1
|
Li KR, Yu PL, Zheng QQ, Wang X, Fang X, Li LC, Xu CR. Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution. Cell 2025; 188:796-813.e24. [PMID: 39824184 DOI: 10.1016/j.cell.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
During early mammalian development, the endoderm germ layer forms the foundation of the respiratory and digestive systems through complex patterning. This intricate process, guided by a series of cell fate decisions, remains only partially understood. Our study introduces innovative genetic tracing codes for 14 distinct endodermal regions using novel mouse strains. By integrating high-throughput and high-precision single-cell RNA sequencing with sophisticated imaging, we detailed the spatiotemporal and genetic lineage differentiation of the endoderm at single-cell resolution. We discovered an unexpected multipotentiality within early endodermal regions, allowing differentiation into various organ primordia. This research illuminates the complex and underestimated phenomenon where endodermal organs develop from multiple origins, prompting a reevaluation of traditional differentiation models. Our findings advance understanding in developmental biology and have significant implications for regenerative medicine and the development of advanced organoid models, providing insights into the intricate mechanisms that guide organogenesis.
Collapse
Affiliation(s)
- Ke-Ran Li
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pei-Long Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qi-Qi Zheng
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Fang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin-Chen Li
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Yan R, Hoffmann LA, Oikonomou P, Li D, Lee C, Gill H, Mongera A, Nerurkar NL, Mahadevan L, Tabin CJ. Convergent flow-mediated mesenchymal force drives embryonic foregut constriction and splitting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634318. [PMID: 39896544 PMCID: PMC11785243 DOI: 10.1101/2025.01.22.634318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The transformation of a two-dimensional epithelial sheet into various three-dimensional structures is a critical process in generating the diversity of animal forms. Previous studies of epithelial folding have revealed diverse mechanisms driven by epithelium-intrinsic or -extrinsic forces. Yet little is known about the biomechanical basis of epithelial splitting, which involves extreme folding and eventually a topological transition breaking the epithelial tube. Here, we leverage tracheal-esophageal separation (TES), a critical and highly conserved morphogenetic event during tetrapod embryogenesis, as a model system for interrogating epithelial tube splitting both in vivo and ex vivo. Comparing TES in chick and mouse embryos, we identified an evolutionarily conserved, compressive force exerted by the mesenchyme surrounding the epithelium, as being necessary to drive epithelial constriction and splitting. The compressive force is mediated by localized convergent flow of mesenchymal cells towards the epithelium. We further found that Sonic Hedgehog (SHH) secreted by the epithelium functions as an attractive cue for mesenchymal cells. Removal of the mesenchyme, inhibition of cell migration, or loss of SHH signaling all abrogate TES, which can be rescued by externally applied pressure. These results unveil the biomechanical basis of epithelial splitting and suggest a mesenchymal origin of tracheal-esophageal birth defects.
Collapse
Affiliation(s)
- Rui Yan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ludwig A. Hoffmann
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Panagiotis Oikonomou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Deng Li
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - ChangHee Lee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hasreet Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Mongera
- Department of Cell & Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - L. Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Clifford J. Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
van Hal AFRL, Aanen IP, Wijnen RMH, Pullens B, Vlot J. The Value of Preoperative Rigid Tracheobronchoscopy for the Diagnosis of Tracheomalacia in Oesophageal Atresia Patients. J Pediatr Surg 2024; 59:161620. [PMID: 39089893 DOI: 10.1016/j.jpedsurg.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Oesophageal atresia (OA) is often accompanied by tracheomalacia (TM). The aim of this study was to evaluate its presence in OA patients during routine rigid tracheobronchoscopy (TBS) before primary correction and compare this to postoperative TBS and clinical signs of TM. METHODS This retrospective cohort study included patients born with OA between June 2013 and December 2022 who had received a TBS before OA correction and had been followed for at least twelve months. Definite TM was postoperatively diagnosed through TBS, and probable TM was defined as having symptoms of TM. RESULTS We analysed data from 79 patients, of whom 87% with OA type C. Preoperatively, TM was observed in 33 patients (42% of all patients), seven of whom had severe TM. Definite TM was observed in 21 patients (27%), of whom 15 had severe TM. Forty-one patients (52% of all patients) had developed symptoms of TM within twelve months, including harsh barking cough (n = 15), stridor and/or wheezing (n = 20), recurrent respiratory insufficiency (n = 11), or needing airway surgery (n = 7). The sensitivity of preoperative TBS for the presence of postoperative (definite and probable combined) TM is 50.0%, 95% CI [35.2-64.8], and the specificity 67.6%, 95% CI [51.7-81.1]. Clinical characteristics did not differ between the patients with or without postoperative TM. CONCLUSIONS More than half of the studied patients with OA experienced symptoms of TM. While preoperative TBS is routinely performed prior to surgical OA correction, its predictive value for the presence of postoperative TM remains limited. LEVEL OF EVIDENCE Level II. TYPE OF STUDY Study of Diagnostics Test.
Collapse
Affiliation(s)
- Anne-Fleur R L van Hal
- Department of Paediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - Irene P Aanen
- Department of Paediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - René M H Wijnen
- Department of Paediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Bas Pullens
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - John Vlot
- Department of Paediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
4
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Jiang Y, Huang H, Liu J, Luo D, Mu R, Yuan J, Lin J, Chen Q, Tao W, Yang L, Zhang M, Zhang P, Fang F, Xu J, Gong Q, Xie Z, Zhang Y. Hippo cooperates with p53 to maintain foregut homeostasis and suppress the malignant transformation of foregut basal progenitor cells. Proc Natl Acad Sci U S A 2024; 121:e2320559121. [PMID: 38408237 PMCID: PMC10927585 DOI: 10.1073/pnas.2320559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiangying Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai200433, China
| | - Ling Yang
- Clinical Medical Research Center of The Affiliated Hospital and Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot010050, China
| | - Man Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, China
| | - Pingping Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fengqin Fang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200336, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
6
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Shishido A, Miyo M, Oishi K, Nishiyama N, Wu M, Yamamoto H, Kouda S, Wu X, Shibata S, Yokoyama Y, Yamamoto H. The Relationship between LRP6 and Wnt/β-Catenin Pathway in Colorectal and Esophageal Cancer. Life (Basel) 2023; 13:life13030615. [PMID: 36983771 PMCID: PMC10057833 DOI: 10.3390/life13030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
High expression of low-density lipoprotein receptor-related protein 6 (LRP6), a key component of the Wnt/β-catenin signaling pathway, is reported to be associated with malignant potential in some solid tumors including breast cancer and hepatocellular carcinoma. Few reports, however, have examined its function and clinical significance in colorectal cancers (CRC) demonstrating constitutive activation of Wnt signaling. Here, we compared the expression level and function of LRP6 in CRC with that of esophageal squamous cell carcinoma (ESCC) bearing few Wnt/β-catenin pathway mutations. On immunohistochemical staining, high LRP6 expression was noted in three of 68 cases (4.4%), and high β-catenin in 38 of 67 cases (56.7%) of CRC. High LRP6 expression was found in 21 of 82 cases (25.6%), and high β-catenin expression in 29 of 73 cases (39.7%) of ESCC. In our in vitro studies, LRP6 knockdown hardly changed Wnt signaling activity in CRC cell lines with mutations in Wnt signaling downstream genes. In contrast, in ESCC cell lines without Wnt signaling-related mutations, LRP6 knockdown significantly decreased Wnt signaling activity. LRP6 function may depend on constitutive activation of Wnt signaling.
Collapse
Affiliation(s)
- Akemi Shishido
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Masaaki Miyo
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Kazuki Oishi
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Natsumi Nishiyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Meiqiao Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Hiroyuki Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Shihori Kouda
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Satoshi Shibata
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-2591
| |
Collapse
|
8
|
Anatomy and embryology of tracheo-esophageal fistula. Semin Pediatr Surg 2022; 31:151231. [PMID: 36459913 DOI: 10.1016/j.sempedsurg.2022.151231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anomalies in tracheo-esophageal development result in a spectrum of congenital malformations ranging from, most commonly, esophageal atresia with or without trachea-esophageal fistula (EA+/-TEF) to esophageal web, duplication, stricture, tracheomalacia and tracheal agenesis. Despite the relative frequency of EA, however, the underlying etiology remains unknown and is likely due to a combination of genetic, epigenetic and environmental factors. In recent years, animal models have dramatically increased our understanding of the molecular and morphological processes involved in normal esophageal development during the key stages of anterior-posterior regionalization, dorsal-ventral patterning and morphogenic separation. Moreover, the use of animal models in conjunction with increasingly advanced techniques such as genomic sequencing, sophisticated live imaging studies and organoid models have more recently cast light on potential mechanisms involved in EA pathogenesis. This article aims to unravel some of the mysteries behind the anatomy and embryology of EA whilst providing insights into future directions for research.
Collapse
|
9
|
Ramachandran J, Zhou W, Bardenhagen AE, Nasr T, Yates ER, Zorn AM, Ji H, Vokes SA. Hedgehog regulation of epithelial cell state and morphogenesis in the larynx. eLife 2022; 11:e77055. [PMID: 36398878 PMCID: PMC9718526 DOI: 10.7554/elife.77055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022] Open
Abstract
The larynx enables speech while regulating swallowing and respiration. Larynx function hinges on the laryngeal epithelium which originates as part of the anterior foregut and undergoes extensive remodeling to separate from the esophagus and form vocal folds that interface with the adjacent trachea. Here we find that sonic hedgehog (SHH) is essential for epithelial integrity in the mouse larynx as well as the anterior foregut. During larynx-esophageal separation, low Shh expression marks specific domains of actively remodeling epithelium that undergo an epithelial-to-mesenchymal transition (EMT) characterized by the induction of N-Cadherin and movement of cells out of the epithelial layer. Consistent with a role for SHH signaling in regulating this process, Shh mutants undergo an abnormal EMT throughout the anterior foregut and larynx, marked by a cadherin switch, movement out of the epithelial layer and cell death. Unexpectedly, Shh mutant epithelial cells are replaced by a new population of FOXA2-negative cells that likely derive from adjacent pouch tissues and form a rudimentary epithelium. These findings have important implications for interpreting the etiology of HH-dependent birth defects within the foregut. We propose that SHH signaling has a default role in maintaining epithelial identity throughout the anterior foregut and that regionalized reductions in SHH trigger epithelial remodeling.
Collapse
Affiliation(s)
- Janani Ramachandran
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Anna E Bardenhagen
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Talia Nasr
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ellen R Yates
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Steven A Vokes
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| |
Collapse
|
10
|
Hein RFC, Conchola AS, Fine AS, Xiao Z, Frum T, Brastrom LK, Akinwale MA, Childs CJ, Tsai YH, Holloway EM, Huang S, Mahoney J, Heemskerk I, Spence JR. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development 2022; 149:dev200693. [PMID: 36039869 PMCID: PMC9534489 DOI: 10.1242/dev.200693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.
Collapse
Affiliation(s)
- Renee F. C. Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S. Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S. Fine
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhiwei Xiao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mayowa A. Akinwale
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Mahoney
- Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
McGowan NA, Grosel J. An overview of esophageal atresia and tracheoesophageal fistula. JAAPA 2022; 35:34-37. [PMID: 35617475 DOI: 10.1097/01.jaa.0000830180.79745.b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Esophageal atresia and tracheoesophageal fistula are often-concomitant pathologies that primarily afflict neonates. The complications of these anomalies may lead to increased morbidity and mortality, and clinicians should be familiar with the diagnosis and management of these pathologies. Clinicians can improve patient outcomes by having a thorough understanding of the signs and symptoms, classification systems, diagnostic workup, and surgical intervention options for these patients. Early recognition and treatment are imperative in providing patients with the best opportunity for recovery.
Collapse
Affiliation(s)
- Nathan A McGowan
- At the time this article was written, Nathan A. McGowan was a student in the PA program at Marietta (Ohio) College. He now practices at Ascension Texas Spine and Scoliosis in Austin, Tex. John Grosel is a radiologist at Lucid Health Riverside Radiology and Interventional Associates, Inc., based in Columbus, Ohio, and the McCoy associate professor in the PA program at Marietta College. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | |
Collapse
|
12
|
Hysinger EB. Central airway issues in bronchopulmonary dysplasia. Pediatr Pulmonol 2021; 56:3518-3526. [PMID: 33835725 PMCID: PMC8656371 DOI: 10.1002/ppul.25417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/10/2021] [Indexed: 11/10/2022]
Abstract
While there is a very large focus on the abnormalities of parenchymal lung development and extensive efforts to minimize alveolar damage with "gentle ventilation" and noninvasive respiratory support for neonates with bronchopulmonary dysplasia (BPD), there is relatively little consideration for the implications of central airway disease in this patient population. There are significant changes in the structure and conformation of the central airway during the last half of gestation, and premature birth disrupts this natural developmental process. The arrest of maturation results in a smaller airway that is more compliant, easier to deform, and more susceptible to damage. Consequently, neonates with BPD are prone to developing central airway pathology, particularly for patients who require intubation and positive pressure ventilation. Central airway disease can be divided into dynamic and fixed airway obstruction and results in increased respiratory morbidity in neonates with chronic lung disease of prematurity.
Collapse
Affiliation(s)
- Erik B Hysinger
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Griffin K, Pedersen H, Stauss K, Lungova V, Thibeault SL. Characterization of intrauterine growth, proliferation and biomechanical properties of the murine larynx. PLoS One 2021; 16:e0245073. [PMID: 33439907 PMCID: PMC7806159 DOI: 10.1371/journal.pone.0245073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Current research approaches employ traditional tissue engineering strategies to promote vocal fold (VF) tissue regeneration, whereas recent novel advances seek to use principles of developmental biology to guide tissue generation by mimicking native developmental cues, causing tissue or allogenic/autologous progenitor cells to undergo the regeneration process. To address the paucity of data to direct VF differentiation and subsequent new tissue formation, we characterize structure-proliferation relationships and tissue elastic moduli over embryonic development using a murine model. Growth, cell proliferation, and tissue biomechanics were taken at E13.5, E15.5, E16.5, E18.5, P0, and adult time points. Quadratic growth patterns were found in larynx length, maximum transverse diameter, outer dorsoventral diameter, and VF thickness; internal VF length was found to mature linearly. Cell proliferation measured with EdU in the coronal and transverse planes of the VFs was found to decrease with increasing age. Exploiting atomic force microscopy, we measured significant differences in tissue stiffness across all time points except between E13.5 and E15.5. Taken together, our results indicate that as the VF mature and develop quadratically, there is a concomitant tissue stiffness increase. Greater gains in biomechanical stiffness at later prenatal stages, correlated with reduced cell proliferation, suggest that extracellular matrix deposition may be responsible for VF thickening and increased biomechanical function, and that the onset of biomechanical loading (breathing) may also contribute to increased stiffness. These data provide a profile of VF biomechanical and growth properties that can guide the development of biomechanically-relevant scaffolds and progenitor cell differentiation for VF tissue regeneration.
Collapse
Affiliation(s)
- Kate Griffin
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hailey Pedersen
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kari Stauss
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vlasta Lungova
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
14
|
Getachew D, Kaneda R, Saeki Y, Matsumoto A, Otani H. Morphologic changes in the cytoskeleton and adhesion apparatus during the conversion from pseudostratified single columnar to stratified squamous epithelium in the developing mouse esophagus. Congenit Anom (Kyoto) 2021; 61:14-24. [PMID: 32776381 DOI: 10.1111/cga.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ryo Kaneda
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
15
|
Raad S, David A, Que J, Faure C. Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells Dev 2020; 29:953-966. [PMID: 32515280 PMCID: PMC9839344 DOI: 10.1089/scd.2020.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.
Collapse
Affiliation(s)
- Suleen Raad
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Anu David
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Center for Human Development, Columbia University, New York, New York, USA
| | - Christophe Faure
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada.,Esophageal Atresia Clinic and Division of Pediatric Gastroenterology Hepatology and Nutrition, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada.,Address correspondence to: Dr. Christophe Faure, Division of Pediatric Gastroenterology, Sainte-Justine Hospital, 3715 Côte Sainte Catherine, Montreal H3T1C5, Quebec, Canada
| |
Collapse
|
16
|
Diagnosis and management of complete tracheal rings with concurrent tracheoesophageal fistula. Int J Pediatr Otorhinolaryngol 2020; 133:109971. [PMID: 32179205 DOI: 10.1016/j.ijporl.2020.109971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Characterize patients with complete tracheal rings and tracheoesophageal fistula (TEF) and summarize management options. METHODS A systematic review of patients under 18 years of age with complete tracheal rings and TEF was conducted. Authors were contacted for additional patient information and new cases were added. Patients with iatrogenic TEF and tracheal stenosis due to other causes were excluded. RESULTS Sixteen patients with a median (IQR) follow-up of 10 months (3-12 months) were identified. All had a distal TEF with complete tracheal rings distal to the TEF. There were 10 (63%) type C esophageal atresia + TEF (EA/TEF), and 1 (6%) type D (5 missing data). Median (IQR) airway diameter was 2 mm (1.5-2.2 mm). Complete tracheal rings were diagnosed prior to TEF repair in 5 (31.3%) patients, after ≥1 failed extubation in 3 (12.5%) patients, and intra-operatively during respiratory distress in 1 patient. Ten patients (62.5%) were intubated with an endotracheal tube and one with a 6 Fr flexible aortic canula (5 missing data). Four patients with an endotracheal tube for TEF repair developed ventilatory problems. Complete tracheal rings were repaired in 9 (56%) patients (8 slide tracheoplasty, 1 pericardial patch) and followed conservatively in 3 (19%). One patient required tracheotomy. Four patients died. CONCLUSIONS Complete tracheal rings with concurrent TEF is a rare entity that pose challenges for ventilatory management during operative repair. Bronchoscopy prior to TEF repair is critical to allow for proper preoperative planning.
Collapse
|
17
|
Shacham-Silverberg V, Wells JM. Generation of esophageal organoids and organotypic raft cultures from human pluripotent stem cells. Methods Cell Biol 2020; 159:1-22. [PMID: 32586439 DOI: 10.1016/bs.mcb.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human and murine esophagus have some substantial differences that limit the utility of mouse as a model to study human esophagus development and disease. Due to these limitations several recent reports describe the development of methods to generate human esophageal tissues via the directed differentiation of pluripotent stem cells. Methods for differentiation are based on knowledge of years of studying embryonic development of the esophagus in vertebrate animal models. Esophageal tissues derived from human pluripotent stem cells have been used to study both development and diseases affecting the esophagus. Here, we provide a detailed protocol for the directed differentiation of human pluripotent stem cells into human esophageal organoids and organotypic raft cultures, that are highly similar, morphologically and transcriptionally, to the human esophagus epithelium. We discuss limitations of the current esophageal models and the importance of engineering more complex tissue models with muscle and enteric nerves. Moving forward, these models might be utilized for the development of personalized treatments, as well as other therapeutic solutions.
Collapse
Affiliation(s)
- Vered Shacham-Silverberg
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
18
|
Maynard TM, Zohn IE, Moody SA, LaMantia AS. Suckling, Feeding, and Swallowing: Behaviors, Circuits, and Targets for Neurodevelopmental Pathology. Annu Rev Neurosci 2020; 43:315-336. [PMID: 32101484 DOI: 10.1146/annurev-neuro-100419-100636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward-perinatal dysphagia-is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Thomas M Maynard
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA;
| | - Irene E Zohn
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anthony-S LaMantia
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA; .,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
19
|
Zhang Y, Que J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annu Rev Physiol 2020; 82:251-273. [PMID: 31618602 DOI: 10.1146/annurev-physiol-021119-034500] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
20
|
Teramoto M, Sugawara R, Minegishi K, Uchikawa M, Takemoto T, Kuroiwa A, Ishii Y, Kondoh H. The absence of SOX2 in the anterior foregut alters the esophagus into trachea and bronchi in both epithelial and mesenchymal components. Biol Open 2020; 9:bio048728. [PMID: 31988094 PMCID: PMC7044460 DOI: 10.1242/bio.048728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
In the anterior foregut (AFG) of mouse embryos, the transcription factor SOX2 is expressed in the epithelia of the esophagus and proximal branches of respiratory organs comprising the trachea and bronchi, whereas NKX2.1 is expressed only in the epithelia of respiratory organs. Previous studies using hypomorphic Sox2 alleles have indicated that reduced SOX2 expression causes the esophageal epithelium to display some respiratory organ characteristics. In the present study, we produced mouse embryos with AFG-specific SOX2 deficiency. In the absence of SOX2 expression, a single NKX2.1-expressing epithelial tube connected the pharynx and the stomach, and a pair of bronchi developed in the middle of the tube. Expression patterns of NKX2.1 and SOX9 revealed that the anterior and posterior halves of SOX2-deficient AFG epithelial tubes assumed the characteristics of the trachea and bronchus, respectively. In addition, we found that mesenchymal tissues surrounding the SOX2-deficient NKX2.1-expressing epithelial tube changed to those surrounding the trachea and bronchi in the anterior and posterior halves, as indicated by the arrangement of smooth muscle cells and SOX9-expressing cells and by the expression of Wnt4 (esophagus specific), Tbx4 (respiratory organ specific), and Hoxb6 (distal bronchus specific). The impact of mesenchyme-derived signaling on the early stage of AFG epithelial specification has been indicated. Our study demonstrated an opposite trend where epithelial tissue specification causes concordant changes in mesenchymal tissues, indicating a reciprocity of epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- Machiko Teramoto
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Ryo Sugawara
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Katsura Minegishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tatsuya Takemoto
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
- Department of Biology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
21
|
Bailey DD, Zhang Y, van Soldt BJ, Jiang M, Suresh S, Nakagawa H, Rustgi AK, Aceves SS, Cardoso WV, Que J. Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development 2019; 146:dev.178855. [PMID: 31748205 PMCID: PMC6918786 DOI: 10.1242/dev.178855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
Abstract
Balanced progenitor activities are crucial for the development and maintenance of high turn-over organs such as the esophagus. However, the molecular mechanisms regulating these progenitor activities in the esophagus remain to be elucidated. Here, we demonstrated that Yap is required for the proliferation of esophageal progenitor cells (EPCs) in the developing murine esophagus. We found that Yap deficiency reduces EPC proliferation and stratification whereas persistent Yap activation increases cell proliferation and causes aberrant stratification of the developing esophagus. We further demonstrated that the role of YAP signaling is conserved in the developing human esophagus by utilizing 3D human pluripotent stem cell (hPSC)-derived esophageal organoid culture. Taken together, our studies combining loss/gain-of-function murine models and hPSC differentiation support a key role for YAP in the self-renewal of EPCs and stratification of the esophageal epithelium.
Collapse
Affiliation(s)
- Dominique D. Bailey
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin J. van Soldt
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Supriya Suresh
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Seema S. Aceves
- Division of Allergy Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92093, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Author for correspondence ()
| |
Collapse
|
22
|
Sheik-Ali S, Appleton S, Ojukwu N, Sheik-Ali S. Acute cholecystitis in a patient with heterotaxic anatomy and partial situs inversus. Ann R Coll Surg Engl 2019; 101:e169-e171. [PMID: 31418295 DOI: 10.1308/rcsann.2019.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well recognised that situs inversus totalis can make surgery challenging. However, partial situs inversus with heterotaxic anatomy has rarely been reported. While routine, the presence of symptomatic gallstones or cholecystitis can lead to a complex and difficult operation for such patients. We present the case of a patient with heterotaxic anatomy and partial situs inversus with acute cholecystitis.
Collapse
Affiliation(s)
- S Sheik-Ali
- Oxford Clinical Academic Graduate School, Oxford University Hospitals NHS Foundation Trust, UK
| | - S Appleton
- Buckinghamshire Healthcare NHS Trust, UK
| | | | - S Sheik-Ali
- Chelsea and Westminster Hospital NHS Foundation Trust, UK
| |
Collapse
|
23
|
Zhang Y, Yang Y, Jiang M, Huang SX, Zhang W, Al Alam D, Danopoulos S, Mori M, Chen YW, Balasubramanian R, Chuva de Sousa Lopes SM, Serra C, Bialecka M, Kim E, Lin S, Toste de Carvalho ALR, Riccio PN, Cardoso WV, Zhang X, Snoeck HW, Que J. 3D Modeling of Esophageal Development using Human PSC-Derived Basal Progenitors Reveals a Critical Role for Notch Signaling. Cell Stem Cell 2018; 23:516-529.e5. [PMID: 30244870 DOI: 10.1016/j.stem.2018.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
Abstract
Pluripotent stem cells (PSCs) could provide a powerful system to model development of the human esophagus, whose distinct tissue organization compared to rodent esophagus suggests that developmental mechanisms may not be conserved between species. We therefore established an efficient protocol for generating esophageal progenitor cells (EPCs) from human PSCs. We found that inhibition of TGF-ß and BMP signaling is required for sequential specification of EPCs, which can be further purified using cell-surface markers. These EPCs resemble their human fetal counterparts and can recapitulate normal development of esophageal stratified squamous epithelium during in vitro 3D cultures and in vivo. Importantly, combining hPSC differentiation strategies with mouse genetics elucidated a critical role for Notch signaling in the formation of this epithelium. These studies therefore not only provide an efficient approach to generate EPCs, but also offer a model system to study the regulatory mechanisms underlying development of the human esophagus.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Sarah Xuelian Huang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Revathi Balasubramanian
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands; Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Carlos Serra
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Eugene Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sijie Lin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Paul N Riccio
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
24
|
Morrisey EE, Rustgi AK. The Lung and Esophagus: Developmental and Regenerative Overlap. Trends Cell Biol 2018; 28:738-748. [PMID: 29871822 DOI: 10.1016/j.tcb.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
Lung and esophageal development and organogenesis involve a complex interplay of signaling pathways and transcriptional factors. Once the lung and esophagus do separate, their epithelial proliferation and differentiation programs share certain common properties that may fuel adaptive responses to injury and subsequent regeneration. Lung and esophageal tissue organogenesis and regeneration provide perspectives on squamous cell cancers and adenocarcinomas in each tissue.
Collapse
Affiliation(s)
- Edward E Morrisey
- Division of Cardiovascular Medicine, Center for Pulmonary Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Institute for Regenerative Medicine, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Zhang X, Patil D, Odze RD, Zhao L, Lisovsky M, Guindi M, Riddell R, Bellizzi A, Yantiss RK, Nalbantoglu I, Appelman HD. The microscopic anatomy of the esophagus including the individual layers, specialized tissues, and unique components and their responses to injury. Ann N Y Acad Sci 2018; 1434:304-318. [PMID: 29761508 DOI: 10.1111/nyas.13705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Xuchen Zhang
- Department of PathologyYale University New Haven Connecticut
| | - Deepa Patil
- Department of PathologyCleveland Clinic Cleveland Ohio
| | - Robert D. Odze
- Department of Pathology, Brigham and Women's Hospital Boston Massachusetts
- Department of PathologyHarvard University Boston Massachusetts
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital Boston Massachusetts
- Department of PathologyHarvard University Boston Massachusetts
| | - Mikhail Lisovsky
- Department of PathologyDartmouth University Lebanon New Hampshire
| | - Maha Guindi
- Department of Pathology and Laboratory MedicineCedars‐Sinai Hospital Los Angeles California
| | - Robert Riddell
- Department of Pathology and Laboratory MedicineMount Sinai Hospital Toronto Ontario
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto Toronto Ontario
| | | | - Rhonda K. Yantiss
- Department of Pathology and Laboratory MedicineWeill Cornell Medicine New York New York
| | | | | |
Collapse
|
26
|
Kaneda R, Saeki Y, Getachew D, Matsumoto A, Furuya M, Ogawa N, Motoya T, Rafiq AM, Jahan E, Udagawa J, Hashimoto R, Otani H. Interkinetic nuclear migration in the tracheal and esophageal epithelia of the mouse embryo: Possible implications for tracheo-esophageal anomalies. Congenit Anom (Kyoto) 2018; 58:62-70. [PMID: 28782137 DOI: 10.1111/cga.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
Interkinetic nuclear migration (INM) is a cell polarity-based phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium in synchrony with the cell cycle. INM is suggested to be at least partially cytoskeleton-dependent and to regulate not only the proliferation/differentiation of stem/progenitor cells but also the localized/overall size and shape of organs/tissues. INM occurs in all three of the germ-layer derived epithelia, including the endoderm-derived gut. However, INM has not been documented in the esophagus and respiratory tube arising from the anterior foregut. Esophageal atresia with or without trachea-esophageal fistula (EA/TEF) is a relatively common developmental defect. Transcription factors and signaling molecules have been implicated in EA/TEF, but the etiology of EA/TEF-which has been suggested to involve cell polarity-related mechanisms-remains highly controversial. In the present study, we first examined whether INM exists in the trachea and esophagus of mouse embryos at embryonic day 11.5 (E11.5), just after separation of the two tubes from the anterior foregut. By labeling the DNA-synthesizing stem cell nuclei with 5-ethynyl-2'-deoxyuridine, a nucleotide analogue, and statistically analyzing chronological changes in the distribution pattern of the labeled nuclei by using multidimensional scaling, we showed the existence of INM in both the esophagus and trachea, with differences in the INM magnitude and cycle pattern. We further showed morphological changes from the INM-based pseudostratified single layer to the stratified multilayer in the esophageal epithelium in association with a temporal loss/perturbation of AB polarity, suggesting a possible relation with the pathogenesis of EA/TEF.
Collapse
Affiliation(s)
- Ryo Kaneda
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dereje Getachew
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Motohide Furuya
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Noriko Ogawa
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Tomoyuki Motoya
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ashiq M Rafiq
- Center for the Promotion of Project Research, Organization for Research, Shimane University, Matsue, Japan
| | - Esrat Jahan
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ryuju Hashimoto
- Department of Clinical Nursing, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
27
|
Jiang M, Li H, Zhang Y, Yang Y, Lu R, Liu K, Lin S, Lan X, Wang H, Wu H, Zhu J, Zhou Z, Xu J, Lee DK, Zhang L, Lee YC, Yuan J, Abrams JA, Wang TG, Sepulveda AR, Wu Q, Chen H, Sun X, She J, Chen X, Que J. Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus. Nature 2017; 550:529-533. [PMID: 29019984 PMCID: PMC5831195 DOI: 10.1038/nature24269] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 09/09/2017] [Indexed: 02/08/2023]
Abstract
In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63+KRT5+KRT7+) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+KRT5+KRT7+ basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Haiyan Li
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Yongchun Zhang
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Ying Yang
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Rong Lu
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Kuancan Liu
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
- Institute for laboratory medicine, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Sijie Lin
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
- Institute for laboratory medicine, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Xiaopeng Lan
- Institute for laboratory medicine, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Haikun Wang
- CAS key laboratory of molecular virology and immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Han Wu
- Ascendas Genomics Inc., Zhongshan, Guandong 529437, P.R. China
| | - Jian Zhu
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
| | - Zhongren Zhou
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton at Plainsboro, Plainsboro, NJ 08536
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | - Yuan-Cho Lee
- Department of Radiation Oncology, Columbia University Medical Center, NY 10032
| | - Jingsong Yuan
- Department of Radiation Oncology, Columbia University Medical Center, NY 10032
| | - Julian A. Abrams
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | - Timothy G. Wang
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
| | | | - Qi Wu
- Tianjin Haihe Hospital, Tianjin 300350, P.R. China
| | | | - Xin Sun
- Tianjin Haihe Hospital, Tianjin 300350, P.R. China
| | - Junjun She
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoxin Chen
- Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, NY 10032, USA
- Corresponding author: Jianwen Que, MD, PhD. Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, BB-810, 650 West 168th Street, Columbia University Medical Center, NY 10032, USA. . Tel: +1-212-305-5961
| |
Collapse
|
28
|
Trecartin A, Grikscheit T. Tissue Engineering Functional Gastrointestinal Regions: The Importance of Stem and Progenitor Cells. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025700. [PMID: 28320829 DOI: 10.1101/cshperspect.a025700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestine shows extraordinary regenerative potential that might be harnessed to alleviate numerous morbid and lethal human diseases. The intestinal stem cells regenerate the epithelium every 5 days throughout an individual's lifetime. Understanding stem-cell signaling affords power to influence the niche environment for growing intestine. The manifold approaches to tissue engineering may be organized by variations of three basic components required for the transplantation and growth of stem/progenitor cells: (1) cell delivery materials or scaffolds; (2) donor cells including adult stem cells, induced pluripotent stem cells, and in vitro expansion of isolated or cocultured epithelial, smooth muscle, myofibroblasts, or nerve cells; and (3) environmental modulators or biopharmaceuticals. Tissue engineering has been applied to the regeneration of every major region of the gastrointestinal tract from esophagus to colon, with scientists around the world aiming to carry these techniques into human therapy.
Collapse
Affiliation(s)
- Andrew Trecartin
- Department of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Tracy Grikscheit
- Department of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027
| |
Collapse
|
29
|
Lin B, Xie F, Xiao Z, Hong X, Tian L, Liu K. Basal progenitor cells bridge the development, malignant cancers, and multiple diseases of esophagus. J Cell Physiol 2017; 233:3855-3866. [PMID: 28777465 DOI: 10.1002/jcp.26136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
The esophagus is a pivotal organ originating from anterior foregut that links the mouth and stomach. Moreover, its development involves precise regulation of multiple signal molecules and signal transduction pathways. After abnormal regulation of these molecules in the basal cells of the esophagus occurs, multiple diseases, including esophageal atresia with or without tracheoesophageal fistula, Barrett esophagus, gastroesophageal reflux, and eosinophilic esophagitis, will take place as a result. Furthermore, expression changes of signal molecules or signal pathways in basal cells and the microenvironment around basal cells both can initiate the switch of malignant transformation. In this review, we highlight the molecular events underlying the transition of normal development to multiple esophageal diseases. Additionally, the animal models of esophageal development and related diseases, challenges, and strategies are extensively discussed.
Collapse
Affiliation(s)
- Baoshun Lin
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Fuan Xie
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Zhangwu Xiao
- Emergency Department of the 476 Hospital, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Xiaoqian Hong
- Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China
| | - Liming Tian
- Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China
| | - Kuancan Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China.,Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China.,Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
30
|
Abstract
Esophageal duplication and congenital esophageal stenosis (CES) may represent diseases with common embryologic etiologies, namely, faulty tracheoesophageal separation and differentiation. Here, we will re-enforce definitions for these diseases as well as review their embryology, diagnosis, and treatment.
Collapse
Affiliation(s)
- A Francois Trappey
- David Grant Medical Center, Travis Air Force Base, California; Division of Trauma, Acute Care Surgery, and Surgical Critical Care, UC Davis Medical Center, Sacramento, California
| | - Shinjiro Hirose
- Department of Surgery, UC Davis Medical Center, Sacramento, California; Division of Pediatric General, Thoracic, and Fetal Surgery, UC Davis Medical Center, Sacramento, California; Shriners Hospitals for Children-Northern California, 2425 Stockton Blvd, Sacramento, California 95817.
| |
Collapse
|
31
|
Jiang M, Que J. Re-assessing stem cells in the stomach-one story two tales. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:51. [PMID: 28251130 DOI: 10.21037/atm.2017.01.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Jiang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| |
Collapse
|
32
|
Perin S, McCann CJ, Borrelli O, De Coppi P, Thapar N. Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies. Front Pediatr 2017; 5:91. [PMID: 28503544 PMCID: PMC5408018 DOI: 10.3389/fped.2017.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine.
Collapse
Affiliation(s)
- Silvia Perin
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Osvaldo Borrelli
- Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Specialist Neonatal and Paediatric Surgery (SNAPS) Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Zhang Y, Jiang M, Kim E, Lin S, Liu K, Lan X, Que J. Development and stem cells of the esophagus. Semin Cell Dev Biol 2016; 66:25-35. [PMID: 28007661 DOI: 10.1016/j.semcdb.2016.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
The esophagus is derived from the anterior portion of the developmental intermediate foregut, a structure that also gives rise to other organs including the trachea, lung, and stomach. Genetic studies have shown that multiple signaling pathways (e.g. Bmp) and transcription factors (e.g. SOX2) are required for the separation of the esophagus from the neighboring respiratory system. Notably, some of these signaling pathways and transcription factors continue to play essential roles in the subsequent morphogenesis of the esophageal epithelium which undergoes a simple columnar-to-stratified squamous conversion. Reactivation of the relevant signaling pathways has also been associated with pathogenesis of esophageal diseases that affect the epithelium and its stem cells in adults. In this review we will summarize these findings. We will also discuss new data regarding the cell-of-origin for the striated and smooth muscles surrounding the esophagus and how they are differentiated from the mesenchyme during development.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Sijie Lin
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Kuancan Liu
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA; Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | - Xiaopeng Lan
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | - Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA.
| |
Collapse
|
34
|
Lyros O, Rafiee P, Nie L, Medda R, Jovanovic N, Otterson MF, Behmaram B, Gockel I, Mackinnon A, Shaker R. Wnt/β-Catenin Signaling Activation beyond Robust Nuclear β-Catenin Accumulation in Nondysplastic Barrett's Esophagus: Regulation via Dickkopf-1. Neoplasia 2016; 17:598-611. [PMID: 26297437 PMCID: PMC4547437 DOI: 10.1016/j.neo.2015.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/01/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION: Wnt/β-catenin signaling activation has been reported only during the late steps of Barrett’s esophagus (BE) neoplastic progression, but not in BE metaplasia, based on the absence of nuclear β-catenin. However, β-catenin transcriptional activity has been recorded in absence of robust nuclear accumulation. Thus, we aimed to investigate the Wnt/β-catenin signaling in nondysplastic BE. METHODS: Esophageal tissues from healthy and BE patients without dysplasia were analyzed for Wnt target gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Esophageal squamous (EPC1-& EPC2-hTERT), BE metaplastic (CP-A), and adenocarcinoma (OE33) cell lines were characterized for Wnt activation by qRT-PCR, Western blot, and luciferase assay. Wnt activity regulation was examined by using recombinant Wnt3a and Dickkopf-1 (Dkk1) as well as Dkk1 short interfering RNA. RESULTS: Wnt target genes (AXIN2, c-MYC, Cyclin D1, Dkk1) and Wnt3a were significantly upregulated in nondysplastic BE compared with squamous mucosa. Elevated levels of dephosphorylated β-catenin were detected in nondysplastic BE. Nuclear active β-catenin and TOPflash activity were increased in CP-A and OE33 cells compared with squamous cells. Wnt3a-mediated β-catenin signaling activation was abolished by Dkk1 in CP-A cells. TOPFlash activity was elevated following Dkk1 silencing in CP-A but not in OE33 cells. Dysplastic and esophageal adenocarcinoma tissues demonstrated further Dkk1 and AXIN2 overexpression. CONCLUSIONS: Despite the absence of robust nuclear accumulation, β-catenin is transcriptionally active in nondysplastic BE. Dkk1 overexpression regulates β-catenin signaling in BE metaplastic but not in adenocarcinoma cells, suggesting that early perturbation of Dkk1-mediated signaling suppression may contribute to BE malignant transformation.
Collapse
Affiliation(s)
- Orestis Lyros
- Division of Gastroenterology and Hepatology of Wisconsin, Milwaukee, USA; Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital, Leipzig, Germany
| | - Parvaneh Rafiee
- Department of Surgery of Medical College of Wisconsin, Milwaukee, USA
| | - Linghui Nie
- Department of Surgery of Medical College of Wisconsin, Milwaukee, USA
| | - Rituparna Medda
- Department of Surgery of Medical College of Wisconsin, Milwaukee, USA
| | - Nebojsa Jovanovic
- Division of Gastroenterology and Hepatology of Wisconsin, Milwaukee, USA
| | - Mary F Otterson
- Department of Surgery of Medical College of Wisconsin, Milwaukee, USA
| | - Behnaz Behmaram
- Department of Pathology of Medical College of Wisconsin, Milwaukee, USA
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital, Leipzig, Germany
| | | | - Reza Shaker
- Division of Gastroenterology and Hepatology of Wisconsin, Milwaukee, USA.
| |
Collapse
|
35
|
Gaerty K, Thomas JT, Petersen S, Tan E, Kumar S, Gardener G, Armes J. Tracheal Atresia with Segmental Esophageal Duplication: An Unusual Anatomic Arrangement. Pediatr Dev Pathol 2016; 19:154-8. [PMID: 26367770 DOI: 10.2350/15-08-1685-cr.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unusual anatomic configuration of segmental tracheal agenesis/atresia with esophageal duplication on autopsy in a fetus that demised in utero at 29 weeks is reported. The mother was scanned initially for a cardiac anomaly at 20 weeks and on follow-up scan at 27 weeks had polyhydramnios and underwent amnioreduction. The final autopsy diagnosis was vertebral, ano-rectal, cardiac, tracheoesophageal, renal, and limb malformations (VACTERL). We discuss the autopsy findings along with the embryological mechanisms and compare the configuration with Floyd's classification for tracheal agenesis. The difficulties in prenatal diagnosis are discussed.
Collapse
Affiliation(s)
- Kirsten Gaerty
- 1 Mater Centre for Maternal Fetal Medicine, Mater Health Services, S. Brisbane QLD Australia; and the Mater Research Institute/University of Queensland, Brisbane QLD Australia
| | - Joseph T Thomas
- 1 Mater Centre for Maternal Fetal Medicine, Mater Health Services, S. Brisbane QLD Australia; and the Mater Research Institute/University of Queensland, Brisbane QLD Australia
| | - Scott Petersen
- 1 Mater Centre for Maternal Fetal Medicine, Mater Health Services, S. Brisbane QLD Australia; and the Mater Research Institute/University of Queensland, Brisbane QLD Australia
| | - Edwin Tan
- 2 Anatomical Pathology, Mater Health Services, S. Brisbane QLD Australia.,3 Mater Research Institute, University of Queensland, Brisbane QLD Australia
| | - Sailesh Kumar
- 1 Mater Centre for Maternal Fetal Medicine, Mater Health Services, S. Brisbane QLD Australia; and the Mater Research Institute/University of Queensland, Brisbane QLD Australia
| | - Glenn Gardener
- 1 Mater Centre for Maternal Fetal Medicine, Mater Health Services, S. Brisbane QLD Australia; and the Mater Research Institute/University of Queensland, Brisbane QLD Australia
| | - Jane Armes
- 2 Anatomical Pathology, Mater Health Services, S. Brisbane QLD Australia.,3 Mater Research Institute, University of Queensland, Brisbane QLD Australia
| |
Collapse
|
36
|
Tapia IE. Mini-symposium: Upper Airway Anomalies. Paediatr Respir Rev 2016; 17:1-2. [PMID: 26620224 DOI: 10.1016/j.prrv.2015.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Ignacio E Tapia
- Perelman School of Medicine at the University of Pennsylvania, Attending Physician, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104.
| |
Collapse
|
37
|
Abstract
Intrathoracic tracheomalacia is characterized by increased compliance of the central airway within the thorax. This leads to excessive dynamic collapse during exhalation or periods of increased intrathoracic pressure such as crying. Extrathoracic tracheomalacia involves dynamic collapse of the airway between the glottis and sternal notch that occurs during inhalation rather than exhalation. The tone of the posterior membrane of the trachea increases throughout development and childhood, as does the rigidity of the tracheal cartilage. Abnormalities of airway maturation result in congenital tracheomalacia. Acquired tracheomalacia occurs in the normally developed trachea due to trauma, external compression, or airway inflammation. Although tracheomalacia can be suspected by history, physical examination, and supportive radiographic findings, flexible fiberoptic bronchoscopy remains the "gold standard" for diagnosis. Current treatment strategies involve pharmacotherapy with cholinergic agents, positive pressure ventilation, and surgical repair.
Collapse
Affiliation(s)
- Erik B Hysinger
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104.
| | - Howard B Panitch
- Perelman School of Medicine at the University of Pennsylvania, Attending Physician, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104.
| |
Collapse
|
38
|
Zinovyeva MV, Kostina MB, Monastyrskaya GS, Sass AV, Filyukova OB, Vinogradova TV, Kopantzev EP, Sverdlov ED. Genetic markers for lung and esophagus common precursor cells in human development. DOKL BIOCHEM BIOPHYS 2015; 463:203-8. [DOI: 10.1134/s1607672915040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 11/23/2022]
|
39
|
Krishnadath KK, Wang KK. Molecular pathogenesis of Barrett esophagus: current evidence. Gastroenterol Clin North Am 2015; 44:233-47. [PMID: 26021192 DOI: 10.1016/j.gtc.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article focuses on recent findings on the molecular mechanisms involved in esophageal columnar metaplasia. Signaling pathways and their downstream targets activate specific transcription factors leading to the expression of columnar and the more specific intestinal-type of genes, which gives rise to Barrett metaplasia. Several animal models have been generated to validate and study these distinct molecular pathways but also to identify the Barrett progenitor cell. Currently, the many aspects involved in the development of esophageal metaplasia that have been elucidated can serve to develop novel molecular therapies to improve treatment or prevent metaplasia. Nevertheless, several key events are still poorly understood and require further investigation.
Collapse
Affiliation(s)
- Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
40
|
Vermes G, Mátrai Á, Czeizel AE, Ács N. Maternal factors in the origin of isolated oesophageal atresia: A population-based case-control study. ACTA ACUST UNITED AC 2015; 103:804-13. [DOI: 10.1002/bdra.23383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Gábor Vermes
- Department of Obstetrics and Gynecology; Military Hospital - State Health Centre; Budapest Hungary
| | - Ákos Mátrai
- 2nd Department of Obstetrics and Gynecology; Semmelweis University; Budapest Hungary
| | - Andrew E. Czeizel
- Foundation for the Community Control of Hereditary Diseases; Budapest Hungary
| | - Nándor Ács
- 2nd Department of Obstetrics and Gynecology; Semmelweis University; Budapest Hungary
| |
Collapse
|
41
|
Jiang M, Ku WY, Zhou Z, Dellon ES, Falk GW, Nakagawa H, Wang ML, Liu K, Wang J, Katzka DA, Peters JH, Lan X, Que J. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J Clin Invest 2015; 125:1557-68. [PMID: 25774506 DOI: 10.1172/jci78850] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett's intestinal differentiation; however, in mice, basal progenitor cell-specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE.
Collapse
|
42
|
Lungova V, Verheyden JM, Herriges J, Sun X, Thibeault SL. Ontogeny of the mouse vocal fold epithelium. Dev Biol 2015; 399:263-82. [PMID: 25601450 PMCID: PMC4352410 DOI: 10.1016/j.ydbio.2014.12.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/09/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
This investigation provides the first systematic determination of the cellular and molecular progression of vocal fold (VF) epithelium development in a murine model. We define five principal developmental events that constitute the progression from VF initiation in the embryonic anterior foregut tube to fully differentiated and functional adult tissue. These developmental events include (1) the initiation of the larynx and vocal folds with apposition of the lateral walls of the primitive laryngopharynx (embryonic (E) day 10.5); (2) the establishment of the epithelial lamina with fusion of the lateral walls of the primitive laryngopharynx (E11.5); (3) the epithelial lamina recanalization and separation of VFs (E13.5-18.5); (4) the stratification of the vocal folds (E13.5-18.5); and (5) the maturation of vocal fold epithelium (postnatal stages). The illustration of these morphogenetic events is substantiated by dynamic changes in cell proliferation and apoptosis, as well as the expression pattern of key transcription factors, FOXA2, SOX2 and NKX2-1 that specify and pattern the foregut endoderm. Furthermore, we documented the gradual conversion of VF epithelial cells from simple precursors expressing cytokeratins 8 and 18 in the embryo into mature stratified epithelial cells also expressing cytokeratins 5 and 14 in the adult. Interestingly, in the adult, cytokeratins 5 and 14 appear to be expressed in all cell layers in the VF, in contrast to their preferential localization to the basal cell layer in surrounding epithelium. To begin investigating the role of signaling molecules in vocal fold development, we characterized the expression pattern of SHH pathway genes, and how loss of Shh affects vocal fold development in the mutant. This study defines the cellular and molecular context and serves as the necessary foundation for future functional investigations of VF formation.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, UW Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA
| | - Jamie M Verheyden
- Laboratory of Genetics, Biotechnology Center, UW Madison, 425-g Henry Mall, Madison, WI 53706, USA
| | - John Herriges
- Laboratory of Genetics, Biotechnology Center, UW Madison, 425-g Henry Mall, Madison, WI 53706, USA
| | - Xin Sun
- Laboratory of Genetics, Biotechnology Center, UW Madison, 425-g Henry Mall, Madison, WI 53706, USA.
| | - Susan L Thibeault
- Department of Surgery, UW Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
43
|
Que J. The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal-esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:419-30. [PMID: 25727889 DOI: 10.1002/wdev.179] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 11/07/2022]
Abstract
The esophagus and trachea are tubular organs that initially share a single common lumen in the anterior foregut. Several models have been proposed to explain how this single-lumen developmental intermediate generates two tubular organs. However, new evidence suggests that these models are not comprehensive. I will first briefly review these models and then propose a novel 'splitting and extension' model based on our in vitro modeling of the foregut separation process. Signaling molecules (e.g., SHHs, WNTs, BMPs) and transcription factors (e.g., NKX2.1 and SOX2) are critical for the separation of the foregut. Intriguingly, some of these molecules continue to play essential roles during the transition of simple columnar into stratified squamous epithelium in the developing esophagus, and they are also closely involved in epithelial maintenance in the adults. Alterations in the levels of these molecules have been associated with the initiation and progression of several esophageal diseases and cancer in adults.
Collapse
Affiliation(s)
- Jianwen Que
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
44
|
Nakagawa H, Whelan K, Lynch JP. Mechanisms of Barrett's oesophagus: intestinal differentiation, stem cells, and tissue models. Best Pract Res Clin Gastroenterol 2015; 29:3-16. [PMID: 25743452 PMCID: PMC4352719 DOI: 10.1016/j.bpg.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/02/2014] [Indexed: 01/31/2023]
Abstract
Barrett's oesophagus (BE) is defined as any metaplastic columnar epithelium in the distal oesophagus which replaces normal squamous epithelium and which predisposes to cancer development. It is this second requirement, the predisposition to cancer, which makes this condition both clinically highly relevant and an important area for ongoing research. While BE has been defined pathologically since the 1950's (Allison and Johnstone, Thorax 1955), and identified as a risk factor for esophageal adenocarcinoma since the 1970's (Naef A.P., et al J Thorac Cardiovasc Surg. 1975), our understanding of the molecular events giving rise to this condition remains limited. Herein we will examine what is known about the intestinal features of BE and how well it recapitulates the intestinal epithelium, including stem identity and function. Finally, we will explore laboratory models of this condition presently in use and under development, to identify new insights they may provide into this important clinical condition.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Research Associate Professor of Medicine, Division of Gastroenterology, 421 Curie Boulevard, 956 Biomedical Research Building, Philadelphia, PA 19104, Office: 215-573-1867, Fax: 215-573-2024
| | - Kelly Whelan
- Division of Gastroenterology, 421 Curie Boulevard, 956 Biomedical Research Building, Philadelphia, PA, 19104, USA.
| | - John P Lynch
- Division of Gastroenterology, 421 Curie Boulevard, 956 Biomedical Research Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
46
|
Jasper H. Exploring the physiology and pathology of aging in the intestine of Drosophila melanogaster. INVERTEBR REPROD DEV 2014; 59:51-58. [PMID: 26136621 PMCID: PMC4463993 DOI: 10.1080/07924259.2014.963713] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract, due to its role as a digestive organ and as a barrier between the exterior and interior milieus, is critically impacted by dietary, environmental, and inflammatory conditions that influence health and lifespan. Work in flies is now uncovering the multifaceted molecular mechanisms that control homeostasis in this tissue, and establishing its central role in health and lifespan of metazoans. The Drosophila intestine has thus emerged as a productive, genetically accessible model to study various aspects of the pathophysiology of aging. Studies in flies have characterized the maintenance of regenerative homeostasis, the development of immune senescence, the loss of epithelial barrier function, the decline in metabolic homeostasis, as well as the maintenance of epithelial diversity in this tissue. Due to its fundamental similarity to vertebrate intestines, it can be anticipated that findings obtained in this system will have important implications for our understanding of age-related changes in the human intestine. Here, I review recent studies exploring age-related changes in the fly intestine, and their insight into the regulation of health and lifespan of the animal.
Collapse
Affiliation(s)
- Heinrich Jasper
- Buck Institute for Research on Aging , 8001 Redwood Boulevard, Novato , CA 94945-1400 , USA
| |
Collapse
|
47
|
Schilders K, Ochieng JK, van de Ven CP, Gontan C, Tibboel D, Rottier RJ. Role of SOX2 in foregut development in relation to congenital abnormalities. World J Med Genet 2014; 4:94-104. [DOI: 10.5496/wjmg.v4.i4.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The uptake of the two essential ingredients for life, oxygen and nutrients, occurs primarily through the oral cavity, but these two lifelines need to be separated with high accuracy once inside the body. The two systems, the gas exchange pulmonary system and the gastro-intestinal feeding system, are derived from the same primitive embryonic structure during development, the foregut, which need to be separated before birth. In certain newborns, this separation occurs not or insufficiently, leading to life threatening conditions, sometimes incompatible with life. The development of the foregut, trachea and lungs is influenced and coordinated by a multitude of signaling cascades and transcription factors. In this review, we will highlight the development of the foregut and pulmonary system and focus on associated congenital abnormalities in light of known genetic alterations with specific attention to the transcription factor SOX2.
Collapse
|
48
|
Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep 2014; 9:701-11. [PMID: 25373907 DOI: 10.1016/j.celrep.2014.09.027] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023] Open
Abstract
Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.
Collapse
|
49
|
Clinical and etiological heterogeneity in patients with tracheo-esophageal malformations and associated anomalies. Eur J Med Genet 2014; 57:440-52. [DOI: 10.1016/j.ejmg.2014.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
|
50
|
Celli J. Genetics of gastrointestinal atresias. Eur J Med Genet 2014; 57:424-39. [DOI: 10.1016/j.ejmg.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/21/2014] [Indexed: 01/04/2023]
|