1
|
Golding AP, Ferrier B, New LA, Lu P, Martin CE, Shata E, Jones RA, Moorehead RA, Jones N. Distinct Requirements for Adaptor Proteins NCK1 and NCK2 in Mammary Gland Development. J Mammary Gland Biol Neoplasia 2023; 28:19. [PMID: 37479911 PMCID: PMC10361900 DOI: 10.1007/s10911-023-09541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
The adaptor proteins NCK1 and NCK2 are well-established signalling nodes that regulate diverse biological processes including cell proliferation and actin dynamics in many tissue types. Here we have investigated the distribution and function of Nck1 and Nck2 in the developing mouse mammary gland. Using publicly available single-cell RNA sequencing data, we uncovered distinct expression profiles between the two paralogs. Nck1 showed widespread expression in luminal, basal, stromal and endothelial cells, while Nck2 was restricted to luminal and basal cells, with prominent enrichment in hormone-sensing luminal subtypes. Next, using mice with global knockout of Nck1 or Nck2, we assessed mammary gland development during and after puberty (5, 8 and 12 weeks of age). Mice lacking Nck1 or Nck2 displayed significant defects in ductal outgrowth and branching at 5 weeks compared to controls, and the defects persisted in Nck2 knockout mice at 8 weeks before normalizing at 12 weeks. These defects were accompanied by an increase in epithelial cell proliferation at 5 weeks and a decrease at 8 weeks in both Nck1 and Nck2 knockout mice. We also profiled expression of several key genes associated with mammary gland development at these timepoints and detected temporal changes in transcript levels of hormone receptors as well as effectors of cell proliferation and migration in Nck1 and Nck2 knockout mice, in line with the distinct phenotypes observed at 5 and 8 weeks. Together these studies reveal a requirement for NCK proteins in mammary gland morphogenesis, and suggest that deregulation of Nck expression could drive breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Adam P Golding
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Benjamin Ferrier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Present address: Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Robert A Jones
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Roger A Moorehead
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Dorgan JF, Baer HJ, Bertrand KA, LeBlanc ES, Jung S, Magder LS, Snetselaar LG, Stevens VJ, Zhang Y, Van Horn L. Childhood adiposity, serum metabolites and breast density in young women. Breast Cancer Res 2022; 24:91. [PMID: 36536390 PMCID: PMC9764542 DOI: 10.1186/s13058-022-01588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Childhood adiposity is inversely associated with young adult percent dense breast volume (%DBV) and absolute dense breast volume (ADBV), which could contribute to its protective effect for breast cancer later in life. The objective of this study was to identify metabolites in childhood serum that may mediate the inverse association between childhood adiposity and young adult breast density. METHODS Longitudinal data from 182 female participants in the Dietary Intervention Study in Children (DISC) and the DISC 2006 (DISC06) Follow-Up Study were analyzed. Childhood adiposity was assessed by anthropometry at the DISC visit with serum available that occurred closest to menarche and expressed as a body mass index (BMI) z-score. Serum metabolites were measured by untargeted metabolomics using ultra-high-performance liquid chromatography-tandem mass spectrometry. %DBV and ADBV were measured by magnetic resonance imaging at the DISC06 visit when participants were 25-29 years old. Robust mixed effects linear regression was used to identify serum metabolites associated with childhood BMI z-scores and breast density, and the R package mediation was used to quantify mediation. RESULTS Of the 115 metabolites associated with BMI z-scores (FDR < 0.20), 4 were significantly associated with %DBV and 6 with ADBV before, though not after, adjustment for multiple comparisons. Mediation analysis identified 2 unnamed metabolites, X-16576 and X-24588, as potential mediators of the inverse association between childhood adiposity and dense breast volume. X-16576 mediated 14% (95% confidence interval (CI) = 0.002, 0.46; P = 0.04) of the association of childhood adiposity with %DBV and 11% (95% CI = 0.01, 0.26; P = 0.02) of its association with ADBV. X-24588 also mediated 7% (95% CI = 0.001, 0.18; P = 0.05) of the association of childhood adiposity with ADBV. None of the other metabolites examined contributed to mediation of the childhood adiposity-%DBV association, though there was some support for contributions of lysine, valine and 7-methylguanine to mediation of the inverse association of childhood adiposity with ADBV. CONCLUSIONS Additional large longitudinal studies are needed to identify metabolites and other biomarkers that mediate the inverse association of childhood adiposity with breast density and possibly breast cancer risk.
Collapse
Affiliation(s)
- Joanne F Dorgan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA.
| | - Heather J Baer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly A Bertrand
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Erin S LeBlanc
- Kaiser Permanente Center for Health Research, Portland, OR, 97227, USA
| | - Seungyoun Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Laurence S Magder
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Linda G Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, 52242, USA
| | - Victor J Stevens
- Kaiser Permanente Center for Health Research, Portland, OR, 97227, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Glycopyrronium bromide regulates cigarette smoke-induced epithelial mesenchymal transition by mediating ACh production. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:212704. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2–Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs Hospital, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Cord H Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs Hospital, Nashville, TN.,Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs Hospital, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
5
|
Watt AP, Lefevre C, Wong CS, Nicholas KR, Sharp JA. Insulin regulates human mammosphere development and function. Cell Tissue Res 2021; 384:333-352. [PMID: 33439347 DOI: 10.1007/s00441-020-03360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia.
| | - Christophe Lefevre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, 3000, Melbourne, Australia.,Peter MacCallum Cancer Research Institute, East Melbourne, 3002, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Kevin R Nicholas
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
6
|
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 33:108566. [PMID: 33378681 PMCID: PMC7898263 DOI: 10.1016/j.celrep.2020.108566] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk. Using single-cell RNA-sequencing, Li et al. compare mammary epithelia and stroma in young and aged mice. Age-dependent changes at cell and gene levels provide evidence suggesting alveolar maturation, functional deterioration, and potential pro-tumorigenic and inflammatory alterations. Additionally, identification of heterogeneous luminal and macrophage subpopulations underscores the complexity of mammary lineages.
Collapse
|
7
|
Srijakotre N, Liu HJ, Nobis M, Man J, Yip HYK, Papa A, Abud HE, Anderson KI, Welch HCE, Tiganis T, Timpson P, McLean CA, Ooms LM, Mitchell CA. PtdIns(3,4,5)P 3-dependent Rac exchanger 1 (P-Rex1) promotes mammary tumor initiation and metastasis. Proc Natl Acad Sci U S A 2020; 117:28056-28067. [PMID: 33097662 PMCID: PMC7668035 DOI: 10.1073/pnas.2006445117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function. Analysis of PREX1 mRNA expression in breast cancer cDNA arrays and a METABRIC cohort revealed that higher PREX1 mRNA in ER+ve/luminal tumors was associated with poor outcome in luminal B cancers. Prex1 deletion in MMTV-neu or MMTV-PyMT mice reduced Rac1 activation in vivo and improved survival. High level MMTV-driven transgenic PREX1 expression resulted in apicobasal polarity defects and increased mammary epithelial cell proliferation associated with hyperplasia and development of de novo mammary tumors. MMTV-PREX1 expression in MMTV-neu mice increased tumor initiation and enhanced metastasis in vivo, but had no effect on primary tumor growth. Pharmacological inhibition of Rac1 or MEK1/2 reduced P-Rex1-driven tumoroid formation and cell invasion. Therefore, P-Rex1 can act as an oncogene and cooperate with HER2/neu to enhance breast cancer initiation and metastasis, despite having no effect on primary tumor growth.
Collapse
Affiliation(s)
- Nuthasuda Srijakotre
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Heng-Jia Liu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Max Nobis
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Joey Man
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kurt I Anderson
- Tumour Cell Migration, Cancer Research UK Beatson Institute, G611BD Glasgow, United Kingdom
- Crick Advanced Light Microscopy, Francis Crick Institute, NW11AT London, United Kingdom
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Tony Tiganis
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
8
|
Neumann NM, Perrone MC, Veldhuis JH, Huebner RJ, Zhan H, Devreotes PN, Brodland GW, Ewald AJ. Coordination of Receptor Tyrosine Kinase Signaling and Interfacial Tension Dynamics Drives Radial Intercalation and Tube Elongation. Dev Cell 2018; 45:67-82.e6. [PMID: 29634937 DOI: 10.1016/j.devcel.2018.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
We sought to understand how cells collectively elongate epithelial tubes. We first used 3D culture and biosensor imaging to demonstrate that epithelial cells enrich Ras activity, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and F-actin to their leading edges during migration within tissues. PIP3 enrichment coincided with, and could enrich despite inhibition of, F-actin dynamics, revealing a conserved migratory logic compared with single cells. We discovered that migratory cells can intercalate into the basal tissue surface and contribute to tube elongation. We then connected molecular activities to subcellular mechanics using force inference analysis. Migration and transient intercalation required specific and similar anterior-posterior ratios of interfacial tension. Permanent intercalations were distinguished by their capture at the boundary through time-varying tension dynamics. Finally, we integrated our experimental and computational data to generate a finite element model of tube elongation. Our model revealed that intercalation, interfacial tension dynamics, and high basal stress are together sufficient for mammary morphogenesis.
Collapse
Affiliation(s)
- Neil M Neumann
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - Matthew C Perrone
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jim H Veldhuis
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Robert J Huebner
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA
| | - G Wayne Brodland
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew J Ewald
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Rangos 452, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Swarr DT, Peranteau WH, Pogoriler J, Frank DB, Adzick NS, Hedrick HL, Morley M, Zhou S, Morrisey EE. Novel Molecular and Phenotypic Insights into Congenital Lung Malformations. Am J Respir Crit Care Med 2018; 197:1328-1339. [PMID: 29328793 PMCID: PMC5955056 DOI: 10.1164/rccm.201706-1243oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/09/2018] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Disruption of normal pulmonary development is a leading cause of morbidity and mortality in infants. Congenital lung malformations are a unique model to study the molecular pathogenesis of isolated structural birth defects, as they are often surgically resected. OBJECTIVES To provide insight into the molecular pathogenesis of congenital lung malformations through analysis of cell-type and gene expression changes in these lesions. METHODS Clinical data, and lung tissue for DNA, RNA, and histology, were obtained from 58 infants undergoing surgical resection of a congenital lung lesion. Transcriptome-wide gene expression analysis was performed on paired affected and unaffected samples from a subset of infants (n = 14). A three-dimensional organoid culture model was used to assess isolated congenital lung malformation epithelium (n = 3). MEASUREMENTS AND MAIN RESULTS Congenital lung lesions express higher levels of airway epithelial related genes, and dysregulated expression of genes related to the Ras and PI3K-AKT-mTOR (phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin) signaling pathways. Immunofluorescence confirmed differentiated airway epithelial cell types throughout all major subtypes of congenital lung lesions, and three-dimensional cell culture demonstrated a cell-autonomous defect in the epithelium of these lesions. CONCLUSIONS This study provides the first comprehensive analysis of the congenital lung malformation transcriptome and suggests that disruptions in Ras or PI3K-AKT-mTOR signaling may contribute to the pathology through an epithelial cell-autonomous defect.
Collapse
Affiliation(s)
- Daniel T. Swarr
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | | | | | - David B. Frank
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Department of Pediatrics
- Penn Center for Pulmonary Biology, and
| | | | | | | | - Su Zhou
- Penn Center for Pulmonary Biology, and
| | - Edward E. Morrisey
- Penn Center for Pulmonary Biology, and
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Rossetti S, Ren M, Visconti N, Corlazzoli F, Gagliostro V, Somenzi G, Yao J, Sun Y, Sacchi N. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate. Oncotarget 2018; 7:87064-87080. [PMID: 27894085 PMCID: PMC5349971 DOI: 10.18632/oncotarget.13500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 01/16/2023] Open
Abstract
A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.
Collapse
Affiliation(s)
- Stefano Rossetti
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - MingQiang Ren
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Nicolo Visconti
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Francesca Corlazzoli
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Vincenzo Gagliostro
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Giulia Somenzi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Jin Yao
- The State University of New York at Buffalo, Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Yijun Sun
- The State University of New York at Buffalo, Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Nicoletta Sacchi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
11
|
Meng Y, Zhang J, Yuan C, Zhang F, Fu Q, Su H, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Oleic acid stimulates HC11 mammary epithelial cells proliferation and mammary gland development in peripubertal mice through activation of CD36-Ca 2+ and PI3K/Akt signaling pathway. Oncotarget 2018; 9:12982-12994. [PMID: 29560125 PMCID: PMC5849189 DOI: 10.18632/oncotarget.24204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate the effects of oleic acid (OA), a monounsaturated fatty acid, on HC11 mammary epithelial cells proliferation and peripubertal mammary gland development and explore the underlying mechanisms. HC11 cells and C57BL/6J mice were treated with OA. HC11 proliferation, peripubertal mammary gland development, and the involvement of CD36 and PI3K/Akt were assessed. In vitro, 100 μM OA significantly promoted HC11 proliferation by increasing Cyclin D1/3 and PCNA expression and decreasing p21 expression. Meanwhile, OA enhanced CD36 expression, elevated [Ca2+]i and activated PI3K/Akt signaling pathway. However, knockdown of CD36, chelation of [Ca2+]i or inhibition of PI3K eliminated the OA-induced promotion of HC11 proliferation and change in proliferative markers expression. In vivo, peripubertal exposure to diet containing 2% OA stimulated mammary duct development, with increased terminal duct end (TDE) and ductal branch. Moreover, dietary OA increased the serum levels of IGF-1 and E2, enhanced the expression of CD36 and Cyclin D1, and activated PI3K/Akt pathway in mammary glands. In conclusion, OA stimulated HC11 cells proliferation and mammary gland development in peripubertal mice, which was associated with activation of CD36-[Ca2+]i and PI3K/Akt signaling pathway. These data provided new insights into the stimulation of mammary gland development by dietary oleic acid.
Collapse
Affiliation(s)
- Yingying Meng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Han Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
12
|
Nerger BA, Siedlik MJ, Nelson CM. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. Cell Mol Life Sci 2017; 74:1819-1834. [PMID: 28008471 PMCID: PMC5391279 DOI: 10.1007/s00018-016-2439-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
Abstract
Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Michael J Siedlik
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
13
|
|
14
|
Meng Y, Zhang J, Zhang F, Ai W, Zhu X, Shu G, Wang L, Gao P, Xi Q, Zhang Y, Liang X, Jiang Q, Wang S. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:95-103. [PMID: 27978622 DOI: 10.1021/acs.jafc.6b04878] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yingying Meng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Jing Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Wei Ai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University , Nanning 530004, P. R. China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510642, P. R. China
- ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University , Guangzhou 510642, P. R. China
| |
Collapse
|
15
|
Danopoulos S, Krainock M, Toubat O, Thornton M, Grubbs B, Al Alam D. Rac1 modulates mammalian lung branching morphogenesis in part through canonical Wnt signaling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1036-L1049. [PMID: 27765763 DOI: 10.1152/ajplung.00274.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/03/2016] [Indexed: 01/06/2023] Open
Abstract
Lung branching morphogenesis relies on a number of factors, including proper epithelial cell proliferation and differentiation, cell polarity, and migration. Rac1, a small Rho GTPase, orchestrates a number of these cellular processes, including cell proliferation and differentiation, cellular alignment, and polarization. Furthermore, Rac1 modulates both noncanonical and canonical Wnt signaling, important pathways in lung branching morphogenesis. Culture of embryonic mouse lung explants in the presence of the Rac1 inhibitor (NSC23766) resulted in a dose-dependent decrease in branching. Increased cell death and BrdU uptake were notably seen in the mesenchyme, while no direct effect on the epithelium was observed. Moreover, vasculogenesis was impaired following Rac1 inhibition as shown by decreased Vegfa expression and impaired LacZ staining in Flk1-Lacz reporter mice. Rac1 inhibition decreased Fgf10 expression in conjunction with many of its associated factors. Moreover, using the reporter lines TOPGAL and Axin2-LacZ, there was an evident decrease in canonical Wnt signaling in the explants treated with the Rac1 inhibitor. Activation of canonical Wnt pathway using WNT3a or WNT7b only partially rescued the branching inhibition. Moreover, these results were validated on human explants, where Rac1 inhibition resulted in impaired branching and decreased AXIN2 and FGFR2b expression. We therefore conclude that Rac1 regulates lung branching morphogenesis, in part through canonical Wnt signaling. However, the exact mechanisms by which Rac1 interacts with canonical Wnt in human and mouse lung requires further investigation.
Collapse
Affiliation(s)
- Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Michael Krainock
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Omar Toubat
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Matthew Thornton
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; .,Keck School of Medicine, University of Southern California, Los Angeles, California; and
| |
Collapse
|
16
|
Piotrowski-Daspit AS, Nelson CM. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix. J Vis Exp 2016. [PMID: 27500521 DOI: 10.3791/54283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Collapse
Affiliation(s)
| | - Celeste M Nelson
- Chemical and Biological Engineering, Princeton University; Molecular Biology, Princeton University;
| |
Collapse
|
17
|
Güntert T, Gassmann M, Ogunshola OO. Temporal Rac1 – HIF-1 crosstalk modulates hypoxic survival of aged neurons. Brain Res 2016; 1642:298-307. [DOI: 10.1016/j.brainres.2016.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
|
18
|
Jia WJ, Jiang S, Tang QL, Shen D, Xue B, Ning W, Li CJ. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1454-65. [PMID: 27106761 DOI: 10.1016/j.ajpath.2016.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation.
Collapse
Affiliation(s)
- Wen-Jun Jia
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China; Department of Hepatopancreatobiliary Surgery, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shan Jiang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Qiao-Li Tang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Di Shen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Bin Xue
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, the College of Life Sciences, Nankai University, Tianjin, China.
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, the School of Medicine and Model Animal Research Center of Nanjing University, Nanjing, China.
| |
Collapse
|
19
|
Atomura R, Sanui T, Fukuda T, Tanaka U, Toyoda K, Taketomi T, Yamamichi K, Akiyama H, Nishimura F. Inhibition of Sprouty2 polarizes macrophages toward an M2 phenotype by stimulation with interferon γ and Porphyromonas gingivalis lipopolysaccharide. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:98-110. [PMID: 27042307 PMCID: PMC4768065 DOI: 10.1002/iid3.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/10/2023]
Abstract
Periodontitis is a chronic inflammatory disorder caused by specific bacteria residing in the biofilm, particularly Porphyromonas gingivalis (Pg). Sprouty2 (Spry2) functions as a negative regulator of the fibroblast growth factor (FGF) signaling pathway. We previously demonstrated that sequestration of Spry2 induced proliferation and osteogenesis in osteoblastic cells by basic FGF (bFGF) and epidermal growth factor (EGF) stimulation in vitro, but diminished cell proliferation in gingival epithelial cells. In addition, Spry2 knockdown in combination with bFGF and EGF stimulation increases periodontal ligament cell proliferation and migration accompanied by prevention of osteoblastic differentiation. In this study, we investigated the mechanisms through which Spry2 depletion by interferon (IFN) γ and Pg lipopolysaccharide (LPS) stimulation affected the physiology of macrophages in vitro. Transfection of macrophages with Spry2 small‐interfering RNA (siRNA) promoted the expression of genes characteristic of M2 alternative activated macrophages, induced interleukin (IL)‐10 expression, and enhanced arginase activity, even in cells stimulated with IFNγ and Pg LPS. In addition, we found that phosphoinositide 3‐kinase (PI3K) and AKT activation by Spry2 downregulation enhanced efferocytosis of apoptotic cells by increasing Rac1 activation and decreasing nuclear factor kappa B (NFκB) p65 phosphorylation but not signal transducer and activator of transcription 1 (STAT1) phosphorylation. Collectively, our results suggested that topical administration of Spry2 inhibitors may efficiently resolve inflammation in periodontal disease as macrophage‐based anti‐inflammatory immunotherapy and may create a suitable environment for periodontal wound healing. These in vitro findings provide a molecular basis for new therapeutic approaches in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ryo Atomura
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Kyosuke Toyoda
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center Kurume University School of Medicine Fukuoka Japan
| | - Kensuke Yamamichi
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Hajime Akiyama
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| |
Collapse
|
20
|
Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals. Proc Natl Acad Sci U S A 2016; 113:E1343-51. [PMID: 26903627 DOI: 10.1073/pnas.1600645113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Common environmental contaminants such as bisphenols and phthalates and persistent contaminants such as polychlorinated biphenyls are thought to influence tissue homeostasis and carcinogenesis by acting as disrupters of endocrine function. In this study we investigated the direct effects of exposure to bisphenol A (BPA), mono-n-butyl phthalate (Pht), and polychlorinated biphenyl 153 (PCB153) on the proteome of primary organotypic cultures of the mouse mammary gland. At low-nanomolar doses each of these agents induced distinct effects on the proteomes of these cultures. Although BPA treatment produced effects that were similar to those induced by estradiol, there were some notable differences, including a reduction in the abundance of retinoblastoma-associated protein and increases in the Rho GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle protein CDC42. Both Pht and PCB153 induced changes that were distinct from those induced by estrogen, including decreased levels of the transcriptional corepressor C-terminal binding protein 1. Interestingly, the three chemicals appeared to alter the abundance of distinct splice forms of many proteins as well as the abundance of several proteins that regulate RNA splicing. Our combined results indicate that the three classes of chemical have distinct effects on the proteome of normal mouse mammary cultures, some estrogen-like but most estrogen independent, that influence diverse biological processes including apoptosis, cell adhesion, and proliferation.
Collapse
|
21
|
Siedlik MJ, Varner VD, Nelson CM. Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods 2016; 94:4-12. [PMID: 26318086 PMCID: PMC4761538 DOI: 10.1016/j.ymeth.2015.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 08/25/2015] [Indexed: 01/28/2023] Open
Abstract
Mechanotransduction is often described in the context of force-induced changes in molecular conformation, but molecular-scale mechanical stimuli arise in vivo in the context of complex, multicellular tissue structures. For this reason, we highlight and review experimental methods for investigating mechanotransduction across multiple length scales. We begin by discussing techniques that probe the response of individual molecules to applied force. We then move up in length scale to highlight techniques aimed at uncovering how cells transduce mechanical stimuli into biochemical activity. Finally, we discuss approaches for determining how these stimuli arise in multicellular structures. We expect that future work will combine techniques across these length scales to provide a more comprehensive understanding of mechanotransduction.
Collapse
Affiliation(s)
- Michael J Siedlik
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
22
|
Morrison MM, Young CD, Wang S, Sobolik T, Sanchez VM, Hicks DJ, Cook RS, Brantley-Sieders DM. mTOR Directs Breast Morphogenesis through the PKC-alpha-Rac1 Signaling Axis. PLoS Genet 2015; 11:e1005291. [PMID: 26132202 PMCID: PMC4488502 DOI: 10.1371/journal.pgen.1005291] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Akt phosphorylation is a major driver of cell survival, motility, and proliferation in development and disease, causing increased interest in upstream regulators of Akt like mTOR complex 2 (mTORC2). We used genetic disruption of Rictor to impair mTORC2 activity in mouse mammary epithelia, which decreased Akt phosphorylation, ductal length, secondary branching, cell motility, and cell survival. These effects were recapitulated with a pharmacological dual inhibitor of mTORC1/mTORC2, but not upon genetic disruption of mTORC1 function via Raptor deletion. Surprisingly, Akt re-activation was not sufficient to rescue cell survival or invasion, and modestly increased branching of mTORC2-impaired mammary epithelial cells (MECs) in culture and in vivo. However, another mTORC2 substrate, protein kinase C (PKC)-alpha, fully rescued mTORC2-impaired MEC branching, invasion, and survival, as well as branching morphogenesis in vivo. PKC-alpha-mediated signaling through the small GTPase Rac1 was necessary for mTORC2-dependent mammary epithelial development during puberty, revealing a novel role for Rictor/mTORC2 in MEC survival and motility during branching morphogenesis through a PKC-alpha/Rac1-dependent mechanism. The protein kinase mTOR is frequently activated in breast cancers, where it enhances cancer cell growth, survival, and metastastic spread to distant organs. Thus, mTOR is an attractive, clinically relevant molecular target for drugs designed to treat metastatic breast cancers. However, mTOR exists in two distinct complexes, mTORC1 and mTORC2, and the relative roles of each complex have not been elucidated. Moreover, as pathways that regulate normal tissue growth and development are often highjacked to promote cancer, understanding mTOR function in normal mammary epithelial development will likely provide insight into its role in tumor progression. In this study, we assessed the role of mTORC1 and mTORC2 complexes in normal mammary epithelial cell branching, survival, and invasion. Interestingly, while mTORC1 was not required for branching, survival and invasion of mammary epithelial cells, mTORC2 was necessary for these processes in both mouse and human models. Furthermore, we found that mTORC2 exerts its effects primarily through downstream activation of a PKC-alpha-Rac1 signaling axis rather than the more well-studied Akt signaling pathway. Our studies identify a novel role for the mTORC2 complex in mammary morphogenesis, including cell survival and motility, which are relevant to breast cancer progression.
Collapse
Affiliation(s)
- Meghan M. Morrison
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christian D. Young
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Shan Wang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Tammy Sobolik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Violeta M. Sanchez
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Donna J. Hicks
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rebecca S. Cook
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Dana M. Brantley-Sieders
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
Siedlik MJ, Nelson CM. Regulation of tissue morphodynamics: an important role for actomyosin contractility. Curr Opin Genet Dev 2015; 32:80-5. [PMID: 25748251 DOI: 10.1016/j.gde.2015.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics.
Collapse
Affiliation(s)
- Michael J Siedlik
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
24
|
Roarty K, Shore AN, Creighton CJ, Rosen JM. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. ACTA ACUST UNITED AC 2015; 208:351-66. [PMID: 25624393 PMCID: PMC4315251 DOI: 10.1083/jcb.201408058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intricate cross-talk between classical and alternative Wnt signaling pathways includes an essential role for Ror2 in mammary epithelial development and differentiation. Wnt signaling encompasses β-catenin–dependent and –independent networks. How receptor context provides Wnt specificity in vivo to assimilate multiple concurrent Wnt inputs throughout development remains unclear. Here, we identified a refined expression pattern of Wnt/receptor combinations associated with the Wnt/β-catenin–independent pathway in mammary epithelial subpopulations. Moreover, we elucidated the function of the alternative Wnt receptor Ror2 in mammary development and provided evidence for coordination of this pathway with Wnt/β-catenin–dependent signaling in the mammary epithelium. Lentiviral short hairpin RNA (shRNA)-mediated depletion of Ror2 in vivo increased branching and altered the differentiation of the mammary epithelium. Microarray analyses identified distinct gene level alterations within the epithelial compartments in the absence of Ror2, with marked changes observed in genes associated with the actin cytoskeleton. Modeling of branching morphogenesis in vitro defined specific defects in cytoskeletal dynamics accompanied by Rho pathway alterations downstream of Ror2 loss. The current study presents a model of Wnt signaling coordination in vivo and assigns an important role for Ror2 in mammary development.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Amy N Shore
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Chad J Creighton
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
25
|
Carter E, Miron-Buchacra G, Goldoni S, Danahay H, Westwick J, Watson ML, Tosh D, Ward SG. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS One 2014; 9:e113555. [PMID: 25460003 PMCID: PMC4251986 DOI: 10.1371/journal.pone.0113555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022] Open
Abstract
Branching morphogenesis is a critical step in the development of many epithelial organs. The phosphoinositide-3-kinase (PI3K) pathway has been identified as a central component of this process but the precise role has not been fully established. Herein we sought to determine the role of PI3K in murine lung branching using a series of pharmacological inhibitors directed at this pathway. The pan-class I PI3K inhibitor ZSTK474 greatly enhanced the branching potential of whole murine lung explants as measured by an increase in the number of terminal branches compared with controls over 48 hours. This enhancement of branching was also observed following inhibition of the downstream signalling components of PI3K, Akt and mTOR. Isoform selective inhibitors of PI3K identified that the alpha isoform of PI3K is a key driver in branching morphogenesis. To determine if the effect of PI3K inhibition on branching was specific to the lung epithelium or secondary to an effect on the mesenchyme we assessed the impact of PI3K inhibition in cultures of mesenchyme-free lung epithelium. Isolated lung epithelium cultured with FGF7 formed large cyst-like structures, whereas co-culture with FGF7 and ZSTK474 induced the formation of defined branches with an intact lumen. Together these data suggest a novel role for PI3K in the branching program of the murine embryonic lung contradictory to that reported in other branching organs. Our observations also point towards PI3K acting as a morphogenic switch for FGF7 signalling.
Collapse
Affiliation(s)
- Edward Carter
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Gabriela Miron-Buchacra
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Silvia Goldoni
- Novartis Institute of Biomedical Research, Horsham, United Kingdom
| | - Henry Danahay
- Novartis Institute of Biomedical Research, Horsham, United Kingdom
| | - John Westwick
- Novartis Institute of Biomedical Research, Horsham, United Kingdom
| | - Malcolm L. Watson
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Stephen G. Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears JC, Vargo-Gogola T. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res 2014; 15:R91. [PMID: 24074261 PMCID: PMC3978759 DOI: 10.1186/bcr3487] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction The Rho GTPase Cdc42 is overexpressed and hyperactivated in breast tumors compared to normal breast tissue. Cdc42 regulates key processes that are critical for mammary gland morphogenesis and become disrupted during the development, progression, and metastasis of breast cancer. However, the contribution of Cdc42 to normal and neoplastic mammary gland development in vivo remains poorly understood. We were therefore interested in investigating the effects of Cdc42 overexpression on mammary gland morphogenesis as a first step toward understanding how its overexpression may contribute to mammary tumorigenesis. Methods We developed a tetracycline-regulatable Cdc42 overexpression mouse model in which Cdc42 can be inducibly overexpressed in the developing mammary gland. The effects of Cdc42 overexpression during postnatal mammary gland development were investigated using in vivo and in vitro approaches, including morphometric analysis of wholemounted mammary glands, quantification of histological markers, and primary mammary epithelial cell (MEC) functional and biochemical assays. Results Analysis of Cdc42-overexpressing mammary glands revealed abnormal terminal end bud (TEB) morphologies, characterized by hyperbudding and trifurcation, and increased side branching within the ductal tree. Quantification of markers of proliferation and apoptosis suggested that these phenotypes were not due to increased cell proliferation or survival. Rather, Cdc42 overexpressing MECs were more migratory and contractile and formed dysmorphic, invasive acini in three-dimensional cultures. Cdc42 and RhoA activities, phosphorylated myosin light chain, and MAPK signaling, which contribute to migration and invasion, were markedly elevated in Cdc42 overexpressing MECs. Interestingly, Cdc42 overexpressing mammary glands displayed several features associated with altered epithelial-stromal interactions, which are known to regulate branching morphogenesis. These included increased stromal thickness and collagen deposition, and stromal cells isolated from Cdc42 overexpressing mammary glands exhibited elevated mRNA expression of extracellular matrix proteins and remodeling enzymes. Conclusions These data suggest that Cdc42 overexpression disrupts mammary gland branching morphogenesis by altering Rho GTPase and MAPK signaling, leading to increased MEC contractility and migration in association with stromal alterations. Our studies provide insight into how aberrant Cdc42 expression may contribute to mammary tumorigenesis.
Collapse
|
27
|
Miyoshi H, Adachi T. Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:609-27. [PMID: 24720435 DOI: 10.1089/ten.teb.2013.0728] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiological role of the actin cytoskeleton is well known: it provides mechanical support and endogenous force generation for formation of a cell shape and for migration. Furthermore, a growing number of studies have demonstrated another significant role of the actin cytoskeleton: it offers dynamic epigenetic memory for guiding cell fate, in particular, proliferation and differentiation. Because instantaneous imbalance in the mechanical homeostasis is adjusted through actin remodeling, a synthetic extracellular matrix (ECM) niche as a source of topographical and mechanical cues is expected to be effective at modulation of the actin cytoskeleton. In this context, the synthetic ECM niche determines cell migration, proliferation, and differentiation, all of which have to be controlled in functional tissue engineering scaffolds to ensure proper regulation of tissue/organ formation, maintenance of tissue integrity and repair, and regeneration. Here, with an emphasis on the epigenetic role of the actin cytoskeletal system, we propose a design concept of micro/nanotopography of a tissue engineering scaffold for control of cell migration, proliferation, and differentiation in a stable and well-defined manner, both in vitro and in vivo.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- 1 Ultrahigh Precision Optics Technology Team , RIKEN Center for Advanced Photonics, Saitama, Japan
| | | |
Collapse
|
28
|
Shen HJ, Sun YH, Zhang SJ, Jiang JX, Dong XW, Jia YL, Shen J, Guan Y, Zhang LH, Li FF, Lin XX, Wu XM, Xie QM, Yan XF. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1838-49. [PMID: 24508121 DOI: 10.1016/j.bbagen.2014.01.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT. METHODS EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively. RESULTS Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-β1 release. Blocking TGF-β pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-β1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-β1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression. CONCLUSIONS AND GENERAL SIGNIFICANCE Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer.
Collapse
Affiliation(s)
- Hui-juan Shen
- The Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Yan-hong Sun
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Shui-juan Zhang
- Pharmacy College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun-xia Jiang
- The Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Xin-wei Dong
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Yong-liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Yan Guan
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Lin-hui Zhang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Fen-fen Li
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Xi-xi Lin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Xi-mei Wu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, China; Laboratory Animal Center of Zhejiang University, Hangzhou 310058, China.
| | - Xiao-feng Yan
- The Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
29
|
Zhang X, Qiao G, Lu P. Modulation of fibroblast growth factor signaling is essential for mammary epithelial morphogenesis. PLoS One 2014; 9:e92735. [PMID: 24718286 PMCID: PMC3981693 DOI: 10.1371/journal.pone.0092735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is essential for vertebrate organogenesis, including mammary gland development. The mechanism whereby FGF signaling is regulated in the mammary gland, however, has remained unknown. Using a combination of mouse genetics and 3D ex vivo models, we tested the hypothesis that Spry2 gene, which encodes an inhibitor of signaling via receptor tyrosine kinases (RTKs) in certain contexts, regulates FGF signaling during mammary branching. We found that Spry2 is expressed at various stages of the developing mammary gland. Targeted removal of Spry2 function from mammary epithelium leads to accelerated epithelial invasion. Spry2 is up-regulated by FGF signaling activities and its loss sensitizes mammary epithelium to FGF stimulation, as indicated by increased expression of FGF target genes and epithelia invasion. By contrast, Spry2 gain-of-function in the mammary epithelium results in reduced FGF signaling, epithelial invasion, and stunted branching. Furthermore, reduction of Spry2 expression is correlated with tumor progression in the MMTV-PyMT mouse model. Together, the data show that FGF signaling modulation by Spry2 is essential for epithelial morphogenesis in the mammary gland and it functions to protect the epithelium against tumorigenesis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Zhu J, Xiong G, Trinkle C, Xu R. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression. Histol Histopathol 2014; 29:1083-92. [PMID: 24682974 DOI: 10.14670/hh-29.1083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits biochemical and biomechanical signals that control cellular architecture and gene expression. These ECM signals cooperate with growth factors and hormones to regulate cell migration, differentiation, and transformation. ECM signaling is tightly regulated during normal mammary gland development. Deposition and alignment of fibrillar collagens direct migration and invasion of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM proteins in the long run is sufficient to promote breast cancer development and progression. Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and soluble factors are crucial for normal mammary gland development as well as breast cancer progression.
Collapse
Affiliation(s)
- Jieqing Zhu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Ren Xu
- Markey Cancer Center, and Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
31
|
Falke JJ, Ziemba BP. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells. Chem Phys Lipids 2014; 182:73-9. [PMID: 24451847 DOI: 10.1016/j.chemphyslip.2014.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/09/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca(2+) signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca(2+), while highlighting key questions for future research.
Collapse
Affiliation(s)
- Joseph J Falke
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|