1
|
Yu C, Liu J, Sakurai R, Wang Y, Afrose L, Gour A, Sharma A, Chandan G, Rehan VK. Perinatal nicotine vaping exposure induces pro-myofibroblastic phenotype in rat bone marrow-derived mesenchymal stem cells. Reprod Toxicol 2024; 129:108673. [PMID: 39059775 PMCID: PMC11377149 DOI: 10.1016/j.reprotox.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Perinatal nicotine exposure via tobacco smoking results in increased proclivity to chronic lung disease (CLD); however, the underlying molecular mechanisms remain incompletely understood. We previously demonstrated that in addition to nicotine's direct effects on the developing lung, there are also adverse molecular alterations in bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to lung injury repair. Whether perinatal nicotine exposure via electronic-cigarette (e-cig) vaping also adversely affects BMSCs is unknown. This is highly relevant due to marked increase in e-cig vaping including by pregnant women. Hypothesizing that perinatal nicotine exposure via e-cig vaping predisposes BMSCs to a pro-myofibroblastic phenotype, pregnant rat dams were exposed to fresh air (control), vehicle (e-cig without nicotine), or e-cig (e-cig with nicotine) daily during pregnancy and lactation. At postnatal day 21, offspring BMSCs were isolated and studied for cell proliferation, migration, wound healing response, and expression of key Wnt and PPARγ signaling intermediates (β-catenin, LEF-1, PPARγ, ADRP and C/EBPα) and myogenic markers (fibronectin, αSMA, calponin) proteins using immunoblotting. Compared to controls, perinatal e-cig exposure resulted in significant decrease in BMSC proliferation, migration, and wound healing response. The expression of key Wnt signaling intermediates (β-catenin, LEF-1) and myogenic markers (fibronectin, αSMA, calponin) increased significantly, while PPARγ signaling intermediates (PPARγ, ADRP, and C/EBPα) decreased significantly. Based on these data, we conclude that perinatally e-cig exposed BMSCs demonstrate pro-myofibroblastic phenotype and impaired injury-repair potential, indicating a potentially similar susceptibility to CLD following perinatal nicotine exposure via vaping as seen following parenteral perinatal nicotine exposure.
Collapse
Affiliation(s)
- Celia Yu
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Jie Liu
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Reiko Sakurai
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Ying Wang
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Leela Afrose
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Abhishek Gour
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Gourav Chandan
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
2
|
Torday JS. Symbiogenesis redicts the monism of the cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:58-62. [PMID: 38972464 DOI: 10.1016/j.pbiomolbio.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Symbiogenesis has been systematically exploited to understand consciousness as the aggregate of our physiology. The Symbiogenic mechanism for assimilation of factors in the environment formulates the continuum from inside the cell to the Cosmos, both consciousness and cosmology complying with the Laws of Nature. Since Symbiogenesis is 'constructive', whereas eliminating what threatens us is 'destructive', why do we largely practice Symbiogenesis? Hypothetically, Symbiogenesis recursively simulates the monism of our origin, recognizing 'something bigger than ourselves'. That perspective explains many heretofore unexplained aspects of consciousness, such as mind, epigenetic inheritance, physiology, behaviors, social systems, mathematics, the Arts, from an a priori perspective. Moreover, there is an energetic continuum from Newtonian to Quantum Mechanics, opening up to a novel way of understanding the 'true nature of our being', not as 'materialism', but instead being the serial homeostatic control of energy. The latter is consistent with the spirit of Claude Bernard and Walter B. Cannon's perspectives on physiology. Such a paradigm shift is overdue, given that materialism is causing the destruction of the Earth and ourselves.
Collapse
Affiliation(s)
- John S Torday
- Obstetrics and Gynecology, Evolutionary Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
3
|
Chong L, Zou L, Xiang L, Song X, Miao W, Yan X, Xu M, Ling G, El Agha E, Bellusci S, Lou Z, Zhang H, Zhang JS. WSB1, a Hypoxia-Inducible E3 Ligase, Promotes Myofibroblast Accumulation and Attenuates Alveolar Epithelial Regeneration in Mouse Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:656-672. [PMID: 38325552 DOI: 10.1016/j.ajpath.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Chong
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihui Zou
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liyan Xiang
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Song
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanqi Miao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, and Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Wenzhou, China
| | - Xihua Yan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Xu
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gongxia Ling
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Institute for Lung Health, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Hailin Zhang
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jin-San Zhang
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, and Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Wenzhou, China.
| |
Collapse
|
4
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Norman O, Koivunen J, Kaarteenaho R, Salo AM, Mäki JM, Myllyharju J, Pihlajaniemi T, Heikkinen A. Contribution of collagen XIII to lung function and development of pulmonary fibrosis. BMJ Open Respir Res 2023; 10:e001850. [PMID: 38568728 PMCID: PMC10729248 DOI: 10.1136/bmjresp-2023-001850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Collagen XIII is a transmembrane collagen associated with neuromuscular junction development, and in humans its deficiency results in congenital myasthenic syndrome type 19 (CMS19), which leads to breathing difficulties. CMS19 patients usually have restricted lung capacity and one patient developed chronic lung disease. In single-cell RNA sequencing studies, collagen XIII has been identified as a marker for pulmonary lipofibroblasts, which have been implicated in the resolution of pulmonary fibrosis. METHODS We investigated the location and function of collagen XIII in the lung to understand the origin of pulmonary symptoms in human CMS19 patients. Additionally, we performed immunostainings on idiopathic pulmonary fibrosis (IPF) samples (N=5) and both normal and fibrotic mouse lung. To study whether the lack of collagen XIII predisposes to restrictive lung disease, we exposed Col13a1-modified mice to bleomycin-induced pulmonary fibrosis. RESULTS Apparently normal alveolar septum sections of IPF patients' lungs stained faintly for collagen XIII, and its expression was pinpointed to the septal fibroblasts in the mouse lung. Lung capacity was increased in mice lacking collagen XIII by over 10%. In IPF samples, collagen XIII was expressed by basal epithelial cells, hyperplastic alveolar epithelial cells and stromal cells in fibrotic areas, but the development of pulmonary fibrosis was unaffected in collagen XIII-deficient mice. CONCLUSIONS Changes in mouse lung function appear to represent a myasthenic manifestation of collagen XIII deficiency. We suggest that respiratory muscle myasthenia is the primary cause of the breathing problems suffered by CMS19 patients in addition to skeletal deformities. Induction of collagen XIII expression in the IPF patients' lungs warrants further studies to reveal collagen XIII-dependent disease mechanisms.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Center for Internal Medicine and Respiratory Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti M Salo
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of premature birth, imposing a significant and potentially life-long burden on patients and their families. Despite advances in our understanding of the mechanisms that contribute to patterns of lung injury and dysfunctional repair, current therapeutic strategies remain non-specific with limited success. Contemporary definitions of BPD continue to rely on clinician prescribed respiratory support requirements at specific time points. While these criteria may be helpful in broadly identifying infants at higher risk of adverse outcomes, they do not offer any precise information regarding the degree to which each compartment of the lung is affected. In this review we will outline the different pulmonary phenotypes of BPD and discuss important features in the pathogenesis, clinical presentation, and management of these frequently overlapping scenarios.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
7
|
Ko HS, Laiman V, Tsao PN, Chen CM, Chuang HC. Alteration in branching morphogenesis via YAP/TAZ in fibroblasts of fetal lungs in an LPS-induced inflammation model. Mol Med 2023; 29:16. [PMID: 36717779 PMCID: PMC9887856 DOI: 10.1186/s10020-023-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chorioamnionitis is a common cause of preterm birth and leads to serious complications in newborns. The objective of this study was to investigate the role of the Hippo signaling pathway in lung branching morphogenesis under a lipopolysaccharide (LPS)-induced inflammation model. MATERIALS AND METHODS IMR-90 cells and ex vivo fetal lungs were treated with 0, 10, 30, or 50 μg/ml LPS for 24 and 72 h. Supernatant levels of lactate dehydrogenase (LDH), interleukin (IL)-6, IL-8, Chemokine (C-X-C motif) ligand 1(CXCL1), branching and the surface area ratio, Yes-associated protein (YAP), transcription coactivator with PDZ-binding motif (TAZ), fibroblast growth factor 10 (FGF10), fibroblast growth factor receptor II (FGFR2), SRY-box transcription factor 2 (SOX2), SOX9, and sirtuin 1 (SIRT1) levels were examined. Differentially expressed genes in fetal lungs after LPS treatment were identified by RNA-sequencing. RESULTS LPS at 50 μg/ml increased IL-6 and IL-8 in IMR-90 cells and increased IL-6, CXCL1 and LDH in fetal lungs. The branching ratio significantly increased by LPS at 30 μg/ml compared to the control but the increased level had decreased by 50 μg/ml LPS exposure. Exposure to 50 μg/ml LPS increased phosphorylated (p)-YAP, p-YAP/YAP, and p-TAZ/TAZ in IMR-90 cells, whereas 50 μg/ml LPS decreased FGF10 and SOX2. Consistently, p-YAP/YAP and p-TAZ/TAZ were increased in fibronectin+ cells of fetal lungs. Moreover, results of RNA-sequencing in fetal lungs showed that SMAD, FGF, IκB phosphorylation, tissue remodeling and homeostasis was involved in branching morphogenesis following exposure to 50 μg/ml LPS. The p-SIRT1/SIRT1 ratio increased in IMR-90 cells by LPS treatment. CONCLUSIONS This study showed that regulation of the Hippo pathway in fibroblasts of fetal lungs was involved in branching morphogenesis under an inflammatory disease such as chorioamnionitis.
Collapse
Affiliation(s)
- Hung-Shuo Ko
- grid.412896.00000 0000 9337 0481School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- grid.412896.00000 0000 9337 0481International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.8570.a0000 0001 2152 4506Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Po-Nien Tsao
- grid.412094.a0000 0004 0572 7815Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Ming Chen
- grid.412897.10000 0004 0639 0994Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031 Taiwan ,grid.412896.00000 0000 9337 0481Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan ,grid.412896.00000 0000 9337 0481Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.7445.20000 0001 2113 8111National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Gong Z, Li Q, Shi J, Liu ET, Shultz LD, Ren G. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab 2022; 34:1960-1976.e9. [PMID: 36476935 PMCID: PMC9819197 DOI: 10.1016/j.cmet.2022.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
While the distant organ environment is known to support metastasis of primary tumors, its metabolic roles in this process remain underdetermined. Here, in breast cancer models, we found lung-resident mesenchymal cells (MCs) accumulating neutral lipids at the pre-metastatic stage. This was partially mediated by interleukin-1β (IL-1β)-induced hypoxia-inducible lipid droplet-associated (HILPDA) that subsequently represses adipose triglyceride lipase (ATGL) activity in lung MCs. MC-specific ablation of the ATGL or HILPDA genes in mice reinforced and reduced lung metastasis of breast cancer respectively, suggesting a metastasis-promoting effect of lipid-laden MCs. Mechanistically, lipid-laden MCs transported their lipids to tumor cells and natural killer (NK) cells via exosome-like vesicles, leading to heightened tumor cell survival and proliferation and NK cell dysfunction. Blockage of IL-1β, which was effective singly, improved the efficacy of adoptive NK cell immunotherapy in mitigating lung metastasis. Collectively, lung MCs metabolically regulate tumor cells and anti-tumor immunity to facilitate breast cancer lung metastasis.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
9
|
Gilfillan M, Bhandari V. Moving Bronchopulmonary Dysplasia Research from the Bedside to the Bench. Am J Physiol Lung Cell Mol Physiol 2022; 322:L804-L821. [PMID: 35437999 DOI: 10.1152/ajplung.00452.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although advances in the respiratory management of extremely preterm infants have led to improvements in survival, this progress has not yet extended to a reduction in the incidence of bronchopulmonary dysplasia (BPD). BPD is a complex multifactorial condition that primarily occurs due to disturbances in the regulation of normal pulmonary airspace and vascular development. Preterm birth and exposure to invasive mechanical ventilation also compromises large airway development, leading to significant morbidity and mortality. Although both predisposing and protective genetic and environmental factors have been frequently described in the clinical literature, these findings have had limited impact on the development of effective therapeutic strategies. This gap is likely because the molecular pathways that underlie these observations are yet not fully understood, limiting the ability of researchers to identify novel treatments that can preserve normal lung development and/or enhance cellular repair mechanisms. In this review article, we will outline various well-established clinical observations whilst identifying key knowledge gaps that need to be filled with carefully designed pre-clinical experiments. We will address these issues by discussing controversial topics in the pathophysiology, the pathology and the treatment of BPD, including an evaluation of existing animal models that have been used to answer important questions.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ
| |
Collapse
|
10
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Ren J, Lock MC, Darby JRT, Orgeig S, Holman SL, Quinn M, Seed M, Muhlhausler BS, McMillen IC, Morrison JL. PPARγ activation in late gestation does not promote surfactant maturation in the fetal sheep lung. J Dev Orig Health Dis 2021; 12:963-974. [PMID: 33407953 DOI: 10.1017/s204017442000135x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Respiratory distress syndrome results from inadequate functional pulmonary surfactant and is a significant cause of mortality in preterm infants. Surfactant is essential for regulating alveolar interfacial surface tension, and its synthesis by Type II alveolar epithelial cells is stimulated by leptin produced by pulmonary lipofibroblasts upon activation by peroxisome proliferator-activated receptor γ (PPARγ). As it is unknown whether PPARγ stimulation or direct leptin administration can stimulate surfactant synthesis before birth, we examined the effect of continuous fetal administration of either the PPARγ agonist, rosiglitazone (RGZ; Study 1) or leptin (Study 2) on surfactant protein maturation in the late gestation fetal sheep lung. We measured mRNA expression of genes involved in surfactant maturation and showed that RGZ treatment reduced mRNA expression of LPCAT1 (surfactant phospholipid synthesis) and LAMP3 (marker for lamellar bodies), but did not alter mRNA expression of PPARγ, surfactant proteins (SFTP-A, -B, -C, and -D), PCYT1A (surfactant phospholipid synthesis), ABCA3 (phospholipid transportation), or the PPARγ target genes SPHK-1 and PAI-1. Leptin infusion significantly increased the expression of PPARγ and IGF2 and decreased the expression of SFTP-B. However, mRNA expression of the majority of genes involved in surfactant synthesis was not affected. These results suggest a potential decreased capacity for surfactant phospholipid and protein production in the fetal lung after RGZ and leptin administration, respectively. Therefore, targeting PPARγ may not be a feasible mechanistic approach to promote lung maturation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Hospital for Sick Children, Toronto, ON, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Cancer Research Institute, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | | | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
12
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
13
|
Marega M, Chen C, Bellusci S. Cross-Talk Between Inflammation and Fibroblast Growth Factor 10 During Organogenesis and Pathogenesis: Lessons Learnt From the Lung and Other Organs. Front Cell Dev Biol 2021; 9:656883. [PMID: 34136479 PMCID: PMC8201783 DOI: 10.3389/fcell.2021.656883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
The adult human lung is constantly exposed to irritants like particulate matter, toxic chemical compounds, and biological agents (bacteria and viruses) present in the external environment. During breathing, these irritants travel through the bronchi and bronchioles to reach the deeper lung containing the alveoli, which constitute the minimal functional respiratory units. The local biological responses in the alveoli that follow introduction of irritants need to be tightly controlled in order to prevent a massive inflammatory response leading to loss of respiratory function. Cells, cytokines, chemokines and growth factors intervene collectively to re-establish tissue homeostasis, fight the aggression and replace the apoptotic/necrotic cells with healthy cells through proliferation and/or differentiation. Among the important growth factors at play during inflammation, members of the fibroblast growth factor (Fgf) family regulate the repair process. Fgf10 is known to be a key factor for organ morphogenesis and disease. Inflammation is influenced by Fgf10 but can also impact Fgf10 expression per se. Unfortunately, the connection between Fgf10 and inflammation in organogenesis and disease remains unclear. The aim of this review is to highlight the reported players between Fgf10 and inflammation with a focus on the lung and to propose new avenues of research.
Collapse
Affiliation(s)
- Manuela Marega
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Testoni G, Olmeda B, Duran J, López-Rodríguez E, Aguilera M, Hernández-Álvarez MI, Prats N, Pérez-Gil J, Guinovart JJ. Pulmonary glycogen deficiency as a new potential cause of respiratory distress syndrome. Hum Mol Genet 2020; 29:3554-3565. [PMID: 33219378 DOI: 10.1093/hmg/ddaa249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/14/2022] Open
Abstract
The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.
Collapse
Affiliation(s)
- Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Elena López-Rodríguez
- Institute of Functional Anatomy Wilhelm-Waldeyer-Haus, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - María Isabel Hernández-Álvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Jutant EM, Tu L, Humbert M, Guignabert C, Huertas A. The Thousand Faces of Leptin in the Lung. Chest 2020; 159:239-248. [PMID: 32795478 DOI: 10.1016/j.chest.2020.07.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Leptin is a pleotropic hormone known to regulate a wide range of systemic functions, from satiety to inflammation. Increasing evidence has shown that leptin and its receptor (ObR) are not only expressed in adipose tissue but also in several organs, including the lungs. Leptin levels were first believed to be elevated only in the lungs of obese patients, and leptin was suspected to be responsible for obesity-related lung complications. Aside from obesity, leptin displays many faces in the respiratory system, independently of body weight, as this cytokine-like hormone plays important physiological roles, from the embryogenic state to maturation of the lungs and the control of ventilation. The leptin-signaling pathway is also involved in immune modulation and cell proliferation, and its dysregulation can lead to the onset of lung diseases. This review article addresses the thousand faces of leptin and its signaling in the lungs under physiological conditions and in disease.
Collapse
Affiliation(s)
- Etienne-Marie Jutant
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
16
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
17
|
Targeted regulation of fibroblast state by CRISPR-mediated CEBPA expression. Respir Res 2019; 20:281. [PMID: 31829168 PMCID: PMC6907247 DOI: 10.1186/s12931-019-1253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Fibroblasts regulate tissue homeostasis and the balance between tissue repair and fibrosis. CCAAT/enhancer-binding protein alpha (CEBPA) is a key transcription factor that regulates adipogenesis. CEBPA has been shown to be essential for lung maturation, and deficiency of CEBPA expression leads to abnormal lung architecture. However, its specific role in lung fibroblast regulation and fibrosis has not yet been elucidated. Methods Lung fibroblast CEBPA expression, pro-fibrotic and lipofibroblast gene expression were assessed by qRT-PCR. CEBPA gain and loss of function experiments were carried out to evaluate the role of CEBPA in human lung fibroblast activation with and without TGF-β1 treatment. Adipogenesis assay was used to measure the adiopogenic potential of lung fibroblasts. Finally, CRISPR activation system was used to enhance endogenous CEBPA expression. Results We found that CEBPA gene expression is significantly decreased in IPF-derived fibroblasts compared to normal lung fibroblasts. CEBPA knockdown in normal human lung fibroblasts enhanced fibroblast pro-fibrotic activation and ECM production. CEBPA over-expression by transient transfection in IPF-derived fibroblasts significantly reduced pro-fibrotic gene expression, ECM deposition and αSMA expression and promoted the formation of lipid droplets measured by Oil Red O staining and increased lipofibroblast gene expression. Inhibition of the histone methyl transferase G9a enhanced CEBPA expression, and the anti-fibrotic effects of G9a inhibition were partially mediated by CEBPA expression. Finally, targeted CRISPR-mediated activation of CEBPA resulted in fibroblasts switching from fibrogenic to lipofibroblast states. Conclusions CEBPA expression is reduced in human IPF fibroblasts and its deficiency reduces adipogenic potential and promotes fibrogenic activation. CEBPA expression can be rescued via an inhibitor of epigenetic repression or by targeted CRISPR activation, leading to reduced fibrogenic activation.
Collapse
|
18
|
Mammoto A, Mammoto T. Vascular Niche in Lung Alveolar Development, Homeostasis, and Regeneration. Front Bioeng Biotechnol 2019; 7:318. [PMID: 31781555 PMCID: PMC6861452 DOI: 10.3389/fbioe.2019.00318] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells (ECs) constitute small capillary blood vessels and contribute to delivery of nutrients, oxygen and cellular components to the local tissues, as well as to removal of carbon dioxide and waste products from the tissues. Besides these fundamental functions, accumulating evidence indicates that capillary ECs form the vascular niche. In the vascular niche, ECs reciprocally crosstalk with resident cells such as epithelial cells, mesenchymal cells, and immune cells to regulate development, homeostasis, and regeneration in various organs. Capillary ECs supply paracrine factors, called angiocrine factors, to the adjacent cells in the niche and orchestrate these processes. Although the vascular niche is anatomically and functionally well-characterized in several organs such as bone marrow and neurons, the effects of endothelial signals on other resident cells and anatomy of the vascular niche in the lung have not been well-explored. This review discusses the role of alveolar capillary ECs in the vascular niche during development, homeostasis and regeneration.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [PMID: 31712723 DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
20
|
Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, Liu N, Kulur V, Yao C, Chen P, Liu Z, Stripp B, Tang J, Liang J, Noble PW, Jiang D. Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep 2019; 22:3625-3640. [PMID: 29590628 PMCID: PMC5908225 DOI: 10.1016/j.celrep.2018.03.010] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 01/15/2023] Open
Abstract
Fibroblast heterogeneity has long been recognized in mouse and human lungs, homeostasis, and disease states. However, there is no common consensus on fibroblast subtypes, lineages, biological properties, signaling, and plasticity, which severely hampers our understanding of the mechanisms of fibrosis. To comprehensively classify fibroblast populations in the lung using an unbiased approach, single-cell RNA sequencing was performed with mesenchymal preparations from either uninjured or bleomycin-treated mouse lungs. Single-cell transcriptome analyses classified and defined six mesenchymal cell types in normal lung and seven in fibrotic lung. Furthermore, delineation of their differentiation trajectory was achieved by a machine learning method. This collection of single-cell transcriptomes and the distinct classification of fibroblast subsets provide a new resource for understanding the fibroblast landscape and the roles of fibroblasts in fibrotic diseases.
Collapse
Affiliation(s)
- Ting Xie
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guanling Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Forough Taghavifar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yan Geng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ningshan Liu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vrishika Kulur
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhengqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Dianhua Jiang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
21
|
Kim YI, Nam IK, Lee DK, Bhandari S, Charton L, Kwak S, Lim JY, Hong K, Kim SJ, Lee JN, Kwon SW, So HS, Linka N, Park R, Choe SK. Slc25a17 acts as a peroxisomal coenzyme A transporter and regulates multiorgan development in zebrafish. J Cell Physiol 2019; 235:151-165. [PMID: 31187491 DOI: 10.1002/jcp.28954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023]
Abstract
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.
Collapse
Affiliation(s)
- Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - In-Koo Nam
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dong-Kyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sushil Bhandari
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Lennart Charton
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - SeongAe Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, South Korea
| | - Jae-Young Lim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - KwangHeum Hong
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Se-Jin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Joon No Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hong-Seob So
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Wonkwang Medical Institute, Wonkwang University School of Medicine, Iksan, South Korea
| |
Collapse
|
22
|
Correll KA, Edeen KE, Zemans RL, Redente EF, Serban KA, Curran-Everett D, Edelman BL, Mikels-Vigdal A, Mason RJ. Transitional human alveolar type II epithelial cells suppress extracellular matrix and growth factor gene expression in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2019; 317:L283-L294. [PMID: 31166130 DOI: 10.1152/ajplung.00337.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts. They also reduced fibroblast expression of hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7, KGF), and FGF10. When type II cells were cultured at an air-liquid interface to maintain high levels of surfactant protein expression, this inhibitory activity was lost. When type II cells were cultured on collagen-coated tissue culture wells to reduce surfactant protein expression further and increase the expression of some type I cell markers, the epithelial cells suppressed transforming growth factor-β (TGF-β)-stimulated ACTA2 and connective tissue growth factor (CTGF) expression in lung fibroblasts. Our results suggest that transitional alveolar type II cells and likely type I cells but not fully differentiated type II cells inhibit matrix and growth factor expression in fibroblasts. These cells express markers of both type II cells and type I cells. This is probably a normal homeostatic mechanism to inhibit the fibrotic response in the resolution phase of wound healing. Defining how transitional type II cells convert activated fibroblasts into a quiescent state and inhibit the effects of TGF-β may provide another approach to limiting the development of fibrosis after alveolar injury.
Collapse
Affiliation(s)
| | | | - Rachel L Zemans
- National Jewish Health, Denver, Colorado.,Division of Pulmonary and Critical Care Medicine/Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
23
|
Dobrinskikh E, Al-Juboori SI, Shabeka U, Reisz JA, Zheng C, Marwan AI. Heterogeneous Pulmonary Response After Tracheal Occlusion: Clues to Fetal Lung Growth. J Surg Res 2019; 239:242-252. [PMID: 30856517 DOI: 10.1016/j.jss.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Understanding inconsistent clinical outcomes in infants with severe congenital diaphragmatic hernia (CDH) after tracheal occlusion (TO) is a crucial step for advancing neonatal care. The objective of this study is to explore the heterogeneous airspace morphometry and the metabolic landscape changes in fetal lungs after TO. METHODS Fetal lungs on days 1 and 4 after TO were examined using mass spectrometry-based metabolomics, fluorescence lifetime imaging microscopy (FLIM), the number of airspaces, and tissue-to-airspace ratio (TAR). RESULTS Two morphometric areas were identified in TO lungs compared with controls (more small airspaces at day 1 and a higher number of enlarged airspaces at day 4). Global metabolomics analysis revealed a significant upregulation of glycolysis and a suppression of the tricarboxylic acid cycle in day 4 TO lungs compared with day 1 TO lungs. In addition, there was a significant increase in polyamines involved in cell growth and proliferation. Locally, FLIM analysis on day 1 TO lungs demonstrated two types of heterogeneous zones-similar to control and with increased oxidative phosphorylation. FLIM on day 4 TO lungs demonstrated appearance of zones with enlarged airspaces and a metabolic shift toward glycolysis, accompanied by a decrease in the FLIM "lipid-surfactant" signal. CONCLUSIONS In normal fetal lungs, we report a novel temporal pattern of varied morphometric and metabolic changes. Initially, there is formation of zones with small airspaces, followed by airspace enlargement over time. Metabolically day 1 TO lungs have zones with increased oxidative phosphorylation, whereas day 4 TO lungs have a shift toward glycolysis in the enlarged airspaces. Based on our observations, we speculate that the "best responders" to tracheal occlusion should have bigger lungs with small airspaces and normal surfactant production.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Saif I Al-Juboori
- Division of Pediatric Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Uladzimir Shabeka
- Division of Pediatric Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Ahmed I Marwan
- Division of Pediatric Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
24
|
Torday JS. The Singularity of nature. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 142:23-31. [DOI: 10.1016/j.pbiomolbio.2018.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
|
25
|
Modena DAO, Moreira MM, Paschoal IA, Pereira MC, Martins LC, Cazzo E, Chaim EA. Respiratory evaluation through volumetric capnography among grade III obese and eutrophic individuals: a comparative study. SAO PAULO MED J 2019; 137:177-183. [PMID: 29340500 PMCID: PMC9721226 DOI: 10.1590/1516-3180.2017.0085011017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/01/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Excess trunk body fat in obese individuals influences respiratory physiological function. The aims of this study were to compare volumetric capnography findings (VCap) between severely obese patients and normal-weight subjects and to assess whether there is any association between neck circumference (NC), waist-hip ratio (WHR) and VCap among grade III obese individuals. DESIGN AND SETTING Analytical observational case-matched cross-sectional study, University of Campinas. METHODS This cross-sectional study compared VCap variables between 60 stage III obese patients and 60 normal-weight individuals. RESULTS In comparison with the normal-weight group, obese patients presented higher alveolar minute volume (8.92 ± 4.94 versus 6.09 ± 2.2; P = < 0.0001), CO2 production (278 ± 91.0 versus 209 ± 60.23; P < 0.0001), expiratory tidal volume (807 ± 365 versus 624 ± 202; P = 0.005), CO2 production per breath (21.1 ± 9.7 versus 16.7 ± 6.16; P = 0.010) and peak expiratory flow (30.9 ± 11.9 versus 25.5 ± 9.13; P = 0.004). The end-expiratory CO2 (PetCO2) concentration (33.5 ± 4.88 versus 35.9 ± 3.79; P = 0.013) and the phase 3 slope were normalized according to expired tidal volume (0.02 ± 0.05 versus 0.03 ± 0.01; P = 0.049) were lower in the obese group. CONCLUSIONS The greater the NC was, the larger were the alveolar minute volume, anatomical dead space, CO2 production per minute and per breath and expiratory volume; whereas the smaller were the phase 2 slope (P2Slp), phase 3 slope (P3Slp) and pressure drop in the mouth during inspiration.
Collapse
Affiliation(s)
| | - Marcos Mello Moreira
- PT, PhD. Professor, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Ilma Aparecida Paschoal
- MD, PhD. Pneumologist and Professor, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Mônica Corso Pereira
- MD, PhD. Pneumologist and Professor, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Luiz Cláudio Martins
- MD, PhD. Pneumologist and Professor, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Everton Cazzo
- MD, PhD. Attending Physician and Assistant Lecturer, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Elinton Adami Chaim
- MD, PhD. General Surgeon and Professor, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| |
Collapse
|
26
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
27
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
28
|
Torday J, Miller WB. Terminal addition in a cellular world. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 135:1-10. [DOI: 10.1016/j.pbiomolbio.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 02/04/2023]
|
29
|
Torday JS. A diachronic evolutionary biologic perspective: Reconsidering the role of the eukaryotic unicell offers a 'Timeless' biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:103-106. [PMID: 29751939 DOI: 10.1016/j.pbiomolbio.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
Biology has remained descriptive since its formalization by Linnaeus in the 18th Century. Dobzhansky has challenged us to think mechanistically by stating that 'Nothing in Biology makes sense except in the light of evolution', but NeoDarwinian evolution remains untestable or refutable. The physicist Bohm has encouraged us to recognize that our perception of 'reality' is mediated by our evolved, subjective senses, though there is a coherent Implicate Order just out of reach. Only recently has a novel understanding of physiologic evolution based on cell-cell communication for embryonic development and phylogeny offered the opportunity to mechanistically merge Quantum Mechanics with Evolutionary Biology.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA, 1124 W.Carson Street, Torrance, CA 90502-2006, United States.
| |
Collapse
|
30
|
Abstract
The common relationships among a great variety of biological phenomena seem enigmatic when considered solely at the level of the phenotype. The deep connections in physiology, for example, between the effects of maternal food restriction in utero and the subsequent incidence of metabolic syndrome in offspring, the effects of microgravity on cell polarity and reproduction in yeast, stress effects on jellyfish, and their endless longevity, or the relationship between nutrient abundance and the colonial form in slime molds, are not apparent by phenotypic observation. Yet all of these phenomena are ultimately determined by the Target of Rapamycin (TOR) gene and its associated signaling complexes. In the same manner, the unfolding of evolutionary physiology can be explained by a comparable application of the common principle of cell-cell signaling extending across complex developmental and phylogenetic traits. It is asserted that a critical set of physiologic and phenotypic adaptations emanated from a few crucial, ancestral receptor gene duplications that enabled the successful terrestrial transition of vertebrates from water to land. In combination, mTor and its cognate receptors and a few crucial genetic duplications provide a mechanistic common denominator across a diverse spectrum of biological responses. The proper understanding of their purpose yields a unified concept of physiology and its evolutionary development. © 2018 American Physiological Society. Compr Physiol 8:761-771, 2018.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
31
|
Gauda EB, Master Z. Contribution of relative leptin and adiponectin deficiencies in premature infants to chronic intermittent hypoxia: Exploring a new hypothesis. Respir Physiol Neurobiol 2017; 256:119-127. [PMID: 29246449 DOI: 10.1016/j.resp.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Chronic intermittent hypoxia (CIH) occurs frequently in premature infants who have apnea of prematurity. Immaturity of the respiratory network from low central respiratory drive and the greater contribution of the carotid body on baseline breathing leads to respiratory instability in premature infants presenting as apnea and periodic breathing. During the 2nd week after birth, the smallest and the youngest premature infants have increased frequency of apnea and periodic breathing and associated oxygen desaturations that can persist for weeks after birth. CIH increases the production of reactive oxygen species that causes tissue damage. Premature infants have decreased capacity to scavenge reactive oxygen species. Oxidative injury is the cause of many of the co-morbidities that are seen in premature infants. In this review we discuss who low fat mass and the resulting relative deficiencies in leptin and adiponectin could contribute to the increase frequency of oxygen desaturations that occurs days after birth in the smallest and youngest premature infants. Leptin is a central respiratory stimulant and adiponectin protects the lung from vascular leak, oxidative injury and vascular remodeling.
Collapse
Affiliation(s)
- Estelle B Gauda
- The Hospital for Sick Children, Division of Neonatology, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada.
| | - Zankhana Master
- Department of Pediatrics, Division of Neonatology, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
32
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
33
|
Torday JS, Miller WB. The resolution of ambiguity as the basis for life: A cellular bridge between Western reductionism and Eastern holism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 131:288-297. [PMID: 28743585 DOI: 10.1016/j.pbiomolbio.2017.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Boundary conditions enable cellular life through negentropy, chemiosmosis, and homeostasis as identifiable First Principles of Physiology. Self-referential awareness of status arises from this organized state to sustain homeostatic imperatives. Preferred homeostatic status is dependent upon the appraisal of information and its communication. However, among living entities, sources of information and their dissemination are always imprecise. Consequently, living systems exist within an innate state of ambiguity. It is presented that cellular life and evolutionary development are a self-organizing cellular response to uncertainty in iterative conformity with its basal initiating parameters. Viewing the life circumstance in this manner permits a reasoned unification between Western rational reductionism and Eastern holism.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | | |
Collapse
|
34
|
El Agha E, Seeger W, Bellusci S. Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Dev Dyn 2016; 246:235-244. [PMID: 27783451 DOI: 10.1002/dvdy.24468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of polypeptides that are involved in many biological processes, ranging from prenatal cell-fate specification and organogenesis to hormonal and metabolic regulation in postnatal life. During embryonic development, these growth factors are important mediators of the crosstalk among ectoderm-, mesoderm-, and endoderm-derived cells, and they instruct the spatial and temporal growth of organs and tissues such as the brain, bone, lung, gut, and others. The involvement of FGFs in postnatal lung homeostasis is a growing field, and there is emerging literature about their roles in lung pathophysiology. In this review, the involvement of FGF signaling in a wide array of lung diseases will be summarized. Developmental Dynamics 246:235-244, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
35
|
Zhu L, Xu ZL, Cheng YY. [Research advances in association between pediatric obesity and bronchial asthma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:671-6. [PMID: 27412555 PMCID: PMC7388998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 03/30/2024]
Abstract
This review article introduces the research advances in the pathophysiological mechanism of obesity in inducing pediatric bronchial asthma, including the role of leptin in obesity and asthma, the association of plasminogen activator inhibitor-1 with obesity and asthma, the association of adiponectin and interleukins with obesity and asthma, and the influence of neurotransmitter on asthma. In particular, this article introduces the latest research on the inhibition of allergic asthma through targeting at the nociceptor of dorsal root ganglion and blocking the signaling pathway of the nociceptor.
Collapse
Affiliation(s)
- Lian Zhu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | | | | |
Collapse
|
36
|
Zhu L, Xu ZL, Cheng YY. [Research advances in association between pediatric obesity and bronchial asthma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:671-676. [PMID: 27412555 PMCID: PMC7388998 DOI: 10.7499/j.issn.1008-8830.2016.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
This review article introduces the research advances in the pathophysiological mechanism of obesity in inducing pediatric bronchial asthma, including the role of leptin in obesity and asthma, the association of plasminogen activator inhibitor-1 with obesity and asthma, the association of adiponectin and interleukins with obesity and asthma, and the influence of neurotransmitter on asthma. In particular, this article introduces the latest research on the inhibition of allergic asthma through targeting at the nociceptor of dorsal root ganglion and blocking the signaling pathway of the nociceptor.
Collapse
Affiliation(s)
- Lian Zhu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | | | | |
Collapse
|
37
|
Torday JS. Life Is Simple-Biologic Complexity Is an Epiphenomenon. BIOLOGY 2016; 5:E17. [PMID: 27128951 PMCID: PMC4929531 DOI: 10.3390/biology5020017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a "game changer", mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology.
Collapse
Affiliation(s)
- John S Torday
- Evolutionary Medicine Program, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Heterochrony as Diachronically Modified Cell-Cell Interactions. BIOLOGY 2016; 5:biology5010004. [PMID: 26784244 PMCID: PMC4810161 DOI: 10.3390/biology5010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022]
Abstract
Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR) gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny.
Collapse
|
39
|
Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen Use in Neonatal Care: A Two-edged Sword. Front Pediatr 2016; 4:143. [PMID: 28119904 PMCID: PMC5220090 DOI: 10.3389/fped.2016.00143] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
In the neonatal period, the clinical use of oxygen should be taken into consideration for its beneficial and toxicity effects. Oxygen toxicity is due to the development of reactive oxygen species (ROS) such as OH• that is one of the strongest oxidants in nature. Of note, generation of ROS is a normal occurrence in human and it is involved in a myriad of physiological reactions. Anyway an imbalance between production of oxidant species and antioxidant defenses, called oxidative stress, could affect various aspect of organisms' physiology and it could determine pathological consequences to living beings. Neonatal oxidative stress is essentially due to decreased antioxidants, increased ROS, or both. Studies have demonstrated that antioxidant capacity is lower in preterm newborns than term babies. This well-known deficiency of antioxidant factors is only a piece of a cohort of factors, which can be involved in the neonatal oxidative stress and the increased production of ROS may be a main factor. Mechanisms of ROS generation are: mitochondrial respiratory chain, free iron and Fenton reaction, inflammation, hypoxia and/or ischemia, reperfusion, and hyperoxia. Oxidative stress following hyperoxia has been recognized to be responsible for lung, central nervous system, retina, red blood cell injuries, and possibly generalized tissue damage. When supplemental oxygen is needed for care, it would be prudent to avoid changes and fluctuations in SpO2. The definition of the safest level of oxygen saturations in the neonate remains an area of active research. Currently, on the basis of the published evidences, the most suitable approach would be to set alarm limits between 90 and 95%. It should allow to avoid SpO2 values associated with potential hypoxia and/or hyperoxia. Although the usefulness of antioxidant protection in the neonatal period is still under investigation, the risk of tissue damage due to oxidative stress in perinatal period should not be underestimated.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Molecular and Developmental Medicine, General Hospital "Santa Maria alle Scotte", University of Siena , Siena , Italy
| | - Carlotta Bracciali
- Department of Molecular and Developmental Medicine, General Hospital "Santa Maria alle Scotte", University of Siena , Siena , Italy
| | - Nicola Di Virgilio
- Department of Molecular and Developmental Medicine, General Hospital "Santa Maria alle Scotte", University of Siena , Siena , Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, General Hospital "Santa Maria alle Scotte", University of Siena , Siena , Italy
| |
Collapse
|