1
|
Lin C, Liu S, Ruan N, Chen J, Chen Y, Zhang Y, Zhang J. Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice. Stem Cells Dev 2024; 33:562-573. [PMID: 39119818 DOI: 10.1089/scd.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Although enhanced fibroblast growth factor (FGF) signaling has been demonstrated to be crucial in many cases of syndromic cleft palate caused by tongue malposition in humans, animal models that recapitulate this phenotype are limited, and the precise mechanisms remain elusive. Mutations in FGF9 with the effect of either loss- or gain-of-function effects have been identified to be associated with cleft palate in humans. Here, we generated a mouse model with a transgenic Fgf9 allele specifically activated in cranial neural crest cells, aiming to elucidate the gain-of-function effects of Fgf9 in palatogenesis. We observed cleft palate with 100% penetrance in mutant mice. Further analysis demonstrated that no inherent defects in the morphogenic competence of palatal shelves could be found, but a passively lifted tongue prevented the elevation of palatal shelves, leading to the cleft palate. This tongue malposition was induced by posterior spatial confinement that was exerted by temporomandibular joint (TMJ) dysplasia characterized by a reduction in Sox9+ progenitors within the condyle and a structural decrease in the posterior dimension of the lower jaw. Our findings highlight the critical role of excessive FGF signaling in disrupting spatial coordination during palate development and suggest a potential association between palatal shelf elevation and early TMJ development.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Shiyu Liu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Jian Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Chinese Institute for Brain Research, Beijing, P.R. China
| |
Collapse
|
2
|
Li H, Tang Q, Yang T, Wang Z, Li D, Wang L, Li L, Chen Y, Huang H, Zhang Y, Chen Y. Segregation of morphogenetic regulatory function of Shox2 from its cell fate guardian role in sinoatrial node development. Commun Biol 2024; 7:385. [PMID: 38553636 PMCID: PMC10980793 DOI: 10.1038/s42003-024-06039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Shox2 plays a vital role in the morphogenesis and physiological function of the sinoatrial node (SAN), the primary cardiac pacemaker, manifested by the formation of a hypoplastic SAN and failed differentiation of pacemaker cells in Shox2 mutants. Shox2 and Nkx2-5 are co-expressed in the developing SAN and regulate the fate of the pacemaker cells through a Shox2-Nkx2-5 antagonistic mechanism. Here we show that simultaneous inactivation of Nkx2-5 in the SAN of Shox2 mutants (dKO) rescued the pacemaking cell fate but not the hypoplastic defects, indicating uncoupling of SAN cell fate determination and morphogenesis. Single-cell RNA-seq revealed that the presumptive SAN cells of Shox2-/- mutants failed to activate pacemaking program but remained in a progenitor state preceding working myocardium, while both wildtype and dKO SAN cells displayed normal pacemaking cell fate with similar cellular state. Shox2 thus acts as a safeguard but not a determinant to ensure the pacemaking cell fate through the Shox2-Nkx2-5 antagonistic mechanism, which is segregated from its morphogenetic regulatory function in SAN development.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China.
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, 14214, USA
| | - Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Zhengsen Wang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, 610021, PR China
| | - Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Yaoyi Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, 350108, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
3
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
4
|
Olejnickova V, Hamor PU, Janacek J, Bartos M, Zabrodska E, Sankova B, Kvasilova A, Kolesova H, Sedmera D. Development of ventricular trabeculae affects electrical conduction in the early endothermic heart. Dev Dyn 2024; 253:78-90. [PMID: 36400745 DOI: 10.1002/dvdy.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.
Collapse
Affiliation(s)
- Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Uriel Hamor
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Janacek
- Laboratory of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Stomatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Park KH, Choi YJ, Min WK, Lee SH, Kim J, Jeong SH, Lee JH, Choi BM, Kim S. Particulate matter induces arrhythmia-like cardiotoxicity in zebrafish embryos by altering the expression levels of cardiac development- and ion channel-related genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115201. [PMID: 37418944 DOI: 10.1016/j.ecoenv.2023.115201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Air pollution is a risk factor that increases cardiovascular morbidity and mortality. In this study, we investigated the cardiotoxicity of particulate matter (PM) exposure using a zebrafish embryo model. We found that PM exposure induced cardiotoxicity, such as arrhythmia, during cardiac development. PM exposure caused cardiotoxicity by altering the expression levels of cardiac development (T-box transcription factor 20, natriuretic peptide A, and GATA-binding protein 4)- and ion-channel (scn5lab, kcnq1, kcnh2a/b, and kcnh6a/b)-related genes. In conclusion, this study showed that PM induces the aberrant expression of cardiac development- and ion channel-related genes, leading to arrhythmia-like cardiotoxicity in zebrafish embryos. Our study provides a foundation for further research on the molecular and genetic mechanisms of cardiotoxicity induced by PM exposure.
Collapse
Affiliation(s)
- Kyu Hee Park
- Department of Pediatrics, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Won Kee Min
- Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Sun Hwa Lee
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Gyeonggi-do, the Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Byung Min Choi
- Department of Pediatrics, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, the Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Gyeonggi-do, the Republic of Korea.
| |
Collapse
|
7
|
Martin KE, Ravisankar P, Beerens M, MacRae CA, Waxman JS. Nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes of zebrafish. eLife 2023; 12:e77408. [PMID: 37184369 PMCID: PMC10185342 DOI: 10.7554/elife.77408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.
Collapse
Affiliation(s)
- Kendall E Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of MedicineCincinnatiUnited States
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Manu Beerens
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Calum A MacRae
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
8
|
Foster DB, Gu JM, Kim EH, Wolfson DW, O’Meally R, Cole RN, Cho HC. Tbx18 Orchestrates Cytostructural Transdifferentiation of Cardiomyocytes to Pacemaker Cells by Recruiting the Epithelial-Mesenchymal Transition Program. J Proteome Res 2022; 21:2277-2292. [PMID: 36006872 PMCID: PMC9552783 DOI: 10.1021/acs.jproteome.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.
Collapse
Affiliation(s)
- D. Brian Foster
- Division
of Cardiology, Department of Medicine, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jin-mo Gu
- Department
of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth H. Kim
- Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| | - David W. Wolfson
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Robert O’Meally
- Proteomics
Core Facility, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Proteomics
Core Facility, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Hee Cheol Cho
- Department
of Surgery, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, Schweizer PA. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int J Mol Sci 2022; 23:ijms23137318. [PMID: 35806319 PMCID: PMC9266442 DOI: 10.3390/ijms23137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.
Collapse
Affiliation(s)
- Fabrice F. Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-8676; Fax: +49-6221-56-5515
| | - Nina D. Ullrich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Michael Koenen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick A. Schweizer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| |
Collapse
|
10
|
Chloe Li KY, Cook AC, Lovering RC. GOing Forward With the Cardiac Conduction System Using Gene Ontology. Front Genet 2022; 13:802393. [PMID: 35309148 PMCID: PMC8924464 DOI: 10.3389/fgene.2022.802393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/09/2022] [Indexed: 02/03/2023] Open
Abstract
The cardiac conduction system (CCS) comprises critical components responsible for the initiation, propagation, and coordination of the action potential. Aberrant CCS development can cause conduction abnormalities, including sick sinus syndrome, accessory pathways, and atrioventricular and bundle branch blocks. Gene Ontology (GO; http://geneontology.org/) is an invaluable global bioinformatics resource which provides structured, computable knowledge describing the functions of gene products. Many gene products are known to be involved in CCS development; however, this information is not comprehensively captured by GO. To address the needs of the heart development research community, this study aimed to describe the specific roles of proteins reported in the literature to be involved with CCS development and/or function. 14 proteins were prioritized for GO annotation which led to the curation of 15 peer-reviewed primary experimental articles using carefully selected GO terms. 152 descriptive GO annotations, including those describing sinoatrial node and atrioventricular node development were created and submitted to the GO Consortium database. A functional enrichment analysis of 35 key CCS development proteins confirmed that this work has improved the in-silico interpretation of this CCS dataset. This work may improve future investigations of the CCS with application of high-throughput methods such as genome-wide association studies analysis, proteomics, and transcriptomics.
Collapse
Affiliation(s)
- Kan Yan Chloe Li
- Department of Preclinical and Fundamental Science, Institute of Cardiovascular Science, Functional Gene Annotation, University College London, London, United Kingdom,Department of Children’s Cardiovascular Disease, Centre for Morphology and Structural Heart Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom,*Correspondence: Kan Yan Chloe Li,
| | - Andrew C Cook
- Department of Children’s Cardiovascular Disease, Centre for Morphology and Structural Heart Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ruth C Lovering
- Department of Preclinical and Fundamental Science, Institute of Cardiovascular Science, Functional Gene Annotation, University College London, London, United Kingdom
| |
Collapse
|
11
|
Duong TB, Waxman JS. Patterning of vertebrate cardiac progenitor fields by retinoic acid signaling. Genesis 2021; 59:e23458. [PMID: 34665508 DOI: 10.1002/dvg.23458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
The influence of retinoic acid (RA) signaling on vertebrate development has a well-studied history. Cumulatively, we now understand that RA signaling has a conserved requirement early in development restricting cardiac progenitors within the anterior lateral plate mesoderm of vertebrate embryos. Moreover, genetic and pharmacological manipulations of RA signaling in vertebrate models have shown that proper heart development is achieved through the deployment of positive and negative feedback mechanisms, which maintain appropriate RA levels. In this brief review, we present a chronological overview of key work that has led to a current model of the critical role for early RA signaling in limiting the generation of cardiac progenitors within vertebrate embryos. Furthermore, we integrate the previous work in mice and our recent findings using zebrafish, which together show that RA signaling has remarkably conserved influences on the later-differentiating progenitor populations at the arterial and venous poles. We discuss how recognizing the significant conservation of RA signaling on the differentiation of these progenitor populations offers new perspectives and may impact future work dedicated to examining vertebrate heart development.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular Genetics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Mandla R, Jung C, Vedantham V. Transcriptional and Epigenetic Landscape of Cardiac Pacemaker Cells: Insights Into Cellular Specialization in the Sinoatrial Node. Front Physiol 2021; 12:712666. [PMID: 34335313 PMCID: PMC8322687 DOI: 10.3389/fphys.2021.712666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiac pacemaker cells differentiate and functionally specialize early in embryonic development through activation of critical gene regulatory networks. In general, cellular specification and differentiation require that combinations of cell type-specific transcriptional regulators activate expression of key effector genes by binding to DNA regulatory elements including enhancers and promoters. However, because genomic DNA is tightly packaged by histones that must be covalently modified in order to render DNA regulatory elements and promoters accessible for transcription, the process of development and differentiation is intimately connected to the epigenetic regulation of chromatin accessibility. Although the difficulty of obtaining sufficient quantities of pure populations of pacemaker cells has limited progress in this field, the advent of low-input genomic technologies has the potential to catalyze a rapid growth of knowledge in this important area. The goal of this review is to outline the key transcriptional networks that control pacemaker cell development, with particular attention to our emerging understanding of how chromatin accessibility is modified and regulated during pacemaker cell differentiation. In addition, we will discuss the relevance of these findings to adult sinus node function, sinus node diseases, and origins of genetic variation in heart rhythm. Lastly, we will outline the current challenges facing this field and promising directions for future investigation.
Collapse
Affiliation(s)
- Ravi Mandla
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Catherine Jung
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Vasanth Vedantham
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Zheng X, Wang F, Hu X, Li H, Guan Z, Zhang Y, Hu X. PDGFRα-Signaling Is Dispensable for the Development of the Sinoatrial Node After Its Fate Commitment. Front Cell Dev Biol 2021; 9:647165. [PMID: 34178981 PMCID: PMC8222823 DOI: 10.3389/fcell.2021.647165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Palate-derived growth factor receptor α (Pdgfrα) signaling has been reported to play important roles in the cardiac development. A previous study utilizing Pdgfrα conventional knockout mice reported hypoplasia of the sinus venous myocardium including the sinoatrial node (SAN) accompanied by increased expression of Nkx2.5. This mouse line embryos die by E11.5 due to embryonic lethality, rendering them difficult to investigate the details. To elucidate the underlying mechanism, in this study, we revisited this observation by generation of specific ablation of Pdgfrα in the SAN by Shox2-Cre at E9.5, using a Shox2-Cre;Pdgfrα flox/flox conditional mouse line. Surprisingly, we found that resultant homozygous mutant mice did not exhibit any malformation in SAN morphology as compared to their wild-type littermates. Further analysis revealed the normal cardiac function in adult mutant mice assessed by the record of heart rate and electrocardiogram and unaltered expression of Nkx2.5 in the E13.5 SAN of Pdgfrα conditional knockout mice. Our results unambiguously demonstrate that Pdgfrα is dispensable for SAN development after its fate commitment in mice.
Collapse
Affiliation(s)
- Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fengjiao Wang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hua Li
- Key Laboratory of Stem Cell Engineering Societ and Regenerative Medicine, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
| | - Zhen Guan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194702. [PMID: 33706013 DOI: 10.1016/j.bbagrm.2021.194702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
Collapse
|
15
|
Martin KE, Waxman JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8020015. [PMID: 33572147 PMCID: PMC7914448 DOI: 10.3390/jcdd8020015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Collapse
Affiliation(s)
- Kendall E. Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
16
|
Wang Y, Lu P, Jiang L, Wu B, Zhou B. Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1. Cardiovasc Res 2021; 116:1473-1486. [PMID: 31591643 DOI: 10.1093/cvr/cvz249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS Sinus venous valve (SVV) and sinoatrial node (SAN) develop together at the sinoatrial junction during embryogenesis. SVV ensures unidirectional cardiac input and SAN generates sinus rhythmic contraction, respectively; both functions are essential for embryonic survival. We aim to reveal the potential role of endocardial NOTCH signalling in SVV and SAN formation. METHODS AND RESULTS We specifically deleted Notch1 in the endocardium using an Nfatc1Cre line. This deletion resulted in underdeveloped SVV and SAN, associated with reduced expression of T-box transcription factors, Tbx5 andTbx18, which are essential for the formation of SVV and SAN. The deletion also led to decreased expression of Wnt2 in myocardium of SVV and SAN. WNT2 treatment was able to rescue the growth defect of SVV and SAN resulted from the Notch1 deletion in whole embryo cultures. Furthermore, the Notch1 deletion reduced the expression of Nrg1 in the SVV myocardium and supplement of NRG1 restored the growth of SVV in cultured Notch1 knockout embryos. CONCLUSION Our findings support that endocardial NOTCH1 controls the development of SVV and SAN by coordinating myocardial WNT and NRG1 signalling functions.
Collapse
Affiliation(s)
- Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shanxi 710061, China.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liping Jiang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bin Zhou
- Department of Genetics, Paediatrics, and Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.,Department of Cardiology of First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
17
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
18
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
19
|
Conjugated activation of myocardial-specific transcription of Gja5 by a pair of Nkx2-5-Shox2 co-responsive elements. Dev Biol 2020; 465:79-87. [PMID: 32687896 DOI: 10.1016/j.ydbio.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The sinoatrial node (SAN) is the primary pacemaker in the heart. During cardiogenesis, Shox2 and Nkx2-5 are co-expressed in the junction domain of the SAN and regulate pacemaker cell fate through a Shox2-Nkx2-5 antagonism. Cx40 is a marker of working myocardium and an Nkx2-5 transcriptional output antagonized by Shox2, but the underlying regulatory mechanisms remain elusive. Here we characterized a bona fide myocardial-specific Gja5 (coding gene of Cx40) distal enhancer consisting of a pair of Nkx2-5 and Shox2 co-bound elements in the regulatory region of Gja5. Transgenic reporter assays revealed that neither element alone, but the conjugation of both elements together, drives myocardial-specific transcription. Genetic analyses confirmed that the activation of this enhancer depends on Nkx2-5 but is inhibited by Shox2 in vivo, and its presence is essential for Gja5 expression in the myocardium but not the endothelial cells of the heart. Furthermore, chromatin conformation analysis showed an Nkx2-5-dependent loop formation between these two elements and the Gja5 promoter in vivo, indicating that Nkx2-5 bridges the conjugated activation of this enhancer by pairing the two elements to the Gja5 promoter.
Collapse
|
20
|
Zhao H, Wang F, Zhang W, Yang M, Tang Y, Wang X, Zhao Q, Huang C. Overexpression of TBX3 in human induced pluripotent stem cells (hiPSCs) increases their differentiation into cardiac pacemaker-like cells. Biomed Pharmacother 2020; 130:110612. [PMID: 32771895 DOI: 10.1016/j.biopha.2020.110612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUD The TBX3(T-box 3)transcription factor is considered as an essential factor in sinoatrial node formation. While the effect of TBX3 in the differentiation of sinoatrial node cells from embryonic stem cells(ESCs) has been recognized, its role in human induced pluripotent stem cell derived cardiomyocytes(hiPSCMs) has not been addressed. Therefore, the purpose of the present study was to investigate whether overexpression of TBX3 in hiPSCs could increase their differentiation into pacemaker-like cells. METHODS The hiPSCs were transfected with TBX3 gene during differentiation into cardiomyocytes(CMs). The hiPSCMs were analyzed using immunofluorescence, RT-qPCR, flow cytometry, whole-cell patch clamp recording to identify the differentiation effect exerted by TBX3. We discovered that hiPSCs transfected with TBX3 showed more proportions of NKX2.5-cTNT + sinoatrial node cells and faster contracting rates. RESULTS The results showed increment in transcription factor TBX18, SHOX2; hyperpolarization-activated cyclic nucleotide (HCN) channel: HCN1, HCN2, HCN4, connexin 45(CX45), Na + Ca2+ exchanger(NCX) in TBX3 transfected hiPSCMs. Sinoatrial node cell specific If current and action potential were also confirmed by patch clamp in TBX3 transfected hiPSCMs and the pacemaker-like cells were able to pace hiPSCMs ex vivo. CONCLUSION In conclusion, the present study demonstrated that overexpression of TBX3 could increase the differentiation of hiPSCs into pacemaker-like cells. Our study provide new strategy to construct a biological pacemaker, however, further study is still needed to identify the efficacy and safety of using the pacemaker-like cells to produce biological pacemaker in vivo.
Collapse
Affiliation(s)
- Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
21
|
Yanni J, D'Souza A, Wang Y, Li N, Hansen BJ, Zakharkin SO, Smith M, Hayward C, Whitson BA, Mohler PJ, Janssen PML, Zeef L, Choudhury M, Zi M, Cai X, Logantha SJRJ, Nakao S, Atkinson A, Petkova M, Doris U, Ariyaratnam J, Cartwright EJ, Griffiths-Jones S, Hart G, Fedorov VV, Oceandy D, Dobrzynski H, Boyett MR. Silencing miR-370-3p rescues funny current and sinus node function in heart failure. Sci Rep 2020; 10:11279. [PMID: 32647133 PMCID: PMC7347645 DOI: 10.1038/s41598-020-67790-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/02/2020] [Indexed: 01/13/2023] Open
Abstract
Bradyarrhythmias are an important cause of mortality in heart failure and previous studies indicate a mechanistic role for electrical remodelling of the key pacemaking ion channel HCN4 in this process. Here we show that, in a mouse model of heart failure in which there is sinus bradycardia, there is upregulation of a microRNA (miR-370-3p), downregulation of the pacemaker ion channel, HCN4, and downregulation of the corresponding ionic current, If, in the sinus node. In vitro, exogenous miR-370-3p inhibits HCN4 mRNA and causes downregulation of HCN4 protein, downregulation of If, and bradycardia in the isolated sinus node. In vivo, intraperitoneal injection of an antimiR to miR-370-3p into heart failure mice silences miR-370-3p and restores HCN4 mRNA and protein and If in the sinus node and blunts the sinus bradycardia. In addition, it partially restores ventricular function and reduces mortality. This represents a novel approach to heart failure treatment.
Collapse
Affiliation(s)
- Joseph Yanni
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Yanwen Wang
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Ning Li
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Brian J Hansen
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Stanislav O Zakharkin
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Christina Hayward
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Bryan A Whitson
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Surgery, Division of Cardiac Surgery, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Peter J Mohler
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Leo Zeef
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Moinuddin Choudhury
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Xue Cai
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Sunil Jit R J Logantha
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Shu Nakao
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Andrew Atkinson
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Maria Petkova
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Ursula Doris
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Jonathan Ariyaratnam
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Sam Griffiths-Jones
- Division of Evolution and Genomics Sciences, University of Manchester, Manchester, UK
| | - George Hart
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Vadim V Fedorov
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia Research and Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
| | - Mark R Boyett
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200N, Copenhagen, Denmark.
| |
Collapse
|
22
|
Schwartz RJ, McConnell BK. Response to Zhao and Huang's Commentary Letter, "Conversion of Human Cardiac Progenitor Cells using Reprogramming Factors into Heterogeneous Cardiac Pacemaker-like Cells", regarding our Manuscript: "Conversion of Human Cardiac Progenitor Cells into Cardiac Pacemaker-like Cells". J Mol Cell Cardiol 2020; 141:105-106. [PMID: 32224038 PMCID: PMC8063682 DOI: 10.1016/j.yjmcc.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA.
| |
Collapse
|
23
|
Raghunathan S, Islas JF, Mistretta B, Iyer D, Shi L, Gunaratne PH, Ko G, Schwartz RJ, McConnell BK. Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells. J Mol Cell Cardiol 2019; 138:12-22. [PMID: 31678351 DOI: 10.1016/j.yjmcc.2019.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 01/01/2023]
Abstract
We used a screening strategy to test for reprogramming factors for the conversion of human cardiac progenitor cells (CPCs) into Pacemaker-like cells. Human transcription factors SHOX2, TBX3, TBX5, TBX18, and the channel protein HCN2, were transiently induced as single factors and in trio combinations into CPCs, first transduced with the connexin 30.2 (CX30.2) mCherry reporter. Following screens for reporter CX30.2 mCherry gene activation and FACS enrichment, we observed the definitive expression of many pacemaker specific genes; including, CX30.2, KCNN4, HCN4, HCN3, HCN1, and SCN3b. These findings suggest that the SHOX2, HCN2, and TBX5 (SHT5) combination of transcription factors is a much better candidate in driving the CPCs into Pacemaker-like cells than other combinations and single transcription factors. Additionally, single-cell RNA sequencing of SHT5 mCherry+ cells revealed cellular enrichment of pacemaker specific genes including TBX3, KCNN4, CX30.2, and BMP2, as well as pacemaker specific potassium and calcium channels (KCND2, KCNK2, and CACNB1). In addition, similar to human and mouse sinoatrial node (SAN) studies, we also observed the down-regulation of NKX2.5. Patch-clamp recordings of the converted Pacemaker-like cells exhibited HCN currents demonstrated the functional characteristic of pacemaker cells. These studies will facilitate the development of an optimal Pacemaker-like cell-based therapy within failing hearts through the recovery of SAN dysfunction.
Collapse
Affiliation(s)
- Suchi Raghunathan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA
| | - Jose Francisco Islas
- Department of Biochemistry and Molecular Medicine, Autonomous University of Nuevo León, Monterrey, Mexico
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Dinakar Iyer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Gladys Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA.
| |
Collapse
|
24
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
25
|
Li H, Li D, Wang Y, Huang Z, Xu J, Yang T, Wang L, Tang Q, Cai CL, Huang H, Zhang Y, Chen Y. Nkx2-5 defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development 2019; 146:dev.178145. [PMID: 31320323 DOI: 10.1242/dev.178145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
The sinoatrial node (SAN), the primary cardiac pacemaker, consists of a head domain and a junction/tail domain that exhibit different functional properties. However, the underlying molecular mechanism defining these two pacemaker domains remains elusive. Nkx2-5 is a key transcription factor essential for the formation of the working myocardium, but it was generally thought to be detrimental to SAN development. However, Nkx2-5 is expressed in the developing SAN junction, suggesting a role for Nkx2-5 in SAN junction development and function. In this study, we present unambiguous evidence that SAN junction cells exhibit unique action potential configurations intermediate to those manifested by the SAN head and the surrounding atrial cells, suggesting a specific role for the junction cells in impulse generation and in SAN-atrial exit conduction. Single-cell RNA-seq analyses support this concept. Although Nkx2-5 inactivation in the SAN junction did not cause a malformed SAN at birth, the mutant mice manifested sinus node dysfunction. Thus, Nkx2-5 defines a population of pacemaker cells in the transitional zone. Despite Nkx2-5 being dispensable for SAN morphogenesis during embryogenesis, its deletion hampers atrial activation by the pacemaker.
Collapse
Affiliation(s)
- Hua Li
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuzhi Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China
| | - Jue Xu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
26
|
Wu L, Du J, Jing X, Yan Y, Deng S, Hao Z, She Q. Bone morphogenetic protein 4 promotes the differentiation of Tbx18-positive epicardial progenitor cells to pacemaker-like cells. Exp Ther Med 2019; 17:2648-2656. [PMID: 30906456 PMCID: PMC6425233 DOI: 10.3892/etm.2019.7243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Clarifying the mechanisms via which pacemaker- like cells are generated is critical for identifying novel targets for arrhythmia-associated disorders and constructing pacemakers with the ability to adapt to physiological requirements. T-box 18 (Tbx18)+ epicardial progenitor cells (EPCs) have the potential to differentiate into pacemaker cells. Although bone morphogenetic protein 4 (Bmp4) is likely to contribute, its role and regulatory mechanisms in the differentiation of Tbx18+ EPCs into pacemaker-like cells have remained to be fully elucidated. In the present study, the association between Bmp4, GATA binding protein 4 (Gata4) and hyperpolarization- activated cyclic nucleotide gated potassium channel 4 (Hcn4) to regulate NK2 homeobox 5 (Nkx2.5), which is known to be required for the differentiation of Tbx18+ EPCs into pacemaker-like cells, was assessed. Tbx18+ EPCs were isolated from Tbx18:Cre/Rosa26Renhanced yellow fluorescence protein (EYFP) murine embryos at embryonic day 11.5 and divided into the following four treatment groups: Control, Bmp4, Bmp4+LDN193189 (a Bmp inhibitor) and LDN193189. In vitro Bmp4 promoted the expression of Hcn4 in Tbx18+ EPCs via lineage tracing of Tbx18:Cre/Rosa26REYFP mice, which was likely due to upregulation of Gata4 expression. Gata4 knockdown experiments were then performed using the following five treatment groups: Control, control small interfering RNA (siRNA), Bmp4, Bmp4+siRNA targeting Gata4 (siGata4) and siGata4 group. Knockdown of Gata4 caused a downregulation of Hcn4 and an upregulation of Nkx2.5, but had no effect on Bmp4 expression. In conclusion, it was indicated that in Tbx18+ EPCs, the expression of Nkx2.5 was regulated by Bmp4 via Gata4. Taken together, these results provide important information on regulatory networks of pacemaker cell differentiation and may serve as a basis for further studies.
Collapse
Affiliation(s)
- Ling Wu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhengtao Hao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
27
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
28
|
Zhang J, Yang M, Yang AK, Wang X, Tang YH, Zhao QY, Wang T, Chen YT, Huang CX. Insulin gene enhancer binding protein 1 induces adipose tissue‑derived stem cells to differentiate into pacemaker‑like cells. Int J Mol Med 2018; 43:879-889. [PMID: 30483766 PMCID: PMC6317671 DOI: 10.3892/ijmm.2018.4002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023] Open
Abstract
Hybrid approaches combining gene- and cell-based therapies to make biological pacemakers are a promising therapeutic avenue for bradyarrhythmia. The present study aimed to direct adipose tissue-derived stem cells (ADSCs) to differentiate specifically into cardiac pacemaker cells by overexpressing a single transcription factor, insulin gene enhancer binding protein 1 (ISL-1). In the present study, the ADSCs were transfected with ISL‑1 or mCherry fluorescent protein lentiviral vectors and co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of ADSCs into pacemaker-like cells by overexpressing ISL-1 was evaluated by observation of cell morphology and beating rate, reverse transcription-quantitative polymerase chain reaction analysis, western blotting, immunofluorescence and analysis of electrophysiological activity. In conclusion, these data indicated that the overexpression of ISL-1 in ADSCs may enhance the pacemaker phenotype and automaticity in vitro, features which were significantly increased following co‑culture induction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - An-Kang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu-Ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
29
|
Vicente-Steijn R, Kelder TP, Tertoolen LG, Wisse LJ, Pijnappels DA, Poelmann RE, Schalij MJ, deRuiter MC, Gittenberger-de Groot AC, Jongbloed MRM. RHOA-ROCK signalling is necessary for lateralization and differentiation of the developing sinoatrial node. Cardiovasc Res 2018; 113:1186-1197. [PMID: 28899000 DOI: 10.1093/cvr/cvx104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/03/2017] [Indexed: 01/16/2023] Open
Abstract
Aims RHOA-ROCK signalling regulates cell migration, proliferation, differentiation, and transcription. RHOA is expressed in the developing cardiac conduction system in chicken and mice. In early development, the entire sinus venosus myocardium, including both the transient left-sided and the definitive sinoatrial node (SAN), has pacemaker potential. Later, pacemaker potential is restricted to the right-sided SAN. Disruption of RHOA expression in adult mice causes arrhythmias including bradycardia and atrial fibrillation, the mechanism of which is unknown but presumed to affect the SAN. The aim of this study is to assess the role of RHOA-ROCK signalling in SAN development in the chicken heart. Methods and results ROCK signalling was inhibited chemically in embryonic chicken hearts using Y-27632. This prolonged the immature state of the sinus venosus myocardium, evidenced by up-regulation of the transcription factor ISL1, wide distribution of pacemaker potential, and significantly reduced heart rate. Furthermore ROCK inhibition caused aberrant expression of typical SAN genes: ROCK1, ROCK2, SHOX2, TBX3, TBX5, ISL1, HCN4, CX40, CAV3.1, and NKX2.5 and left-right asymmetry genes: PITX2C and NODAL. Anatomical abnormalities in pulmonary vein development were also observed. Patch clamp electrophysiology confirmed the immature phenotype of the SAN cells and a residual left-sided sinus venosus myocardium pacemaker-like potential. Conclusions RHOA-ROCK signalling is involved in establishing the right-sided SAN as the definitive pacemaker of the heart and restricts typical pacemaker gene expression to the right side of the sinus venosus myocardium.
Collapse
Affiliation(s)
- Rebecca Vicente-Steijn
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Tim P Kelder
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leon G Tertoolen
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël A Pijnappels
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert E Poelmann
- Sylvius Laboratory, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C deRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Carmona R, Ariza L, Cañete A, Muñoz-Chápuli R. Comparative developmental biology of the cardiac inflow tract. J Mol Cell Cardiol 2018; 116:155-164. [PMID: 29452155 DOI: 10.1016/j.yjmcc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 02/03/2023]
Abstract
The vertebrate heart receives the blood through the cardiac inflow tract. This area has experienced profound changes along the evolution of vertebrates; changes that have a reflection in the cardiac ontogeny. The development of the inflow tract involves dynamic changes due to the progressive addition of tissue derived from the secondary heart field. The inflow tract is the site where oxygenated blood coming from lungs is received separately from the systemic return, where the cardiac pacemaker is established and where the proepicardium develops. Differential cell migration towards the inflow tract breaks the symmetry of the primary heart tube and determines the direction of the cardiac looping. In air-breathing vertebrates, an inflow tract reorganization is essential to keep separate blood flows from systemic and pulmonary returns. Finally, the sinus venosus endocardium has recently been recognized as playing a role in the constitution of the coronary vasculature. Due to this developmental complexity, congenital anomalies of the inflow tract can cause severe cardiac diseases. We aimed to review the recent literature on the cellular and molecular mechanisms that regulate the morphogenesis of the cardiac inflow tract, together with comparative and evolutionary details, thus providing a basis for a better understanding of these mechanisms.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Laura Ariza
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain.
| |
Collapse
|
31
|
Burkhard SB, Bakkers J. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate. eLife 2018; 7:31515. [PMID: 29400650 PMCID: PMC5815850 DOI: 10.7554/elife.31515] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/03/2018] [Indexed: 11/13/2022] Open
Abstract
Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions.
Collapse
Affiliation(s)
- Silja Barbara Burkhard
- Hubrecht Institute-KNAW, Utrecht, Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht, Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
32
|
Colombo S, de Sena-Tomás C, George V, Werdich AA, Kapur S, MacRae CA, Targoff KL. Nkx genes establish second heart field cardiomyocyte progenitors at the arterial pole and pattern the venous pole through Isl1 repression. Development 2018; 145:dev.161497. [PMID: 29361575 DOI: 10.1242/dev.161497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
NKX2-5 is the most commonly mutated gene associated with human congenital heart defects (CHDs), with a predilection for cardiac pole abnormalities. This homeodomain transcription factor is a central regulator of cardiac development and is expressed in both the first and second heart fields (FHF and SHF). We have previously revealed essential functions of nkx2.5 and nkx2.7, two Nkx2-5 homologs expressed in zebrafish cardiomyocytes, in maintaining ventricular identity. However, the differential roles of these genes in the specific subpopulations of the anterior (aSHF) and posterior (pSHF) SHFs have yet to be fully defined. Here, we show that Nkx genes regulate aSHF and pSHF progenitors through independent mechanisms. We demonstrate that Nkx genes restrict proliferation of aSHF progenitors in the outflow tract, delimit the number of pSHF progenitors at the venous pole and pattern the sinoatrial node acting through Isl1 repression. Moreover, optical mapping highlights the requirement for Nkx gene dose in establishing electrophysiological chamber identity and in integrating the physiological connectivity of FHF and SHF cardiomyocytes. Ultimately, our results may shed light on the discrete errors responsible for NKX2-5-dependent human CHDs of the cardiac outflow and inflow tracts.
Collapse
Affiliation(s)
- Sophie Colombo
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Vanessa George
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andreas A Werdich
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Sunil Kapur
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Calum A MacRae
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
33
|
Yu Z, Tang PL, Wang J, Bao S, Shieh JT, Leung AW, Zhang Z, Gao F, Wong SY, Hui AL, Gao Y, Dung N, Zhang ZG, Fan Y, Zhou X, Zhang Y, Wong DS, Sham PC, Azhar A, Kwok PY, Tam PP, Lian Q, Cheah KS, Wang B, Song YQ. Mutations in Hnrnpa1 cause congenital heart defects. JCI Insight 2018; 3:98555. [PMID: 29367466 PMCID: PMC5821217 DOI: 10.1172/jci.insight.98555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Incomplete penetrance of congenital heart defects (CHDs) was observed in a mouse model. We hypothesized that the contribution of a major genetic locus modulates the manifestation of the CHDs. After genome-wide linkage mapping, fine mapping, and high-throughput targeted sequencing, a recessive frameshift mutation of the heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) gene was confirmed (Hnrnpa1ct). Hnrnpa1 was expressed in both the first heart field (FHF) and second heart field (SHF) at the cardiac crescent stage but was only maintained in SHF progenitors after heart tube formation. Hnrnpa1ct/ct homozygous mutants displayed complete CHD penetrance, including truncated and incomplete looped heart tube at E9.5, ventricular septal defect (VSD) and persistent truncus arteriosus (PTA) at E13.5, and VSD and double outlet right ventricle at P0. Impaired development of the dorsal mesocardium and sinoatrial node progenitors was also observed. Loss of Hnrnpa1 expression leads to dysregulation of cardiac transcription networks and multiple signaling pathways, including BMP, FGF, and Notch in the SHF. Finally, two rare heterozygous mutations of HNRNPA1 were detected in human CHDs. These findings suggest a role of Hnrnpa1 in embryonic heart development in mice and humans. Heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) is essential for embryonic heart development in both mice and humans.
Collapse
Affiliation(s)
- Zhe Yu
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Paul Lf Tang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Jing Wang
- National Research Institute for Family Planning, Beijing, China
| | - Suying Bao
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Joseph T Shieh
- Institute for Human Genetics and Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Alan Wl Leung
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhao Zhang
- Department of Medicine and Ophthalmology
| | - Fei Gao
- Department of Medicine and Ophthalmology
| | - Sandra Yy Wong
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Andy Lc Hui
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Nelson Dung
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhi-Gang Zhang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Yanhui Fan
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | | | - Yalun Zhang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Dana Sm Wong
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry.,Centre for Genome Sciences, and.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China
| | - Abid Azhar
- Institute of Biotechnology & Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Patrick Pl Tam
- Embryology Unit, Children's Medical Research Institute, School of Medical Sciences, University of Sydney, Westmead, New South Wales, Australia
| | | | - Kathryn Se Cheah
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, China
| | - You-Qiang Song
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China.,Centre for Genome Sciences, and.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation and.,The University of Hong Kong-Southern University of Science and Technology Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Li N, Wang ZS, Wang XH, Xu YJ, Qiao Q, Li XM, Di RM, Guo XJ, Li RG, Zhang M, Qiu XB, Yang YQ. A SHOX2 loss-of-function mutation underlying familial atrial fibrillation. Int J Med Sci 2018; 15:1564-1572. [PMID: 30443179 PMCID: PMC6216059 DOI: 10.7150/ijms.27424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF), as the most common sustained cardiac arrhythmia, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that genetic defects play a crucial role in the pathogenesis of AF, especially in familial AF. Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of cases the genetic determinants underlying AF remain elusive. In the current study, 162 unrelated patients with familial AF and 238 unrelated healthy individuals served as controls were recruited. The coding exons and splicing junction sites of the SHOX2 gene, which encodes a homeobox-containing transcription factor essential for proper development and function of the cardiac conduction system, were sequenced in all study participants. The functional effect of the mutant SHOX2 protein was characterized with a dual-luciferase reporter assay system. As a result, a novel heterozygous SHOX2 mutation, c.580C>T or p.R194X, was identified in an index patient, which was absent from the 476 control chromosomes. Genetic analysis of the proband's pedigree revealed that the nonsense mutation co-segregated with AF in the family with complete penetrance. Functional assays demonstrated that the mutant SHOX2 protein had no transcriptional activity compared with its wild-type counterpart. In conclusion, this is the first report on the association of SHOX2 loss-of-function mutation with enhanced susceptibility to familial AF, which provides novel insight into the molecular mechanism underpinning AF, suggesting potential implications for genetic counseling and individualized management of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Zhang-Sheng Wang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Xiao-Juan Guo
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China.,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China.,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China.,Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| |
Collapse
|
35
|
Schweizer PA, Darche FF, Ullrich ND, Geschwill P, Greber B, Rivinius R, Seyler C, Müller-Decker K, Draguhn A, Utikal J, Koenen M, Katus HA, Thomas D. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res Ther 2017; 8:229. [PMID: 29037217 PMCID: PMC5644063 DOI: 10.1186/s13287-017-0681-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. Methods hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. Results hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10–12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70–90 beats/min) and were triggered by spontaneous Ca2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. Conclusion We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0681-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Pascal Geschwill
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Boris Greber
- Department of Cell and Developmental Biology, Max-Planck-Institute for Molecular Biomedicine, Röntgenstrasse, 20, D-48149, Münster, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Karin Müller-Decker
- Unit Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Jochen Utikal
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Dermato-Oncology (G300), German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| |
Collapse
|
36
|
Co-option of the cardiac transcription factor Nkx2.5 during development of the emu wing. Nat Commun 2017; 8:132. [PMID: 28743862 PMCID: PMC5526984 DOI: 10.1038/s41467-017-00112-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
The ratites are a distinctive clade of flightless birds, typified by the emu and ostrich that have acquired a range of unique anatomical characteristics since diverging from basal Aves at least 100 million years ago. The emu possesses a vestigial wing with a single digit and greatly reduced forelimb musculature. However, the embryological basis of wing reduction and other anatomical changes associated with loss of flight are unclear. Here we report a previously unknown co-option of the cardiac transcription factor Nkx2.5 to the forelimb in the emu embryo, but not in ostrich, or chicken and zebra finch, which have fully developed wings. Nkx2.5 is expressed in emu limb bud mesenchyme and maturing wing muscle, and mis-expression of Nkx2.5 throughout the limb bud in chick results in wing reductions. We propose that Nkx2.5 functions to inhibit early limb bud expansion and later muscle growth during development of the vestigial emu wing. The transcription factor Nkx2.5 is essential for heart development. Here, the authors identify a previously unknown expression domain for Nkx2.5 in the emu wing and explore its role in diminished wing bud development in the flightless emu, compared with three other birds that have functional wings.
Collapse
|
37
|
Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S. Transient Notch Activation Induces Long-Term Gene Expression Changes Leading to Sick Sinus Syndrome in Mice. Circ Res 2017; 121:549-563. [PMID: 28674041 DOI: 10.1161/circresaha.116.310396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Notch signaling programs cardiac conduction during development, and in the adult ventricle, injury-induced Notch reactivation initiates global transcriptional and epigenetic changes. OBJECTIVE To determine whether Notch reactivation may stably alter atrial ion channel gene expression and arrhythmia inducibility. METHODS AND RESULTS To model an injury response and determine the effects of Notch signaling on atrial electrophysiology, we transiently activate Notch signaling within adult myocardium using a doxycycline-inducible genetic system (inducible Notch intracellular domain [iNICD]). Significant heart rate slowing and frequent sinus pauses are observed in iNICD mice when compared with controls. iNICD mice have structurally normal atria and preserved sinus node architecture, but expression of key transcriptional regulators of sinus node and atrial conduction, including Nkx2-5 (NK2 homeobox 5), Tbx3, and Tbx5 are dysregulated. To determine whether the induced electrical changes are stable, we transiently activated Notch followed by a prolonged washout period and observed that, in addition to decreased heart rate, atrial conduction velocity is persistently slower than control. Consistent with conduction slowing, genes encoding molecular determinants of atrial conduction velocity, including Scn5a (Nav1.5) and Gja5 (connexin 40), are persistently downregulated long after a transient Notch pulse. Consistent with the reduction in Scn5a transcript, Notch induces global changes in the atrial action potential, including a reduced dVm/dtmax. In addition, programmed electrical stimulation near the murine pulmonary vein demonstrates increased susceptibility to atrial arrhythmias in mice where Notch has been transiently activated. Taken together, these results suggest that transient Notch activation persistently alters ion channel gene expression and atrial electrophysiology and predisposes to an arrhythmogenic substrate. CONCLUSIONS Our data provide evidence that Notch signaling regulates transcription factor and ion channel gene expression within adult atrial myocardium. Notch reactivation induces electrical changes, resulting in sinus bradycardia, sinus pauses, and a susceptibility to atrial arrhythmias, which contribute to a phenotype resembling sick sinus syndrome.
Collapse
Affiliation(s)
- Yun Qiao
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Catherine Lipovsky
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stephanie Hicks
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Somya Bhatnagar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Gang Li
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Aditi Khandekar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Robert Guzy
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Kel Vin Woo
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Colin G Nichols
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Igor R Efimov
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stacey Rentschler
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.).
| |
Collapse
|
38
|
Abstract
The generation and propagation of the cardiac impulse is the central function of the cardiac conduction system (CCS). Impulse initiation occurs in nodal tissues that have high levels of automaticity, but slow conduction properties. Rapid impulse propagation is a feature of the ventricular conduction system, which is essential for synchronized contraction of the ventricular chambers. When functioning properly, the CCS produces ~2.4 billion heartbeats during a human lifetime and orchestrates the flow of cardiac impulses, designed to maximize cardiac output. Abnormal impulse initiation or propagation can result in brady- and tachy-arrhythmias, producing an array of symptoms, including syncope, heart failure or sudden cardiac death. Underlying the functional diversity of the CCS are gene regulatory networks that direct cell fate towards a nodal or a fast conduction gene program. In this review, we will discuss our current understanding of the transcriptional networks that dictate the components of the CCS, the growth factor-dependent signaling pathways that orchestrate some of these transcriptional hierarchies and the effect of aberrant transcription factor expression on mammalian conduction disease.
Collapse
|
39
|
Ye F, Wang H, Zheng Z, He P, Sribastav SS, Wang H, Wang J, Liu H, Leung VYL. Role of SHOX2 in the development of intervertebral disc degeneration. J Orthop Res 2017; 35:1047-1057. [PMID: 26697824 DOI: 10.1002/jor.23140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/21/2015] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration is the most common cause of low back pain, which affect 80% of the population during their lives, with heavy economic burden. Many factors have been demonstrated to participate in IVD degeneration. In this study, we investigated the role of short stature homeobox 2 (SHOX2) in the development of IVD degeneration. First, we detected the expression of SHOX2 in different stages of human IVD degeneration; then explored the role of SHOX2 on nucleus pulposus (NP) cells proliferation and apoptosis, finally we evaluated the effect of SHOX2 on the production of extracellular matrix in NP cells. Results showed that the expression of SHOX2 is mainly in NP compared with AF tissues, its expression decreased with the severity of human IVD degeneration. TNF-α treatment led to dose- and time-dependent decrease in SHOX2 mRNA, protein expression and promoter activity in NP cells. The silencing of SHOX2 inhibited NP cells proliferation and induced NP cells apoptosis. Finally, SHOX2 silencing led to decreased aggrecan and collagen II expression, along with increased ECM degrading enzymes MMP3 and ADAMTS-5 in NP cells. In summary, our results indicated that SHOX2 plays an important role in the process of IVD degeneration, and might be a protective factor for IVD degeneration. Further studies are required to confirm its exact role, and clarify the mechanism. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1047-1057, 2017.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Hua Wang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Zhaomin Zheng
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Peiheng He
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Shilabant Sen Sribastav
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Huafeng Wang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Jianru Wang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Hui Liu
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, P.R. China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Hong Kong, P.R. China
| |
Collapse
|
40
|
Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J. On the Evolution of the Cardiac Pacemaker. J Cardiovasc Dev Dis 2017; 4:jcdd4020004. [PMID: 29367536 PMCID: PMC5715705 DOI: 10.3390/jcdd4020004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.
Collapse
Affiliation(s)
- Silja Burkhard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent van Eif
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Laurence Garric
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
41
|
Hoffmann S, Schmitteckert S, Griesbeck A, Preiss H, Sumer S, Rolletschek A, Granzow M, Eckstein V, Niesler B, Rappold GA. Comparative expression analysis of Shox2-deficient embryonic stem cell-derived sinoatrial node-like cells. Stem Cell Res 2017; 21:51-57. [PMID: 28390247 DOI: 10.1016/j.scr.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The homeodomain transcription factor Shox2 controls the development and function of the native cardiac pacemaker, the sinoatrial node (SAN). Moreover, SHOX2 mutations have been associated with cardiac arrhythmias in humans. For detailed examination of Shox2-dependent developmental mechanisms in SAN cells, we established a murine embryonic stem cell (ESC)-based model using Shox2 as a molecular tool. Shox2+/+ and Shox2-/- ESC clones were isolated and differentiated according to five different protocols in order to evaluate the most efficient enrichment of SAN-like cells. Expression analysis of cell subtype-specific marker genes revealed most efficient enrichment after CD166-based cell sorting. Comparative cardiac expression profiles of Shox2+/+ and Shox2-/- ESCs were examined by nCounter technology. Among other genes, we identified Nppb as a novel putative Shox2 target during differentiation in ESCs. Differential expression of Nppb could be confirmed in heart tissue of Shox2-/- embryos. Taken together, we established an ESC-based cardiac differentiation model and successfully purified Shox2+/+ and Shox2-/- SAN-like cells. This now provides an excellent basis for the investigation of molecular mechanisms under physiological and pathophysiological conditions for evaluating novel therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Anne Griesbeck
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Hannes Preiss
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Simon Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany
| | - Alexandra Rolletschek
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Martin Granzow
- Department of Human Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Volker Eckstein
- FACS Core Facility, Department of Medicine V, University Hospital Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany; nCounter Core Facility, Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, Germany; DZHK, German Centre for Cardiovascular Research, Partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
42
|
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development 2016; 143:197-210. [PMID: 26786210 DOI: 10.1242/dev.124883] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
43
|
Feng Y, Yang P, Luo S, Zhang Z, Li H, Zhu P, Song Z. Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro. Mol Med Rep 2016; 14:637-42. [PMID: 27222368 PMCID: PMC4918598 DOI: 10.3892/mmr.2016.5306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023] Open
Abstract
Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5–7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Pan Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shouming Luo
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhihui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huakang Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhiyuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
44
|
Chowdhury R, Ashraf H, Melanson M, Tanada Y, Nguyen M, Silberbach M, Wakimoto H, Benson DW, Anderson RH, Kasahara H. Mouse Model of Human Congenital Heart Disease: Progressive Atrioventricular Block Induced by a Heterozygous Nkx2-5 Homeodomain Missense Mutation. Circ Arrhythm Electrophysiol 2015; 8:1255-64. [PMID: 26226998 DOI: 10.1161/circep.115.002720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heterozygous human NKX2-5 homeodomain (DNA-binding domain) missense mutations are highly penetrant for varied congenital heart defects, including progressive atrioventricular (AV) block requiring pacemaker implantation. We recently replicated this genetic defect in a murine knockin model, in which we demonstrated highly penetrant, pleiotropic cardiac anomalies. In this study, we examined postnatal AV conduction in the knockin mice. METHODS AND RESULTS A murine knockin model (Arg52Gly, Nkx2-5(+/R52G)) in a 129/Sv background was analyzed by histopathology, surface, and telemetry ECG, and in vivo electrophysiology studies, comparing with control Nkx2-5(+/+) mice at diverse postnatal stages, ranging from postnatal day 1 (P1) to 17 months. PR prolongation (first degree AV block) was present at 4 weeks, 7 months, and 17 months of age, but not at P1 in the mutant mice. Advanced AV block was also occasionally demonstrated in the mutant mice. Electrophysiology studies showed that AV nodal function and right ventricular effective refractory period were impaired in the mutant mice, whereas sinus nodal function was not affected. AV nodal size was significantly smaller in the mutant mice than their controls at 4 weeks of age, corresponding to the presence of PR prolongation, but not P1, suggesting, at least in part, that the conduction abnormalities are the result of a morphologically atrophic AV node. CONCLUSIONS The highly penetrant and progressive AV block phenotype seen in human heterozygous missense mutations in NKX2-5 homeodomain was replicated in mice by knocking in a comparable missense mutation.
Collapse
Affiliation(s)
- Rajib Chowdhury
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Hassan Ashraf
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Michelle Melanson
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Yohei Tanada
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Minh Nguyen
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Michael Silberbach
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Hiroko Wakimoto
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - D Woodrow Benson
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Robert H Anderson
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.)
| | - Hideko Kasahara
- From the Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (R.C., H.A., M.M., Y.T., M.N., H.K.); Department of Pediatrics, Oregon Health Science School, Portland (M.S.); Department of Genetics, Harvard Medical School, Boston, MA (H.W.); Department of Pediatrics, Herma Heart Center, Medical College of Wisconsin, Milwaukee (D.W.B.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (R.H.A.).
| |
Collapse
|
45
|
Effect of NRG-1/ErbB signaling intervention on the differentiation of bone marrow stromal cells into sinus node-like cells. J Cardiovasc Pharmacol 2014; 63:434-40. [PMID: 24390172 DOI: 10.1097/fjc.0000000000000068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neuregulin-1 (NRG-1)/ErbB signaling pathway is a crucial regulator of cardiac development and plays an important role in the formation of the cardiac special conduction system. To establish a rat bone marrow stromal cell (BMSC) cardiomyocyte (CM)-like differentiation model, BMSCs were treated with 5-azacytidine and fibroblast growth factor basic (FGF-basic) for 24 hours and then cocultured with neonatal rat CMs in a Transwell culture system. The feasibility of regulating the differentiation of BMSCs into sinoatrial node cells by manipulating the NRG-1/ErbB pathway was investigated. Three weeks after induction, reverse transcription-polymerase chain reaction analysis revealed that inhibition of NRG-1/ErbB signaling (using AG1478) greatly enhanced the expression of HCN4, Tbx3, and Tbx2. Additionally, Tbx3 protein levels were higher than in the control group and even produced distinct nodal-type action potentials. The expression of Nkx2.5 in the NRG-1 group (treated with exogenous NRG-1) was higher than the other 2 groups. The expression of phospho-Akt was also increased in the NRG-1 group but decreased in the AG1478 group. Together, these data demonstrate that inhibiting the endogenous NRG-1/ErbB signaling pathway when rat BMSCs differentiate into CMs can greatly enhance the pacemaker phenotype. Akt signaling may be one of the underlying molecular mechanisms responsible for these results.
Collapse
|
46
|
Sun C, Yu D, Ye W, Liu C, Gu S, Sinsheimer NR, Song Z, Li X, Chen C, Song Y, Wang S, Schrader L, Chen Y. The short stature homeobox 2 (Shox2)-bone morphogenetic protein (BMP) pathway regulates dorsal mesenchymal protrusion development and its temporary function as a pacemaker during cardiogenesis. J Biol Chem 2014; 290:2007-23. [PMID: 25488669 DOI: 10.1074/jbc.m114.619007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The atrioventricular (AV) junction plays a critical role in chamber septation and transmission of cardiac conduction pulses. It consists of structures that develop from embryonic dorsal mesenchymal protrusion (DMP) and the embryonic AV canal. Despite extensive studies on AV junction development, the genetic regulation of DMP development remains poorly understood. In this study we present evidence that Shox2 is expressed in the developing DMP. Intriguingly, this Shox2-expressing domain possesses a pacemaker-specific genetic profile including Hcn4 and Tbx3. This genetic profile leads to nodal-like electrophysiological properties, which is gradually silenced as the AV node becomes matured. Phenotypic analyses of Shox2(-/-) mice revealed a hypoplastic and defectively differentiated DMP, likely attributed to increased apoptosis, accompanied by dramatically reduced expression of Bmp4 and Hcn4, ectopic activation of Cx40, and an aberrant pattern of action potentials. Interestingly, conditional deletion of Bmp4 or inhibition of BMP signaling by overexpression of Noggin using a Shox2-Cre allele led to a similar DMP hypoplasia and down-regulation of Hcn4, whereas activation of a transgenic Bmp4 allele in Shox2(-/-) background attenuated DMP defects. Moreover, the lack of Hcn4 expression in the DMP of mice carrying Smad4 conditional deletion and direct binding of pSmad1/5/8 to the Hcn4 regulatory region further confirm the Shox2-BMP genetic cascade in the regulation of DMP development. Our results reveal that Shox2 regulates DMP fate and development by controlling BMP signaling through the Smad-dependent pathway to drive tissue growth and to induce Hcn4 expression and suggest a temporal pacemaking function for the DMP during early cardiogenesis.
Collapse
Affiliation(s)
- Cheng Sun
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Diankun Yu
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Wenduo Ye
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Chao Liu
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Shuping Gu
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Nathan R Sinsheimer
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Zhongchen Song
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Xihai Li
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Chun Chen
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Yingnan Song
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Shusheng Wang
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Laura Schrader
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - YiPing Chen
- From the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
47
|
Espinoza-Lewis RA, Wang DZ. Generation of a Cre knock-in into the Myocardin locus to mark early cardiac and smooth muscle cell lineages. Genesis 2014; 52:879-87. [PMID: 25174608 DOI: 10.1002/dvg.22819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022]
Abstract
The molecular events that control cell fate determination in cardiac and smooth muscle lineages remain elusive. Myocardin is an important transcription cofactor that regulates cell proliferation, differentiation, and development of the cardiovascular system. Here, we describe the construction and analysis of a dual Cre and enhanced green fluorescent protein (EGFP) knock-in mouse line in the Myocardin locus (Myocd(KI)). We report that the Myocd(KI) allele expresses the Cre enzyme and the EGFP in a manner that recapitulates endogenous Myocardin expression patterns. We show that Myocardin expression marks the earliest cardiac and smooth muscle lineages. Furthermore, this genetic model allows for the identification of a cardiac cell population, which maintains both Myocardin and Isl-1 expression, in E7.75-E8.0 embryos, highlighting the contribution and merging of the first and second heart fields during cardiogenesis. Therefore, the Myocd(KI) allele is a unique tool for studying cardiovascular development and lineage-specific gene manipulation.
Collapse
Affiliation(s)
- Ramón A Espinoza-Lewis
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
48
|
Li X, Liang W, Ye H, Weng X, Liu F, Liu X. Overexpression of Shox2 leads to congenital dysplasia of the temporomandibular joint in mice. Int J Mol Sci 2014; 15:13135-50. [PMID: 25062348 PMCID: PMC4159784 DOI: 10.3390/ijms150813135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/18/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022] Open
Abstract
Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ), and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs), MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway.
Collapse
Affiliation(s)
- Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Wenna Liang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xiaping Weng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Fayuan Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
49
|
Liu H, Chen CH, Ye W, Espinoza-Lewis RA, Hu X, Zhang Y, Chen Y. Phosphorylation of Shox2 is required for its function to control sinoatrial node formation. J Am Heart Assoc 2014; 3:e000796. [PMID: 24847033 PMCID: PMC4309068 DOI: 10.1161/jaha.114.000796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Inactivation of Shox2, a member of the short‐stature homeobox gene family, leads to defective development of multiple organs and embryonic lethality as a result of cardiovascular defects, including bradycardia and severe hypoplastic sinoatrial node (SAN) and sinus valves, in mice. It has been demonstrated that Shox2 regulates a genetic network through the repression of Nkx2.5 to maintain the fate of the SAN cells. However, the functional mechanism of Shox2 protein as a transcriptional repressor on Nkx2.5 expression remains completely unknown. Methods and Results A specific interaction between the B56δ regulatory subunit of PP2A and Shox2a, the isoform that is expressed in the developing heart, was demonstrated by yeast 2‐hybrid screen and coimmunoprecipitation. Western blotting and immunohistochemical assays further confirmed the presence of phosphorylated Shox2a (p‐Shox2a) in cell culture as well as in the developing mouse and human SAN. Site‐directed mutagenesis and in vitro kinase assays identified Ser92 and Ser110 as true phosphorylation sites and substrates of extracellular signal‐regulated kinase 1 and 2. Despite that Shox2a and its phosphorylation mutants possessed similar transcriptional repressive activities in cell cultures when fused with Gal4 protein, the mutant forms exhibited a compromised repressive effect on the activity of the mouse Nkx2.5 promoter in cell cultures, indicating that phosphorylation is required for Shox2a to repress Nkx2.5 expression specifically. Transgenic expression of Shox2a, but not Shox2a‐S92AS110A, mutant in the developing heart resulted in down‐regulation of Nkx2.5 in wild‐type mice and rescued the SAN defects in the Shox2 mutant background. Last, we demonstrated that elimination of both phosphorylation sites on Shox2a did not alter its nuclear location and dimerization, but depleted its capability to bind to the consensus sequences within the Nkx2.5 promoter region. Conclusions Our studies reveal that phosphorylation is essential for Shox2a to repress Nkx2.5 expression during SAN development and differentiation.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, 70118, LA (H.L., C.H.C., W.Y., R.E.L., Y.P.C.)
| | - Chao-Hui Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, 70118, LA (H.L., C.H.C., W.Y., R.E.L., Y.P.C.)
| | - Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, 70118, LA (H.L., C.H.C., W.Y., R.E.L., Y.P.C.)
| | - Ramón A Espinoza-Lewis
- Department of Cell and Molecular Biology, Tulane University, New Orleans, 70118, LA (H.L., C.H.C., W.Y., R.E.L., Y.P.C.) Division of Cardiology, Children's Hospital Boston and Harvard Medical School, Boston, MA
| | - Xuefeng Hu
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province, China (X.H., Y.Z., Y.P.C.)
| | - Yanding Zhang
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province, China (X.H., Y.Z., Y.P.C.)
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, 70118, LA (H.L., C.H.C., W.Y., R.E.L., Y.P.C.) Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province, China (X.H., Y.Z., Y.P.C.)
| |
Collapse
|
50
|
Aza-Carmona M, Barca-Tierno V, Hisado-Oliva A, Belinchón A, Gorbenko-del Blanco D, Rodriguez JI, Benito-Sanz S, Campos-Barros A, Heath KE. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development. PLoS One 2014; 9:e83104. [PMID: 24421874 PMCID: PMC3885427 DOI: 10.1371/journal.pone.0083104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
Collapse
Affiliation(s)
- Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Veronica Barca-Tierno
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alfonso Hisado-Oliva
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alberta Belinchón
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Darya Gorbenko-del Blanco
- Dept. Celular Biology, Immunology & Neurosciences, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | | | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Angel Campos-Barros
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|