1
|
Masood N, Jimenez-Shahed J. Effective Management of "OFF" Episodes in Parkinson's Disease: Emerging Treatment Strategies and Unmet Clinical Needs. Neuropsychiatr Dis Treat 2023; 19:247-266. [PMID: 36721795 PMCID: PMC9884436 DOI: 10.2147/ndt.s273121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Motor complications related to the chronic administration of levodopa and failure to prevent the neurodegenerative disease process counterbalance the pivotal discovery of levodopa as the cornerstone of PD treatment. Excellent motor control is offered early during the course of treatment, but this diminishes as pathological changes in the striatum lead to synaptic dopamine levels becoming completely dependent on exogenous dopamine. This non-physiologic stimulation of dopamine receptors eventually manifests as OFF episodes. As no disease modifying therapy exists for PD that can disrupt these pathological changes, most research and treatment focuses on optimization of dopaminergic stimulation of striatal receptors so that they mimic tonic, physiologic stimulation as closely as possible. Strategies focusing on these challenges have included non-pharmacologic approaches, optimizing levodopa pharmacokinetics, using adjunctive treatments including those with non-dopaminergic mechanisms, and implementing rescue therapies. Device aided therapies, including surgery, are also available. In this review, we will focus on effective management of motor symptoms related to OFF periods, including emerging strategies. Unmet clinical needs will be discussed, including non-motor symptoms, targeted molecular therapies and disease modifying therapy.
Collapse
Affiliation(s)
- Nbaa Masood
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Mount Sinai West, New York, NY, USA
| | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Mount Sinai West, New York, NY, USA
| |
Collapse
|
2
|
Zhong F, Gan Y, Song J, Zhang W, Yuan S, Qin Z, Wu J, Lü Y, Yu W. The inhibition of PGAM5 suppresses seizures in a kainate-induced epilepsy model via mitophagy reduction. Front Mol Neurosci 2022; 15:1047801. [PMID: 36618822 PMCID: PMC9813404 DOI: 10.3389/fnmol.2022.1047801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Epilepsy is a common neurological disease, and excessive mitophagy is considered as one of the major triggers of epilepsy. Mitophagy is a crucial pathway affecting reactive oxygen species. Phosphoglycerate mutase 5 (PGAM5) is a protein phosphatase present in mitochondria that regulates many biological processes including mitophagy and cell death. However, the mechanism of PGAM5 in epilepsy remains unclear. The purpose of the present study was to examine whether PGAM5 affects epilepsy through PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy. Methods After the knockdown of PGAM5 expression by the adeno-associated virus, an epilepsy model was created by kainic acid. Next, the seizure activity was recorded by local field potentials before evaluating the level of mitochondrial autophagy marker proteins. Lastly, the ultrastructure of mitochondria, neuronal damage and oxidative stress levels were further observed. Results A higher PGAM5 level was found in epilepsy, and its cellular localization was in neurons. The interactions between PGAM5 and PINK1 in epilepsy were further found. After the knockdown of PGAM5, the level of PINK1 and light chain 3B was decreased and the expression of the translocase of the inner mitochondrial membrane 23 and translocase of the outer mitochondrial membrane 20 were both increased. Knockdown of PGAM5 also resulted in reduced neuronal damage, decreased malondialdehyde levels, decreased reactive oxygen species production and increased superoxide dismutase activity. In addition, the duration of spontaneous seizure-like events (SLEs), the number of SLEs and the time spent in SLEs were all reduced in the epilepsy model after inhibition of PGAM5 expression. Conclusion Inhibition of PGAM5 expression reduces seizures via inhibiting PINK1-mediated mitophagy.
Collapse
Affiliation(s)
- Fuxin Zhong
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yunhao Gan
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Song
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenbo Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangjin Qin
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China,*Correspondence: Weihua Yu,
| |
Collapse
|
3
|
Ghazy AA, Soliman OA, Elbahnasi AI, Alawy AY, Mansour AM, Gowayed MA. Role of Oxytocin in Different Neuropsychiatric, Neurodegenerative, and Neurodevelopmental Disorders. Rev Physiol Biochem Pharmacol 2022; 186:95-134. [PMID: 36416982 DOI: 10.1007/112_2022_72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxytocin has recently gained significant attention because of its role in the pathophysiology and management of dominant neuropsychiatric disorders. Oxytocin, a peptide hormone synthesized in the hypothalamus, is released into different brain regions, acting as a neurotransmitter. Receptors for oxytocin are present in many areas of the brain, including the hypothalamus, amygdala, and nucleus accumbens, which have been involved in the pathophysiology of depression, anxiety, schizophrenia, autism, Alzheimer's disease, Parkinson's disease, and attention deficit hyperactivity disorder. Animal studies have spotlighted the role of oxytocin in social, behavioral, pair bonding, and mother-infant bonding. Furthermore, oxytocin protects fetal neurons against injury during childbirth and affects various behaviors, assuming its possible neuroprotective characteristics. In this review, we discuss some of the concepts and mechanisms related to the role of oxytocin in the pathophysiology and management of some neuropsychiatric, neurodegenerative, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aya A Ghazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Omar A Soliman
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya I Elbahnasi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya Y Alawy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira Ma Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
4
|
Aydin S, Yazici ZG, Kilic C, Ercelen Ozozturk B, Kilic FS. An overview of the behavioral, neurobiological and morphological effects of topiramate in rats exposed to chronic unpredictable mild stress. Eur J Pharmacol 2021; 912:174578. [PMID: 34695423 DOI: 10.1016/j.ejphar.2021.174578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The environmental psychological stress causes depressive disorders. Stress causes many neurobiological, neurodegenerative changes in brain. Topiramate (TPM) is used in the treatment of epilepsy and psychiatric diseases. However, there are conflicting findings that TPM disrupts cognitive functions. We aimed to investigate the effects of TPM on depression, anxiety, learning and memory as well as neurobiological, morphological changes in rats exposed to chronic unpredictable mild stress (CUMS). After CUMS was formed by random application of nine mild stressors for 45 days, TPM (at doses of 0.1, 1, 10, 100 mg/kg) was administered for 21 days. Sucrose preference, locomotor activity, forced swimming, elevated plus maze and Morris water maze tests were performed. Corticosterone, BDNF (Brain-derived neurotrophic factor) and glutamate levels and volumes of hippocampus were evaluated. Body weights of the rats were measured. Immobilization time increased in CUMS, CUMS + TPM0.1 in forced swimming test and time spent in platform quadrant increased in Control + TPM1, CUMS, CUMS + TPM0.1, CUMS + TPM1 in Morris water maze test. Control + TPM1 decreased distance to platform in Morris water maze while CUMS + TPM100 increased. Learning is impaired in CUMS + TPM100 while it is improved in Control + TPM1. BDNF levels increased in CUMS and glutamate levels increased in CUMS, CUMS + TPM10. Body weight decreased in CUMS, CUMS + TPM0.1, CUMS + TPM1, CUMS + TPM100. Hippocampus volumes increased in CUMS. In conclusion, CUMS improved cognition and this finding was supported by the increase of BDNF levels and volume of hippocampus. TPM 1 mg/kg improved cognition in non-stressed rats. TPM 0.1 and 1 mg/kg improved while TPM 100 mg/kg impaired memory in rats exposed to stress.
Collapse
Affiliation(s)
- Sule Aydin
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | - Zeynep Gul Yazici
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | - Cansu Kilic
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | | | - Fatma Sultan Kilic
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| |
Collapse
|
5
|
Li C, Xue L, Liu Y, Yang Z, Chi S, Xie A. Zonisamide for the Treatment of Parkinson Disease: A Current Update. Front Neurosci 2020; 14:574652. [PMID: 33408605 PMCID: PMC7779619 DOI: 10.3389/fnins.2020.574652] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Zonisamide has been used as an add-on treatment in order to overcome the deficiencies of the general therapies currently used to resolve the motor complications and non-motor symptoms of Parkinson disease. Various trials have been designed to investigate the mechanism of action and treatment effects of zonisamide in this condition. Most clinical trials of zonisamide in Parkinson disease were from Japan. The vast majority of studies used changes in the Unified Parkinson’s Disease Rating Scale (UPDRS) scores and daily “OFF” time as primary endpoints. Based on adequate randomized controlled trials, zonisamide is considered a safe and efficacious add-on treatment in Parkinson disease. The most convincing proof is available for a dosage of 25–50 mg, which was shown to lead to a significant reduction in the UPDRS III score and daily “OFF” time, without increasing disabling dyskinesia. Furthermore, zonisamide may play a beneficial role in improving non-motor symptoms in PD, including impulsive–compulsive disorder, rapid eye movement sleep behavior disorder, and dementia. Among the various mechanisms reported, inhibition of monoamine oxidase-B, blocking of T-type calcium channels, modulation of the levodopa–dopamine metabolism, modulation of receptor expression, and neuroprotection are the most often cited. The mechanisms underlying neuroprotection, including modulation of dopamine turnover, induction of neurotrophic factor expression, inhibition of oxidative stress and apoptosis, inhibition of neuroinflammation, modulation of synaptic transmission, and modulation of gene expression, have been most extensively studied. This review focuses on structure, pharmacokinetics, mechanisms, therapeutic effectiveness, and safety and tolerability of zonisamide in patients with Parkinson disease.
Collapse
Affiliation(s)
- Chengqian Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Department of Medical Record, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengjie Yang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Kern DM, Cepeda MS, Lovestone S, Seabrook GR. Aiding the discovery of new treatments for dementia by uncovering unknown benefits of existing medications. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:862-870. [PMID: 31872043 PMCID: PMC6909196 DOI: 10.1016/j.trci.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction There is a significant need for disease-modifying therapies to treat and prevent dementia, including Alzheimer's disease. Availability of real-world observational information and new analytic techniques to analyze large volumes of data can provide a path to aid drug discovery. Methods Using a self-controlled study design, we examined the association between 2181 medications and incidence of dementia across four US insurance claims databases. Medications associated with ≥50% reduction in risk of dementia in ≥2 databases were examined. Results A total of 117,015,066 individuals were included in the analysis. Seventeen medications met our threshold criteria for a potential protective effect on dementia and fell into five classes: catecholamine modulators, anticonvulsants, antibiotics/antivirals, anticoagulants, and a miscellaneous group. Discussion The biological pathways of the medications identified in this analysis may be targets for further research and may aid in discovering novel therapeutic approaches to treat dementia. These data show association not causality.
Collapse
Affiliation(s)
- David M Kern
- Janssen Research & Development, Epidemiology, Titusville, NJ, USA
| | - M Soledad Cepeda
- Janssen Research & Development, Epidemiology, Titusville, NJ, USA
| | - Simon Lovestone
- Janssen Research & Development, Neuroscience, Beerse, Belgium
| | - Guy R Seabrook
- Johnson & Johnson, Scientific Innovation, South San Francisco, CA, USA
| |
Collapse
|
7
|
Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M, Polyak A, Ross TL, Gerhauser I, Bankstahl JP, Johnson MR, Bankstahl M, Löscher W. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis 2019; 134:104664. [PMID: 31678583 DOI: 10.1016/j.nbd.2019.104664] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022] Open
Abstract
Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.
Collapse
Affiliation(s)
- Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | | | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rahel Feleke
- Division of Brain Sciences, Imperial College London, London, UK
| | - Martin Meier
- Central Animal Facility & Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andras Polyak
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | | | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany; Central Animal Facility & Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
8
|
Galovic M, van Dooren VQH, Postma TS, Vos SB, Caciagli L, Borzì G, Cueva Rosillo J, Vuong KA, de Tisi J, Nachev P, Duncan JS, Koepp MJ. Progressive Cortical Thinning in Patients With Focal Epilepsy. JAMA Neurol 2019; 76:1230-1239. [PMID: 31260004 DOI: 10.1001/jamaneurol.2019.1708] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance It is controversial whether epilepsy is a static or progressive disease. Evidence of progressive gray matter loss in epilepsy would support early diagnosis, rapid treatment, and early referral for surgical interventions. Objective To demonstrate progressive cortical thinning in patients with focal epilepsy distinct from cortical thinning associated with normal aging. Design, Setting, and Participants A case-control neuroimaging study was conducted from August 3, 2004, to January 26, 2016, among 190 patients with focal epilepsy at a tertiary epilepsy referral center (epilepsy data) and 3 independent comparison cohorts matched for age and sex (healthy volunteer data; n = 141). Exposures Two or more high-resolution T1-weighted magnetic resonance imaging scans at least 6 months apart (mean [SD] interval, 2.5 [1.6] years). Main Outcomes and Measures Global and vertexwise rate of progressive cortical thinning. Results A total of 190 people with focal epilepsy (99 women and 91 men; mean [SD] age, 36 [11] years; 396 magnetic resonance imaging scans) were compared with 141 healthy volunteers (76 women and 65 men; mean [SD] age, 35 [17] years; 282 magnetic resonance imaging scans). Widespread highly significant progressive cortical thinning exceeding normal aging effects, mainly involving the bilateral temporal lobes, medial parietal and occipital cortices, pericentral gyri, and opercula, was seen in 146 individuals with epilepsy (76.8%; 95% CI, 58%-95%). The mean (SD) annualized rate of global cortical thinning in patients with epilepsy was twice the rate of age-associated thinning observed in healthy volunteers (0.024 [0.061] vs 0.011 [0.029] mm/y; P = .01). Progression was most pronounced in adults older than 55 years and during the first 5 years after the onset of seizures. Areas of accelerated cortical thinning were detected in patients with early onset of epilepsy and in patients with hippocampal sclerosis. Accelerated thinning was not associated with seizure frequency, history of generalized seizures, or antiepileptic drug load and did not differ between patients with or without ongoing seizures. Progressive atrophy in temporal (n = 101) and frontal (n = 28) lobe epilepsy was most pronounced ipsilaterally to the epileptic focus but also affected a widespread area extending beyond the focus and commonly affected the contralateral hemisphere. For patients with temporal lobe epilepsy, accelerated cortical thinning was observed within areas structurally connected with the ipsilateral hippocampus. Conclusions and Relevance Widespread progressive cortical thinning exceeding that seen with normal aging may occur in patients with focal epilepsy. These findings appear to highlight the need to develop epilepsy disease-modifying treatments to disrupt or slow ongoing atrophy. Longitudinal cortical thickness measurements may have the potential to serve as biomarkers for such studies.
Collapse
Affiliation(s)
- Marian Galovic
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom.,Department of Neurology, Kantonsspital St Gallen, St Gallen, Switzerland.,Department of Neurology, University Hospital Zurich, Switzerland
| | - Victor Q H van Dooren
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Tjardo S Postma
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom.,Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Giuseppe Borzì
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Institute of Neurology, University of Catanzaro, Catanzaro, Italy
| | - Juana Cueva Rosillo
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Khue Anh Vuong
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Parashkev Nachev
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom.,Magnetic Resonance Imaging Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| |
Collapse
|
9
|
Bartollino S, Chiosi F, di Staso S, Uva M, Pascotto A, Rinaldi M, Hesselink JMK, Costagliola C. The retinoprotective role of phenytoin. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3485-3489. [PMID: 30410309 PMCID: PMC6198895 DOI: 10.2147/dddt.s169621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin is a non-sedative barbiturate derivate and has been recently rediscovered as a neuroprotective and retinoprotective compound in patients affected by optic neuritis secondary to multiple sclerosis. However, currently there are still no neuroprotective compounds registered and available in the clinic. We reviewed the literature supporting the retinoprotective properties of phenytoin and analyzed the various approaches and definitions from the first research periods onwards. The retinoprotective role of phenytoin was already known in the 1970s, but only recently has this effect been rediscovered, confirming that it could indeed provide structural protection of the retinal cells.
Collapse
Affiliation(s)
- Silvia Bartollino
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Flavia Chiosi
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Silvio di Staso
- Department of Surgical Science, Ophthalmic Clinic, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Uva
- Eye Clinic, University of Catania, Catania, Italy
| | - Arduino Pascotto
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Michele Rinaldi
- Department of Ophthalmology, University della Campania Luigi Vanvitelli, Naples, Italy
| | | | - Ciro Costagliola
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| |
Collapse
|
10
|
Helmstaedter C, Beghi E, Elger CE, Kälviäinen R, Malmgren K, May TW, Perucca E, Trinka E, Witt JA. No proof of a causal relationship between antiepileptic drug treatment and incidence of dementia. Comment on: Use of antiepileptic drugs and dementia risk-An analysis of Finnish health register and German health insurance data. Epilepsia 2018; 59:1303-1306. [PMID: 29806877 DOI: 10.1111/epi.14432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ettore Beghi
- Department of Neuroscience, IRCCS Istituto Mario Negri, Milan, Italy
| | - Christian E Elger
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kristina Malmgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuro Healthcare, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Theodor W May
- Society for Epilepsy Research, Epilepsy Center Bethel Bielefeld, Bielefeld, Germany
| | - Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Clinical Trial Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.,Center of Neuroscience, Christian Doppler University Hospital Salzburg, Salzburg, Austria.,Department of Public Health and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics, and Technology, Hall in Tirol, Austria
| | - Juri-Alexander Witt
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
11
|
Chong SA, Balosso S, Vandenplas C, Szczesny G, Hanon E, Claes K, Van Damme X, Danis B, Van Eyll J, Wolff C, Vezzani A, Kaminski RM, Niespodziany I. Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics 2018; 15:470-488. [PMID: 29464573 PMCID: PMC5935638 DOI: 10.1007/s13311-018-0607-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1β, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Seon-Ah Chong
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium.
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | | | - Gregory Szczesny
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Etienne Hanon
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Kasper Claes
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Xavier Van Damme
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Bénédicte Danis
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Jonathan Van Eyll
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Rafal M Kaminski
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | | |
Collapse
|
12
|
Chong SA, Balosso S, Vandenplas C, Szczesny G, Hanon E, Claes K, Van Damme X, Danis B, Van Eyll J, Wolff C, Vezzani A, Kaminski RM, Niespodziany I. Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics 2018; 15:470-488. [PMID: 29464573 DOI: 10.1007/s13311-018-0607-6/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1β, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Seon-Ah Chong
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium.
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | | | - Gregory Szczesny
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Etienne Hanon
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Kasper Claes
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Xavier Van Damme
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Bénédicte Danis
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Jonathan Van Eyll
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Rafal M Kaminski
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | | |
Collapse
|
13
|
Chen Y, He X, Sun Q, Fang Z, Zhou L. Effect of lamotrigine on seizure development in a rat pentylenetetrazole kindling model. Brain Behav 2017; 7:e00727. [PMID: 28729934 PMCID: PMC5516602 DOI: 10.1002/brb3.727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Epileptogenesis is a process of seizure development. Lamotrigine is a novel antiepileptic drug which is also used for antiepileptogenic research. Kindling models are recommended as potentially useful tools for antiepileptogenic treatment discovery. However, previous studies demonstrated that the antiepileptogenic effect of lamotrigine is controversial in the electrical kindling model. Chemical kindling such as with pentylenetetrazole is another kindling model. The aims of this study were to examine whether lamotrigine could prevent the development of seizure in pentylenetetrazole kindling rats. METHODS Female rats were kindled by subconvulsive doses of pentylenetetrazole (35 mg/kg) once every other day for 15 times. Thereafter, the kindled rats received different doses of lamotrigine (5, 10 and 20 mg/kg) before pentylenetetrazole to observe the anticonvulsant effect. For the antiepileptogenic experiment, rats were kindled as the same way while pretreated (1 h) with different doses of lamotrigine (5, 10 and 20 mg/kg) before each injection of pentylenetetrazole. After a washout period for 1 week, the rats were administrated with pentylenetetrazole again for 3 times. The seizures were recorded each time. Later it was in vivo electrophysiological experiments followed with histologic analysis. RESULTS For the anticonvulsant experiment lamotrigine dose-dependently suppressed pentylenetetrazole-induced seizures. Here, 20 mg/kg of lamotrigine pretreatment significantly blocked the seizure development in rats for their seizure stages remained longer in 1-3 during the kindling phase. Mean seizure stages or generalized seizure durations in the 10 and 20 mg/kg lamotrigine pretreated groups were significantly lower or shorter when received 3 times of pentylenetetrazole after the washout period. Electrophysiological study also demonstrated 20 mg/kg of lamotrigine pretreatment obviously eliminated increased population spike amplitude in hippocampus. However, different doses of lamotrigine pretreatment could not alleviate severity of hippocampal neuronal damage. CONCLUSIONS The results suggest that adequate doses of lamotrigine can prevent seizure development in the pentylenetetrazole kindling rat model.
Collapse
Affiliation(s)
- Yishu Chen
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou Guangdong Province China
| | - Xiaokuo He
- Rehabilitation Medicine Center Taihe Hospital Shiyan Hubei Province China
| | - Qianqian Sun
- Department of Rehabilitation Medicine Fujian University of Traditional Chinese Medicine Fuzhou Fujian Province China
| | - Ziyan Fang
- Department of Neurology The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou China
| | - Liemin Zhou
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou Guangdong Province China
| |
Collapse
|
14
|
NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy. Sci Rep 2017; 7:45540. [PMID: 28358047 PMCID: PMC5371989 DOI: 10.1038/srep45540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
Collapse
|
15
|
Ruzza P, Vitale RM, Hussain R, Biondi B, Amodeo P, Sechi G, Siligardi G. Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochim Biophys Acta Gen Subj 2016; 1860:2239-48. [DOI: 10.1016/j.bbagen.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 01/28/2023]
|
16
|
Andrzejczak D, Woldan-Tambor A, Bednarska K, Zawilska JB. The effects of topiramate on lipopolysaccharide (LPS)-induced proinflammatory cytokine release from primary rat microglial cell cultures. Epilepsy Res 2016; 127:352-357. [PMID: 27721162 DOI: 10.1016/j.eplepsyres.2016.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 08/04/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence suggests that inflammatory processes and activation of glial cells could contribute to seizures and epileptogenesis. In various animal studies on epilepsy, proinflammatory cytokines have been demonstrated to exert a proconvulsive activity. On the other hand, it is suggested that antiepileptic drugs could modulate immune system activity. The aim of the present study was to investigate whether topiramate, a new generation antiepileptic drug with a complex mechanism of action, could affect the lipopolysaccharide (LPS)-induced release of TNF-α, IL-1β and IL-6 from primary rat microglial cell cultures. Proinflammatory cytokines were measured in supernatants of primary rat microglial cell culture with enzyme-linked immunosorbent assay kits. Additionally, the effect of the drug on LPS-evoked changes in mitochondrial metabolic activity was evaluated with the aid of the MTT test. Topiramate (1, 10, 100μg/ml; 24h incubation) produced a statistically significant decrease in LPS-stimulated IL-1β and IL-6 levels from primary rat microglial cells in a concentration-dependent manner. The drug used at a concentration of 100μg/ml also significantly suppressed TNF-α release. Incubation of microglial cells with topiramate for 24h prevented the LPS-induced increase in their mitochondrial activity. It is suggested that the anti-cytokine action of topiramate could provide an additional mechanism in its antiepileptic activity.
Collapse
Affiliation(s)
- Dariusz Andrzejczak
- Department of Pharmacodynamics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Agata Woldan-Tambor
- Department of Pharmacodynamics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | - Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
17
|
Kaur T, Manchanda S, Saini V, Lakhman SS, Kaur G. Efficacy of Anti-Epileptic Drugs in the Treatment of Tumor and Its Associated Epilepsy: An in vitro Perspective. Ann Neurosci 2016; 23:33-43. [PMID: 27536020 PMCID: PMC4934412 DOI: 10.1159/000443554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
Abstract
The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors. We used C6 glioma cell line as model system to study the effect of selected AEDs, viz., gabapentin (GBP), valproic acid (VPA) and topiramate (TPM). Morphometry, cell cycle analysis, apoptosis, expression of different protein markers, viz., GFAP, HSP70 and nuclear factor-κB (NFκB) were studied in AED-treated cultures. The study was further extended to rat hypothalamic primary explant cultures, and cell migration and expression of plasticity markers - neural cell adhesion molecule (NCAM) and polysialylation of NCAM (PSA-NCAM) - were studied in the explants. TPM was observed to show more pronounced increase in apoptosis of glioblastoma cells accompanied by significant downregulation in the expression of HSP70 and NFκB. TPM-treated explants also showed highest process ramification and cellular migration accompanied by intense expression of the plasticity markers as compared to those treated with GBP and VPA. Among the 3 AEDs tested, TPM was observed to show more promising effects on cytoprotection and plasticity of C6 glioma cells.
Collapse
Affiliation(s)
- Taranjeet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Shaffi Manchanda
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sukhwinder S Lakhman
- Department of Pharmaceutical, Social and Administrative Sciences, D'Youville College School of Pharmacy, Buffalo, N.Y., USA
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
18
|
Chou SHY, Latorre JGS, Alpargu G, Ogilvy CS, Sorond FA, Rordorf G. Outcomes after Early Anticonvulsant Discontinuation in Aneurysmal Subarachnoid Hemorrhage. JOURNAL OF VASCULAR MEDICINE & SURGERY 2015; 3. [PMID: 34568512 PMCID: PMC8460122 DOI: 10.4172/2329-6925.1000173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Empiric use of anticonvulsant (AED) for seizure prophylaxis in aneurysmal subarachnoid hemorrhage (SAH) remains controversial and may be associated with worse SAH outcome. We determined the safety and feasibility of early discontinuation of empiric AED in a select cohort of SAH patients. Methods: In a cohort of 166 consecutive SAH patients, a subset underwent early AED discontinuation if they were awake and following commands after aneurysm treatment. We examined the effect of AED discontinuation on seizure incidence, mortality and functional outcome at discharge using logistic regression and validated results using 70%-30% data partition. Results: Seventy-three subjects underwent AED discontinuation. Patient groups had similar gender, age, Fisher grade, incidence of craniotomy, vasospasm, ischemic infarct, intraventricular and intraparenchymal hemorrhages. Hunt-Hess (HH) grade were lower in AED-discontinuation group. Clinical or electrographic seizure occurred in 1/93 (1%) patients on AED and 0/73 patient in AED-discontinuation group. Crude mortality was 24% in patients on AED and 2.7% off AED. After adjusting for age, HH grade, vasospasm, ischemic infarct, intracerebral, and intraventricular hemorrhage, AED discontinuation remains independently associated with lower mortality and higher odds of discharge to home (p=0.0002). AED use is not associated with angiographic vasospasm on exploratory analysis. Conclusion: AED discontinuation in SAH patients who are awake and following commands post aneurysm treatment is safe, feasible, and associated with better outcome at hospital discharge. A larger, prospective study is necessary to determine if empiric AED use in SAH leads to poorer functional status.
Collapse
Affiliation(s)
- Sherry Hsiang-Yi Chou
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh School of Medicine, USA
| | | | - Gulhan Alpargu
- Department of Statistics, California State University Fullerton, USA
| | - Christopher S Ogilvy
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, USA
| | - Farzaneh A Sorond
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Guy Rordorf
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
19
|
Pottoo F, Bhowmik M, Vohora D. Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur J Pharm Sci 2014; 65:167-73. [DOI: 10.1016/j.ejps.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/19/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
|
20
|
Smith GR, Brenneman DE, Zhang Y, Du Y, Reitz AB. Small-molecule anticonvulsant agents with potent in vitro neuroprotection and favorable drug-like properties. J Mol Neurosci 2014; 52:446-58. [PMID: 24277343 PMCID: PMC3945118 DOI: 10.1007/s12031-013-0180-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022]
Abstract
Severe seizure activity is associated with reoccurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention with these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. We have optimized a series of small molecules for neuroprotective and anticonvulsant activity as well as altered their physical properties to address potential metabolic liabilities, to improve CNS penetration, and to prolong the duration of action in vivo. Utilizing phenotypic screening of hippocampal cultures with nutrient medium depleted of antioxidants as a disease model, cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented. Modifications to our previously reported proof of concept compounds have resulted in a lead which has full neuroprotective action at <1 nM and antiseizure activity across six animal models including the kindled rat and displays excellent pharmacokinetics including high exposure to the brain. These modifications have also eliminated the requirement for a chiral molecule, removing the possibility of racemization and making large-scale synthesis more easily accessible. These studies strengthen our earlier findings which indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity which also possesses favorable CNS-active drug properties in vitro and in vivo.
Collapse
Affiliation(s)
- Garry R Smith
- Fox Chase Chemical Diversity Center, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA,
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Nejad SH, Chuang K, Hirschberg R, Aquino PR, Fricchione GL. The Use of Antiepileptic Drugs in Acute Neuropsychiatric Conditions: Focus on Traumatic Brain Injury, Pain, and Alcohol Withdrawal. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ijcm.2014.512099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Helmstaedter C, May TW, von Lehe M, Pfaefflin M, Ebner A, Pannek HW, Elger CE, Stefan H, Schramm J. Temporal lobe surgery in Germany from 1988 to 2008: diverse trends in etiological subgroups. Eur J Neurol 2013; 21:827-34. [PMID: 24313982 DOI: 10.1111/ene.12322] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE In the epilepsy community, there is talk that the number of classical patients with early onset temporal lobe epilepsy (TLE) and Ammon's horn sclerosis (AHS) is decreasing. This is counterintuitive, considering the success story of epilepsy surgery, improved diagnostic methods and the current recommendation of early admission to surgery. In order to recognize trends, the development of temporal lobe surgery over 20 years in three major German epilepsy centers was reviewed. METHODS Age at surgery and duration of epilepsy, which was differentiated according to histopathology (AHS, developmental, tumor, vascular), year of surgery and center, were evaluated in a cohort of 2812 patients from three German epilepsy centers who underwent temporal lobe surgery between 1988 and 2008. The analysis was carried out for the pooled cohort as well as for each center separately. RESULTS Of all patients, 52% showed AHS. Compared with other pathologies, the AHS group had the earliest epilepsy onset and the longest duration of epilepsy. Across five time epochs, the diagnosis of AHS increased in the first epoch, remaining constant thereafter. Contrary to the trends in other pathologies, in the AHS group the mean age of patients at surgery increased by 7 years and the duration of epilepsy until surgery increased by 5 years. This trend could be replicated in all three centers. As initially hypothesized for all groups, age and duration of epilepsy in other pathology groups remained constant or indicated earlier submission to surgery. CONCLUSIONS During the first few years studied, most probably due to progress in brain imaging, the proportion of patients with AHS increased. However, despite stable numbers over time, and contrary to the trends in other pathology groups, age and duration of epilepsy in mesial TLE with AHS (mTLE + AHS) increased over time. This supports the hypothesis of a decreasing incidence of AHS. This trend is discussed with respect to disease-modifying factors which have changed the incidence of classical mTLE + AHS or, alternatively, to recent developments in antiepileptic drug treatment, the appraisal of surgery and economic incentives for treatment options other than surgery.
Collapse
|
24
|
Condello S, Currò M, Ferlazzo N, Costa G, Visalli G, Caccamo D, Pisani LR, Costa C, Calabresi P, Ientile R, Pisani F. Protective effects of zonisamide against rotenone-induced neurotoxicity. Neurochem Res 2013; 38:2631-9. [PMID: 24142350 DOI: 10.1007/s11064-013-1181-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 02/08/2023]
Abstract
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson's disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10-100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, 98125, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morte MI, Carreira BP, Falcão MJ, Ambrósio AF, Soares-da-Silva P, Araújo IM, Carvalho CM. Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons. Toxicol In Vitro 2013; 27:2193-202. [PMID: 24055897 DOI: 10.1016/j.tiv.2013.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/10/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
Abstract
In this study we evaluated the neurotoxicity of eslicarbazepine acetate (ESL), and of its in vivo metabolites eslicarbazepine (S-Lic) and R-licarbazepine (R-Lic), as compared to the structurally-related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), in an in vitro model of cultured rat hippocampal neurons. The non-related antiepileptic drugs (AEDs) lamotrigine (LTG) and sodium valproate (VPA) were also studied. We assessed whether AEDs modulate pro-survival/pro-apoptotic pathways, such as extracellular-regulated kinase (ERK1/2), Akt and stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). We found that neither ESL nor its metabolites, CBZ or LTG, up to 0.3mM, for 24h of exposure, decreased cell viability. OXC was the most toxic drug decreasing cell viability in a concentration-dependent manner, leading to activation of caspase-3 and PARP cleavage. VPA caused the appearance of the apoptotic markers, but did not alter cell viability. ESL, S-Lic and OXC decreased the levels of phospho-ERK1/2 and of phospho-Akt, when compared to basal levels, whereas CBZ decreased phospho-SAPK/JNK and phospho-Akt levels. LTG and VPA increased the phosphorylation levels of SAPK/JNK. These results suggest that ESL and its main metabolite S-Lic, as well as CBZ, LTG and VPA, are less toxic to hippocampal neurons than OXC, which was the most toxic agent.
Collapse
Affiliation(s)
- Maria I Morte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
26
|
Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 2012; 167:1398-414. [PMID: 22758607 PMCID: PMC3514756 DOI: 10.1111/j.1476-5381.2012.02093.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022] Open
Abstract
The central histaminergic actions are mediated by H(1) , H(2) , H(3) and H(4) receptors. The histamine H(3) receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H(3) receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H(3) receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H(3) receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.
Collapse
Affiliation(s)
- M Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
27
|
Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:76. [PMID: 22709243 PMCID: PMC3416669 DOI: 10.1186/1472-6882-12-76] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/18/2012] [Indexed: 12/04/2022]
Abstract
Background Essential oil of Pimpinella anisum L. Apiaceae (anise oil) has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. Methods The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ) injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP) in in vivo and in vitro experimental models of rat brain. Results Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Conclusions Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested.
Collapse
|
28
|
Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav 2012; 24:14-22. [PMID: 22483646 DOI: 10.1016/j.yebeh.2012.02.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 01/03/2023]
Abstract
Turmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans. To explore the therapeutic potential of turmeric for epilepsy further, we analyzed its anticonvulsant activity in a larval zebrafish seizure assay. Initial experiments revealed that the anticonvulsant activity of turmeric in zebrafish larvae cannot be explained solely by the effects of curcumin. Zebrafish bioassay-guided fractionation of turmeric identified bisabolene sesquiterpenoids as additional anticonvulsants that inhibit PTZ-induced seizures in both zebrafish and mice. Here, we present the first report of the anticonvulsant properties of bisabolene sesquiterpenoids and provide evidence which warrants further investigation toward the mechanistic understanding of their neuromodulatory activity.
Collapse
|
29
|
Kumaria A, Tolias CM. Is there a role for vagus nerve stimulation therapy as a treatment of traumatic brain injury? Br J Neurosurg 2012; 26:316-20. [PMID: 22404761 DOI: 10.3109/02688697.2012.663517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper aims to review the current literature on vagus nerve stimulation (VNS) use in animal models of traumatic brain injury (TBI) and explore its potential role in treatment of human TBI. A MEDLINE search yielded four primary papers from the same group that demonstrated VNS mediated improvement following fluid percussion models of TBI in rats, seen as motor and cognitive improvements, reduction of cortical oedema and neuroprotective effects. The underlying mechanisms are elusive and authors attribute these to attenuation of post traumatic seizures, a noradrenergic mechanism and as yet undetermined mechanisms. Reviewing and elaborating on these ideas, we speculate other potential mechanisms including attenuation of peri-infarct depolarisations, attenuation of glutamate mediated excitotoxicity, stabilisation of intracranial pressure, enhancement of synaptic plasticity, upregulation of endogenous neurogenesis and anti-inflammatory effects may have a role. Although this data unequivocally shows that VNS improves outcome from TBI in animal models, it remains to be determined if these findings translate clinically. Further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Wessex Neurological Centre, Southampton, UK.
| | | |
Collapse
|
30
|
Clusterin interaction with Bcl-xL is associated with seizure-induced neuronal death. Epilepsy Res 2011; 99:240-51. [PMID: 22197644 DOI: 10.1016/j.eplepsyres.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 11/21/2022]
Abstract
Status epilepticus causes significant damage to the brain, and cellular injury due to prolonged seizures may cause the pathogenesis of epilepsy or cognitive deficits. Clusterin mediates several cell signaling pathways, including cell death or survival pathways in the brain. A nuclear form of clusterin protein has been suggested to have pro-apoptotic properties. Bcl-x(L) functions as a dominant-negative modulator of the pro-apoptotic protein Bax. However, the relationship between clusterin and Bcl-x(L) in cell death signaling in the brain remains unknown. Therefore, we examined whether clusterin interacts with Bcl-x(L) after seizures or whether this interaction is related to neuronal death. We found increased levels of nuclear clusterin and cleaved caspase-3 in CA3 neurons after prolonged seizures induced by systemic kainic acid, along with extensive hippocampal cell death, as evidenced by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and anti-active caspase-3 staining. Furthermore, co-immunoprecipitation and double immunofluorescence analyses revealed that clusterin interacted with Bcl-x(L) in dying CA3 neurons while the levels of Bcl-x(L), Bad or Bax remained constant. These findings provide evidence that nuclear clusterin signals cell death at least via an interaction with Bcl-x(L) in the hippocampus after seizures, suggesting that targeting nuclear clusterin may be a promising novel strategy to protect against seizure-induced neuronal injury.
Collapse
|
31
|
Russo E, Citraro R, Scicchitano F, De Fazio S, Perrota I, Di Paola ED, Constanti A, De Sarro G. Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 2011; 52:1341-50. [DOI: 10.1111/j.1528-1167.2011.03112.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
33
|
Jeong HJ, Kim H, Kim YK, Park SK, Kang DW, Yoon D. The ketogenic diet suppresses the cathepsin E expression induced by kainic acid in the rat brain. Yonsei Med J 2010; 51:653-60. [PMID: 20635438 PMCID: PMC2908849 DOI: 10.3349/ymj.2010.51.5.653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The ketogenic diet has long been used to treat epilepsy, but its mechanism is not yet clearly understood. To explore the potential mechanism, we analyzed the changes in gene expression induced by the ketogenic diet in the rat kainic acid (KA) epilepsy model. MATERIALS AND METHODS KA-administered rats were fed the ketogenic diet or a normal diet for 4 weeks, and microarray analysis was performed with their brain tissues. The effects of the ketogenic diet on cathepsin E messenger ribonucleic acid (mRNA) expression were analyzed in KA-administered and normal saline-administered groups with semi-quantitative and real-time reverse transcription polymerase chain reaction (RT-PCR). Brain tissues were dissected into 8 regions to compare differential effects of the ketogenic diet on cathepsin E mRNA expression. Immunohistochemistry with an anti-cathepsin E antibody was performed on slides of hippocampus obtained from whole brain paraffin blocks. RESULTS The microarray data and subsequent RT-PCR experiments showed that KA increased the mRNA expression of cathepsin E, known to be related to neuronal cell death, in most brain areas except the brain stem, and these increases of cathepsin E mRNA expression were suppressed by the ketogenic diet. The expression of cathepsin E mRNA in the control group, however, was not significantly affected by the ketogenic diet. The change in cathepsin E mRNA expression was greatest in the hippocampus. The protein level of cathepsin E in the hippocampus of KA-administered rat was elevated in immunohistochemistry and the ketogenic diet suppressed this increase. CONCLUSION Our results showed that KA administration increased cathepsin E expression in the rat brain and its increase was suppressed by the ketogenic diet.
Collapse
Affiliation(s)
- Hyun Jeong Jeong
- Department of Biochemistry, College of Medicine, Kwandong University, Gangneung, Korea
| | - Hojeong Kim
- Department of Anatomy, College of Medicine, Kwandong University, Gangneung, Korea
| | - Yoon-Kyoung Kim
- Department of Biochemistry, College of Medicine, Kwandong University, Gangneung, Korea
| | - Sang-Kyu Park
- Department of Biochemistry, College of Medicine, Kwandong University, Gangneung, Korea
| | - Dong-Won Kang
- Department of Pharmacology, College of Medicine, Kwandong University, Gangneung, Korea
| | - Dojun Yoon
- Department of Biochemistry, College of Medicine, Kwandong University, Gangneung, Korea
| |
Collapse
|
34
|
Antiepileptic Medications in the Treatment of Neuropsychiatric Symptoms Associated with Traumatic Brain Injury. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/9780849382666.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Perucca E. What is the promise of new antiepileptic drugs in status epilepticus? Focus on brivaracetam, carisbamate, lacosamide, NS-1209, and topiramate. Epilepsia 2009; 50 Suppl 12:49-50. [DOI: 10.1111/j.1528-1167.2009.02366.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
NNZ-2566, a glypromate analog, attenuates brain ischemia-induced non-convulsive seizures in rats. J Cereb Blood Flow Metab 2009; 29:1924-32. [PMID: 19638995 DOI: 10.1038/jcbfm.2009.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ischemic and traumatic brain injuries often induce non-convulsive seizures (NCSs), which likely contribute to the worsening of neurological outcomes. Here, we evaluated the effect of glycyl-L-methylprolyl-L-glutamic acid (NNZ-2566) to lessen the severity of NCSs caused by permanent middle cerebral artery occlusion (pMCAo). Continuous electroencephalographic recordings were performed in rats during pMCAo. Glycyl-L-methylprolyl-L-glutamic acid (3, 10, or 100 mg/kg bolus followed by an infusion of a fixed dose of 3 mg/kg per hour for 12 h) was delivered at 20 mins after pMCAo (before the first NCS event) or delayed until immediately after the first NCS event occurred. Control rats received pMCAo and saline treatment. The results revealed that 91% of the saline-treated animals had NCSs (23 episodes per rat and 1238 secs per rat) with an onset latency of 35 mins after injury. When NNZ-2566 was administered before the NCS events, it dose-dependently reduced the NCS incidence to 36%-80%, decreased NCS frequency to 5-16 episodes per rat, and shortened the total duration of NCS to 251-706 secs per rat. The two high doses significantly reduced the infarct volume by 28%-30%. Delayed treatment also attenuated NCS duration but had no effect on the infarct volume. Results indicate that NNZ-2566 possesses a unique therapeutic potential as a safe prophylactic agent that synergistically provides neuroprotection and reduces injury-induced seizures.
Collapse
|
37
|
Abstract
Although zonisamide was previously only used to treat epilepsy, recently more applications have been forthcoming. Due to a good side effect profile, a lower frequency of interactions and a more comfortable posology, there are several studies regarding its uses in other pathologies such as migraine, neuropathic pain, essential tremor and various psychiatric diseases. A multicentered, randomized, double-blind, placebo-controlled study conducted in Japan suggested that zonisamide, as an add-on treatment, has efficacy in treating motor symptoms in patients with Parkinson's disease. In addition, other studies support the utility of zonisamide in other symptoms of this disease. The therapeutic doses of zonisamide for the treatment of Parkinson's disease are considerably lower than those for the treatment of epilepsy. This antiepileptic drug has been used in Japan for more than 15 years and so it is expected that it will be safe and well tolerated in patients with Parkinson's disease. However, the pharmacological mechanisms of the antiparkinsonian actions of zonisamide remain unclear and more basic investigation is warranted. The aim of this paper is to review the structure, mechanisms of action, pharmacokinetics and antiparkinsonian action of zonisamide.
Collapse
Affiliation(s)
- Pedro Emilio Bermejo
- Sanatorio Nuestra Señora del Rosario - Hospital Sanitas La Zarzuela, Madrid, Spain
| | | |
Collapse
|
38
|
Farooq MU, Bhatt A, Majid A, Gupta R, Khasnis A, Kassab MY. Levetiracetam for managing neurologic and psychiatric disorders. Am J Health Syst Pharm 2009; 66:541-61. [PMID: 19265183 DOI: 10.2146/ajhp070607] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The role of levetiracetam in different epileptic, nonepileptic, neurologic, and psychiatric disorders is discussed. SUMMARY Levetiracetam, an antiepileptic drug (AED), was first approved as an adjunctive therapy for the treatment of partial epilepsy in adults. It is currently being used in the treatment of multiple seizure disorders, including generalized tonic-clonic; absence; myoclonic, especially juvenile myoclonic; Lennox-Gastaut syndrome; and refractory epilepsy in children and adults. Data are emerging on possible uses of levetiracetam outside the realm of epilepsy because of its unique mechanisms of action. There is preliminary evidence about the efficacy of levetiracetam in the treatment of different psychiatric disorders, including anxiety, panic, stress, mood and bipolar, autism, and Tourette's syndrome. The most serious adverse effects associated with levetiracetam use are behavioral in nature and might be more common in patients with a history of psychiatric and neurobehavioral problems. CONCLUSION Levetiracetam is an effective AED with potential benefits in other neurologic and psychiatric disorders. The benefit-risk ratio in an individual patient with a specific condition should be used to determine its optimal use. Levetiracetam's use in nonepileptic conditions is not recommended until more data become available from larger trials.
Collapse
Affiliation(s)
- Muhammad U Farooq
- Department of Neurology and Ophthalmology, Michigan State University, 138 Service Road, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Habibi-Asl B, Hassanzadeh K, Vafai H, Mohammadi S. Development of morphine induced tolerance and withdrawal symptoms is attenuated by lamotrigine and magnesium sulfate in mice. Pak J Biol Sci 2009; 12:798-803. [PMID: 19806811 DOI: 10.3923/pjbs.2009.798.803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The goal of this study was to evaluate the effects of lamotrigine and magnesium sulfate on morphine induced tolerance and withdrawal symptoms in mice. Different groups of mice were received morphine (30 mg kg(-1), s.c.) or morphine (30 mg kg(-1), s.c.)+lamotrigine (10, 20, 30 or 40 mg kg(-1), i.p.) or morphine (30 mg kg(-1), s.c.) + magnesium sulfate (20, 40 or 60 mg kg(-1), i.p.) or morphine (30 mg kg(-1), s.c.) + [lamotrigine (10 mg kg(-1), i.p.) + magnesium sulfate (20mg kg(-1), i.p.)] daily for 4 days. Tolerance was assessed using hot plate after administration of a test dose of morphine (9 mg kg(-1), i.p.) on fifth day. Withdrawal zsymptoms (Jumping and Rearing) were assessed by administration of naloxone (5 mg kg(-1), i.p.) 2 h after the last dose of morphine in fourth day. It was found that administration of lamotrigine or magnesium sulfate or their combination decreased the morphine induced tolerance and withdrawal symptoms. From these results it is concluded that lamotrigine and magnesium sulfate alone or in combination could prevent the development of morphine tolerance and withdrawal symptoms. Glutamate release inhibitory effect of lamotrigine and its possible mechanism and property of magnesium, blocking the N-Methyl-D-Aspartate (NMDA) receptor calcium channel, is probably its mechanism on preventing morphine induced tolerance and dependence.
Collapse
Affiliation(s)
- B Habibi-Asl
- Department of Pharmacology and Toxicology, School of Pharmacy, Tabriz University (Medical Sciences), Tabriz, Iran
| | | | | | | |
Collapse
|
40
|
Cunha AOS, Mortari MR, Liberato JL, dos Santos WF. Neuroprotective effects of diazepam, carbamazepine, phenytoin and ketamine after pilocarpine-induced status epilepticus. Basic Clin Pharmacol Toxicol 2009; 104:470-7. [PMID: 19371260 DOI: 10.1111/j.1742-7843.2009.00403.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/microl, 1 microl) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Collapse
|
41
|
Kudin AP, Zsurka G, Elger CE, Kunz WS. Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 2009; 218:326-32. [PMID: 19268667 DOI: 10.1016/j.expneurol.2009.02.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Mitochondrial dysfunction has been identified as a potential cause of epileptic seizures and therapy-resistant forms of severe epilepsy. Thus, a broad variety of mutation in mitochondrial DNA or nuclear genes leading to the impairment of mitochondrial respiratory chain or of mitochondrial ATP synthesis has been associated with epileptic phenotypes. Additionally, with a variety of different methods impaired mitochondrial function has been reported for the seizure focus of patients with temporal lobe epilepsy and Ammon's horn sclerosis and of animal models of temporal lobe epilepsy. Since mitochondrial oxidative phosphorylation provides the major source of ATP in neurons and mitochondria participate in cellular Ca(2+) homeostasis, their dysfunction strongly affects neuronal excitability and synaptic transmission, which is proposed to be highly relevant for seizure generation. Additionally, mitochondrial dysfunction is known to trigger neuronal cell death, which is a prominent feature of therapy-resistant temporal lobe epilepsy. Therefore, mitochondria have to be considered as promising targets for neuroprotective strategies in epilepsy.
Collapse
Affiliation(s)
- Alexei P Kudin
- Department of Epileptology, University Bonn Medical Center, Germany
| | | | | | | |
Collapse
|
42
|
Willmore LJ, Ueda Y. Posttraumatic epilepsy: hemorrhage, free radicals and the molecular regulation of glutamate. Neurochem Res 2008; 34:688-97. [PMID: 18785008 DOI: 10.1007/s11064-008-9841-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/22/2008] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury causes development of posttraumatic epilepsy. Bleeding within neuropil is followed by hemolysis and deposition of hemoglobin in neocortex. Iron from hemoglobin and transferring is deposited in brains of patients with posttraumatic epilepsy. Iron compounds form reactive free radical oxidants. Microinjection of ferric ions into rodent brain results in chronic recurrent seizures and liberation of glutamate into the neuropil, as is observed in humans with epilepsy. Termination of synaptic effects of glutamate is by removal via transporter proteins. EAAC-1 is within neurons while GLT-1 and GLAST are confined to glia. Persistent down regulation of GLAST production is present in hippocampal regions in chronic seizure models. Down regulation of GLAST may be fundamental to a sequence of free radical reactions initiated by brain injury with hemorrhage. Administration of antioxidants to animals causes interruption of the sequence of brain injury responses induced by hemorrhage, suggesting that such a strategy needs to be evaluated in patients with traumatic brain injury.
Collapse
Affiliation(s)
- L J Willmore
- Department of Neurology & Psychiatry, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MI 63104, USA.
| | | |
Collapse
|
43
|
Nagarkatti N, Deshpande LS, DeLorenzo RJ. Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci Lett 2008; 436:289-93. [PMID: 18406528 DOI: 10.1016/j.neulet.2008.02.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Epilepsy affects approximately 1% of the population worldwide, and there is a pressing need to develop new anti-epileptic drugs (AEDs) and understand their mechanisms of action. Levetiracetam (LEV) is a novel AED and despite its increasingly widespread clinical use, its mechanism of action is as yet undetermined. Intracellular calcium ([Ca2+]i) regulation by both inositol 1,4,5-triphosphate receptors (IP3R) and ryanodine receptors (RyR) has been implicated in epileptogenesis and the maintenance of epilepsy. To this end, we investigated the effect of LEV on RyR and IP3R activated calcium-induced calcium release (CICR) in hippocampal neuronal cultures. RyR-mediated CICR was stimulated using the well-characterized RyR activator, caffeine. Caffeine (10mM) caused a significant increase in [Ca2+]i in hippocampal neurons. Treatment with LEV (33 microM) prior to stimulation of RyR-mediated CICR by caffeine led to a 61% decrease in the caffeine induced peak height of [Ca2+]i when compared to the control. Bradykinin stimulates IP3R-activated CICR-to test the effect of LEV on IP3R-mediated CICR, bradykinin (1 microM) was used to stimulate cells pre-treated with LEV (100 microM). The data showed that LEV caused a 74% decrease in IP3R-mediated CICR compared to the control. In previous studies we have shown that altered Ca2+ homeostatic mechanisms play a role in seizure activity and the development of spontaneous recurrent epileptiform discharges (SREDs). Elevations in [Ca2+]i mediated by CICR systems have been associated with neurotoxicity, changes in neuronal plasticity, and the development of AE. Thus, the ability of LEV to modulate the two major CICR systems demonstrates an important molecular effect of this agent on a major second messenger system in neurons.
Collapse
Affiliation(s)
- Nisha Nagarkatti
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | | | | |
Collapse
|
44
|
Armijo Simón JA. Avances en el tratamiento médico de la epilepsia. Med Clin (Barc) 2008; 130:216-8. [DOI: 10.1157/13116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
|
46
|
Crooks CY, Zumsteg JM, Bell KR. Traumatic Brain Injury: A Review of Practice Management and Recent Advances. Phys Med Rehabil Clin N Am 2007; 18:681-710, vi. [DOI: 10.1016/j.pmr.2007.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Abstract
I/R injury of the intestine is a life-threatening emergency with mortality rates still more than 60%. We have investigated the protective effect of lamotrigine (LTG), an antiepileptic drug, which has an established neuroprotective effect, on intestinal I/R injury in rats. Forty-eight Wistar albino rats were divided into three groups: a sham-operated group (no I/R injury; n = 16), an ischemic control group (I/R, n = 16), and an LTG-treated group (pretreatment 5 mg kg-1 LTG + IR; n = 16). A marker for lipid peroxidation, malondialdehyde, free radical scavengers, glutathione peroxidase, catalase, and superoxide dismutase levels, an index of polymorphonuclear neutrophils, myeloperoxidase activity, and mucosal damage were investigated. Malondialdehyde levels, myeloperoxidase activity, and the severity of mucosal damage were decreased in the LTG group. Moreover, in the LTG group, glutathione peroxidase and superoxide dismutase levels were higher compared with the I/R group. The pretreatment of rats with LTG before intestinal ischemia ameliorates the mucosal damage in intestinal I/R injury probably by altering lipid peroxidation, neutrophil accumulation, and antioxidant activity.
Collapse
Affiliation(s)
- Ibrahim Barut
- Department of General Surgery, Suleyman Demirel University Medical Center, 32900-Isparta, Turkey.
| | | | | | | | | |
Collapse
|
48
|
Katz I, Kim J, Gale K, Kondratyev A. Effects of lamotrigine alone and in combination with MK-801, phenobarbital, or phenytoin on cell death in the neonatal rat brain. J Pharmacol Exp Ther 2007; 322:494-500. [PMID: 17483293 DOI: 10.1124/jpet.107.123133] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neonatal rat brain is vulnerable to neuronal apoptosis induced by antiepileptic drugs (AEDs), especially when given in combination. This study evaluated lamotrigine alone or in combination with phenobarbital, phenytoin, or the glutamate antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) for a proapoptotic action in the developing rat brain. Cell death was assessed in brain regions (striatum, thalamus, and cortical areas) of rat pups (postnatal day 8) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, 24 h after acute drug treatment. Lamotrigine alone did not increase neuronal apoptosis when given in doses up to 50 mg/kg; a significant increase in cell death occurred after 100 mg/kg. Combination of 20 mg/kg lamotrigine with 0.5 mg/kg MK-801 or 75 mg/kg phenobarbital resulted in a significant increase in TUNEL-positive cells, compared with MK-801 or phenobarbital treatment alone. A similar enhancement of phenytoin-induced cell death occurred after 30 mg/kg lamotrigine. In contrast, 20 mg/kg lamotrigine significantly attenuated phenytoin-induced cell death. Lamotrigine at 10 mg/kg was without effect on apoptosis induced by phenytoin. Although the functional and clinical implications of AED-induced developmental neuronal apoptosis remain to be elucidated, our finding that lamotrigine alone is devoid of this effect makes this drug attractive as monotherapy for the treatment of women during pregnancy, and for preterm or neonatal infants. However, because AEDs are often introduced as add-on medication, careful selection of drug combinations and doses may be required to avoid developmental neurotoxicity when lamotrigine is used in polytherapy.
Collapse
Affiliation(s)
- Irina Katz
- Departments of Pediatrics, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
49
|
Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 2007; 13:134-42. [PMID: 17327733 DOI: 10.1097/mcc.0b013e3280895d5c] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Translating the efficacy of neuroprotective agents in experimental traumatic brain injury to clinical benefit has proven an extremely complex and, to date, unsuccessful undertaking. The focus of this review is on neuroprotective agents that have recently been evaluated in clinical trials and are currently under clinical evaluation, as well as on those that appear promising and are likely to undergo clinical evaluation in the near future. RECENT FINDINGS Excitatory neurotransmitter blockage and magnesium have recently been evaluated in phase III clinical trials, but showed no neuroprotective efficacy. Cyclosporin A, erythropoietin, progesterone and bradykinin antagonists are currently under clinical investigation, and appear promising. SUMMARY Traumatic brain injury is a complex disease, and development of clinically effective neuroprotective agents is a difficult task. Experimental traumatic brain injury has provided numerous promising compounds, but to date these have not been translated into successful clinical trials. Continued research efforts are required to identify and test new neuroprotective agents, to develop a better understanding of the sequential activity of pathophysiologic mechanisms, and to improve the design and analysis of clinical trials, thereby optimizing chances for showing benefit in future clinical trials.
Collapse
Affiliation(s)
- Joost W Schouten
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
50
|
Martins de Lima MN, Presti-Torres J, Dornelles A, Bromberg E, Schröder N. Differential effects of low and high doses of topiramate on consolidation and retrieval of novel object recognition memory in rats. Epilepsy Behav 2007; 10:32-7. [PMID: 17070735 DOI: 10.1016/j.yebeh.2006.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/09/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
Topiramate is a new antiepileptic drug proposed to facilitate synaptic inhibition and block excitatory receptors. However, little is known about the effects of topiramate on memory. In the first experiment, intraperitoneal injection of topiramate at doses of 10.0 and 100.0 mg/kg, immediately after training, induced a deficit in short-term memory (STM) of a novel object recognition (NOR) task tested 1.5 hours after training in rats. In a long-term memory (LTM) test given to the same rats 24 hours after training, topiramate 0.1mg/kg enhanced, whereas 10.0 and 100.0 mg/kg impaired, NOR retention. In the second experiment, administration of topiramate 0.01 and 0.10 mg/kg 1 hour prior to the LTM retention test improved NOR retention, whereas 10.0 and 100.0 mg/kg produced retrieval deficits. The results indicate that low doses of topiramate improve, whereas high doses impair, consolidation and retrieval of recognition memory in rats.
Collapse
Affiliation(s)
- Maria Noemia Martins de Lima
- Graduate Program in Biomedical Gerontology, Institute for Geriatrics and Gerontology, São Lucas Hospital, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|