, Weber R, Bergmann C, Jeanpierre C, Saunier S, Lim TY, Hildebrandt F, Alhaddad B, Wu K, Antony D, Matschkal J, Schaaf C, Renders L, Schmaderer C, Meitinger T, Heemann U, Köttgen A, Arnold S, Ozaltin F, Schmidts M, Hoefele J. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287206. [PMID: 36993625 PMCID: PMC10055578 DOI: 10.1101/2023.03.21.23287206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.
Collapse
Affiliation(s)
- Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thanh-Minh T. Nguyen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Seha Saygılı
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Vera Wimmers
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Marialena Chrysanthou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Zeineb Bakey
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sabine M. Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Claudia Seisenberger
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
- Deutsches Institut fur Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technical University of Munich, Freising, 85354, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Özlem Akgün Doğan
- Department of Pediatric Genetics, Acibadem Mehmet Ali Aydinlar University, Faculty of Medicine, Istanbul, Türkiye
| | - Yasemin Özlük
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Mehmet Taşdemir
- Department of Pediatric Nephrology, Istinye University School of Medicine, Liv Hospital, Istanbul, Türkiye
| | - Ayşe Ağbaş
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Salim Ćalışkan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ruthild Weber
- Department of Human Genetics, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cecile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Renales Hereditaires Institut Imagine, Université de Paris, Paris, France
| | - Tze Y. Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Kaman Wu
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
| | - Dinu Antony
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Julia Matschkal
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christian Schaaf
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and University Medical Center Freiburg, 79106 Freiburg, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology II, Faculty of Medicine, University of Freiburg and, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, 79104, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Fatih Ozaltin
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, 06100, Türkiye
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, 06100, Sihhiye, Ankara, Türkiye
| | - Miriam Schmidts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525, The Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, 79106, Germany
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, 81675, Germany
| |
Collapse
|
10
|
Ramachandran J, Zhou W, Bardenhagen AE, Nasr T, Yates ER, Zorn AM, Ji H, Vokes SA. Hedgehog regulation of epithelial cell state and morphogenesis in the larynx. eLife 2022; 11:e77055. [PMID: 36398878 PMCID: PMC9718526 DOI: 10.7554/elife.77055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022] Open
Abstract
The larynx enables speech while regulating swallowing and respiration. Larynx function hinges on the laryngeal epithelium which originates as part of the anterior foregut and undergoes extensive remodeling to separate from the esophagus and form vocal folds that interface with the adjacent trachea. Here we find that sonic hedgehog (SHH) is essential for epithelial integrity in the mouse larynx as well as the anterior foregut. During larynx-esophageal separation, low Shh expression marks specific domains of actively remodeling epithelium that undergo an epithelial-to-mesenchymal transition (EMT) characterized by the induction of N-Cadherin and movement of cells out of the epithelial layer. Consistent with a role for SHH signaling in regulating this process, Shh mutants undergo an abnormal EMT throughout the anterior foregut and larynx, marked by a cadherin switch, movement out of the epithelial layer and cell death. Unexpectedly, Shh mutant epithelial cells are replaced by a new population of FOXA2-negative cells that likely derive from adjacent pouch tissues and form a rudimentary epithelium. These findings have important implications for interpreting the etiology of HH-dependent birth defects within the foregut. We propose that SHH signaling has a default role in maintaining epithelial identity throughout the anterior foregut and that regionalized reductions in SHH trigger epithelial remodeling.
Collapse
Affiliation(s)
- Janani Ramachandran
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Anna E Bardenhagen
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Talia Nasr
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ellen R Yates
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Steven A Vokes
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| |
Collapse
|
11
|
Wang X, Liang Y, Zhu Z, Li W, Shi B, Deng Y, Li C, Sha O. Fn1 Regulates the Third Pharyngeal Pouch Patterning and Morphogenesis. J Dent Res 2022; 101:1082-1091. [PMID: 35259939 DOI: 10.1177/00220345221078775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The parathyroid and thymus are derived from the common primordia, the third pharyngeal pouch. During their development, endodermal cells actively interact with surrounding mesenchymal cells, mainly derived from neural crest cells (NCCs). However, the mechanism by which NCCs regulate the development of the third pharyngeal pouch remains largely unknown. In this study, we showed that fibronectin 1 (Fn1), which is synthesized by NCCs, modulates the functions of NCCs in the third pharyngeal pouch patterning and in the morphogenesis of the thymus/parathyroid. Loss of Fn1 in NCCs leads to decreased Foxn1 expression in the presumptive thymus domain at E11.5. In the mutant, we detected upregulation of the Hedgehog signaling activity in the presumptive parathyroid domain and downregulation of Bmp4 in the presumptive thymus domain. Tbx1, a Hedgehog signaling target gene in endoderm development, was ectopically expanded to the presumptive mutant thymus domain at E11.5. Fgf10, an important gene regulating the proliferation of endoderm development, was downregulated in the mutant NCCs. At later organogenesis stages, derivatives of the third pharyngeal pouch endoderm of mutant embryos were abnormal, showing conditions such as hypoparathyroidism, hypoplastic thymus, and ectopic thymus and parathyroid. These data support that Fn1 plays an important role in NCCs by regulating the patterning of the third pharyngeal pouch and morphogenesis of the thymus/parathyroid.
Collapse
Affiliation(s)
- X Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Y Liang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Z Zhu
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| | - W Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - B Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Deng
- Department of Somatology, Shenzhen University General Hospital, Shenzhen, China
| | - C Li
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - O Sha
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
12
|
Provin N, Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front Immunol 2022; 13:930963. [PMID: 35844523 PMCID: PMC9277542 DOI: 10.3389/fimmu.2022.930963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The thymus is a primary lymphoid organ essential for the induction of central immune tolerance. Maturing T cells undergo several steps of expansion and selection mediated by thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in genes that regulate TEC development or their ability to select non auto-reactive thymocytes results in a defective immune balance, and consequently in a general autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence of curative treatments. The last decade has seen remarkable progress in both gene editing and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination of these two approaches has paved the way to the generation of genetically corrected thymic organoids and their use to control thymic genetic pathologies affecting self-tolerance. Here we review the recent advances in differentiation of iPSc into TECs and the ability of the latter to support a proper and efficient maturation of thymocytes into functional and non-autoreactive T cells. A special focus is given on thymus organogenesis and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on the generated TECs, and on perspectives for therapeutic strategies in APECED based on patient-derived iPSc corrected for AIRE gene mutations.
Collapse
|
13
|
Sun S, Li JY, Nim HT, Piers A, Ramialison M, Porrello ER, Konstantinov IE, Elefanty AG, Stanley EG. CD90 Marks a Mesenchymal Program in Human Thymic Epithelial Cells In Vitro and In Vivo. Front Immunol 2022; 13:846281. [PMID: 35371075 PMCID: PMC8966383 DOI: 10.3389/fimmu.2022.846281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Thymic epithelium is critical for the structural integrity of the thymus and for T cell development. Within the fully formed thymus, large numbers of hematopoietic cells shape the thymic epithelium into a scaffold-like structure which bears little similarity to classical epithelial layers, such as those observed in the skin, intestine or pancreas. Here, we show that human thymic epithelial cells (TECs) possess an epithelial identity that also incorporates the expression of mesenchymal cell associated genes, whose expression levels vary between medullary and cortical TECs (m/cTECs). Using pluripotent stem cell (PSC) differentiation systems, we identified a unique population of cells that co-expressed the master TEC transcription factor FOXN1, as well as the epithelial associated marker EPCAM and the mesenchymal associated gene CD90. Using the same serum free culture conditions, we also observed co-expression of EPCAM and CD90 on cultured TECs derived from neonatal human thymus in vitro. Single cell RNA-sequencing revealed these cultured TECs possessed an immature mTEC phenotype and expressed epithelial and mesenchymal associated genes, such as EPCAM, CLDN4, CD90 and COL1A1. Importantly, flow cytometry and single cell RNA-sequencing analysis further confirmed the presence of an EPCAM+CD90+ population in the CD45- fraction of neonatal human thymic stromal cells in vivo. Using the human thymus cell atlas, we found that cTECs displayed more pronounced mesenchymal characteristics than mTECs during embryonic development. Collectively, these results suggest human TECs possess a hybrid gene expression program comprising both epithelial and mesenchymal elements, and provide a basis for the further exploration of thymus development from primary tissues and from the in vitro differentiation of PSCs.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Hieu T Nim
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Adam Piers
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Mirana Ramialison
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Igor E Konstantinov
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.,Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Molecular Bases of Human Malformation Syndromes Involving the SHH Pathway: GLIA/R Balance and Cardinal Phenotypes. Int J Mol Sci 2021; 22:ijms222313060. [PMID: 34884862 PMCID: PMC8657641 DOI: 10.3390/ijms222313060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Human hereditary malformation syndromes are caused by mutations in the genes of the signal transduction molecules involved in fetal development. Among them, the Sonic hedgehog (SHH) signaling pathway is the most important, and many syndromes result from its disruption. In this review, we summarize the molecular mechanisms and role in embryonic morphogenesis of the SHH pathway, then classify the phenotype of each malformation syndrome associated with mutations of major molecules in the pathway. The output of the SHH pathway is shown as GLI activity, which is generated by SHH in a concentration-dependent manner, i.e., the sum of activating form of GLI (GLIA) and repressive form of GLI (GLIR). Which gene is mutated and whether the mutation is loss-of-function or gain-of-function determine in which concentration range of SHH the imbalance occurs. In human malformation syndromes, too much or too little GLI activity produces symmetric phenotypes affecting brain size, craniofacial (midface) dysmorphism, and orientation of polydactyly with respect to the axis of the limb. The symptoms of each syndrome can be explained by the GLIA/R balance model.
Collapse
|
15
|
Li J, Xu J, Jiang H, Zhang T, Ramakrishnan A, Shen L, Xu PX. Chromatin Remodelers Interact with Eya1 and Six2 to Target Enhancers to Control Nephron Progenitor Cell Maintenance. J Am Soc Nephrol 2021; 32:2815-2833. [PMID: 34716243 PMCID: PMC8806105 DOI: 10.1681/asn.2021040525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huihui Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
16
|
Gras-Peña R, Danzl NM, Khosravi-Maharlooei M, Campbell SR, Ruiz AE, Parks CA, Suen Savage WM, Holzl MA, Chatterjee D, Sykes M. Human stem cell-derived thymic epithelial cells enhance human T-cell development in a xenogeneic thymus. J Allergy Clin Immunol 2021; 149:1755-1771. [PMID: 34695489 PMCID: PMC9023620 DOI: 10.1016/j.jaci.2021.09.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Generation of thymic tissue from pluripotent stem cells would provide therapies for acquired and congenital thymic insufficiency states. OBJECTIVES This study aimed to generate human thymic epithelial progenitors from human embryonic stem cells (hES-TEPs) and to assess their thymopoietic function in vivo. METHODS This study differentiated hES-TEPs by mimicking developmental queues with FGF8, retinoic acid, SHH, Noggin, and BMP4. Their function was assessed in reaggregate cellular grafts under the kidney capsule and in hybrid thymi by incorporating them into swine thymus (SwTHY) grafts implanted under the kidney capsules of immunodeficient mice that received human hematopoietic stem and progenitor cells (hHSPCs) intravenously. RESULTS Cultured hES-TEPs expressed FOXN1 and formed colonies expressing EPCAM and both cortical and medullary thymic epithelial cell markers. In thymectomized immunodeficient mice receiving hHSPCs, hES-TEPs mixed with human thymic mesenchymal cells supported human T-cell development. Hypothesizing that support from non-epithelial thymic cells might allow long-term function of hES-TEPs, the investigators injected them into SwTHY tissue, which supports human thymopoiesis in NOD severe combined immunodeficiency IL2Rγnull mice receiving hHSPCs. hES-TEPs integrated into SwTHY grafts, enhanced human thymopoiesis, and increased peripheral CD4+ naive T-cell reconstitution. CONCLUSIONS This study has developed and demonstrated in vivo thymopoietic function of hES-TEPs generated with a novel differentiation protocol. The SwTHY hybrid thymus model demonstrates beneficial effects on human thymocyte development of hES-TEPs maturing in the context of a supportive thymic structure.
Collapse
Affiliation(s)
- Rafael Gras-Peña
- Columbia Center for Human Development, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Amanda E Ruiz
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Christopher A Parks
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - William Meng Suen Savage
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Markus A Holzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Debanjana Chatterjee
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Surgery and Department of Microbiology and Immunology, Columbia University, New York, NY.
| |
Collapse
|
17
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
18
|
Marelli F, Rurale G, Persani L. From Endoderm to Progenitors: An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish. Front Endocrinol (Lausanne) 2021; 12:664557. [PMID: 34149617 PMCID: PMC8213386 DOI: 10.3389/fendo.2021.664557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying thyroid gland development have a central interest in biology and this review is aimed to provide an update on the recent advancements on the early steps of thyroid differentiation that were obtained in the zebrafish, because this teleost fish revealed to be a suitable organism to study the early developmental stages. Physiologically, the thyroid precursors fate is delineated by the appearance among the endoderm cells of the foregut of a restricted cell population expressing specific transcription factors, including pax2a, nkx2.4b, and hhex. The committed thyroid primordium first appears as a thickening of the pharyngeal floor of the anterior endoderm, that subsequently detaches from the floor and migrates to its final location where it gives rise to the thyroid hormone-producing follicles. At variance with mammalian models, thyroid precursor differentiation in zebrafish occurs early during the developmental process before the dislocation to the eutopic positioning of thyroid follicles. Several pathways have been implicated in these early events and nowadays there is evidence of a complex crosstalk between intrinsic (coming from the endoderm and thyroid precursors) and extrinsic factors (coming from surrounding tissues, as the cardiac mesoderm) whose organization in time and space is probably required for the proper thyroid development. In particular, Notch, Shh, Fgf, Bmp, and Wnt signaling seems to be required for the commitment of endodermal cells to a thyroid fate at specific developmental windows of zebrafish embryo. Here, we summarize the recent findings produced in the various zebrafish experimental models with the aim to define a comprehensive picture of such complicated puzzle.
Collapse
Affiliation(s)
- Federica Marelli
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| | - Giuditta Rurale
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| |
Collapse
|
19
|
de Vries M, Owens HG, Carpinelli MR, Partridge D, Kersbergen A, Sutherland KD, Auden A, Anderson PJ, Jane SM, Dworkin S. Delineating the roles of Grhl2 in craniofacial development through tissue-specific conditional deletion and epistasis approaches in mouse. Dev Dyn 2021; 250:1191-1209. [PMID: 33638290 DOI: 10.1002/dvdy.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The highly conserved Grainyhead-like (Grhl) family of transcription factors play critical roles in the development of the neural tube and craniofacial skeleton. In particular, deletion of family member Grainyhead-like 2 (Grhl2) leads to mid-gestational embryonic lethality, maxillary clefting, abdominoschisis, and both cranial and caudal neural tube closure defects. These highly pleiotropic and systemic defects suggest that Grhl2 plays numerous critical developmental roles to ensure correct morphogenesis and patterning. RESULTS Here, using four separate Cre-lox conditional deletion models, as well as one genetic epistasis approach (Grhl2+/- ;Edn1+/- double heterozygous mice) we have investigated tissue-specific roles of Grhl2 in embryonic development, with a particular focus on the craniofacial skeleton. We find that loss of Grhl2 in the pharyngeal epithelium (using the ShhCre driver) leads to low-penetrance micrognathia, whereas deletion of Grhl2 within the ectoderm of the pharynx (NestinCre ) leads to small, albeit significant, differences in the proximal-distal elongation of both the maxilla and mandible. Loss of Grhl2 in endoderm (Sox17-2aiCre ) resulted in noticeable lung defects and a single instance of secondary palatal clefting, although formation of other endoderm-derived organs such as the stomach, bladder and intestines was not affected. Lastly, deletion of Grhl2 in cells of the neural crest (Wnt1Cre ) did not lead to any discernible defects in craniofacial development, and similarly, our epistasis approach did not detect any phenotypic consequences of loss of a single allele of both Grhl2 and Edn1. CONCLUSION Taken together, our study identifies a pharyngeal-epithelium intrinsic, non-cell-autonomous role for Grhl2 in the patterning and formation of the craniofacial skeleton, as well as an endoderm-specific role for Grhl2 in the formation and establishment of the mammalian lung.
Collapse
Affiliation(s)
- Michael de Vries
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Harley G Owens
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Marina R Carpinelli
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Darren Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Ariena Kersbergen
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Peter J Anderson
- Australian Craniofacial Unit, Women and Children's Hospital, Adelaide, South Australia, Australia.,Faculty of Health Sciences, University of Adelaide, South Australia, Australia.,Nanjing Medical University, Nanjing, China
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn 2020; 249:1410-1424. [PMID: 33058336 DOI: 10.1002/dvdy.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.
Collapse
Affiliation(s)
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. Int J Mol Sci 2020; 21:ijms21165765. [PMID: 32796710 PMCID: PMC7460828 DOI: 10.3390/ijms21165765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial–mesenchymal interactions.
Collapse
|
22
|
Bhalla P, Wysocki CA, van Oers NSC. Molecular Insights Into the Causes of Human Thymic Hypoplasia With Animal Models. Front Immunol 2020; 11:830. [PMID: 32431714 PMCID: PMC7214791 DOI: 10.3389/fimmu.2020.00830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
22q11.2 deletion syndrome (DiGeorge), CHARGE syndrome, Nude/SCID and otofaciocervical syndrome type 2 (OTFCS2) are distinct clinical conditions in humans that can result in hypoplasia and occasionally, aplasia of the thymus. Thymic hypoplasia/aplasia is first suggested by absence or significantly reduced numbers of recent thymic emigrants, revealed in standard-of-care newborn screens for T cell receptor excision circles (TRECs). Subsequent clinical assessments will often indicate whether genetic mutations are causal to the low T cell output from the thymus. However, the molecular mechanisms leading to the thymic hypoplasia/aplasia in diverse human syndromes are not fully understood, partly because the problems of the thymus originate during embryogenesis. Rodent and Zebrafish models of these clinical syndromes have been used to better define the underlying basis of the clinical presentations. Results from these animal models are uncovering contributions of different cell types in the specification, differentiation, and expansion of the thymus. Cell populations such as epithelial cells, mesenchymal cells, endothelial cells, and thymocytes are variably affected depending on the human syndrome responsible for the thymic hypoplasia. In the current review, findings from the diverse animal models will be described in relation to the clinical phenotypes. Importantly, these results are suggesting new strategies for regenerating thymic tissue in patients with distinct congenital disorders.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christian A. Wysocki
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
23
|
Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential. Curr Top Dev Biol 2020; 138:175-208. [PMID: 32220297 DOI: 10.1016/bs.ctdb.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The pharyngeal apparatus, a transient embryological structure, includes diverse cells from all three germ layers that ultimately contribute to a variety of adult tissues. In particular, pharyngeal endoderm produces cells of the inner ear, palatine tonsils, the thymus, parathyroid and thyroid glands, and ultimobranchial bodies. Each of these structures and organs contribute to vital human physiological processes, including central immune tolerance (thymus) and metabolic homeostasis (parathyroid and thyroid glands, and ultimobranchial bodies). Thus, improper development or damage to pharyngeal endoderm derivatives leads to complicated and severe human maladies, such as autoimmunity, immunodeficiency, hypothyroidism, and/or hypoparathyroidism. To study and treat such diseases, we can utilize human pluripotent stem cells (hPSCs), which differentiate into functionally mature cells in vitro given the proper developmental signals. Here, we discuss current efforts regarding the directed differentiation of hPSCs toward pharyngeal endoderm derivatives. We further discuss model system and therapeutic applications of pharyngeal endoderm cell types produced from hPSCs. Finally, we provide suggestions for improving hPSC differentiation approaches to pharyngeal endoderm derivatives with emphasis on current single cell-omics and 3D culture system technologies.
Collapse
|
24
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
Wang Q, Kurosaka H, Kikuchi M, Nakaya A, Trainor PA, Yamashiro T. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis Model Mech 2019; 12:dmm040279. [PMID: 31591086 PMCID: PMC6826016 DOI: 10.1242/dmm.040279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Cleft palate (CP) is one of the most common congenital craniofacial anomalies in humans and can be caused by either single or multiple genetic and environmental factor(s). With respect to environmental factors, excessive intake of vitamin A during early pregnancy is associated with increased incidence of CP in offspring both in humans and in animal models. Vitamin A is metabolized to retinoic acid (RA); however, the pathogenetic mechanism of CP caused by altered RA signaling during early embryogenesis is not fully understood. To investigate the detailed cellular and molecular mechanism of RA-induced CP, we administered all-trans RA to pregnant mice at embryonic day (E)8.5. In the RA-treated group, we observed altered expression of Sox10, which marks cranial neural crest cells (CNCCs). Disruption of Sox10 expression was also observed at E10.5 in the maxillary component of the first branchial arch, which gives rise to secondary palatal shelves. Moreover, we found significant elevation of CNCC apoptosis in RA-treated embryos. RNA-sequencing comparisons of RA-treated embryos compared to controls revealed alterations in Sonic hedgehog (Shh) signaling. More specifically, the expression of Shh and its downstream genes Ptch1 and Gli1 was spatiotemporally downregulated in the developing face of RA-treated embryos. Consistent with these findings, the incidence of CP in association with excessive RA signaling was reduced by administration of the Shh signaling agonist SAG (Smoothened agonist). Altogether, our results uncovered a novel mechanistic association between RA-induced CP with decreased Shh signaling and elevated CNCC apoptosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
26
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
27
|
Singh A, Mia MM, Cibi DM, Arya AK, Bhadada SK, Singh MK. Deficiency in the secreted protein Semaphorin3d causes abnormal parathyroid development in mice. J Biol Chem 2019; 294:8336-8347. [PMID: 30979723 DOI: 10.1074/jbc.ra118.007063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrinopathy characterized by hypercalcemia and elevated levels of parathyroid hormone. The primary cause of PHPT is a benign overgrowth of parathyroid tissue causing excessive secretion of parathyroid hormone. However, the molecular etiology of PHPT is incompletely defined. Here, we demonstrate that semaphorin3d (Sema3d), a secreted glycoprotein, is expressed in the developing parathyroid gland in mice. We also observed that genetic deletion of Sema3d leads to parathyroid hyperplasia, causing PHPT. In vivo and in vitro experiments using histology, immunohistochemistry, biochemical, RT-qPCR, and immunoblotting assays revealed that Sema3d inhibits parathyroid cell proliferation by decreasing the epidermal growth factor receptor (EGFR)/Erb-B2 receptor tyrosine kinase (ERBB) signaling pathway. We further demonstrate that EGFR signaling is elevated in Sema3d -/- parathyroid glands and that pharmacological inhibition of EGFR signaling can partially rescue the parathyroid hyperplasia phenotype. We propose that because Sema3d is a secreted protein, it may be possible to use recombinant Sema3d or derived peptides to inhibit parathyroid cell proliferation causing hyperplasia and hyperparathyroidism. Collectively, these findings identify Sema3d as a negative regulator of parathyroid growth.
Collapse
Affiliation(s)
- Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857
| | - Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857
| | - Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609.
| |
Collapse
|
28
|
Yamada T, Tatsumi N, Anraku A, Suzuki H, Kamejima S, Uchiyama T, Ohkido I, Yokoo T, Okabe M. Gcm2 regulates the maintenance of parathyroid cells in adult mice. PLoS One 2019; 14:e0210662. [PMID: 30677043 PMCID: PMC6345461 DOI: 10.1371/journal.pone.0210662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023] Open
Abstract
Glial cells missing homolog 2 (GCM2), a zinc finger-type transcription factor, is essential for the development of parathyroid glands. It is considered to be a master regulator because the glands do not form when Gcm2 is deficient. Remarkably, Gcm2 expression is maintained throughout the fetal stage and after birth. Considering the Gcm2 function in embryonic stages, it is predicted that Gcm2 maintains parathyroid cell differentiation and survival in adults. However, there is a lack of research regarding the function of Gcm2 in adulthood. Therefore, we analyzed Gcm2 function in adult tamoxifen-inducible Gcm2 conditional knockout mice. One month after tamoxifen injection, Gcm2-knockout mice showed no significant difference in serum calcium, phosphate, and PTH levels and in the expressions of calcium-sensing receptor (Casr) and parathyroid hormone (Pth), whereas Ki-67 positive cells were decreased and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) positive cell number did not change, as compared with those of controls. Seven months after tamoxifen injection, Gcm2-knockout mice showed shrinkage of the parathyroid glands and fewer parathyroid cells. A significant decrease was noted in Casr- and Pth-expressing cells and serum PTH and Ca levels, whereas serum phosphate levels increased, as compared with those of controls. All our results concluded that a reduction of Gcm2 expression leads to a reduction of parathyroid cell proliferation, an increase in cell death, and an attenuation of parathyroid function. Therefore, we indicate that Gcm2 plays a prominent role in adult parathyroid cell proliferation and maintenance.
Collapse
Affiliation(s)
- Taku Yamada
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Norifumi Tatsumi
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Akane Anraku
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideaki Suzuki
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Sahoko Kamejima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Taketo Uchiyama
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
29
|
Ankamreddy H, Min H, Kim JY, Yang X, Cho ES, Kim UK, Bok J. Region-specific endodermal signals direct neural crest cells to form the three middle ear ossicles. Development 2019; 146:dev.167965. [PMID: 30630826 DOI: 10.1242/dev.167965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
Abstract
Defects in the middle ear ossicles - malleus, incus and stapes - can lead to conductive hearing loss. During development, neural crest cells (NCCs) migrate from the dorsal hindbrain to specific locations in pharyngeal arch (PA) 1 and 2, to form the malleus-incus and stapes, respectively. It is unclear how migratory NCCs reach their proper destination in the PA and initiate mesenchymal condensation to form specific ossicles. We show that secreted molecules sonic hedgehog (SHH) and bone morphogenetic protein 4 (BMP4) emanating from the pharyngeal endoderm are important in instructing region-specific NCC condensation to form malleus-incus and stapes, respectively, in mouse. Tissue-specific knockout of Shh in the pharyngeal endoderm or Smo (a transducer of SHH signaling) in NCCs causes the loss of malleus-incus condensation in PA1 but only affects the maintenance of stapes condensation in PA2. By contrast, knockout of Bmp4 in the pharyngeal endoderm or Smad4 (a transducer of TGFβ/BMP signaling) in the NCCs disrupts NCC migration into the stapes region in PA2, affecting stapes formation. These results indicate that region-specific endodermal signals direct formation of specific middle ear ossicles.
Collapse
Affiliation(s)
- Harinarayana Ankamreddy
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyehyun Min
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Yoon Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea .,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Abstract
The parathyroid glands are essential for regulating calcium homeostasis in the body. The genetic programs that control parathyroid fate specification, morphogenesis, differentiation, and survival are only beginning to be delineated, but are all centered around a key transcription factor, GCM2. Mutations in the Gcm2 gene as well as in several other genes involved in parathyroid organogenesis have been found to cause parathyroid disorders in humans. Therefore, understanding the normal development of the parathyroid will provide insight into the origins of parathyroid disorders.
Collapse
Affiliation(s)
- Kristen Peissig
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Brian G Condie
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA.
| |
Collapse
|
31
|
Ono H, Koop D, Holland LZ. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development 2018; 145:dev.162586. [PMID: 29980563 DOI: 10.1242/dev.162586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Abstract
The larval pharynx of the cephalochordate Branchiostoma (amphioxus) is asymmetrical. The mouth is on the left, and endostyle and gill slits are on the right. At the neurula, Nodal and Hedgehog (Hh) expression becomes restricted to the left. To dissect their respective roles in gill slit formation, we inhibited each pathway separately for 20 min at intervals during the neurula stage, before gill slits penetrate, and monitored the effects on morphology and expression of pharyngeal markers. The results pinpoint the short interval spanning the gastrula/neurula transition as the critical period for specification and positioning of future gill slits. Thus, reduced Nodal signaling shifts the gill slits ventrally, skews the pharyngeal domains of Hh, Pax1/9, Pax2/5/8, Six1/2 and IrxC towards the left, and reduces Hh and Tbx1/10 expression in endoderm and mesoderm, respectively. Nodal auto-regulates. Decreased Hh signaling does not affect gill slit positions or Hh or Nodal expression, but it does reduce the domain of Gli, the Hh target, in the pharyngeal endoderm. Thus, during the neurula stage, Nodal and Hh cooperate in gill slit development - Hh mediates gill slit formation and Nodal establishes their left-right position.
Collapse
Affiliation(s)
- Hiroki Ono
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Demian Koop
- Discipline of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
32
|
Kameda Y. Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells. Dev Dyn 2017; 246:719-739. [PMID: 28608500 DOI: 10.1002/dvdy.24534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current understanding of the nonmammalian ultimobranchial gland from morphological and molecular perspectives. Ultimobranchial anlage of all animal species develops from the last pharyngeal pouch. The genes involved in the development of pharyngeal pouches are well conserved across vertebrates. The ultimobranchial anlage of nonmammalian vertebrates and monotremes does not merge with the thyroid, remaining as an independent organ throughout adulthood. Although C cells of all animal species secrete calcitonin, the shape, cellular components and location of the ultimobranchial gland vary from species to species. Avian ultimobranchial gland is unique in several phylogenic aspects; the organ is located between the vagus and recurrent laryngeal nerves at the upper thorax and is densely innervated by branches emanating from them. In chick embryos, TuJ1-, HNK-1-, and PGP 9.5-immunoreactive cells that originate from the distal vagal (nodose) ganglion, colonize the ultimobranchial anlage and differentiate into C cells; neuronal cells give rise to C cells. Like C cells of mammals, the cells of fishes, amphibians, reptiles, and also a subset of C cells of birds, appear to be derived from the endodermal epithelium forming ultimobranchial anlage. Thus, the avian ultimobranchial C cells may have dual origins, neural progenitors and endodermal epithelium. Developmental Dynamics 246:719-739, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
33
|
Figueiredo M, Silva JC, Santos AS, Proa V, Alcobia I, Zilhão R, Cidadão A, Neves H. Notch and Hedgehog in the thymus/parathyroid common primordium: Crosstalk in organ formation. Dev Biol 2016; 418:268-82. [DOI: 10.1016/j.ydbio.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/30/2022]
|
34
|
Bain VE, Gordon J, O'Neil JD, Ramos I, Richie ER, Manley NR. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate. Development 2016; 143:4027-4037. [PMID: 27633995 DOI: 10.1242/dev.141903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
Abstract
The thymus and parathyroids develop from third pharyngeal pouch (3rd pp) endoderm. Our previous studies show that Shh null mice have smaller, aparathyroid primordia in which thymus fate specification extends into the pharynx. SHH signaling is active in both dorsal pouch endoderm and neighboring neural crest (NC) mesenchyme. It is unclear which target tissue of SHH signaling is required for the patterning defects in Shh mutants. Here, we used a genetic approach to ectopically activate or delete the SHH signal transducer Smo in either pp endoderm or NC mesenchyme. Although no manipulation recapitulated the Shh null phenotype, manipulation of SHH signaling in either the endoderm or NC mesenchyme had direct and indirect effects on both cell types during fate specification and organogenesis. SHH pathway activation throughout pouch endoderm activated ectopic Tbx1 expression and partially suppressed the thymus-specific transcription factor Foxn1, identifying Tbx1 as a key target of SHH signaling in the 3rd pp. However, ectopic SHH signaling was insufficient to expand the GCM2-positive parathyroid domain, indicating that multiple inputs, some of which might be independent of SHH signaling, are required for parathyroid fate specification. These data support a model in which SHH signaling plays both positive and negative roles in patterning and organogenesis of the thymus and parathyroids.
Collapse
Affiliation(s)
- Virginia E Bain
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Julie Gordon
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - John D O'Neil
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Isaias Ramos
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Dworkin S, Boglev Y, Owens H, Goldie SJ. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J Dev Biol 2016; 4:jdb4030024. [PMID: 29615588 PMCID: PMC5831778 DOI: 10.3390/jdb4030024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023] Open
Abstract
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Yeliz Boglev
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Harley Owens
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| | - Stephen J Goldie
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Surgery, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| |
Collapse
|
36
|
Barbarulo A, Lau CI, Mengrelis K, Ross S, Solanki A, Saldaña JI, Crompton T, Roelink H, Conway SJ. Hedgehog Signalling in the Embryonic Mouse Thymus. J Dev Biol 2016; 4:22. [PMID: 27504268 PMCID: PMC4975939 DOI: 10.3390/jdb4030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 01/05/2023] Open
Abstract
T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte-TEC cross-talk in the embryonic mouse thymus during the last week of gestation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tessa Crompton
- Immunobiology Section, UCL Institute of Child Health, London WC1N 1EH, UK; (A.B.); (C.-I.L.); (K.M.); (S.R.); (A.S.); (J.I.S.)
| | | | | |
Collapse
|
37
|
Chojnowski JL, Trau HA, Masuda K, Manley NR. Temporal and spatial requirements for Hoxa3 in mouse embryonic development. Dev Biol 2016; 415:33-45. [PMID: 27178667 DOI: 10.1016/j.ydbio.2016.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Hoxa3(null) mice have severe defects in the development of pharyngeal organs including athymia, aparathyroidism, thyroid hypoplasia, and ultimobranchial body persistence, in addition to defects of the throat cartilages and cranial nerves. Some of the structures altered in the Hoxa3(null) mutant embryos are anterior to the described Hoxa3 gene expression boundary: the thyroid, soft palate, and lesser hyoid horn. All of these structures develop over time and through the interactions of multiple cell types. To investigate the specific cellular targets for HOXA3 function in these structures across developmental time, we performed a comprehensive analysis of the temporal and tissue-specific requirements for Hoxa3, including a lineage analysis using Hoxa3(Cre). The combination of these approaches showed that HOXA3 functions in both a cell autonomous and non-cell autonomous manner during development of the 3rd and 4th arch derivatives, and functions in a neural crest cell (NCC)-specific, non-cell autonomous manner for structures that were Hoxa3-negative by lineage tracing. Our data indicate that HOXA3 is required for tissue organization and organ differentiation in endodermal cells (in the tracheal epithelium, thymus, and parathyroid), and contributes to organ migration and morphogenesis in NCCs. These data provide a detailed picture of where and when HOXA3 acts to promote the development of the diverse structures that are altered in the Hoxa3(null) mutant. Data presented here, combined with our previous studies, indicate that the regionally restricted defects in Hoxa3 mutants do not reflect a role in positional identity (establishment of cell or tissue fate), but instead indicate a wider variety of functions including controlling distinct genetic programs for differentiation and morphogenesis in different cell types during development.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA
| | - Heidi A Trau
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA
| | - Kyoko Masuda
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
Lovely CB, Swartz ME, McCarthy N, Norrie JL, Eberhart JK. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 2016; 143:2000-11. [PMID: 27122171 DOI: 10.1242/dev.129379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mary E Swartz
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Neil McCarthy
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
39
|
Kameda Y. Cellular and molecular events on the development of mammalian thyroid C cells. Dev Dyn 2016; 245:323-41. [PMID: 26661795 DOI: 10.1002/dvdy.24377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Thyroid C cells synthesize and secrete calcitonin, a serum calcium-lowering hormone. This review provides our current understanding of mammalian thyroid C cells from the molecular and morphological perspectives. Several transcription factors and signaling molecules involved in the development of C cells have been identified, and genes expressed in the pharyngeal pouch endoderm, neural crest-derived mesenchyme in the pharyngeal arches, and ultimobranchial body play critical roles for the development of C cells. It has been generally accepted, without much-supporting evidence, that mammalian C cells, as well as the avian cells, are derived from the neural crest. However, by fate mapping of neural crest cells in both Wnt1-Cre/R26R and Connexin(Cxn)43-lacZ transgenic mice, we showed that neural crest cells colonize neither the fourth pharyngeal pouch nor the ultimobranchial body. E-cadherin, an epithelial cell marker, is expressed in thyroid C cells and their precursors, the fourth pharyngeal pouch and ultimobranchial body. Furthermore, E-cadherin is colocalized with calcitonin in C cells. Recently, lineage tracing in Sox17-2A-iCre/R26R mice has clarified that the pharyngeal endoderm-derived cells give rise to C cells. Together, these findings indicate that mouse thyroid C cells are endodermal in origin.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
40
|
Kim KY, Lee G, Yoon M, Cho EH, Park CS, Kim MG. Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor. Mol Cells 2015; 38:548-61. [PMID: 26013383 PMCID: PMC4469913 DOI: 10.14348/molcells.2015.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023] Open
Abstract
By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the CD31(+) endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-1(+) fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Gwanghee Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110,
USA
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736,
Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| |
Collapse
|
41
|
Billmyre KK, Klingensmith J. Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Dev Dyn 2015; 244:564-76. [PMID: 25626636 DOI: 10.1002/dvdy.24256] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Morphogenesis of vertebrate craniofacial skeletal elements is dependent on a key cell population, the cranial neural crest cells (NCC). Cranial NCC are formed dorsally in the cranial neural tube and migrate ventrally to form craniofacial skeletal elements as well as other tissues. Multiple extracellular signaling pathways regulate the migration, survival, proliferation, and differentiation of NCC. RESULTS In this study, we demonstrate that Shh expression in the oral ectoderm and pharyngeal endoderm is essential for mandibular development. We show that a loss of Shh in these domains results in increased mesenchymal cell death in pharyngeal arch 1 (PA1) after NCC migration. This increased cell death can be rescued in utero by pharmacological inhibition of p53. Furthermore, we show that epithelial SHH is necessary for the early differentiation of mandibular cartilage condensations and, therefore, the subsequent development of Meckel's cartilage, around which the dentary bone forms. Nonetheless, a rescue of the cell death phenotype does not rescue the defect in cartilage condensation formation. CONCLUSIONS Our results show that SHH produced by the PA1 epithelium is necessary for the survival of post-migratory NCC, and suggests a key role in the subsequent differentiation of chondrocytes to form Meckel's cartilage.
Collapse
|
42
|
Choe CP, Crump JG. Dynamic epithelia of the developing vertebrate face. Curr Opin Genet Dev 2015; 32:66-72. [PMID: 25748249 DOI: 10.1016/j.gde.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
A segmental series of endoderm-derived pouch and ectoderm-derived cleft epithelia act as signaling centers in the developing face. Their precise morphogenesis is therefore essential for proper patterning of the vertebrate head. Intercellular adhesion and polarity are highly dynamic within developing facial epithelial cells, with signaling from the adjacent mesenchyme controlling both epithelial character and directional migration. Endodermal and ectodermal epithelia fuse to form the primary mouth and gill slits, which involves basement membrane dissolution, cell intercalations, and apoptosis, as well as undergo further morphogenesis to generate the middle ear cavity and glands of the neck. Recent studies of facial epithelia are revealing both core programs of epithelial morphogenesis and insights into the coordinated assembly of the vertebrate head.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
43
|
Reeh KAG, Cardenas KT, Bain VE, Liu Z, Laurent M, Manley NR, Richie ER. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development 2014; 141:2950-8. [PMID: 25053428 DOI: 10.1242/dev.111641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The thymus and parathyroid glands arise from a shared endodermal primordium in the third pharyngeal pouch (3rd pp). Thymus fate is specified in the ventral 3rd pp between E9.5 and E11, whereas parathyroid fate is specified in the dorsal domain. The molecular mechanisms that specify fate and regulate thymus and parathyroid development are not fully delineated. Previous reports suggested that Tbx1 is required for thymus organogenesis because loss of Tbx1 in individuals with DiGeorge syndrome and in experimental Tbx1 deletion mutants is associated with thymus aplasia or hypoplasia. However, the thymus phenotype is likely to be secondary to defects in pharyngeal pouch formation. Furthermore, the absence of Tbx1 expression in the thymus-fated domain of the wild-type 3rd pp suggested that Tbx1 is instead a negative regulator of thymus organogenesis. To test this hypothesis, we generated a novel mouse strain in which expression of a conditional Tbx1 allele was ectopically activated in the thymus-fated domain of the 3rd pp. Ectopic Tbx1 expression severely repressed expression of Foxn1, a transcription factor that marks the thymus-fated domain and is required for differentiation and proliferation of thymic epithelial cell (TEC) progenitors. By contrast, ectopic Tbx1 did not alter the expression pattern of Gcm2, a transcription factor restricted to the parathyroid-fated domain and required for parathyroid development. Ectopic Tbx1 expression impaired TEC proliferation and arrested TEC differentiation at an early progenitor stage. The results support the hypothesis that Tbx1 negatively regulates TEC growth and differentiation, and that extinction of Tbx1 expression in 3rd pp endoderm is a prerequisite for thymus organogenesis.
Collapse
Affiliation(s)
- Kaitlin A G Reeh
- Department of Molecular Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| | - Kim T Cardenas
- Department of Molecular Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| | - Virginia E Bain
- Department of Molecular Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| | - Zhijie Liu
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Micheline Laurent
- Department of Molecular Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Ellen R Richie
- Department of Molecular Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA
| |
Collapse
|
44
|
Chojnowski JL, Masuda K, Trau HA, Thomas K, Capecchi M, Manley NR. Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse. Development 2014; 141:3697-708. [PMID: 25249461 DOI: 10.1242/dev.110833] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hoxa3 was the first Hox gene to be mutated by gene targeting in mice and is required for the development of multiple endoderm and neural crest cell (NCC)-derived structures in the pharyngeal region. Previous studies have shown that the Hoxa3 null mutant lacks third pharyngeal pouch derivatives, the thymus and parathyroids by E18.5, and organ-specific markers are absent or downregulated during initial organogenesis. Our current analysis of the Hoxa3 null mutant shows that organ-specific domains did undergo initial patterning, but the location and timing of key regional markers within the pouch, including Tbx1, Bmp4 and Fgf8, were altered. Expression of the parathyroid marker Gcm2 was initiated but was quickly downregulated and differentiation failed; by contrast, thymus markers were delayed but achieved normal levels, concurrent with complete loss through apoptosis. To determine the cell type-specific roles of Hoxa3 in third pharyngeal pouch development, we analyzed tissue-specific mutants using endoderm and/or NCC-specific Cre drivers. Simultaneous deletion with both drivers resulted in athymia at E18.5, similar to the null. By contrast, the individual tissue-specific Hoxa3 deletions resulted in small, ectopic thymi, although each had a unique phenotype. Hoxa3 was primarily required in NCCs for morphogenesis. In endoderm, Hoxa3 temporally regulated initiation of the thymus program and was required in a cell-autonomous manner for parathyroid differentiation. Furthermore, Hoxa3 was required for survival of third pharyngeal pouch-derived organs, but expression in either tissue was sufficient for this function. These data show that Hoxa3 has multiple complex and tissue-specific functions during patterning, differentiation and morphogenesis of the thymus and parathyroids.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Kyoko Masuda
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Heidi A Trau
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| | - Kirk Thomas
- Division of Hematology and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Mario Capecchi
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, 500 DW Brooks Drive, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
45
|
McGurk PD, Lovely CB, Eberhart JK. Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy. J Vis Exp 2014:e51190. [PMID: 24514435 DOI: 10.3791/51190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Time-lapse imaging is a technique that allows for the direct observation of the process of morphogenesis, or the generation of shape. Due to their optical clarity and amenability to genetic manipulation, the zebrafish embryo has become a popular model organism with which to perform time-lapse analysis of morphogenesis in living embryos. Confocal imaging of a live zebrafish embryo requires that a tissue of interest is persistently labeled with a fluorescent marker, such as a transgene or injected dye. The process demands that the embryo is anesthetized and held in place in such a way that healthy development proceeds normally. Parameters for imaging must be set to account for three-dimensional growth and to balance the demands of resolving individual cells while getting quick snapshots of development. Our results demonstrate the ability to perform long-term in vivo imaging of fluorescence-labeled zebrafish embryos and to detect varied tissue behaviors in the cranial neural crest that cause craniofacial abnormalities. Developmental delays caused by anesthesia and mounting are minimal, and embryos are unharmed by the process. Time-lapse imaged embryos can be returned to liquid medium and subsequently imaged or fixed at later points in development. With an increasing abundance of transgenic zebrafish lines and well-characterized fate mapping and transplantation techniques, imaging any desired tissue is possible. As such, time-lapse in vivo imaging combines powerfully with zebrafish genetic methods, including analyses of mutant and microinjected embryos.
Collapse
Affiliation(s)
- Patrick D McGurk
- Institute for Cell and Molecular Biology, The University of Texas at Austin
| | | | | |
Collapse
|
46
|
Hendry CE, Vanslambrouck JM, Ineson J, Suhaimi N, Takasato M, Rae F, Little MH. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 2013; 24:1424-34. [PMID: 23766537 DOI: 10.1681/asn.2012121143] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFβ-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.
Collapse
Affiliation(s)
- Caroline E Hendry
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS, Hebrok M. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 2013; 13:219-29. [PMID: 23684540 DOI: 10.1016/j.stem.2013.04.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/26/2013] [Accepted: 03/29/2013] [Indexed: 12/29/2022]
Abstract
Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into thymic epithelial progenitors (TEPs) by precise regulation of TGFβ, BMP4, RA, Wnt, Shh, and FGF signaling. The hESC-derived TEPs further mature into functional TECs that support T cell development upon transplantation into thymus-deficient mice. Importantly, the engrafted TEPs produce T cells capable of in vitro proliferation as well as in vivo immune responses. Thus, hESC-derived TEP grafts may have broad applications for enhancing engraftment in cell-based therapies as well as restoring age- and stress-related thymic decline.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0540, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ge Q, Zhao Y. Evolution of thymus organogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:85-90. [PMID: 22266420 DOI: 10.1016/j.dci.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
The thymus is the primary organ for functional T lymphocyte development in jawed vertebrates. A new study in the jawless fish, lampreys, indicates the existence of a primitive thymus in these surviving representatives of the most ancient vertebrates, providing strong evidence of co-evolution of T cells and thymus. This review summarizes the wealth of data that have been generated towards understanding the evolution of the thymus in the vertebrates. Progress in identifying genetic networks and cellular mechanisms that control thymus organogenesis in mammals and their evolution in lower species may inspire the development of new strategies for medical interventions targeting faulty thymus functions.
Collapse
Affiliation(s)
- Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China.
| | | |
Collapse
|
49
|
Nilsson M, Fagman H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol 2013; 106:123-70. [PMID: 24290349 DOI: 10.1016/b978-0-12-416021-7.00004-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid dysgenesis is the most common cause of congenital hypothyroidism that affects 1 in 3000 newborns. Although a number of pathogenetic mutations in thyroid developmental genes have been identified, the molecular mechanism of disease is unknown in most cases. This chapter summarizes the current knowledge of normal thyroid development and puts the different developmental stages in perspective, from the time of foregut endoderm patterning to the final shaping of pharyngeal anatomy, for understanding how specific malformations may arise. At the cellular level, we will also discuss fate determination of follicular and C-cell progenitors and their subsequent embryonic growth, migration, and differentiation as the different thyroid primordia evolve and merge to establish the final size and shape of the gland.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
50
|
Willaredt MA, Gorgas K, Gardner HAR, Tucker KL. Multiple essential roles for primary cilia in heart development. Cilia 2012; 1:23. [PMID: 23351706 PMCID: PMC3563622 DOI: 10.1186/2046-2530-1-23] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022] Open
Abstract
Background The primary cilium is a microtubule-based, plasma membrane-ensheathed protrusion projecting from the basal bodies of almost all cell types in the mammalian body. In the past several years a plethora of papers has indicated a crucial role for primary cilia in the development of a wide variety of organs. We have investigated heart development in cobblestone, a hypomorphic allele of the gene encoding the intraflagellar transport protein Ift88, and uncovered a number of the most common congenital heart defects seen in newborn humans. Methods We generated serial sections of mutant cobblestone and wild type embryos in the region encompassing the heart and the cardiac outflow tract. The sections were further processed to generate three-dimensional reconstructions of these structures, and immunofluorescence confocal microscopy, transmission electron microscopy, and in situ hybridization were used to examine signal transduction pathways in the relevant areas. Whole mount in situ hybridization was also employed for certain developmental markers. Results In addition to an enlarged pericardium and failure of both ventricular and atrial septum formation, the cobblestone mutants displayed manifold defects in outflow tract formation, including persistent truncus arteriosus, an overriding aorta, and abnormal transformation of the aortic arches. To discern the basis of these anomalies we examined both the maintenance of primary cilia as well as endogenous and migratory embryonic cell populations that contribute to the outflow tract and atrioventricular septa. The colonization of the embryonic heart by cardiac neural crest occurred normally in the cobblestone mutant, as did the expression of Sonic hedgehog. However, with the loss of primary cilia in the mutant hearts, there was a loss of both downstream Sonic hedgehog signaling and of Islet 1 expression in the second heart field, a derivative of the pharyngeal mesoderm. In addition, defects were recorded in development of atrial laterality and ventricular myocardiogenesis. Finally, we observed a reduction in expression of Bmp4 in the outflow tract, and complete loss of expression of both Bmp2 and Bmp4 in the atrioventricular endocardial cushions. Loss of BMP2/4 signaling may result in the observed proliferative defect in the endocardial cushions, which give rise to both the atrioventricular septa as well as to the septation of the outflow tract. Conclusions Taken together, our results potentially identify a novel link between Sonic hedgehog signaling at the primary cilium and BMP-dependent effects upon cardiogenesis. Our data further point to a potential linkage of atrioventricular septal defects, the most common congenital heart defects, to genes of the transport machinery or basal body of the cilia.
Collapse
Affiliation(s)
- Marc August Willaredt
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, 69120, Germany.
| | | | | | | |
Collapse
|