1
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
2
|
Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023; 15:3564. [PMID: 37630754 PMCID: PMC10459728 DOI: 10.3390/nu15163564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Placental development is a tightly controlled event, in which cell expansion from the trophectoderm occurs in a spatiotemporal manner. Proper trophoblast differentiation is crucial to the vitality of this gestational organ. Obstructions to its development can lead to pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm birth, posing severe health risks to both the mother and offspring. Currently, the only known treatment strategy for these complications is delivery, making it an important area of research. The aim of this review was to summarize the known information on the development and mechanistic regulation of trophoblast differentiation and highlight the similarities in these processes between the human and mouse placenta. Additionally, the known biomarkers for each cell type were compiled to aid in the analysis of sequencing technologies.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
4
|
Rusidzé M, Faure MC, Sicard P, Raymond-Letron I, Giton F, Vessieres E, Prevot V, Henrion D, Arnal JF, Cornil CA, Lenfant F. Loss of function of the maternal membrane oestrogen receptor ERα alters expansion of trophoblast cells and impacts mouse fertility. Development 2022; 149:dev200683. [PMID: 36239412 PMCID: PMC9720743 DOI: 10.1242/dev.200683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/31/2022] [Indexed: 03/31/2024]
Abstract
The binding of 17β-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| | | | - Pierre Sicard
- IPAM, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier 34295, France
| | - Isabelle Raymond-Letron
- Institut Restore, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1031, Toulouse 31076, France
| | - Frank Giton
- APHP H.Mondor - IMRB - INSERM U955, Créteil 94010, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CarMe team, CNRS UMR 6015, INSERM U1083, Angers 49055, France
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille 59000, France
| | - Daniel Henrion
- Angers University, MITOVASC, CarMe team, CNRS UMR 6015, INSERM U1083, Angers 49055, France
| | | | | | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| |
Collapse
|
5
|
Chen H, Williams KE, Kwan EY, Kapidzic M, Puckett KA, Aburajab RK, Robinson JF, Fisher SJ. Global proteomic analyses of human cytotrophoblast differentiation/invasion. Development 2021; 148:dev199561. [PMID: 34121116 PMCID: PMC8276980 DOI: 10.1242/dev.199561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
During human pregnancy, cytotrophoblasts (CTBs) from the placenta differentiate into specialized subpopulations that play crucial roles in proper fetal growth and development. A subset of these CTBs differentiate along an invasive pathway, penetrating the decidua and anchoring the placenta to the uterus. A crucial hurdle in pregnancy is the ability of these cells to migrate, invade and remodel spiral arteries, ensuring adequate blood flow to nourish the developing fetus. Although advances continue in describing the molecular features regulating the differentiation of these cells, assessment of their global proteomic changes at mid-gestation remain undefined. Here, using sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which is a data-independent acquisition strategy, we characterized the protein repertoire of second trimester human CTBs during their differentiation towards an invasive phenotype. This mass spectrometry-based approach allowed identification of 3026 proteins across four culture time points corresponding to sequential stages of differentiation, confirming the expression dynamics of established molecules and offering new information into other pathways involved. The availability of a SWATH CTB global spectral library serves as a beneficial resource for hypothesis generation and as a foundation for further understanding CTB differentiation dynamics.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Katherine E. Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Elaine Y. Kwan
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Kenisha A. Puckett
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Rayyan K. Aburajab
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Susan J. Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
- Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Theis A, Singer RA, Garofalo D, Paul A, Narayana A, Sussel L. Groucho co-repressor proteins regulate β cell development and proliferation by repressing Foxa1 in the developing mouse pancreas. Development 2021; 148:dev.192401. [PMID: 33658226 DOI: 10.1242/dev.192401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for β cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4 Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential β cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced β cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.
Collapse
Affiliation(s)
- Alexandra Theis
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth A Singer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Diana Garofalo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Alexander Paul
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Graduate program in Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Anila Narayana
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori Sussel
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA .,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Seethy AA, Singh S, Mukherjee I, Pethusamy K, Purkayastha K, Sharma JB, Sharma RS, Dhar R, Karmakar S. Potential SARS-CoV-2 interactions with proteins involved in trophoblast functions - An in-silico study. Placenta 2020; 103:141-151. [PMID: 33126048 PMCID: PMC7581362 DOI: 10.1016/j.placenta.2020.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Though a large number of pregnant females have been affected by COVID-19, there is a dearth of information on the effects of SARS-CoV-2 infection on trophoblast function. We explored in silico, the potential interactions between SARS-CoV-2 proteins and proteins involved in the key functions of placenta. METHODS Human proteins interacting with SARS-CoV-2 proteins were identified by Gordon et al. (2020). Genes that are upregulated in trophoblast sub-types and stages were obtained by gene-expression data from NCBI-GEO and by text-mining. Genes altered in pathological states like pre-eclampsia and gestational diabetes mellitus were also identified. Genes crucial in placental functions thus identified were compared to the SARS-CoV-2 interactome for overlaps. Proteins recurring across multiple study scenarios were analyzed using text mining and network analysis for their biological functions. RESULTS The entry receptors for SARS-CoV-2 - ACE2 and TMPRSS2 are expressed in placenta. Other proteins that interact with SARS-CoV-2 like LOX, Fibulins-2 and 5, NUP98, GDF15, RBX1, CUL3, HMOX1, PLAT, MFGE8, and MRPs are vital in placental functions like trophoblast invasion and migration, syncytium formation, differentiation, and implantation. TLE3, expressed across first trimester placental tissues and cell lines, is involved in formation of placental vasculature, and is important in SARS-CoV (2003) budding and exit from the cells by COPI vesicles. CONCLUSION SARS-CoV-2 can potentially interact with proteins having crucial roles in the placental function. Whether these potential interactions identified in silico have effects on trophoblast functions in biological settings needs to be addressed by further in vitro and clinical studies.
Collapse
Affiliation(s)
- Ashikh A Seethy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; Amity Institute of Biotechnology, Amity University, Noida, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kakali Purkayastha
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Roberts GAG, Tunster SJ. Characterising the dynamics of placental glycogen stores in the mouse. Placenta 2020; 99:131-140. [PMID: 32798765 DOI: 10.1016/j.placenta.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The placenta performs a range of functions to support fetal growth. In addition to facilitating nutrient transport, the placenta also stores glucose as glycogen, which is thought to maintain fetal glucose supply during late gestation. However, evidence to support such a role is currently lacking. Similarly, our understanding of the dynamics of placental glycogen metabolism in normal mouse pregnancy is limited. METHODS We quantified the placental glycogen content of wild type C57BL/6JOlaHsd mouse placentas from mid (E12.5) to late (E18.5) gestation, alongside characterising the temporal expression pattern of genes encoding glycogenesis and glycogenolysis pathway enzymes. To assess the potential of the placenta to produce glucose, we investigated the spatiotemporal expression of glucose 6-phosphatase by qPCR and in situ hybridisation. Separate analyses were undertaken for placentas of male and female conceptuses to account for potential sexual dimorphism. RESULTS Placental glycogen stores peak at E15.5, having increased over 5-fold from E12.5, before declining by a similar extent by E18.5. Glycogen stores were 17% higher in male placentas than in females at E15.5. Expression of glycogen branching enzyme (Gbe1) was reduced ~40% towards term. Expression of the glucose 6-phosphatase isoform G6pc3 was enriched in glycogen trophoblast cells and increased towards term. DISCUSSION Reduced expression of Gbe1 suggests a decline in glycogen branching towards term. Expression of G6pc3 by glycogen trophoblasts is consistent with an ability to produce and release glucose from glycogen stores. However, the ultimate destination of the glucose generated from placental glycogen remains to be elucidated.
Collapse
Affiliation(s)
- George A G Roberts
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J Tunster
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
9
|
Creeth HDJ, John RM. The placental programming hypothesis: Placental endocrine insufficiency and the co-occurrence of low birth weight and maternal mood disorders. Placenta 2020; 98:52-59. [PMID: 33039032 DOI: 10.1016/j.placenta.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Polypeptide hormones and steroid hormones, either expressed by the placenta or dependant on the placenta for their synthesis, are key to driving adaptations in the mother during pregnancy that support growth in utero. These adaptations include changes in maternal behaviour that take place in pregnancy and after the birth to ensure that offspring receive appropriate care and nutrition. Placentally-derived hormones implicated in the programming of maternal caregiving in rodents include prolactin-related hormones and steroid hormones. Neuromodulators produced by the placenta may act directly on the fetus to support brain development. A number of imprinted genes function antagonistically in the placenta to regulate the development of key placental endocrine lineages expressing these hormones. Gain-in-expression of the normally maternally expressed gene Phlda2 or loss-of-function of the normally paternally expressed gene Peg3 results in fewer endocrine cells in the placenta, and pups are born low birth weight. Importantly, wild type dams carrying these genetically altered pups display alterations in their behaviour with decreased focus on nurturing (Phlda2) or heightened anxiety (Peg3). These same genes may regulate placental hormones in human pregnancies, with the potential to influence birth weight and maternal mood. Consequently, the aberrant expression of imprinted genes in the placenta may underlie the reported co-occurrence of low birth weight with maternal prenatal depression.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
10
|
Eaton M, Davies AH, Devine J, Zhao X, Simmons DG, Maríusdóttir E, Natale DRC, Matyas JR, Bering EA, Workentine ML, Hallgrimsson B, Cross JC. Complex patterns of cell growth in the placenta in normal pregnancy and as adaptations to maternal diet restriction. PLoS One 2020; 15:e0226735. [PMID: 31917811 PMCID: PMC6952106 DOI: 10.1371/journal.pone.0226735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.
Collapse
Affiliation(s)
- Malcolm Eaton
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - Alastair H. Davies
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Jay Devine
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - Xiang Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - David G. Simmons
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Elín Maríusdóttir
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - David R. C. Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - John R. Matyas
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Elizabeth A. Bering
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | | | - Benedikt Hallgrimsson
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - James C. Cross
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
- * E-mail:
| |
Collapse
|
11
|
Pemathilaka RL, Reynolds DE, Hashemi NN. Drug transport across the human placenta: review of placenta-on-a-chip and previous approaches. Interface Focus 2019; 9:20190031. [PMID: 31485316 PMCID: PMC6710654 DOI: 10.1098/rsfs.2019.0031] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
In the past few decades, the placenta became a very controversial topic that has had many researchers and pharmacists discussing the significance of the effects of pharmaceutical drug intake and how it is a possible leading cause towards birth defects. The creation of an in vitro microengineered model of the placenta can be used to replicate the interactions between the mother and fetus, specifically pharmaceutical drug intake reactions. As the field of nanotechnology significantly continues growing, nanotechnology will become more apparent in the study of medicine and other scientific disciplines, specifically microengineering applications. This review is based on past and current research that compares the feasibility and testing of the placenta-on-a-chip microengineered model to the previous and underdeveloped in vivo and ex vivo approaches. The testing of the practicality and effectiveness of the in vitro, in vivo and ex vivo models requires the experimentation of prominent pharmaceutical drugs that most mothers consume during pregnancy. In this case, these drugs need to be studied and tested more often. However, there are challenges associated with the in vitro, in vivo and ex vivo processes when developing a practical placental model, which are discussed in further detail.
Collapse
Affiliation(s)
| | - David E. Reynolds
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Differential Regulation of TLE3 in Sertoli Cells of the Testes during Postnatal Development. Cells 2019; 8:cells8101156. [PMID: 31569653 PMCID: PMC6848928 DOI: 10.3390/cells8101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Spermatogenesis is a process by which haploid cells differentiate from germ cells in the seminiferous tubules of the testes. TLE3, a transcriptional co-regulator that interacts with DNA-binding factors, plays a role in the development of somatic cells. However, no studies have shown its role during germ cell development in the testes. Here, we examined TLE3 expression in the testes during spermatogenesis. TLE3 was highly expressed in mouse testes and was dynamically regulated in different cell types of the seminiferous tubules, spermatogonia, spermatids, and Sertoli cells, but not in the spermatocytes. Interestingly, TLE3 was not detected in Sertoli cells on postnatal day 7 (P7) but was expressed from P10 onward. The microarray analysis showed that the expression of numerous genes changed upon TLE3 knockdown in a Sertoli cell line TM4. These include 1597 up-regulated genes and 1452 down-regulated genes in TLE3-knockdown TM4 cells. Ingenuity Pathway Analysis (IPA) showed that three factors were up-regulated and two genes were down-regulated upon TLE3 knockdown in TM4 cells. The abnormal expression of the three factors is associated with cellular malfunctions such as abnormal differentiation and Sertoli cell formation. Thus, TLE3 is differentially expressed in Sertoli cells and plays a crucial role in regulating cell-specific genes involved in the differentiation and formation of Sertoli cells during testicular development.
Collapse
|
13
|
Spatiotemporal coordination of trophoblast and allantoic Rbpj signaling directs normal placental morphogenesis. Cell Death Dis 2019; 10:438. [PMID: 31165749 PMCID: PMC6549187 DOI: 10.1038/s41419-019-1683-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The placenta, responsible for the nutrient and gas exchange between the mother and fetus, is pivotal for successful pregnancy. It has been shown that Rbpj, the core transcriptional mediator of Notch signaling pathway, is required for normal placentation in mice. However, it remains largely unclear how Rbpj signaling in different placental compartments coordinates with other important regulators to ensure normal placental morphogenesis. In this study, we found that systemic deletion of Rbpj led to abnormal chorioallantoic morphogenesis and defective trophoblast differentiation in the ectoplacental cone (EPC). Employing mouse models with selective deletion of Rbpj in the allantois versus trophoblast, combining tetraploid aggregation assay, we demonstrated that allantois-expressed Rbpj is essential for chorioallantoic attachment and subsequent invagination of allantoic blood vessels into the chorionic ectoderm. Further studies uncovered that allantoic Rbpj regulates chorioallantoic fusion and morphogenesis via targeting Vcam1 in a Notch-dependent manner. Meanwhile, we also revealed that trophoblast-expressed Rbpj in EPC facilitates Mash2’s transcriptional activity, promoting the specification of Tpbpα-positive trophoblasts, which differentiate into trophoblast subtypes responsible for interstitial and endovascular invasion at the later stage of placental development. Collectively, our study further shed light on the molecular network governing placental development and functions, highlighting the necessity of a spatiotemporal coordination of Rbpj signaling for normal placental morphogenesis.
Collapse
|
14
|
Shawber CJ, Brown-Grant DA, Wu T, Kitajewski JK, Douglas NC. Dominant-negative inhibition of canonical Notch signaling in trophoblast cells does not disrupt placenta formation. Biol Open 2019; 8:bio.037721. [PMID: 30971411 PMCID: PMC6504009 DOI: 10.1242/bio.037721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proper development and function of the mammalian placenta requires interactions between embryo-derived trophoblasts and uterine endothelial cells to form mosaic vessels that facilitate blood flow to a developing conceptus. Notch signaling utilizes a cell–cell contact dependent mechanism to drive cell behaviors, such as differentiation and invasion. In mice, Notch2 is needed for proper placentation and embryo survival. We used transgenic mice with a dominant-negative form of Mastermind-like1 and Cyp19-Cre and Tpbpa-Cre drivers to inhibit canonical Notch signaling in trophoblasts. Both Cre drivers resulted in robust placental expression of dominant-negative Mastermind-like1. All pregnancies progressed beyond mid-gestation and morphological analyses of placentas revealed no differences between mutants and controls. Our data suggest that mouse placentation occurs normally despite dominant negative inhibition of trophoblast canonical Notch signaling and that Notch2 signaling via the canonical pathway is not necessary for placentation. Summary: Using transgenic mice with a dominant-negative form of Mastermind-like1 and Cyp19-Cre and Tpbpa-Cre drivers, we found that dominant negative inhibition of canonical Notch signaling in trophoblast cells does not disrupt placenta formation.
Collapse
Affiliation(s)
- Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Dex-Ann Brown-Grant
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tracy Wu
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jan K Kitajewski
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nataki C Douglas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Women's Health, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
15
|
Creeth HDJ, McNamara GI, Isles AR, John RM. Imprinted genes influencing the quality of maternal care. Front Neuroendocrinol 2019; 53:100732. [PMID: 30553874 DOI: 10.1016/j.yfrne.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
In mammals successful rearing imposes a cost on later reproductive fitness specifically on the mother creating the potential for parental conflict. Loss of function of three imprinted genes in the dam results in deficits in maternal care suggesting that, like maternal nutrients, maternal care is a resource over which the parental genomes are in conflict. The induction of maternal care is a complex, highly regulated process and it is unsurprising that many gene disruptions and environmental adversities result in maternal care deficits. However, recent compelling evidence for a more purposeful imprinting phenomenon comes from observing alterations in the mother's behaviour when expression of the imprinted genes Phlda2 and Peg3 has been manipulated solely in the offspring. This explicit demonstration that imprinted genes expressed in the offspring influence maternal behaviour lends significant weight to the hypothesis that maternal care is a resource that has been manipulated by the paternal genome.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - G I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
16
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
17
|
Tunster SJ, Van de Pette M, Creeth HDJ, Lefebvre L, John RM. Fetal growth restriction in a genetic model of sporadic Beckwith-Wiedemann syndrome. Dis Model Mech 2018; 11:dmm.035832. [PMID: 30158284 PMCID: PMC6262809 DOI: 10.1242/dmm.035832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Beckwith–Wiedemann syndrome (BWS) is a complex imprinting disorder involving fetal overgrowth and placentomegaly, and is associated with a variety of genetic and epigenetic mutations affecting the expression of imprinted genes on human chromosome 11p15.5. Most BWS cases are linked to loss of methylation at the imprint control region 2 (ICR2) within this domain, which in mice regulates the silencing of several maternally expressed imprinted genes. Modelling this disorder in mice is confounded by the unique embryonic requirement for Ascl2, which is imprinted in mice but not in humans. To overcome this issue, we generated a novel model combining a truncation of distal chromosome 7 allele (DelTel7) with transgenic rescue of Ascl2 expression. This novel model recapitulated placentomegaly associated with BWS, but did not lead to fetal overgrowth. Summary: A novel genetic mouse model of sporadic Beckwith–Wiedemann syndrome (BWS) recapitulates placentomegaly, but placental defects lead to late gestation fetal growth restriction, which contrasts with the fetal overgrowth characteristic of BWS in humans.
Collapse
Affiliation(s)
- Simon J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Hugo D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
18
|
Tunster SJ, Boqué-Sastre R, McNamara GI, Hunter SM, Creeth HDJ, John RM. Peg3 Deficiency Results in Sexually Dimorphic Losses and Gains in the Normal Repertoire of Placental Hormones. Front Cell Dev Biol 2018; 6:123. [PMID: 30320110 PMCID: PMC6170603 DOI: 10.3389/fcell.2018.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Hormones from the fetally derived placenta signal to the mother throughout pregnancy to ensure optimal fetal growth and prepare the mother for her new role in nurturing her offspring. Through evolution, placental hormones have under gone remarkable diversification and species-specific expansions thought to be due to constant rebalancing of resource allocation between mother and offspring. Genomic imprinting, an epigenetic process in which parental germlines silence genes in the offspring, is thought to be the physical embodiment of a second conflicting interest, between the male and female mammal. Several genes silenced by paternal imprints normally function to limit the placental endocrine lineages of the mouse placenta. We hypothesized that paternal imprinting has adapted to overcome the rapid evolution of placental hormone gene families by directly regulating the lineages that express these hormones rather than individual hormones. This predicts the existence of genes maternally silenced in the offspring counteracting the influence of the paternal imprint. Here we report on the consequences of loss of function of Paternally expressed gene 3 (Peg3), on placental endocrine lineages. Mutant male placenta displayed a marked loss of the spongiotrophoblast, a key endocrine lineage of the placenta, and the glycogen cell lineage alongside reduced stores of placental glycogen and changes in expression of the normal repertoire of placental hormones. Peg3 is known to transcriptionally repress placental hormone genes. Peg3 consequently both positively and negatively regulates placental hormones through two independent and opposing mechanisms. Female placenta showed moderate response to loss of Peg3 with minor alterations to the junctional zone lineages and few changes in gene expression. These data highlight the important fact that female placenta compensate for the loss of Peg3 better than male placenta. This work lends further support to our novel hypothesis that the parental genomes are competing over the endocrine function of the mouse placenta and further suggests that a conflict between males and females begins in utero.
Collapse
Affiliation(s)
- Simon J Tunster
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Raquel Boqué-Sastre
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gráinne I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Susan M Hunter
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hugo D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rosalind M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Middleton RC, Rogers RG, De Couto G, Tseliou E, Luther K, Holewinski R, Soetkamp D, Van Eyk JE, Antes TJ, Marbán E. Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes. J Extracell Vesicles 2018; 7:1456888. [PMID: 29696078 PMCID: PMC5912190 DOI: 10.1080/20013078.2018.1456888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 03/17/2018] [Indexed: 01/18/2023] Open
Abstract
Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100–150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey De Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eleni Tseliou
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristin Luther
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ronald Holewinski
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Travis J Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Svitina H, Kyryk V, Skrypkina I, Kuchma M, Bukreieva T, Areshkov P, Shablii Y, Denis Y, Klymenko P, Garmanchuk L, Ostapchenko L, Lobintseva G, Shablii V. Placenta-derived multipotent cells have no effect on the size and number of DMH-induced colon tumors in rats. Exp Ther Med 2017; 14:2135-2147. [PMID: 28962134 PMCID: PMC5609206 DOI: 10.3892/etm.2017.4792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Transplantation of placenta-derived multipotent cells (PDMCs) is a promising approach for cell therapy to treat inflammation-associated colon diseases. However, the effect of PDMCs on colon cancer cells remains unknown. The aim of the present study was to characterize PDMCs obtained from human (hPDMCs) and rat (rPDMCs) placentas and to evaluate their impact on colon cancer progression in rats. PDMCs were obtained from human and rat placentas by tissue explant culturing. Stemness- and trophoblast-related gene expression was studied using reverse transcription-polymerase chain reaction (RT-PCR), and surface markers and intracellular proteins were detected using flow cytometry and immunofluorescence, respectively. Experimental colon carcinogenesis was induced in male albino Wistar rats by injecting 20 mg/kg dimethylhydrazine (DMH) once a week for 20 consecutive weeks. The administration of rPDMCs and hPDMC was performed at week 22 after the initial DMH-injection. All animals were sacrificed through carbon dioxide asphyxiation at week 5 after cell transplantation. The number and size of each tumor lesion was calculated. The type of tumor was determined by standard histological methods. Cell engraftment was determined by PCR and immunofluorescence. Results demonstrated that rPDMCs possessed the immunophenotype and differentiation potential inherent in MSCs; however, hPDMCs exhibited a lower expression of cluster of differentiation 44 and did not express trophoblast-associated genes. The data of the present study indicated that PDMCs may engraft in different tissues but do not significantly affect DMH-induced tumor growth during short-term observations.
Collapse
Affiliation(s)
- Hanna Svitina
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Vitaliy Kyryk
- Department of Cell and Tissue Technologies, State Institute of Genetics and Regenerative Medicine of Academy of Medicine of Ukraine, 04114 Kyiv, Ukraine
| | - Inessa Skrypkina
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Maria Kuchma
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Tetiana Bukreieva
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Pavlo Areshkov
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Yulia Shablii
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Yevheniy Denis
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Pavlo Klymenko
- Department of Cell and Tissue Technologies, State Institute of Genetics and Regenerative Medicine of Academy of Medicine of Ukraine, 04114 Kyiv, Ukraine
| | - Liudmyla Garmanchuk
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Liudmyla Ostapchenko
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Galina Lobintseva
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Volodymyr Shablii
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| |
Collapse
|
21
|
John RM. Imprinted genes and the regulation of placental endocrine function: Pregnancy and beyond. Placenta 2017; 56:86-90. [DOI: 10.1016/j.placenta.2017.01.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
|
22
|
Levin HI, Sullivan-Pyke CS, Papaioannou VE, Wapner RJ, Kitajewski JK, Shawber CJ, Douglas NC. Dynamic maternal and fetal Notch activity and expression in placentation. Placenta 2017; 55:5-12. [PMID: 28623973 PMCID: PMC5754215 DOI: 10.1016/j.placenta.2017.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/25/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Murine placentation requires trophoblast Notch2, while the Notch ligand, JAGGED1, is reduced in invasive trophoblasts from women with preeclampsia. However, the placental cells with active Notch signaling and expression of other Notch proteins and ligands in placentation have yet to be defined. We sought to identify endothelial cell and trophoblast subtypes with canonical Notch signaling in the decidua and placenta and correlate this to expression of Notch proteins and ligands. METHODS Notch reporter transgenic mice were used to define canonical Notch activity and immunofluorescence staining performed to characterize expression of Notch1, 2, 3, 4 and ligands, Delta-like 4 (Dll4) and Jagged1 (Jag1) during early placentation and in the mature placenta. RESULTS Notch signaling is active in maternal and fetal endothelial cells and trophoblasts during early placentation and in the mature placenta. Dll4, Jag1, Notch1, and Notch4 are expressed in maternal vasculature in the decidua. Dll4, Jag1 and Notch1 are expressed in fetal vasculature in the labyrinth. Dll4, Notch2 and Notch4 are co-expressed in the ectoplacental cone. Notch2 and Notch4 are expressed in parietal-trophoblast giant cells and junctional zone trophoblasts with active canonical Notch signaling and in labyrinthine syncytiotrophoblasts and sinusoidal-trophoblast giant cells. DISCUSSION Canonical Notch activity and distinct expression patterns for Notch proteins and ligands was evident in endothelium and trophoblasts, suggesting Notch1, Notch2, Notch4, Dll4, and Jag1 have distinct and overlapping functions in placentation. Characterization of Notch signaling defects in existing mouse models of preeclampsia may shed light on the role of Notch in developing the preeclampsia phenotype.
Collapse
Affiliation(s)
- Heather I Levin
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA
| | - Chantae S Sullivan-Pyke
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, 701 West 168th St., New York, NY 10032, USA
| | - Ronald J Wapner
- Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA; Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA
| | - Jan K Kitajewski
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA; Department of Physiology and Biophysics, University of Illinois, 835 S. Wolcott Avenue, Room E202, Chicago, IL 60612, USA
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA; Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA
| | - Nataki C Douglas
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University Medical Center, 630 West 168th St., New York, NY 10032, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Columbia University Medical Center, 622 West 168th St., New York, NY 10032, USA.
| |
Collapse
|
23
|
Notch signalling in placental development and gestational diseases. Placenta 2017; 56:65-72. [PMID: 28117145 DOI: 10.1016/j.placenta.2017.01.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/14/2023]
Abstract
Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about Notch signalling in murine and human placentation and discuss its potential role in the pathophysiology of gestational disorders. Studies in mice suggest that Notch controls trophectoderm formation, decidualization, placental branching morphogenesis and endovascular trophoblast invasion. In humans, the particular signalling cascade promotes formation of the extravillous trophoblast lineage and regulates trophoblast proliferation, survival and differentiation. Expression patterns as well as functional analyses indicate distinct roles of Notch receptors in different trophoblast subtypes. Altered effects of Notch signalling have been detected in choriocarcinoma cells, consistent with its role in cancer development and progression. Moreover, deregulation of Notch signalling components were observed in pregnancy disorders such as preeclampsia and fetal growth restriction. In summary, Notch plays fundamental roles in different developmental processes of the placenta. Abnormal signalling through this pathway could contribute to the pathogenesis of gestational diseases with aberrant placentation and trophoblast function.
Collapse
|
24
|
Yang RW, Zeng YY, Wei WT, Cui YM, Sun HY, Cai YL, Nian XX, Hu YT, Quan YP, Jiang SL, Wang M, Zhao YL, Qiu JF, Li MX, Zhang JH, He MR, Liang L, Ding YQ, Liao WT. TLE3 represses colorectal cancer proliferation by inhibiting MAPK and AKT signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:152. [PMID: 27669982 PMCID: PMC5037636 DOI: 10.1186/s13046-016-0426-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 01/19/2023]
Abstract
Background Transducin-like enhancer of Split3 (TLE3) serves as a transcriptional corepressor during cell differentiation and shows multiple roles in different kinds of cancers. Recently, TLE3 together with many other genes involved in Wnt/β-catenin pathway were detected hyper-methylated in colorectal cancer (CRC). However, the potential role and the underlying mechanism of TLE3 in CRC progression remain scarce. Methods Gene expression profiles were analyzed in The Cancer Genome Atlas (TCGA) microarray dataset of 41 normal colorectal intestine tissues and 465 CRC tissues. Western blot and Real-time Quantitative PCR (RT-qPCR) were respectively performed to detect protein and mRNA expression in 8 pairs of CRC tissue and matched adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to evaluate TLE3 protein expression in 105 paraffin-embedded, archived human CRC tissues from patients, whose survival data were analyzed with Kaplan-Meier method. In vitro experiments including MTT assay, colony formation assay, and soft agar formation assay were used to investigate the effects of TLE3 on CRC cell growth and proliferation. Additionally, subcutaneous tumorigenesis assay was performed in nude mice to confirm the effects of TLE3 in vivo. Furthermore, gene set enrichment analysis (GSEA) was run to explore potential mechanism of TLE3 in CRC, and then we measured the distribution of CRC cell cycle phases and apoptosis by flow cytometry, as well as the impacts of TLE3 on MAPK and AKT signaling pathways by Western blot and RT-qPCR. Results TLE3 was significantly down-regulated in 465 CRC tissues compared with 41 normal tissues. Both protein and mRNA expressions of TLE3 were down-regulated in CRC compared with matched adjacent normal mucosa. Lower expression of TLE3 was significantly associated with poorer survival of patients with CRC. Besides, knock down of TLE3 promoted CRC cell growth and proliferation, while overexpression of TLE3 showed suppressive effects. Furthermore, overexpression of TLE3 caused G1-S phase transition arrest, inhibition of MAPK and AKT pathways, and up-regulation of p21Cip1/WAF1 and p27Kip1. Conclusion This study indicated that TLE3 repressed CRC proliferation partly through inhibition of MAPK and AKT signaling pathways, suggesting the possibility of TLE3 as a biomarker for CRC prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0426-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Run-Wei Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ying-Yue Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wen-Ting Wei
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Mei Cui
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Hui-Ying Sun
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yue-Long Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin-Xin Nian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yun-Teng Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yu-Ping Quan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Sheng-Lu Jiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Meng Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ya-Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jun-Feng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ming-Xuan Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jia-Huan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mei-Rong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
25
|
Tunster SJ, McNamara GI, Creeth HDJ, John RM. Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta. Dev Biol 2016; 418:55-65. [PMID: 27542691 PMCID: PMC5040514 DOI: 10.1016/j.ydbio.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022]
Abstract
Imprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of Trophoblast specific protein alpha (Tpbpa) positive cells in the ectoplacental cone and embryonic failure by E10.5. Tpbpa expression marks the progenitors of some P-TGCs, two additional trophoblast giant cell lineages (spiral artery and canal), the spongiotrophoblast and the glycogen cell lineage. Using a transgenic model, here we show that elevated expression of Ascl2 reduced the number of P-TGC cells by 40%. Elevated Ascl2 also resulted in a marked loss of the spongiotrophoblast and a substantial mislocalisation of glycogen cells into the labyrinth. In addition, Ascl2-Tg placenta contained considerably more placental glycogen than wild type. Glycogen cells are normally located within the junctional zone in close contact with spongiotrophoblast cells, before migrating through the P-TGC layer into the maternal decidua late in gestation where their stores of glycogen are released. The failure of glycogen cells to release their stores of glycogen may explain both the inappropriate accumulation of glycogen and fetal growth restriction observed late in gestation in this model. In addition, using in a genetic cross we provide evidence that Ascl2 requires the activity of a second maternally expressed imprinted gene, Pleckstrin homology-like domain, family a, member 2 (Phlda2) to limit the expansion of the spongiotrophoblast. This "belts and braces" approach demonstrates the importance of genomic imprinting in regulating the size of the placental endocrine compartment for optimal placental development and fetal growth.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - G I McNamara
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK.
| |
Collapse
|
26
|
Gonzalez PN, Gasperowicz M, Barbeito-Andrés J, Klenin N, Cross JC, Hallgrímsson B. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth. PLoS One 2016; 11:e0152227. [PMID: 27018791 PMCID: PMC4809512 DOI: 10.1371/journal.pone.0152227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/10/2016] [Indexed: 01/08/2023] Open
Abstract
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.
Collapse
Affiliation(s)
- Paula N. Gonzalez
- Instituto de Genética Veterinaria, CCT-CONICET, La Plata, Argentina
- de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Malgorzata Gasperowicz
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jimena Barbeito-Andrés
- Instituto de Genética Veterinaria, CCT-CONICET, La Plata, Argentina
- de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Natasha Klenin
- Department Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - James C. Cross
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (BH); (JC)
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, and McCaig Institute for Bone and Joint Health. University of Calgary, Calgary, Alberta, Canada
- * E-mail: (BH); (JC)
| |
Collapse
|
27
|
Sharma N, Kubaczka C, Kaiser S, Nettersheim D, Mughal SS, Riesenberg S, Hölzel M, Winterhager E, Schorle H. Tpbpa mediated deletion of Tfap2c leads to deregulation of MAPK, P21, AKT and subsequent placental growth arrest. Development 2016; 143:787-98. [DOI: 10.1242/dev.128553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
Loss of Tfap2c leads to developmental defects in the extra-embryonic compartment with embryonic lethality at E7.5. To investigate requirement of Tfap2c in later placental development, deletion of Tfap2c was induced throughout extra-embryonic ectoderm at E6.5 leading to severe placental abnormalities caused by reduced trophoblast population resulting in embryonic retardation by E8.5. Deletion of Tfap2c in Tpbpa+ progenitors at E8.5 results in growth arrest of junctional zone. TFAP2C regulates its target genes p21/Cdkn1a and Dusp6, involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt and reduced activation of pAKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of Tfap2c led to upregulation of imprinted gene H19 and downregulation of Tex19.1 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction with 19% lighter mutant pups. TFAP2C knockdown in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where Tfap2c in trophoblasts controls proliferation by repressing P21 and activating MAPK pathway and further supporting differentiation of glycogen cells via activating Akt pathway.
Collapse
Affiliation(s)
- Neha Sharma
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Caroline Kubaczka
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Stephanie Kaiser
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | - Sadaf S. Mughal
- Div. Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefanie Riesenberg
- Unit of RNA Biology, Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Germany
| | - Michael Hölzel
- Unit of RNA Biology, Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Germany
| | - Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| |
Collapse
|
28
|
Tunster SJ, Creeth HDJ, John RM. The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Dev Biol 2015; 409:251-260. [PMID: 26476147 PMCID: PMC4684229 DOI: 10.1016/j.ydbio.2015.10.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/02/2015] [Accepted: 10/11/2015] [Indexed: 02/06/2023]
Abstract
Imprinted genes, which are expressed from a single parental allele in response to epigenetic marks first established in the germline, function in a myriad of processes to regulate mammalian development. Recent work suggests that imprinted genes may regulate the signalling function of the placenta by modulating the size of the endocrine compartment. Here we provide in vivo evidence that this hypothesis is well founded. Elevated expression of the imprinted Pleckstrin homology-like domain, family a, member 2 (Phlda2) gene drives a reduction of the spongiotrophoblast endocrine compartment, diminished placental glycogen and asymmetric foetal growth restriction. Using both loss-of-function and gain-in-expression mouse models, here we further show that Phlda2 exclusively modulates the spongiotrophoblast compartment of the placenta without significantly altering the composition of the trophoblast giant cell endocrine lineages that share a common progenitor with this lineage. Additionally, we show that Phlda2 loss-of-function placentae contain nearly three times more placental glycogen than non-transgenic placentae. Remarkably, relative to a fully wild type scenario, wild type placentae also accumulate excessive glycogen. While loss-of-function of Phlda2 increased both placental weight and placental glycogen, the weight of both mutant and non-transgenic fetuses was lower than that found in a fully wild type scenario indicating that excessive glycogen accumulation comes at the cost of foetal growth. This work firstly highlights a novel signalling function for the spongiotrophoblast in stimulating the global accumulation of placental glycogen. Furthermore, this work suggests that Phlda2 manipulates the placenta's demands for maternal resources, a process that must be tightly regulated by epigenetic marks to ensure optimal foetal growth. Phlda2 specifically restrains development of the spongiotrophoblast. The spongiotrophoblast is a major endocrine compartment of the placenta. The spongiotrophoblast locally and globally boosts glycogen accumulation. Excessive glycogen accumulation is associated with foetal growth restriction. Phlda2 regulates placental demands from maternal resources.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK.
| |
Collapse
|
29
|
Zdravkovic T, Nazor KL, Larocque N, Gormley M, Donne M, Hunkapillar N, Giritharan G, Bernstein HS, Wei G, Hebrok M, Zeng X, Genbacev O, Mattis A, McMaster MT, Krtolica A, Valbuena D, Simón C, Laurent LC, Loring JF, Fisher SJ. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification. Development 2015; 142:4010-25. [PMID: 26483210 PMCID: PMC4712832 DOI: 10.1242/dev.122846] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/05/2015] [Indexed: 01/04/2023]
Abstract
Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines.
Collapse
Affiliation(s)
- Tamara Zdravkovic
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kristopher L Nazor
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Donne
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nathan Hunkapillar
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Harold S Bernstein
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Grace Wei
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aras Mattis
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael T McMaster
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Diana Valbuena
- Fundación Instituto Valenciano de Infertilidad (IVI), Parc Científic Universitat de València, 46980, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (IVI), Parc Científic Universitat de València, 46980, Valencia, Spain
| | - Louise C Laurent
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Rawn SM, Huang C, Hughes M, Shaykhutdinov R, Vogel HJ, Cross JC. Pregnancy Hyperglycemia in Prolactin Receptor Mutant, but Not Prolactin Mutant, Mice and Feeding-Responsive Regulation of Placental Lactogen Genes Implies Placental Control of Maternal Glucose Homeostasis. Biol Reprod 2015; 93:75. [PMID: 26269505 DOI: 10.1095/biolreprod.115.132431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Pregnancy is often viewed as a conflict between the fetus and mother over metabolic resources. Insulin resistance occurs in mothers during pregnancy but does not normally lead to diabetes because of an increase in the number of the mother's pancreatic beta cells. In mice, this increase is dependent on prolactin (Prl) receptor signaling but the source of the ligand has been unclear. Pituitary-derived Prl is produced during the first half of pregnancy in mice but the placenta produces Prl-like hormones from implantation to term. Twenty-two separate mouse genes encode the placenta Prl-related hormones, making it challenging to assess their roles in knockout models. However, because at least four of them are thought to signal through the Prl receptor, we analyzed Prlr mutant mice and compared their phenotypes with those of Prl mutants. We found that whereas Prlr mutants develop hyperglycemia during gestation, Prl mutants do not. Serum metabolome analysis showed that Prlr mutants showed other changes consistent with diabetes. Despite the metabolic changes, fetal growth was normal in Prlr mutants. Of the four placenta-specific, Prl-related hormones that have been shown to interact with the Prlr, their gene expression localizes to different endocrine cell types. The Prl3d1 gene is expressed by trophoblast giant cells both in the labyrinth layer, sitting on the arterial side where maternal blood is highest in oxygen and nutrients, and in the junctional zone as maternal blood leaves the placenta. Expression increases during the night, though the increase in the labyrinth is circadian whereas it occurs only after feeding in the junctional zone. These data suggest that the placenta has a sophisticated endocrine system that regulates maternal glucose metabolism during pregnancy.
Collapse
Affiliation(s)
- Saara M Rawn
- Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Carol Huang
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Martha Hughes
- Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rustem Shaykhutdinov
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James C Cross
- Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Outhwaite JE, Natale BV, Natale DRC, Simmons DG. Expression of aldehyde dehydrogenase family 1, member A3 in glycogen trophoblast cells of the murine placenta. Placenta 2014; 36:304-11. [PMID: 25577283 DOI: 10.1016/j.placenta.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling is a well known regulator of trophoblast differentiation and placental development, and maternal decidual cells are recognized as the source of much of this RA. We explored possible trophoblast-derived sources of RA by examining the expression of RA synthesis enzymes in the developing mouse placenta, as well as addressed potential sites of RA action by examining the ontogeny of gene expression for other RA metabolizing and receptor genes. Furthermore, we investigated the effects of endogenous RA production on trophoblast differentiation. METHODS Placental tissues were examined by in situ hybridization and assayed for RARE-LacZ transgene activity to locate sites of RAR signaling. Trophoblast stem cell cultures were differentiated in the presence of ALDH1 inhibitors (DEAB and citral), and expression of labyrinth (Syna, Ctsq) and junctional zone (Tpbpa, Prl7b1, Prl7a2) marker genes were analyzed by qRT-PCR. RESULTS We show Aldh1a3 is strongly expressed in a subset of ectoplacental cone cells and in glycogen trophoblast cells of the definitive murine placenta. Most trophoblast subtypes of the placenta express RA receptor combinations that would enable them to respond to RA signaling. Furthermore, expression of junctional zone markers decrease in differentiating trophoblast cultures when endogenous ALDH1 enzymes are inhibited. DISCUSSION Aldh1a3 is a novel marker for glycogen trophoblast cells and their precursors and may play a role in the differentiation of junctional zone cell types via production of a local source of RA.
Collapse
Affiliation(s)
- J E Outhwaite
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - B V Natale
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D R C Natale
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D G Simmons
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
32
|
Rai A, Cross JC. Three-dimensional cultures of trophoblast stem cells autonomously develop vascular-like spaces lined by trophoblast giant cells. Dev Biol 2014; 398:110-9. [PMID: 25499676 DOI: 10.1016/j.ydbio.2014.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/12/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The maternal blood space in the mouse placenta is lined not by endothelial cells but rather by various subtypes of trophoblast giant cells (TGCs), defined by their location and different patterns of gene expression. While TGCs invade the spiral arteries to displace the maternal endothelium, the rest of the vascular space is created de novo but the mechanisms are not well understood. We cultured mouse trophoblast stem (TS) cells in suspension and found that they readily form spheroids (trophospheres). Compared to cells grown in monolayer, differentiating trophospheres showed accelerated expression of TGC-specific genes. Morphological and gene expression studies showed that cavities form within the trophospheres that are primarily lined by Prl3d1/Pl1α-positive cells analogous to parietal-TGCs (P-TGCs) which line the maternal venous blood within the placenta. Lumen formation in trophospheres and in vivo was associated with cell polarization including CD34 sialomucin deposition on the apical side and cytoskeletal rearrangement. While P-TGCs preferentially formed in trophospheres at atmospheric oxygen levels (19%), decreasing oxygen to 3% shifted differentiation towards Ctsq-positive sinusoidal and/or channel TGCs. These studies show that trophoblast cells have the intrinsic ability to form vascular channels in ways analogous to endothelial cells. The trophosphere system will be valuable for assessing mechanisms that regulate specification of different TGC subtypes and their morphogenesis into vascular spaces.
Collapse
Affiliation(s)
- Anshita Rai
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
33
|
Knott JG, Paul S. Transcriptional regulators of the trophoblast lineage in mammals with hemochorial placentation. Reproduction 2014; 148:R121-36. [PMID: 25190503 DOI: 10.1530/rep-14-0072] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian reproduction is critically dependent on the trophoblast cell lineage, which assures proper establishment of maternal-fetal interactions during pregnancy. Specification of trophoblast cell lineage begins with the development of the trophectoderm (TE) in preimplantation embryos. Subsequently, other trophoblast cell types arise with the progression of pregnancy. Studies with transgenic animal models as well as trophoblast stem/progenitor cells have implicated distinct transcriptional and epigenetic regulators in trophoblast lineage development. This review focuses on our current understanding of transcriptional and epigenetic mechanisms regulating specification, determination, maintenance and differentiation of trophoblast cells.
Collapse
Affiliation(s)
- Jason G Knott
- Developmental Epigenetics LaboratoryDepartment of Animal Science, Michigan State University, East Lansing, Michigan 48824, USADepartment of Pathology and Laboratory MedicineInstitute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Soumen Paul
- Developmental Epigenetics LaboratoryDepartment of Animal Science, Michigan State University, East Lansing, Michigan 48824, USADepartment of Pathology and Laboratory MedicineInstitute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
34
|
Cross JC. More of a good thing or less of a bad thing: gene copy number variation in polyploid cells of the placenta. PLoS Genet 2014; 10:e1004330. [PMID: 24784435 PMCID: PMC4006710 DOI: 10.1371/journal.pgen.1004330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- James C. Cross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
35
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|