1
|
Ojaghi M, Pamenter ME. Hypoxia impairs blood glucose homeostasis in naked mole-rat adult subordinates but not queens. J Exp Biol 2024; 227:jeb247537. [PMID: 38680085 PMCID: PMC11166464 DOI: 10.1242/jeb.247537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and metabolize only carbohydrates in hypoxia. Glucose is the primary building block of dietary carbohydrates, but how blood glucose is regulated during hypoxia has not been explored in NMRs. We hypothesized that NMRs mobilize glucose stores to support anaerobic energy metabolism in hypoxia. To test this, we treated newborn, juvenile and adult (subordinate and queen) NMRs in normoxia (21% O2) or hypoxia (7, 5 or 3% O2), while measuring metabolic rate, body temperature and blood [glucose]. We also challenged animals with glucose, insulin or insulin-like growth factor-1 (IGF-1) injections and measured the rate of glucose clearance in normoxia and hypoxia. We found that: (1) blood [glucose] increases in moderate hypoxia in queens and pups, but only in severe hypoxia in adult subordinates and juveniles; (2) glucose tolerance is similar between developmental stages in normoxia, but glucose clearance times are 2- to 3-fold longer in juveniles and subordinates than in queens or pups in hypoxia; and (3) reoxygenation accelerates glucose clearance in hypoxic subordinate adults. Mechanistically, (4) insulin and IGF-1 reduce blood [glucose] in subordinates in both normoxia but only IGF-1 impacts blood [glucose] in hypoxic queens. Our results indicate that insulin signaling is impaired by hypoxia in NMRs, but that queens utilize IGF-1 to overcome this limitation and effectively regulate blood glucose in hypoxia. This suggests that sexual maturation impacts blood glucose handling in hypoxic NMR queens, which may allow queens to spend longer periods of time in hypoxic nest chambers.
Collapse
Affiliation(s)
- Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
2
|
Wong HS, Freeman DA, Zhang Y. Not just a cousin of the naked mole-rat: Damaraland mole-rats offer unique insights into biomedicine. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110772. [PMID: 35710053 PMCID: PMC10155858 DOI: 10.1016/j.cbpb.2022.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Evolutionary medicine has been a fast-growing field of biological research in the past decade. One of the strengths of evolutionary medicine is to use non-traditional model organisms which often exhibit unusual characteristics shaped by natural selection. Studying these unusual traits could provide valuable insight to understand biomedical questions, since natural selection likely discovers solutions to those complex biological problems. Because of many unusual traits, the naked mole-rat (NMR) has attracted attention from different research areas such as aging, cancer, and hypoxia- and hypercapnia-related disorders. However, such uniqueness of NMR physiology may sometimes make the translational study to human research difficult. Damaraland mole-rat (DMR) shares multiple characteristics in common with NMR, but shows higher degree of similarity with human in some aspects of their physiology. Research on DMR could therefore offer alternative insights and might bridge the gap between experimental findings from NMR to human biomedical research. In this review, we discuss studies of DMR as an extension of the current set of model organisms to help better understand different aspects of human biology and disease. We hope to encourage researchers to consider studying DMR together with NMR. By studying these two similar but evolutionarily distinct species, we can harvest the power of convergent evolution and avoid the potential biased conclusions based on life-history of a single species.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Nine Square Therapeutics, South San Francisco, CA 94080, United States of America.
| | - David A Freeman
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States of America
| | - Yufeng Zhang
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|
3
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
Affiliation(s)
| | - Vincent Amoroso
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Blazej Andziak
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | | | - Jorge Azpurua
- Department of AnesthesiologyStony Brook University101 Nicolls RoadStony BrookNY11794U.S.A.
| | - Alison J. Barker
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoria0002South Africa
| | - Miguel A. Brieño‐Enríquez
- Department of Obstetrics, Gynecology & Reproductive MedicineMagee‐Womens Research Institute204 Craft AvenuePittsburghPA15213U.S.A.
| | - Gary N. Bronner
- Department Biological SciencesRondeboschCape Town7701South Africa
| | - Clive Coen
- Reproductive Neurobiology, Division of Women's HealthSchool of Medicine, King's College LondonWestminster Bridge RoadLondonSE1 7EHU.K.
| | - Martha A. Delaney
- Zoological Pathology ProgramUniversity of Illinois3505 Veterinary Medicine Basic Sciences Building, 2001 S Lincoln AvenueUrbanaIL6180U.S.A.
| | - Christine M. Dengler‐Crish
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272U.S.A.
| | - Yael H. Edrey
- Northwest Vista College3535 N. Ellison DriveSan AntonioTX78251U.S.A.
| | - Chris G. Faulkes
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSU.K.
| | - Daniel Frankel
- School of EngineeringNewcastle UniversityMerz CourtNewcastle Upon TyneNE1 7RUU.K.
| | - Gerard Friedlander
- Université Paris DescartesFaculté de Médecine12 Rue de l'École de MédecineParis5006France
| | - Patrick A. Gibney
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Vera Gorbunova
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Christopher Hine
- Cleveland ClinicLerner Research Institute9500 Euclid AvenueClevelandOH44195U.S.A.
| | - Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga3359 Mississauga Road NorthMississaugaONL5L 1C6Canada
| | | | - Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Cynthia Kenyon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Walid T. Khaled
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Joseph Kissil
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Samantha Lagestee
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - John Larson
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Amanda Lauer
- Department of OtolaryngologyJohns Hopkins School of MedicineBaltimoreMD21205U.S.A.
| | - Leonid A. Lavrenchenko
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Angela Lee
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Jonathan B. Levitt
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Gary R. Lewin
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | | | - TzuHua D. Lin
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Matthew J. Mason
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Dan McCloskey
- College of Staten Island in the City University of New York2800 Victory BlvdStaten IslandNY10314U.S.A.
| | - Mary McMahon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Vikram Narayan
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Kazuo Okanoya
- Department of Life SciencesThe University of Tokyo7‐3‐1 HongoTokyo153‐8902Japan
| | | | - Thomas J. Park
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Ned J. Place
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Katie Podshivalova
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Sonja J. Pyott
- Groningen Department of OtorhinolaryngologyUniversity Medical CenterPostbus 30.001GroningenRB9700The Netherlands
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University Hospital CologneJoseph‐Stelzmann‐Street 26Cologne50931Germany
| | - J. Graham Ruby
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center4939 Charles Katz Dr.San AntonioTX78229U.S.A.
| | - Joseph Santos‐Sacchi
- Department of NeuroscienceYale University School of Medicine200 South Frontage Road, SHM C‐303New HavenCT06510U.S.A.
| | - Diana K. Sarko
- Department of AnatomySchool of Medicine, Southern Illinois University975 S. NormalCarbondaleIL62901U.S.A.
| | - Andrei Seluanov
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Alyssa Shepard
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Megan Smith
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kenneth B. Storey
- Department of BiologyCarleton University1125 Colonel By DriveOttawaONK1S 5B6Canada
| | - Xiao Tian
- Department of Genetics – Blavatnik InstituteHarvard Medical School77 Avenue Louis PasteurBostonMA02115U.S.A.
| | - Emily N. Vice
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Mélanie Viltard
- Fondation pour la recherche en PhysiologieUniversité Catholique de LouvainClos Chapelle‐aux‐Champs 30Woluwe‐saint Lambert1200Belgium
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Ewa Wywial
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Masanori Yamakawa
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Elena D. Zemlemerova
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Michael Zions
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Ewan St. John Smith
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| |
Collapse
|
4
|
The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:221-254. [PMID: 34424518 DOI: 10.1007/978-3-030-65943-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The subterranean-dwelling naked mole-rat (Heterocephalus glaber) is an extremophilic rodent, able to thrive in the harsh underground conditions of sub-Saharan Northeast Africa. This pelage-free mammal exhibits numerous unusual ecophysiological features including pronounced tolerance of thermolability, hypoxia, hypercapnia and noxious substances. As a mammal, the naked mole-rat provides a proof-of-concept that age-related changes in physiology are avoidable. At ages far beyond their expected lifespans given both their body size and/or the timing of early developmental milestones, naked mole-rats fail to exhibit meaningful changes in physiological health or demographic mortality. Lack of physiological deterioration with age is also evident in lean and fat mass, bone quality, and reproductive capacity. Rather, regardless of age, under basal conditions naked mole-rats appear to "idle on low" with their "shields up" as is manifested by low body temperature, metabolic rate, cardiac output and kidney concentrating ability, enabling better protection of organs and cellular function. When needed, they can nevertheless ramp up these functions, increasing cardiac output and metabolism 2-5 fold. Here we review many unusual aspects of their physiology and examine how these attributes facilitate both tolerance of the diverse suite of hostile conditions encountered in their natural milieu as well as contribute to their extraordinary longevity and resistance to common, age-related chronic diseases.
Collapse
|
5
|
Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nat Commun 2021; 12:4829. [PMID: 34376643 PMCID: PMC8355239 DOI: 10.1038/s41467-021-25025-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.
Collapse
|
6
|
A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:271-286. [PMID: 34424520 DOI: 10.1007/978-3-030-65943-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The naked mole-rat's (Heterocephalus glaber) social and subterranean lifestyle imposes several evolutionary pressures which have shaped its physiology. One example is low oxygen availability in a crowded burrow system which the naked mole-rat has adapted to via several mechanisms. Here we describe a metabolic rewiring which enables the naked mole-rat to switch substrates in glycolysis from glucose to fructose thereby circumventing feedback inhibition at phosphofructokinase (PFK1) to allow unrestrained glycolytic flux and ATP supply under hypoxia. Preferential shift to fructose metabolism occurs in other species and biological systems as a means to provide fuel, water or like in the naked mole-rat, protection in a low oxygen environment. We review fructose metabolism through an ecological lens and suggest that the metabolic adaptation to utilize fructose in the naked mole-rat may have evolved to simultaneously combat multiple challenges posed by its hostile environment.
Collapse
|
7
|
Du J, He Z, Xu M, Qu X, Cui J, Zhang S, Zhang S, Li H, Yu Z. Brown Adipose Tissue Rescues Bone Loss Induced by Cold Exposure. Front Endocrinol (Lausanne) 2021; 12:778019. [PMID: 35126308 PMCID: PMC8811040 DOI: 10.3389/fendo.2021.778019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cold temperature activates the sympathetic nervous system (SNS) to induce bone loss by altering bone remodeling. Brown adipose tissue (BAT) is influenced by the SNS in cold environments. Many studies have confirmed a positive relationship between BAT volume and bone mass, but the influence and mechanism of BAT on bone in vivo and in vitro is still unknown. Two-month-old C57/BL6j male mice were exposed to cold temperature (4°C) to induce BAT generation. BAT volume, bone remodeling and microstructure were assessed after 1 day, 14 days and 28 days of cold exposure. CTX-1, P1NP and IL-6 levels were detected in the serum by ELISA. To determine the effect of BAT on osteoclasts and osteoblasts in vitro, brown adipocyte conditional medium (BAT CM) was collected and added to the differentiation medium of bone marrow-derived macrophages (BMMs) and bone marrow mesenchymal stem cells (BMSCs). Micro-CT results showed that the bone volume fraction (BV/TV, %) significantly decreased after 14 days of exposure to cold temperature but recovered after 28 days. Double labeling and TRAP staining in vivo showed that bone remodeling was altered during cold exposure. BAT volume enlarged after 14 days of cold stimulation, and IL-6 increased. BAT CM promoted BMSC mineralization by increasing osteocalcin (Ocn), RUNX family transcription factor 2 (Runx2) and alkaline phosphatase (Alp) expression, while bone absorption was inhibited by BAT CM. In conclusion, restoration of bone volume after cold exposure may be attributed to enlarged BAT. BAT has a beneficial effect on bone mass by facilitating osteogenesis and suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Arthritis Clinic and Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhifeng Yu, ; Hanjun Li,
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhifeng Yu, ; Hanjun Li,
| |
Collapse
|
8
|
Translational control in the naked mole-rat as a model highly resistant to cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188455. [PMID: 33148499 DOI: 10.1016/j.bbcan.2020.188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of mRNA translation is involved in the onset and progression of different types of cancer. To gain insight into novel genetic strategies to avoid this malady, we reviewed the available genomic, transcriptomic, and proteomic data about the translational machinery from the naked-mole rat (NMR) Heterocephalus glaber, a new model of study that exhibits high resistance to cancer. The principal features that might confer cancer resistance are 28S rRNA fragmentation, RPL26 and eIF4G overexpression, global downregulation of mTOR pathway, specific amino acid residues in RAPTOR (P908) and RICTOR (V1695), and the absence of 4E-BP3. These features are not only associated with cancer but also might couple longevity and adaptation to hypoxia. We propose that the regulation of translation is among the strategies endowing NMR cancer resistance.
Collapse
|
9
|
Ambar N, Eshar D, Shrader TC, Beaufrère H. Anesthetic Effects of Intramuscular Alfaxalone-Ketamine in Naked Mole Rats ( Heterocephalus glaber). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:539-545. [PMID: 32680579 DOI: 10.30802/aalas-jaalas-19-000170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, adult intact male and female (n = 10) naked mole rats (Heterocephalus glaber) were anesthetized by using a combination of ketamine (20 mg/kg IM), and alfaxalone (4.0 mg/kg IM). Induction and recovery times were recorded. Vital parameters, including heart rate, respiratory rate, and reflexes, were monitored every 5 min during the anesthetic period. Anesthetic induction was smooth and rapid. Induction time was significantly longer in male rats (median, 325 s; range, 180 to 385 s) than in females (median, 145 s; range, 118 to 180 s). In addition, overall duration of loss of righting reflex was shorter in male mole rats (median, 50 min; range, 36 to 65 min) than females (median, 70 min; range, 60 to 85 min). Males largely had intact withdrawal reflexes, whereas females showed variable loss of both forelimb and hindlimb withdrawal reflexes. Neither recovery time (mean ± 1 SD, 16 ± 13 min) nor vital parameters differed between sexes. None of animals showed any anesthesia-related adverse responses. According to these findings, intramuscular AK is a safe and effective protocol that provides brief, light anesthesia in male naked mole rats and deeper anesthesia in females. We recommend adding analgesics when this AK protocol is used for pain-inducing or invasive procedures, and further studies evaluating higher doses and different combinations are indicated.
Collapse
Affiliation(s)
- Neta Ambar
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas;,
| | - David Eshar
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | | | - Hugues Beaufrère
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM. Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology (Bethesda) 2020; 35:96-111. [DOI: 10.1152/physiol.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.
Collapse
Affiliation(s)
| | | | - Patrick A. Gibney
- Calico Life Sciences LLC, South San Francisco, California
- Department of Food Science, College of Agriculture and Life Sciences, Stocking Hall, Cornell University, Ithaca, New York
| | - Vikram Narayan
- Calico Life Sciences LLC, South San Francisco, California
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California
| | - Tzuhua D. Lin
- Calico Life Sciences LLC, South San Francisco, California
| | - Holly M. Brown-Borg
- Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
11
|
Tombline G, Gigas J, Macoretta N, Zacher M, Emmrich S, Zhao Y, Seluanov A, Gorbunova V. Proteomics of Long-Lived Mammals. Proteomics 2020; 20:e1800416. [PMID: 31737995 PMCID: PMC7117992 DOI: 10.1002/pmic.201800416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Mammalian species differ up to 100-fold in their aging rates and maximum lifespans. Long-lived mammals appear to possess traits that extend lifespan and healthspan. Genomic analyses have not revealed a single pro-longevity function that would account for all longevity effects. In contrast, it appears that pro-longevity mechanisms may be complex traits afforded by connections between metabolism and protein functions that are impossible to predict by genomic approaches alone. Thus, metabolomics and proteomics studies will be required to understand the mechanisms of longevity. Several examples are reviewed that demonstrate the naked mole rat (NMR) shows unique proteomic signatures that contribute to longevity by overcoming several hallmarks of aging. SIRT6 is also discussed as an example of a protein that evolves enhanced enzymatic function in long-lived species. Finally, it is shown that several longevity-related proteins such as Cip1/p21, FOXO3, TOP2A, AKT1, RICTOR, INSR, and SIRT6 harbor posttranslational modification (PTM) sites that preferentially appear in either short- or long-lived species and provide examples of crosstalk between PTM sites. Prospects of enhancing lifespan and healthspan of humans by altering metabolism and proteoforms with drugs that mimic changes observed in long-lived species are discussed.
Collapse
Affiliation(s)
- Gregory Tombline
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Jonathan Gigas
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Nicholas Macoretta
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Max Zacher
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Stephan Emmrich
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Yang Zhao
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Andrei Seluanov
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| |
Collapse
|
12
|
Page MM, Schuster EF, Mudaliar M, Herzyk P, Withers DJ, Selman C. Common and unique transcriptional responses to dietary restriction and loss of insulin receptor substrate 1 (IRS1) in mice. Aging (Albany NY) 2019; 10:1027-1052. [PMID: 29779018 PMCID: PMC5990393 DOI: 10.18632/aging.101446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.
Collapse
Affiliation(s)
- Melissa M Page
- Institute des Sciences de la Vie, Faculty of Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eugene F Schuster
- The Breast Cancer Now Toby Robins Research Centre The Institute of Cancer Research, London, UK
| | - Manikhandan Mudaliar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Glasgow Molecular Pathology Node, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Cerevance, Cambridge Science Park, Cambridge, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Campus, Bearsden, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Kumar Chaudhary M, Rizvi SI. Invertebrate and vertebrate models in aging research. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:114-121. [PMID: 30837761 DOI: 10.5507/bp.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Therapeutic interventions that can delay age associated diseases and ensure a longer health-span is a major goal of aging research. Consequent to understanding that aging is a modifiable trait, a large number of studies are currently being undertaken to elucidate the mechanism(s) of the aging process. Research on human aging and longevity is difficult, due to longer time frame, ethical concerns and environmental variables. Most of the present day understanding about the aging process comes through studies conducted on model organisms. These provide suitable platforms for understanding underlying mechanism(s) which control aging and have led to major discoveries that emphasize the evolutionarily conserved molecular pathways as key players that respond to extra and intracellular signals. This is a review of various invertebrate and vertebrate models including yeast, Drosophila, C. elegans, rodents, naked mole rat, and birds, currently used in aging research with emphasis on how well they can mimic aging in higher animals and humans.
Collapse
Affiliation(s)
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
14
|
Lewis KN, Rubinstein ND, Buffenstein R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence. GeroScience 2018; 40:105-121. [PMID: 29679203 PMCID: PMC5964061 DOI: 10.1007/s11357-018-0014-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Mouse-sized naked mole-rats (Heterocephalus glaber), unlike other mammals, do not conform to Gompertzian laws of age-related mortality; adults show no age-related change in mortality risk. Moreover, we observe negligible hallmarks of aging with well-maintained physiological and molecular functions, commonly altered with age in other species. We questioned whether naked mole-rats, living an order of magnitude longer than laboratory mice, exhibit different plasma metabolite profiles, which could then highlight novel mechanisms or targets involved in disease and longevity. Using a comprehensive, unbiased metabolomics screen, we observe striking inter-species differences in amino acid, peptide, and lipid metabolites. Low circulating levels of specific amino acids, particularly those linked to the methionine pathway, resemble those observed during the fasting period at late torpor in hibernating ground squirrels and those seen in longer-lived methionine-restricted rats. These data also concur with metabolome reports on long-lived mutant mice, including the Ames dwarf mice and calorically restricted mice, as well as fruit flies, and even show similarities to circulating metabolite differences observed in young human adults when compared to older humans. During evolution, some of these beneficial nutrient/stress response pathways may have been positively selected in the naked mole-rat. These observations suggest that interventions that modify the aging metabolomic profile to a more youthful one may enable people to lead healthier and longer lives.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | - Nimrod D Rubinstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | | |
Collapse
|
15
|
Kowalska M, Rupik W. Ultrastructure of endocrine pancreatic granules during pancreatic differentiation in the grass snake, Natrix natrix L. (Lepidosauria, Serpentes). J Morphol 2017; 279:330-348. [PMID: 29148072 DOI: 10.1002/jmor.20775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
Abstract
We used transmission electron microscopy to study the pancreatic main endocrine cell types in the embryos of the grass snake Natrix natrix L. with focus on the morphology of their secretory granules. The embryonic endocrine part of the pancreas in the grass snake contains four main types of cells (A, B, D, and PP), which is similar to other vertebrates. The B granules contained a moderately electron-dense crystalline-like core that was polygonal in shape and an electron-dense outer zone. The A granules had a spherical electron-dense eccentrically located core and a moderately electron-dense outer zone. The D granules were filled with a moderately electron-dense non-homogeneous content. The PP granules had a spherical electron-dense core with an electron translucent outer zone. Within the main types of granules (A, B, D, PP), different morphological subtypes were recognized that indicated their maturity, which may be related to the different content of these granules during the process of maturation. The sequence of pancreatic endocrine cell differentiation in grass snake embryos differs from that in many vertebrates. In the grass snake embryos, the B and D cells differentiated earlier than A and PP cells. The different sequence of endocrine cell differentiation in snakes and other vertebrates has been related to phylogenetic position and nutrition during early developmental stages.
Collapse
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St, Katowice, 40-007, Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St, Katowice, 40-007, Poland
| |
Collapse
|
16
|
Lewis KN, Soifer I, Melamud E, Roy M, McIsaac RS, Hibbs M, Buffenstein R. Unraveling the message: insights into comparative genomics of the naked mole-rat. Mamm Genome 2016; 27:259-78. [PMID: 27364349 PMCID: PMC4935753 DOI: 10.1007/s00335-016-9648-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Animals have evolved to survive, and even thrive, in different environments. Genetic adaptations may have indirectly created phenotypes that also resulted in a longer lifespan. One example of this phenomenon is the preternaturally long-lived naked mole-rat. This strictly subterranean rodent tolerates hypoxia, hypercapnia, and soil-based toxins. Naked mole-rats also exhibit pronounced resistance to cancer and an attenuated decline of many physiological characteristics that often decline as mammals age. Elucidating mechanisms that give rise to their unique phenotypes will lead to better understanding of subterranean ecophysiology and biology of aging. Comparative genomics could be a useful tool in this regard. Since the publication of a naked mole-rat genome assembly in 2011, analyses of genomic and transcriptomic data have enabled a clearer understanding of mole-rat evolutionary history and suggested molecular pathways (e.g., NRF2-signaling activation and DNA damage repair mechanisms) that may explain the extraordinarily longevity and unique health traits of this species. However, careful scrutiny and re-analysis suggest that some identified features result from incorrect or imprecise annotation and assembly of the naked mole-rat genome: in addition, some of these conclusions (e.g., genes involved in cancer resistance and hairlessness) are rejected when the analysis includes additional, more closely related species. We describe how the combination of better study design, improved genomic sequencing techniques, and new bioinformatic and data analytical tools will improve comparative genomics and ultimately bridge the gap between traditional model and nonmodel organisms.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Ilya Soifer
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Eugene Melamud
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Margaret Roy
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - R Scott McIsaac
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Matthew Hibbs
- Computer Science Department, Trinity University, San Antonio, TX, 78212, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
17
|
Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 2016; 3:283-303. [PMID: 25689319 DOI: 10.1146/annurev-animal-022114-110829] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.
Collapse
|
18
|
Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture. Proc Natl Acad Sci U S A 2015; 112:E6185-94. [PMID: 26494286 DOI: 10.1073/pnas.1519040112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.
Collapse
|
19
|
Buffenstein R, Nelson OL, Corbit KC. Questioning the preclinical paradigm: natural, extreme biology as an alternative discovery platform. Aging (Albany NY) 2015; 6:913-20. [PMID: 25553771 PMCID: PMC4276785 DOI: 10.18632/aging.100704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pace at which science continues to advance is astonishing. From cosmology, microprocessors, structural engineering, and DNA sequencing our lives are continually affected by science-based technology. However, progress in treating human ailments, especially age-related conditions such as cancer and Alzheimer's disease, moves at a relative snail's pace. Given that the amount of investment is not disproportionately low, one has to question why our hopes for the development of efficacious drugs for such grievous illnesses have been frustratingly unrealized. Here we discuss one aspect of drug development –rodent models – and propose an alternative approach to discovery research rooted in evolutionary experimentation. Our goal is to accelerate the conversation around how we can move towards more translative preclinical work.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, TX University of Texas Health Science Center at San Antonio, TX USA
| | - O Lynne Nelson
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 9916, USA
| | - Kevin C Corbit
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA 91360, USA
| |
Collapse
|
20
|
Triplett JC, Swomley A, Kirk J, Lewis K, Orr M, Rodriguez K, Cai J, Klein JB, Buffenstein R, Butterfield DA. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat. J Neurochem 2015; 134:538-50. [PMID: 25940666 DOI: 10.1111/jnc.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Swomley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jessime Kirk
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Katilyn Lewis
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Miranda Orr
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Karl Rodriguez
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Rochelle Buffenstein
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Orr ME, Garbarino VR, Salinas A, Buffenstein R. Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent. Neurobiol Aging 2015; 36:1496-504. [PMID: 25576082 PMCID: PMC4869521 DOI: 10.1016/j.neurobiolaging.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 12/27/2022]
Abstract
Tau protein is primarily expressed in neuronal axons and modulates microtubule stability. Tau phosphorylation, aggregation, and subcellular mislocalization coincide with neurodegeneration in numerous diseases, including Alzheimer's disease (AD). During AD pathogenesis, tau misprocessing accompanies Aß accumulation; however, AD animal models, despite elevated Aß, fail to develop tauopathy. To assess whether lack of tau pathology is linked to short life span common to most AD models, we examined tau processing in extraordinarily long-lived, mouse-sized naked mole-rats (NMRs; approximately 32 years), which express appreciable levels of Aß throughout life. We found that NMRs, like other mammals, display highest tau phosphorylation during brain development. Although tau phosphorylation decreases with aging, unexpectedly adult NMRs have higher levels than transgenic mice overexpressing mutant human tau. However, in sharp contrast with the somatodendritic accumulation of misprocessed tau in the transgenic mice, NMRs maintain axonal tau localization. Intriguingly, the adult NMR tau protein is 88 kDa, much larger than 45-68 kDa tau expressed in other mammals. We propose that this 88 kDa tau protein may offer exceptional microtubule stability and neuroprotection against lifelong, elevated Aß.
Collapse
Affiliation(s)
- Miranda E Orr
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Valentina R Garbarino
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Angelica Salinas
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rochelle Buffenstein
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
22
|
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH, Yao X, Ma S, Yang L, Lee SG, Kim EB, Bronson RT, Šumbera R, Buffenstein R, Zhou X, Krogh A, Park TJ, Zhang G, Wang J, Gladyshev VN. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 2014; 8:1354-64. [PMID: 25176646 PMCID: PMC4350764 DOI: 10.1016/j.celrep.2014.07.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/11/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.
Collapse
Affiliation(s)
- Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Inge Seim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | | | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anton A Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lan Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun Bae Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Roderick T Bronson
- Rodent Histopathology Laboratory, Harvard Medical School, Boston, MA 02115, USA
| | - Radim Šumbera
- University of South Bohemia, Faculty of Science, Ceske Budejovice 37005, Czech Republic
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Xin Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Anders Krogh
- Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark; King Abdulaziz University, Jeddah 21441, Saudi Arabia.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
23
|
Delaney MA, Nagy L, Kinsel MJ, Treuting PM. Spontaneous histologic lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population. Vet Pathol 2013; 50:607-21. [PMID: 23355517 DOI: 10.1177/0300985812471543] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Naked mole rats (NMRs; Heterocephalus glaber) are highly adapted, subterranean, eusocial rodents from semiarid regions of the eastern horn of Africa and the longest-living rodent known with a maximum life span of up to 30 years. They are a unique model for aging research due to their physiology, extreme longevity, and, when compared to mice and rats, resistance to cancer. Published surveys of disease in NMRs are sparse. Captive colonies in zoological collections provide an opportunity to monitor spontaneous disease over time in a seminatural environment. This retrospective study describes common lesions of a zoo population over a 15-year period during which 138 adult NMRs were submitted for gross and histologic evaluation. Of these, 61 (44.2%) were male, 77 (55.8%) female, 45 (32.6%) died, and 93 (67.4%) were euthanized. The most frequent cause of death or reason for euthanasia was conspecific trauma (bite wounds) and secondary complications. Some common histologic lesions and their prevalence were renal tubular mineralization (82.6%), hepatic hemosiderosis (64.5%), bite wounds (63.8%), chronic progressive nephropathy (52.9%), and calcinosis cutis (10.1%). In sum, 104 (75.4%) NMRs had more than one of the most prevalent histologic lesions. No malignant neoplasms were noted; however, there was a case of renal tubular adenomatous hyperplasia with nuclear atypia and compression that in rats is considered a preneoplastic lesion. This retrospective study confirms the NMR's relative resistance to cancer in spite of development of other degenerative diseases and highlights the utility of zoological databases for baseline pathological data on nontraditional animal models.
Collapse
Affiliation(s)
- M A Delaney
- University of Illinois Zoological Pathology Program, Loyola University Medical Center Building 101, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
24
|
Machado-Santos C, Aquino JCF, Mikalauka JS, Abidu-Figueiredo M, Mendes RMM, Sales A. What difference exists in the pancreas of mammals with sanguivorous diet? A morphological, stereological and immunohistochemical study of the pancreatic islets of the hematophagous bat Diphylla ecaudata. ACTA ACUST UNITED AC 2013; 183:62-8. [PMID: 23500834 DOI: 10.1016/j.regpep.2013.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/26/2012] [Accepted: 03/03/2013] [Indexed: 11/28/2022]
Abstract
Diphylla ecaudata is a vampire bat that mainly feeds on the blood of birds. This highly specialized diet - hematophagy - is accompanied by a series of morphological changes in the gastro-entero-pancreatic system, since the distribution and relative proportions of different pancreatic endocrine cell types can vary between species due to different physiological conditions and eating habits. The aim of this study was to examine for the first time the pancreas of the vampire bat D. ecaudata using morphological, stereological and immunohistochemical techniques. The pancreas of the D. ecaudata has an exocrine acinar portion in which the highest concentration of pancreatic islets is scattered. These pancreatic islets have irregular size and a mean diameter of 56.94 μm. The total number of islets in the pancreas was 23,900, with a volumetric density of 4.1%. Insulin-immunoreactive (IR) cells were located in the central pancreatic islet region and had the largest density (54.8%). Glucagon-IR cells were located mainly in the peripheral mantle region (16.2%), along with somatostatin-IR (SS) cells (14.3%). Cells immunoreactive to insulin, glucagon and somatostatin were also observed to have spread in isolated places in the exocrine pancreas. In the connective tissue near the pancreatic ducts, a high concentration was identified of insulin-IR cells and a low concentration of glucagon-IR and somatostatin-IR cells. These results indicate that although the pancreas of D. ecaudata has morphological similarities with that of other mammals, it has a differentiated islet structure, because there were a large number of islets and different volumetric densities of α, β and δ cells.
Collapse
Affiliation(s)
- Clarice Machado-Santos
- Department of Biomorphology, Federal University of Bahia, Av. Reitor Miguel Calmon s/n, 40110-903, Salvador, BA, Brazil.
| | - Júlio César Fraulob Aquino
- Laboratory of Morphometry, Metabolism & Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro 87 fds, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Jefferson Simanas Mikalauka
- Animal Biology Program, Rio de Janeiro Federal Rural University (UFRRJ), Br 465km7s/n, 23890-000, Seropédica, RJ, Brazil
| | | | | | - Armando Sales
- Animal Biology Department, Department of Animal Biology, UFRRJ, Seropédica, RJ, Brazil
| |
Collapse
|
25
|
Abstract
Naked mole rats are mouse-sized rodents that have become an important animal model in biomedical research. They play a unique mammalian role in behavioral and ecophysiological research of life underground. This chapter studies the general physiology, anatomy of organ systems, husbandry, and uses in research of the naked mole rats. Naked mole rats belong to the order Rodentia in that they have two incisor teeth on the upper and lower arcade that continuously grow. The skin is loose, wrinkled, and brownish pink in color. The body is for the most part absent of hairs with the exception of tactile hairs that are regularly arranged throughout the body and which are particularly prominent around the face and to a lesser extent on the tail. They are typically housed at 28–30°C, and at 50–60% relative humidity. Because naked mole rats are social and have cooperative behaviors, the study of their conduct has more applicability to people. The chapter describes the models of experimental research on the naked mole rat such as the model of reproductive suppression, model of somatosensory processing, model of bone elongation, and model of aging.
Collapse
|
26
|
Kasaikina MV, Lobanov AV, Malinouski MY, Lee BC, Seravalli J, Fomenko DE, Turanov AA, Finney L, Vogt S, Park TJ, Miller RA, Hatfield DL, Gladyshev VN. Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression. J Biol Chem 2011; 286:17005-14. [PMID: 21372135 DOI: 10.1074/jbc.m110.216267] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with (75)Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression.
Collapse
Affiliation(s)
- Marina V Kasaikina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Exp Gerontol 2011; 46:116-23. [DOI: 10.1016/j.exger.2010.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 02/04/2023]
|
28
|
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol (Lausanne) 2011; 2:75. [PMID: 22654825 PMCID: PMC3356063 DOI: 10.3389/fendo.2011.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 01/06/2023] Open
Abstract
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, "regulate" the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway's involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms.
Collapse
Affiliation(s)
- John B. Allard
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
- *Correspondence: Cunming Duan, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109, USA. e-mail:
| |
Collapse
|
29
|
Mele J, Edrey YH, Lewis KN, Buffenstein R. Mechanisms of aging in the naked mole-rat: The case for programmed aging. RUSS J GEN CHEM+ 2010. [DOI: 10.1134/s1070363210070418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Buffenstein R, Pinto M. Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol 2009; 299:101-11. [PMID: 18674586 PMCID: PMC4399555 DOI: 10.1016/j.mce.2008.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/11/2008] [Indexed: 12/19/2022]
Abstract
The complex, highly integrative endocrine system regulates all aspects of somatic maintenance and reproduction and has been widely implicated as an important determinant of longevity in short-lived traditional model organisms of aging research. Genetic or experimental manipulation of hormone profiles in mice has been proven to definitively alter longevity. These hormonally induced lifespan extension mechanisms may not necessarily be relevant to humans and other long-lived organisms that naturally show successful slow aging. Long-lived species may have evolved novel anti-aging defenses germane to naturally retarding the aging process. Here, we examine the available endocrine data associated with the vitamin D, insulin, glucocorticoid and thyroid endocrine systems of naturally long-living small mammals. Generally, long-living rodents and bats maintain tightly regulated lower basal levels of these key pleiotropic hormones than shorter lived rodents. Similarities with genetically manipulated long-lived rodent models of aging suggest that evolutionary well-conserved hormonal mechanisms are integrally involved in lifespan determination.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- The Sam and Ann Barshop Institute for Longevity and Aging Studies & Department of Physiology, University of Texas Health Science Center at San Antonio, TX 78245, United States.
| | | |
Collapse
|
31
|
Tsui H, Razavi R, Chan Y, Yantha J, Dosch HM. ‘Sensing’ autoimmunity in type 1 diabetes. Trends Mol Med 2007; 13:405-13. [PMID: 17900987 DOI: 10.1016/j.molmed.2007.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/28/2007] [Accepted: 07/28/2007] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) results from autoimmune-mediated loss of insulin-producing beta-cells. Recent findings suggest that the events controlling T1D development are not only immunological, but also neuronal in nature. In the non-obese diabetic (NOD) mouse model of T1D, a mutant sensory neuron channel, TRPV1, initiates chronic, progressive beta-cell stress, inducing islet cell inflammation. This novel mechanism of organ-specific damage requires a permissive, autoimmune-prone host, but ascribes tissue specificity to the local secretory dysfunction of sensory afferent neurons. In NOD mice, normalizing this neuronal function by administration of the neurotransmitter substance P clears islet cell inflammation, reduces insulin resistance and restores normoglycemia. Here, we discuss this neuro-immuno-endocrine model, its implications and the involvement of sensory neurons in other autoimmune disorders. These developments might provide novel neuronal-based therapeutic interventions, particularly in diabetes.
Collapse
Affiliation(s)
- Hubert Tsui
- The Hospital for Sick Children, Department of Neuroscience and Mental Health, 555 University Avenue, 10128 Elm Wing Toronto, ON, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
32
|
Buffenstein R. The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 2006; 60:1369-77. [PMID: 16339321 DOI: 10.1093/gerona/60.11.1369] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tremendous variation in maximum life span among species overshadows modest increases in longevity resulting from experimental manipulation. Few aging studies focus on long-lived mammals even though these species may expose mechanisms involved in resisting aging. Naked mole-rats (NMRs approximately 35 grams) are the longest-living (>28.3 years) rodents known. This review describes their biology and potential use in aging research. Lifestyle features concur with most evolutionary theories with the exception of the disposable soma theory. Indeed, maximum life span is similar in breeders and nonbreeders, and these highly fecund animals reproduce until they die. Shared characteristics with calorie-restricted, methionine-restricted, and dwarf mice models of extended longevity include reduced body temperature; reduced thyroid, and blood glucose concentrations; and low glycated hemoglobin; in addition to reduced incidence of cancer. Young naked mole-rats surprisingly have high levels of accrued oxidative damage. With their similar longevity quotient to humans, these rodents may provide a novel opportunity to examine mechanisms modulating aging.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Department of Biology, City College of CUNY, Convent Ave. at 138th St., New York, NY 10031, USA.
| |
Collapse
|