1
|
Hu J, Yang J, Zhong H, Yu Q, Xiao J, Zhang C. Identification of Three POMCa Genotypes in Largemouth Bass ( Micropterus salmoides) and Their Differential Physiological Responses to Feed Domestication. Animals (Basel) 2024; 14:3638. [PMID: 39765543 PMCID: PMC11672714 DOI: 10.3390/ani14243638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Diverse feeding habits in teleosts involve a wide range of appetite-regulating factors. As an appetite-suppressing gene, the polymorphisms of POMCa in largemouth bass (Micropterus salmoides) were validated via sequencing and high-resolution melting (HRM). The frequency distribution of different POMCa genotypes were analyzed in two populations, and physiological responses of different POMCa genotypes to feed domestication were investigated. The indel of an 18 bp AU-rich element (ARE) in the 3' UTR and four interlocked SNP loci in the ORF of 1828 bp of POMCa cDNA sequence were identified in largemouth bass and constituted three genotypes of POMC-A I, II, and III, respectively. POMC-A I and Allele I had increased frequencies in the selection population than in the non-selection population (p < 0.01), 63.55% vs. 43.33% and 0.7850 vs. 0.6778, respectively. POMC-A I possessed the lowest value of POMCa mRNA during fasting (p < 0.05) and exhibited growth and physiological advantages under food deprivation and refeeding according to the levels of body mass and four physiological indicators, i.e., cortisol (Cor), growth hormone (GH), insulin-like growth factor-1 (IGF-1), and glucose (Glu). The identification of three POMCa genotypes, alongside their varying physiological responses during feed domestication, suggests a selective advantage that could be leveraged in molecular marker-assisted breeding of largemouth bass that are adapted to feeding on formula diet.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (J.Y.); (H.Z.); (Q.Y.); (J.X.)
| | | | | | | | | | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (J.Y.); (H.Z.); (Q.Y.); (J.X.)
| |
Collapse
|
2
|
Amiya N, Nakano N, Tanaka C, Hibino S, Takakura R, Amano M, Yoshinaga T. Leptin gene expression in the brain is associated with the physiological onset of estivation in western sand lance Ammodytes japonicus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:913-924. [PMID: 38946665 DOI: 10.1002/jez.2850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Dormancy is an essential ecological characteristic for the survival of organisms that experience harsh environments. Although factors that initiate dormancy vary, suppression or cessation of feeding activities are common among taxa. To distinguish between extrinsic and intrinsic causes of metabolic reduction, we focused on estivation, which occurs in summer when the feeding activity is generally enhanced. Sand lances (genus Ammodytes) are a unique marine fish with a long estivation period from early summer to late autumn. In the present study, we aimed to elucidate the control mechanisms of estivation in western sand lance (A. japonicus), and firstly examined behavioral changes in 8 months including a transition between active and dormant phases. We found that swimming/feeding behavior gradually decreased from June, and completely disappeared by late August, indicating all individuals had entered estivation. Next, we focused on leptin, known as a feeding suppression hormone in various organisms, and examined leptin-A gene (AjLepA) expression in the brain that may regulate the seasonal behavioral pattern. AjLepA expression decreased after 7 days of fasting, suggesting that leptin has a function to regulate feeding in this species. The monthly expression dynamics of AjLepA during the feeding (active) and non-feeding (estivation) periods showed that the levels gradually increased with the onset of estivation and reached its peak when all the experimental fish had estivated. The present study suggests that the suppression of feeding activity by leptin causes shift in the physiological modes of A. japonicus before estivation.
Collapse
Affiliation(s)
- Noriko Amiya
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Nayu Nakano
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Chikaya Tanaka
- Department of Biology, Tokyo Medical University, Tokyo, Japan
| | - Shizuha Hibino
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Ryota Takakura
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | | |
Collapse
|
3
|
Liu Y, Zhai G, Su J, Gong Y, Yang B, Lu Q, Xi L, Zheng Y, Cao J, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Wang Z, Gong G, Mei J, Yin Z, Gozlan RE, Xie S, Han D. The Chinese longsnout catfish genome provides novel insights into the feeding preference and corresponding metabolic strategy of carnivores. Genome Res 2024; 34:981-996. [PMID: 39122473 PMCID: PMC11368182 DOI: 10.1101/gr.278476.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Fish show variation in feeding habits to adapt to complex environments. However, the genetic basis of feeding preference and the corresponding metabolic strategies that differentiate feeding habits remain elusive. Here, by comparing the whole genome of a typical carnivorous fish (Leiocassis longirostris Günther) with that of herbivorous fish, we identify 250 genes through both positive selection and rapid evolution, including taste receptor taste receptor type 1 member 3 (tas1r3) and trypsin We demonstrate that tas1r3 is required for carnivore preference in tas1r3-deficient zebrafish and in a diet-shifted grass carp model. We confirm that trypsin correlates with the metabolic strategies of fish with distinct feeding habits. Furthermore, marked alterations in trypsin activity and metabolic profiles are accompanied by a transition of feeding preference in tas1r3-deficient zebrafish and diet-shifted grass carp. Our results reveal a conserved adaptation between feeding preference and corresponding metabolic strategies in fish, and provide novel insights into the adaptation of feeding habits over the evolution course.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jingzhi Su
- Wuhan DaBeiNong (DBN) Aquaculture Technology Company Limited, Wuhan, Hubei 430090, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Bingyuan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yutong Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyue Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zhongwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Mei
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Rodolphe E Gozlan
- ISEM, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Uusi‐Heikkilä S, Salonen JK, Karjalainen JS, Väisänen A, Hippeläinen J, Hämärvuo T, Kuparinen A. Fish with slow life-history cope better with chronic manganese exposure than fish with fast life-history. Ecol Evol 2024; 14:e70134. [PMID: 39119176 PMCID: PMC11307103 DOI: 10.1002/ece3.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO4), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish (Danio rerio) with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO4 had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type. Individuals with fast life histories were more susceptible to MnSO4 than fish with slow life histories as they had lower growth rate, condition factor and feeding probability in high MnSO4 concentrations. Our results demonstrate that MnSO4 can impair fish performance, and life-history variation can modulate the stress-coping ability of individuals.
Collapse
Affiliation(s)
- Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Jouni K. Salonen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Juha S. Karjalainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Ari Väisänen
- Department of ChemistryUniversity of JyväskyläJyvaskylaFinland
| | - Johanna Hippeläinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Teemu Hämärvuo
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| |
Collapse
|
5
|
Yin X, Li Y, Liu Y, Zheng J, Yu X, Li Y, Achterberg EP, Wang X. Dietary exposure to sulfamethazine alters fish intestinal homeostasis and promotes resistance gene transfer. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106733. [PMID: 37875383 DOI: 10.1016/j.aquatox.2023.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
The present study was undertaken to explore the effects of sulfamethazine (SMZ) dietary exposure on the enrichment of the intestine microbial structure, and antibiotic resistance gene (ARGs) transmission in marine medaka, with respect to antibiotic dose, duration, and sex. In male fish, a dietary exposure of 10 μg/L SMZ led to a heightened SMZ enrichment in the intestine, whereas metabolite (N-SMZ) levels were elevated at a higher exposure concentration (100 μg/L). Conversely, female fish exhibited stable levels of accumulation and metabolic rates across the exposure period. The composition of intestinal microorganisms revealed that exposure duration exerted a greater impact on the abundance and diversity of gut microbes, and microbial responses to SMZ varied across exposure time points. The expansion of Bacteroidetes and Ruegeria likely stimulated SMZ metabolism and contributed to the more balanced level of SMZ and N-SMZ observed in females. In males, short-term SMZ stress resulted in a disruption of intestinal homeostasis, while the rise in the abundance of the Fusobacteria and Propionigeniuma suggested a potential enhancement in intestinal anti-inflammatory capacity over time. Overall, female medaka exhibited greater adaptability to SMZ, and males appear to experience prolonged effects due to SMZ. A total of 11 ARGs and 5 mobile genetic elements (MGEs) were identified. Ruegeria is the main carrier of two types of MGEs (IS1247, ISSm2-Xanthob), and may serve as an indicator of ARG transmission. Therefore, it is rational to consider some fish breeding areas in natural waters as potential "reservoirs" of antibiotic resistance. This research will provide a valuable reference for the transmission of drug resistance along the food chain.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | | | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
7
|
Martinez-Silva MA, Dupont-Prinet A, Houle C, Vagner M, Garant D, Bernatchez L, Audet C. Growth regulation in brook charr Salvelinus fontinalis. Gen Comp Endocrinol 2023; 331:114160. [PMID: 36356646 DOI: 10.1016/j.ygcen.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Fish growth can be modulated through genetic selection. However, it is not known whether growth regulatory mechanisms modulated by genetic selection can provide information about phenotypic growth variations among families or populations. Following a five-generation breeding program that selected for the absence of early sexual maturity and increased growth in brook charr we aimed to understand how the genetic selection process modifies the growth regulatory pathway of brook charr at the molecular level. To achieve this, we studied the regulation of growth traits at three different levels: 1) between lines-one under selection, the other not, 2) among-families expressing differences in average growth phenotypes, which we termed family performance, and 3) among individuals within families that expressed extreme growth phenotypes, which we termed slow- and fast-growing. At age 1+, individuals from four of the highest performing and four of the lowest performing families in terms of growth were sampled in both the control and selected lines. The gene expression levels of three reference and ten target genes were analyzed by real-time PCR. Results showed that better growth performance (in terms of weight and length at age) in the selected line was associated with an upregulation in the expression of genes involved in the growth hormone (GH)/insulin growth factor-1 (IGF-1) axis, including the igf-1 receptor in pituitary; the gh-1 receptor and igf-1 in liver; and ghr and igf-1r in white muscle. When looking at gene expression within families, family performance and individual phenotypes were associated with upregulations of the leptin receptor and neuropeptid Y-genes related to appetite regulation-in the slower-growing phenotypes. However, other genes related to appetite (ghrelin, somatostatin) or involved in muscle growth (myosin heavy chain, myogenin) were not differentially expressed. This study highlights how transcriptomics may improve our understanding of the roles of different key endocrine steps that regulate physiological performance. Large variations in growth still exist in the selected line, indicating that the full genetic selection potential has not been reached.
Collapse
Affiliation(s)
| | - Aurélie Dupont-Prinet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Carolyne Houle
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Marie Vagner
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 (CNRS/Univ Brest/IRD/Ifremer), Plouzané 29280, France
| | - Dany Garant
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université du Laval, Québec, QC G1V 0A6, Canada
| | - Céline Audet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
8
|
Hou ZS, Wen HS. Neuropeptide Y and melanocortin receptors in fish: regulators of energy homeostasis. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:42-51. [PMID: 37073356 PMCID: PMC10077275 DOI: 10.1007/s42995-021-00106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/19/2021] [Indexed: 05/03/2023]
Abstract
Energy homeostasis, which refers to the physiological processes that the energy intake is exquisitely coordinated with energy expenditure, is critical for survival. Therefore, multiple and complex mechanisms have been involved in the regulation of energy homeostasis. The central melanocortin system plays an important role in modulating energy homeostasis. This system includes the orexigenic neurons, expressing neuropeptide Y/Agouti-related protein (NPY/AgRP), and the anorexigenic neurons expressing proopiomelanocortin (POMC). The downstream receptors of NPY, AgRP and post-translational products of POMC are G protein-coupled receptors (GPCRs). This review summarizes the compelling evidence demonstrating that NPY and melanocortin receptors are involved in energy homeostasis. Subsequently, the comparative studies on physiology and pharmacology of NPY and melanocortin receptors in humans, rodents and teleosts are summarized. Also, we provide a strategy demonstrating the potential application of the new ligands and/or specific variants of melanocortin system in aquaculture.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
9
|
The Roles of Neuropeptide Y ( Npy) and Peptide YY ( Pyy) in Teleost Food Intake: A Mini Review. Life (Basel) 2021; 11:life11060547. [PMID: 34200824 PMCID: PMC8230510 DOI: 10.3390/life11060547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y family (NPY) is a potent orexigenic peptide and pancreatic polypeptide family comprising neuropeptide Y (Npy), peptide YYa (Pyya), and peptide YYb (Pyyb), which was previously known as peptide Y (PY), and tetrapod pancreatic polypeptide (PP), but has not been exhaustively documented in fish. Nonetheless, Npy and Pyy to date have been the key focus of countless research studies categorizing their copious characteristics in the body, which, among other things, include the mechanism of feeding behavior, cortical neural activity, heart activity, and the regulation of emotions in teleost. In this review, we focused on the role of neuropeptide Y gene (Npy) and peptide YY gene (Pyy) in teleost food intake. Feeding is essential in fish to ensure growth and perpetuation, being indispensable in the aquaculture settings where growth is prioritized. Therefore, a better understanding of the roles of these genes in food intake in teleost could help determine their feeding regime, regulation, growth, and development, which will possibly be fundamental in fish culture.
Collapse
|
10
|
Baudou FG, Eissa BL, Ossana NA, Mastrángelo MM, Ferro JP, Campos LB, Ferrari L. First baseline for bioenergetic biomarkers in Cnesterodon decemmaculatus as test organism in ecotoxicological studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111639. [PMID: 33396159 DOI: 10.1016/j.ecoenv.2020.111639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Cnesterodon decemmaculatus is a Neotropical teleost fish frequently used in ecotoxicological evaluations, whose biology has been thoroughly studied. Although there is considerable information on its response to different toxicants, no range of reference values has been so far established for the different biological parameters proposed as biomarkers of effect or exposure. Moreover, no study has yet examined the possible influence of the metabolic status of the exposed animals on their response to toxic stress. Therefore, the aim of this work was to provide a first baseline for a set of bioenergetic biomarkers in C. decemmaculatus adults exposed to a control medium under previously standardized conditions, and to assess their possible intrinsic seasonal variability. The responses of the biomarkers obtained from the controls were contrasted with those from the reference toxicant (Cadmio-Cd) and receiving waters (surface waters of the Reconquista River RR, Buenos Aires Province, Argentina). We conducted four 12-day assays (one in each season) of exposure to control media, (reconstituted moderate hard water, MHW) and two assays of exposure to Cd in MHW and surface river water (RR) in both summer and autumn. The variables recorded were: Food intake (In), fecal production (F), specific assimilation (A) and cumulative mortality, oxygen extraction efficiency (OEE), specific metabolic rate (SMR), ammonia excretion (N), ammonia quotient (AQ) and scope for growth (SFG). The seasonal variation shown by some physiological parameters, points to the need for establishing a baseline obtained from standardized media, preferably on a seasonal basis. Moreover, SFG and A appeared as the most sensitive biomarkers, emphasizing the importance to consider the metabolic status of the test organisms for the appropriate interpretation of results from ecotoxicological studies performed under controlled experimental conditions. The obtained results provide useful information on C. decemmaculatus as model species in ecotoxicological bioassays involving biomarkers of early effect.
Collapse
Affiliation(s)
- Federico G Baudou
- Laboratorio de Inmunología, Departamento de Ciencias Básicas, Universidad Nacional de Lujan, B6700ZBA Luján, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina.
| | - Bettina L Eissa
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA Luján, Argentina
| | - Natalia A Ossana
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA Luján, Argentina
| | - Martina M Mastrángelo
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA Luján, Argentina
| | - Juan P Ferro
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA Luján, Argentina
| | - Liria B Campos
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA Luján, Argentina
| | - Lucrecia Ferrari
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| |
Collapse
|
11
|
Assan D, Huang Y, Mustapha UF, Addah MN, Li G, Chen H. Fish Feed Intake, Feeding Behavior, and the Physiological Response of Apelin to Fasting and Refeeding. Front Endocrinol (Lausanne) 2021; 12:798903. [PMID: 34975769 PMCID: PMC8715717 DOI: 10.3389/fendo.2021.798903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Feed is one of the most important external signals in fish that stimulates its feeding behavior and growth. The intake of feed is the main factor determining efficiency and cost, maximizing production efficiency in a fish farming firm. The physiological mechanism regulating food intake lies between an intricate connection linking central and peripheral signals that are unified in the hypothalamus consequently responding to the release of appetite-regulating genes that eventually induce or hinder appetite, such as apelin; a recently discovered peptide produced by several tissues with diverse physiological actions mediated by its receptor, such as feed regulation. Extrinsic factors have a great influence on food intake and feeding behavior in fish. Under these factors, feeding in fish is decontrolled and the appetite indicators in the brain do not function appropriately thus, in controlling conditions which result in the fluctuations in the expression of these appetite-relating genes, which in turn decrease food consumption. Here, we examine the research advancements in fish feeding behavior regarding dietary selection and preference and identify some key external influences on feed intake and feeding behavior. Also, we present summaries of the results of research findings on apelin as an appetite-regulating hormone in fish. We also identified gaps in knowledge and directions for future research to fully ascertain the functional importance of apelin in fish.
Collapse
Affiliation(s)
- Daniel Assan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yanlin Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Umar Farouk Mustapha
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Mercy Nabila Addah
- Department of Fisheries and Aquatic Resources Management, Faculty of Bioscience, University for Development Studies, Tamale, Ghana
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- *Correspondence: Huapu Chen,
| |
Collapse
|
12
|
Takegaki T, Nakatake Y, Amiya N. Effect of the administration of prolactin-releasing peptide2 on feeding activity in the intertidal blenny Rhabdoblennius nitidus (Günther, 1861). JOURNAL OF FISH BIOLOGY 2020; 97:566-571. [PMID: 32367528 DOI: 10.1111/jfb.14367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Prolactin-releasing peptide2 (PrRP2) was administered intraperitoneally to male intertidal blenny Rhabdoblennius nitidus, a species with male uniparental care of eggs, to investigate the effect on their feeding activity. A significant inhibitory effect on appetite was observed in the breeding season, but not in the nonbreeding season. These results suggest that PrRP2 and PrRP2 receptors are more active during the breeding season. The presence of a mechanism to inhibit feeding activity while parents take care of their offspring may be important for the success of parental care.
Collapse
Affiliation(s)
- Takeshi Takegaki
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Yosuke Nakatake
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
13
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
14
|
Qi J, Tang N, Wu Y, Chen H, Wang S, Wang B, Xu S, Wang M, Zhang X, Chen D, Zhou B, Li Z. The transcripts of CRF and CRF receptors under fasting stress in Dabry's sturgeon (Acipenser dabryanus Dumeril). Gen Comp Endocrinol 2019; 280:200-208. [PMID: 31075270 DOI: 10.1016/j.ygcen.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022]
Abstract
Dabry's sturgeon (Acipenser dabryanus Dumeril, 1868) belongs to Sturgeon and is distributed throughout the mainstream of the upper Yangtze River. While there is little research onphysiological mechanism of Dabry's sturgeon, such as feeding regulation by the CRF system. At present, CRF is thought to regulate feeding via CRF receptors (CRF-Rs) in several mammals, but relatively few studies of CRF and feeding exist in teleosts. Herein, the transcripts of CRF and CRF-Rs under fasting stress in Dabry's sturgeon (Acipenser dabryanus Dumeril) have been explored. A full length Dabry's sturgeon CRF cDNA of 953 bp was identified, which contained a 447 bp open reading frame (ORF). A partial CRF-R1 cDNA of 1053 bp and CRF-R2 cDNA of 906 bp corresponding to the coding sequences (CDS) was obtained. In addition, analysis of the tissue distribution of CRF and CRF-Rs mRNAs revealed they were widely distributed in the central and peripheral nervous systems. Furthermore, periprandial (preprandial and postprandial), fasting, and re-feeding experiments revealed CRF mRNA was significantly increased 1 h and 3 h after feeding and CRF and CRF-Rs transcripts were significantly decreased after 10 days fasting, and significantly increased on re-feeding on day 10. These results suggest that CRF and CRF-Rs might regulate feeding by acting as satiety factors.
Collapse
Affiliation(s)
- Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbin Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bo Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 156# Gaozhuang Bridge Community, Yibin, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Striberny A, Jørgensen EH, Klopp C, Magnanou E. Arctic charr brain transcriptome strongly affected by summer seasonal growth but only subtly by feed deprivation. BMC Genomics 2019; 20:529. [PMID: 31248377 PMCID: PMC6598377 DOI: 10.1186/s12864-019-5874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Background The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. Results In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. Conclusions In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish. Electronic supplementary material The online version of this article (10.1186/s12864-019-5874-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
16
|
Deng X, Lei L, Yuan D, Zheng Z, Zhu C, Luo H, Ye H, Li D, Wang J, Li B, Lv G, Zhou C. Cloning, expression profiling, and effects of fasting status on neuropeptide Y in Schizothorax davidi. J Food Biochem 2019; 43:e12892. [PMID: 31353745 DOI: 10.1111/jfbc.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
To better comprehend the mechanism that neuropeptide Y (npy) regulates feeding in Schizothorax davidi, we cloned and identified the full-length cDNA sequence of the npy gene in this species using RACE technology. Subsequently, we explored the npy mRNA distribution in 18 tissues and investigated the expression of npy mRNA at postprandial and fasting stages. We found that the npy full-length cDNA sequence is 803 bp. Moreover, npy mRNAs extensively expressed in all detected tissues, with the highest expression in hypothalamus. In postprandial study, the expression of npy mRNA in the hypothalamus was significantly decreased after eating (p < 0.01). In addition, the expression of the npy gene was significantly increased on the fifth day after fasting (p < 0.05). However, after refeeding, the expression of the npy gene was decreased significantly on days 9, 11, and 14 (p < 0.01). Our research suggest that npy may have an orexigenic role in S. davidi. PRACTICAL APPLICATIONS: S. davidi, a coldwater fish native to China, has high economic value, and it has gained great popularity. To date, there is still no large-scale breeding of S. davidi in China. How to strengthen the production performance of S. davidi is a hot research area. Neuropeptide Y (NPY), a 36-amino-acid single-chain polypeptide, is one of the main appetite regulation factors. However, to date, no studies have reported on the biological function of npy in the feeding of S. davidi. In our study, we revealed that the trend of hypothalamic npy expression during the postprandial and fasting stages. The results suggested that npy might be an appetite-promoting factor in this species. Overall, we provide the theoretical basis for how to strengthen the production performance of S. davidi through appetite regulation.
Collapse
Affiliation(s)
- Xingxing Deng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Luo Lei
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dengyue Yuan
- Department of Aquaculture, College of Life Sciences, Neijiang Normal University, Neijiang, People's Republic of China
| | - Zonglin Zheng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chengke Zhu
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hui Luo
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hua Ye
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dongmei Li
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Jian Wang
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Baohai Li
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Guangjun Lv
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chaowei Zhou
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China.,Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| |
Collapse
|
17
|
Xu J, Hou F, Wang D, Li J, Yang G. Characterization and expression of melanin-concentrating hormone (MCH) in common carp (Cyprinus carpio) during fasting and reproductive cycle. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:805-817. [PMID: 30426273 DOI: 10.1007/s10695-018-0586-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Melanin-concentrating hormone (MCH) was initially known as a regulator of teleost skin color and possesses multiple functions in mammals, such as the regulation of energy balance and reproduction. However, the role of MCH in fish remains unclear. In the present study, a 590 bp cDNA fragment of common carp (Cyprinus carpio) MCH gene was cloned. Amino acid sequence similarities with other teleost ranged from 23 to 93%. The mature MCH peptide (DTMRCMVGRVYRPCWEV) located in the C-terminal region of MCH precursor was 100% identical to that of goldfish, zebrafish, chum salmon, and rainbow trout. Tissue expression profiles showed that MCH mRNA was ubiquitously expressed throughout the brain and peripheral tissues and highly expressed in the brain and pituitary. Within the brain, MCH mRNA was expressed preponderantly in the hypothalamus. MCH mRNA expression in the hypothalamus was increased after feeding, decreased after 3, 5, or 7 days fasting, and increased upon refeeding. These results suggested that MCH might have anorexigenic actions in common carp. Meanwhile, MCH gene expression varied based on reproductive cycle, which might be related to the long-term regulation of MCH in energy balance. In conclusion, our novel finding revealed that MCH was involved in the regulation of appetite and energy balance in common carp.
Collapse
Affiliation(s)
- Jing Xu
- College of Pharmacy, South Central University for Nationalities, Wuhan, 430074, China
| | - Fuyuan Hou
- College of Pharmacy, South Central University for Nationalities, Wuhan, 430074, China
| | - Debin Wang
- College of Pharmacy, South Central University for Nationalities, Wuhan, 430074, China
| | - Jun Li
- College of Pharmacy, South Central University for Nationalities, Wuhan, 430074, China
| | - Guangzhong Yang
- College of Pharmacy, South Central University for Nationalities, Wuhan, 430074, China.
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
18
|
Baudou FG, Ossana NA, Castañé PM, Mastrángelo MM, González Núñez AA, Palacio MJ, Ferrari L. Use of integrated biomarker indexes for assessing the impact of receiving waters on a native neotropical teleost fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1779-1786. [PMID: 30278422 DOI: 10.1016/j.scitotenv.2018.09.342] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
In the field of aquatic ecotoxicology, indexes obtained from a battery of biomarkers have proved to be a useful tool for assessing quantifiable and integrated health responses of organisms exposed to pollutants. The objective of this work was to evaluate the effects of exposure to the Reconquista River water (RR) on adults of Cnesterodon decemmaculatus using different integrated indexes. We conducted a 12-d laboratory assay involving the exposure of fish to RR, a negative control (moderately hard water - MHW medium), and a positive control (for genotoxicity with MHW + Cyclophosphamide, CP). There were measured metabolic (food intake and specific assimilation, specific metabolic rate, oxygen extraction efficiency, ammonia excretion, and ammonia quotient), genotoxic (comet assay, micronucleus test, and nuclear abnormalities), morphological variables (total length, body and liver weight) and biochemical variables (Electron Transport System - ETS, Acetylcholinesterase activity - AChE, Catalase - CAT, Glutathione-S-transferase - GST, Glutathione content - GSH and tissue proteins). These variables were grouped into different indexes: morphological (Condition Factor - K and Liver Somatic Index-LSI), metabolic (Scope for Growth-SFG), genetic damage (GDI) and integrated biomarker response - IBR (AChE brain, CAT, GST and GSH liver, GSH gills, ETS muscle) indexes. Results indicated that RR water induced metabolic, biochemical and genetic damages. The SFG, GDI and IBR were suitable to assess the effects of exposure to an environmental sample in an integrated approach, reducing uncertainty due to inherent biomarker variability. These indexes have emerged as promising tools for environmental monitoring studies.
Collapse
Affiliation(s)
- Federico G Baudou
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Natalia A Ossana
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Patricia M Castañé
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina
| | - Martina M Mastrángelo
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina
| | - Ayelen A González Núñez
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina
| | - Mauro J Palacio
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina
| | - Lucrecia Ferrari
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES-CONICET), Universidad Nacional de Lujan (UNLu), PO Box 221, B6700ZBA Luján, Argentina.
| |
Collapse
|
19
|
Koch L, Shainer I, Gurevich T, Holzman R. The Expression of agrp1, A Hypothalamic Appetite-Stimulating Neuropeptide, Reveals Hydrodynamic-Induced Starvation in a Larval Fish. Integr Org Biol 2018. [DOI: 10.1093/iob/oby003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Larval fish suffer dramatic mortality in the days following transition to autonomous feeding, with over 90% of larvae being eliminated within a period of few weeks. Recent work has shown that the hydrodynamic environment experienced by recently-hatched larvae impedes their feeding rates even under high prey densities. Here, we quantified starvation through early ontogeny in Sparus aurata larvae (8–18 days post-hatching; DPH) and tested whether the emerging ontogenetic pattern is consistent with that expected one based on the hydrodynamic environment that these larvae experience. We screened three candidate genes agrp1, npy, and hsp70, whose expression was previously shown to respond to starvation in fish. Of the three genes, agrp1 was identified as a suitable indicator for starvation. Localization of agrp1 mRNA by whole-mount in-situ hybridization confirmed that, in S. aurata larvae, agrp1 is expressed only in the hypothalamus. Quantification of agrp1 mRNA using real-time PCR revealed that the expression of this gene is elevated in starved compared to fed larvae, and in younger (8 DPH) compared to older larvae (18 DPH). Manipulating the water viscosity to simulate the hydrodynamic conditions during the onset of the critical period led to increased agrp1 expression. These findings suggest that the hydrodynamic constraints on larval feeding lead to the starvation of small larvae. Further, they provide a mechanistic explanation for the “safe harbor” hypothesis, which postulates that larvae should allocate resources toward rapid linear growth to escape detrimental effects of dwelling in an environment where viscous fluid forces dominate.
Collapse
Affiliation(s)
- L Koch
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - I Shainer
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - T Gurevich
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - R Holzman
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
20
|
Anderson K, Kuo CY, Lu MW, Bar I, Elizur A. A transcriptomic investigation of digestive processes in orange-spotted grouper, Epinephelus coioides, before, during, and after metamorphic development. Gene 2018; 661:95-108. [DOI: 10.1016/j.gene.2018.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
|
21
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Yang S, Wen ZY, Zou YC, Qin CJ, Wang J, Yuan DY, Li R. Molecular cloning, tissue distribution, and effect of fasting and refeeding on the expression of neuropeptide Y in Channa argus. Gen Comp Endocrinol 2018; 259:147-153. [PMID: 29174870 DOI: 10.1016/j.ygcen.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) is a 36 amino-acid amidated peptide of the pancreatic polypeptide (PP) family, which plays an important role in appetite regulation and energy expenditure in mammals. Although several teleost NPY have been identified, its roles remain unclear in fish. We herein reported on the molecular cloning, tissue distribution and the effect of fasting on the expression of NPY in Channa argus, and designated as CaNPY. It consisted of a 300 bp open reading frame predicted to encode a prepro-NPY of 99 amino acids. Sequence analysis revealed that CaNPY was highly conserved (>60%) with other vertebrate NPY. Phylogenetic analysis highly supported CaNPY was closely related to piscine NPY. In addition, except for muscle and spleen tissues, CaNPY was found to extensively expressed in all other detected tissues, with the highest level in brain. Futhermore, the CaNPY transcript was found to significantly increase after short-term and long-term food deprivation, and dramatically decrease following refeeding. These findings suggested that CaNPY might be involved in food intake regulation and it could be as a potential target locus to improve commercial production of this kind of fish.
Collapse
Affiliation(s)
- Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zheng-Yong Wen
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China.
| | - Yuan-Chao Zou
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Chuan-Jie Qin
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Jun Wang
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Deng-Yue Yuan
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Rui Li
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| |
Collapse
|
23
|
Zhang X, Gao Y, Tang N, Qi J, Wu Y, Hao J, Wang S, Chen D, Li Z. One evidence of cocaine- and amphetamine-regulated transcript (CART) has the bidirectional effects on appetite in Siberian sturgeon (Acipenser baerii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:411-422. [PMID: 29143945 DOI: 10.1007/s10695-017-0444-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART), discovered in 1995, with various biological functions, has received much attention recently due to its role in the regulation of appetite in mammals. However, the function of CART on the appetite control in fish species is still not very clear. In this study, Siberian sturgeon (Acipenser baerii Brandt) cart gene was cloned for the first time, and the cart mRNA levels in 11 feeding-related tissues was investigated. The Siberian sturgeon cart gene sequence was 1459 base pairs (bp), including a 3'-terminal untranslated region (3'-UTR) of 39 bp, a 5'-terminal untranslated region (5'-UTR) of 52 bp, and an open reading frame (ORF) of 348 bp encoding 115 amino acids. Siberian sturgeon cart gene has three exons and two introns including 341 bp intron 1 and 679 bp intron 2. The result of tissue distribution showed that cart was widely distributed in 11 tissues with the highest expression in the whole brain. The effects of periprandial (pre- and post-feeding), fasting, and re-feeding on cart mRNA abundance in the whole brain were assessed. Periprandial result showed the expression of cart mRNA in the whole brain significantly elevated after feeding for 3 h. However, fasting experiment showed that the level of cart significantly decreased after 1 day of fasting, but that significantly increased after 3-17 days of food deprivation and returned to the basic level after 3 days of re-feeding in the fishes which were fasted for 15 days. In conclusion, this study suggests that CART has the bidirectional effects on appetite, which acts as a satiety factor in short-term feeding regulation but as a starvation factor in long-term appetite regulation in Siberian sturgeon.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China.
| |
Collapse
|
24
|
Kim JH, Chatchaiphan S, Crown MT, White SL, Devlin RH. Effect of growth hormone overexpression on gastric evacuation rate in coho salmon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:119-135. [PMID: 28894993 DOI: 10.1007/s10695-017-0418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
- Unit of Polar Genomics, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Phaholyothin Road, Bangkok, Thailand
| | - Michelle T Crown
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Samantha L White
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada.
| |
Collapse
|
25
|
Baudou FG, Ossana NA, Castañé PM, Mastrángelo MM, Ferrari L. Cadmium effects on some energy metabolism variables in Cnesterodon decemmaculatus adults. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1250-1258. [PMID: 28894960 DOI: 10.1007/s10646-017-1850-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
This work is focused on the responses of some energy metabolism variables in Cnesterodon decemmaculatus adults exposed to cadmium under controlled laboratory conditions. This species has been used as bioindicator for evaluating the effects of different chemicals on diverse biological processes and is frequently used as test organism in ecotoxicity studies that include cadmium as reference toxicant. Animals were exposed for 12 days to the following concentrations: 0, 0.45, and 0.8 mg Cd/L. Food intake, fecal production, specific assimilation, condition factor, mortality percentage, oxygen consumption, oxygen extraction efficiency, specific metabolic rate, ammonia excretion, and ammonia quotient were measured. The overall balance was expressed as scope for growth (SFG). Cadmium-exposed groups showed a significant decrease in food assimilation and condition factor at the end of the exposure. There was an increase in specific metabolic rate and a decrease in SFG in the group exposed to 0.8 mg Cd/L. The condition factor and the SFG appeared as sensitive biomarkers of health status and growth of the animals, respectively. Cadmium-exposed fish reduced food intake, which was reflected in a decreased assimilation with concomitant decline in the external energy supply from feeding. Our results highlight the importance of considering the metabolic status of the test organisms when analyzing the responses of the biomarkers usually used as effect parameters in ecotoxicological evaluations under experimental conditions.
Collapse
Affiliation(s)
- Federico G Baudou
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA, Luján, Argentina
- MINCyT, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Godoy Cruz 2370, Buenos Aires, C1425FQD, Argentina
| | - Natalia A Ossana
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina
| | - Patricia M Castañé
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA, Luján, Argentina
| | - Martina M Mastrángelo
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA, Luján, Argentina
| | - Lucrecia Ferrari
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, P.O. Box 221, B6700ZBA, Luján, Argentina.
| |
Collapse
|
26
|
Pereira RT, de Freitas TR, de Oliveira IRC, Costa LS, Vigliano FA, Rosa PV. Endocrine cells producing peptide hormones in the intestine of Nile tilapia: distribution and effects of feeding and fasting on the cell density. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1399-1412. [PMID: 28501979 DOI: 10.1007/s10695-017-0380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Endocrine cells (ECs) act as a luminal surveillance system responding to either the presence or absence of food in the gut through the secretion of peptide hormones. The aim of this study was to analyze the effects of feeding and fasting on the EC peptide-specific distribution along the intestine of Nile tilapia. We assessed the density of ECs producing gastrin (GAS), cholecystokinin-8 (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in nine segments of the intestine using immunohistochemistry. Our results show that ECs immunoreactive to CCK-8, GAS, NPY, and CGRP can be found along all the intestinal segments sampled, from the midgut to hindgut, although differences in their distribution along the gut were observed. Regarding nutrient status, we found that the anterior segments of the midgut seem to be the main site responding to luminal changes in Nile tilapia. The NPY+ and CGRP+ EC densities increased in the fasted group, while the amount of CCK-8+ ECs were higher in the fed group. No effects of fasting or feeding were found in the GAS+ EC densities. Changes in ECs density were found only at the anterior segments of the intestine which may be due to the correlation between vagus nerve anatomy, EC location, and peptide turnover. Lastly, ECs may need to be considered an active cell subpopulation that may adapt and respond to different nutrient status as stimuli. Due to the complexity of the enteroendocrine system and its importance in fish nutrition, much remains to be elucidated and it deserves closer attention.
Collapse
Affiliation(s)
- Raquel Tatiane Pereira
- Department of Animal Science, Federal University of Lavras UFLA, Lavras, Minas Gerais, 37200-000, Brazil.
- Cátedra de Histología y Embriología/Centro de Investigaciones en Piscicultura Experimental, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | | | | | - Leandro Santos Costa
- Aquaculture Department, Federal University of Minas Gerais UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Fabricio Andrés Vigliano
- Cátedra de Histología y Embriología/Centro de Investigaciones en Piscicultura Experimental, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Priscila Vieira Rosa
- Department of Animal Science, Federal University of Lavras UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
27
|
Porter DT, Roberts DA, Maruska KP. Distribution and female reproductive state differences in orexigenic and anorexigenic neurons in the brain of the mouth brooding African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2017. [PMID: 28649723 DOI: 10.1002/cne.24268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integration of reproduction and metabolism is necessary for species survival. While the neural circuits controlling energy homeostasis are well-characterized, the signals controlling the relay of nutritional information to the reproductive axis are less understood. The cichlid fish Astatotilapia burtoni is ideal for studying the neural regulation of feeding and reproduction because females cycle between a feeding gravid state and a period of forced starvation while they brood developing young inside their mouths. To test the hypothesis that candidate neuropeptide-containing neurons known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry and in situ hybridization to localize appetite-stimulating (neuropeptide Y, NPY; agouti-related protein, AGRP) and appetite-inhibiting (cocaine and amphetamine-regulated transcript, CART; pro-opiomelanocortin, pomc1a) neurons in the brain. NPY, AGRP, CART, and pomc1a somata showed distribution patterns similar to other teleosts, which included localization to the lateral tuberal nucleus (NLT), the putative homolog of the mammalian arcuate nucleus. Gravid females also had larger NPY and AGRP neurons in the NLT compared to brooding females, but brooding females had larger pomc1a neurons compared to gravid females. Hypothalamic agrp mRNA levels were also higher in gravid compared to brooding females. Thus, larger appetite-stimulating neurons (NPY, AGRP) likely promote feeding while females are gravid, while larger pomc1a neurons may act as a signal to inhibit food intake during mouth brooding. Collectively, our data suggest a potential role for NPY, AGRP, POMC, and CART in regulating energetic status in A. burtoni females during varying metabolic and reproductive demands.
Collapse
Affiliation(s)
- Danielle T Porter
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - David A Roberts
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
28
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
29
|
Striberny A, Jørgensen EH. Feedback from Arctic charr: Feed flavour stimulation and re-feeding after feed deprivation stimulate genes encoding both orexigenic and anorexigenic neuropeptides. Gen Comp Endocrinol 2017; 246:71-80. [PMID: 28327432 DOI: 10.1016/j.ygcen.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/18/2017] [Accepted: 03/17/2017] [Indexed: 01/01/2023]
Abstract
Despite vast research attention, the knowledge about central mechanisms of appetite regulation in teleost remains inconclusive. A common strategy in studies on appetite regulating mechanisms is to measure the response to feed restriction or - deprivation, but responses vary between fish species and between experiments, and are also likely dependent on the degree of energy perturbation. The anadromous Arctic charr is an interesting model for studying appetite regulation as its feeding cycle comprises months of winter anorexia, and hyperphagia during summer. Here we studied how the gene expression of putative hypothalamic appetite regulators were affected by two days, one week and one month feed deprivation during summer, and subsequent re-feeding and exposure to feed flavour. Short-term feed deprivation caused only a minor reduction in condition factor and had no effect on hypothalamic gene expression. Long-term feed-deprivation caused a marked reduction in weight and condition factor which contrasted the increase in weight and condition factor seen in ad libitum fed controls. A marked energy perturbation by feed deprivation was also indicated by a lower hypothalamic expression of the genes encoding insulin-like growth factor 1 (IGF1) and IGF1 binding protein 5 in the feed deprived charr compared to fed controls. Surprisingly, long-term feed deprivation and energy perturbation did not induce changes in hypothalamic appetite regulators. Unexpectedly, re-feeding and exposure to feed flavour caused an increase in the expression of the genes encoding the orexigenic agouti-related peptide and the anorexigenic melanocortin receptor 4 and cocaine- and amphetamine-regulated transcript. Our study gives strong evidence for a role of these in appetite regulation in Arctic charr, but their mechanisms of action remain unknown. We suggest that changes in gene expression are more likely to be registered during transition phases, e.g. from fasting to feeding and upon stimulatory inputs such as feed flavour.
Collapse
Affiliation(s)
- Anja Striberny
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Even H Jørgensen
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
30
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
31
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Front Neurosci 2017; 10:603. [PMID: 28111540 PMCID: PMC5216673 DOI: 10.3389/fnins.2016.00603] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
33
|
Babaei S, Sáez A, Caballero-Solares A, Fernández F, Baanante IV, Metón I. Effect of dietary macronutrients on the expression of cholecystokinin, leptin, ghrelin and neuropeptide Y in gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2017; 240:121-128. [PMID: 27725144 DOI: 10.1016/j.ygcen.2016.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Endocrine factors released from the central nervous system, gastrointestinal tract, adipose tissue and other peripheral organs mediate the regulation of food intake. Although many studies have evaluated the effect of fed-to-starved transition on the expression of appetite-related genes, little is known about how the expression of appetite-regulating peptides is regulated by the macronutrient composition of the diet. The aim of the present study was to examine the effect of diet composition and nutritional status on the expression of four peptides involved in food intake control in gilthead sea bream (Sparus aurata): neuropeptide Y (NPY), ghrelin, cholecystokinin (CCK) and leptin. Quantitative real-time RT-PCR showed that high protein/low carbohydrate diets stimulated the expression of CCK and ghrelin in the intestine and leptin in the adipose tissue, while downregulation of ghrelin and NPY mRNA levels was observed in the brain. Opposite effects were found for the expression of the four genes in fish fed low protein/high carbohydrate diets or after long-term starvation. Our findings indicate that the expression pattern of appetite-regulating peptides, particularly CCK and ghrelin, is modulated by the nutritional status and diet composition in S. aurata.
Collapse
Affiliation(s)
- Sedigheh Babaei
- Fisheries Departament, Faculty of Marine Sciences, Tarbiat Modares University (TMU), Noor 46417-76488, Iran
| | - Alberto Sáez
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
34
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
35
|
Volkoff H, Estevan Sabioni R, Coutinho LL, Cyrino JEP. Appetite regulating factors in pacu (Piaractus mesopotamicus): Tissue distribution and effects of food quantity and quality on gene expression. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:241-254. [PMID: 27717774 DOI: 10.1016/j.cbpa.2016.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
The pacu Piaractus mesopotamicus is an omnivorous fish considered a promising species for aquaculture. Little is known about the endocrine regulation of feeding in this species. In this study, transcripts for orexin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK) and leptin were isolated in pacu. Orexin, CCK and leptin have widespread mRNA distributions in brain and periphery, CART is limited to the brain. To examine the role of these peptides in the regulation of feeding and energy status, mRNA expression levels were compared between fed and fasted fish and around feeding time. Both orexin and CART brain expressions were affected by fasting and displayed periprandial changes, suggesting a role in both short- and long-term regulation of feeding. CCK intestinal expression decreased in fasted fish and displayed periprandial changes, suggesting CCK acts as a peripheral satiety factor. Leptin was not affected by fasting but displayed periprandial changes, suggesting a role as a short-term regulator. To examine if these peptides are affected by diet, brain and gut expressions were assessed in fish fed with different diets containing soy protein concentrate. Food intake, weight gain and expressions of orexin, CART, CCK and leptin were little affected by replacement of fish protein with soy protein, suggesting that pacu is able to tolerate and grow well with a diet rich in plant material. Overall, our results suggest that orexin, CART, CCK and leptin are involved in the physiology of feeding of pacu and that their expressions are little affected by plant-based diets.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| | - Rafael Estevan Sabioni
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Laboratório de Biotecnologia Animal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
36
|
Volkoff H, Sabioni RE, Cyrino JEP. Appetite regulating factors in dourado, Salminus brasiliensis: cDNA cloning and effects of fasting and feeding on gene expression. Gen Comp Endocrinol 2016; 237:34-42. [PMID: 27468955 DOI: 10.1016/j.ygcen.2016.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/17/2016] [Accepted: 07/24/2016] [Indexed: 12/25/2022]
Abstract
The dourado, Salminus brasiliensis (Cuvier, 1816) is a freshwater piscivorous Characin native to South American rivers. Owing to the high quality of its flesh and its fast growth, it is the object of both capture fisheries and fish farming. However, very little is known about the endocrine regulation of feeding and metabolism of dourado. In this study, cDNAs for orexin, CART and CCK were isolated in dourado, and their mRNA tissue distributions examined. In order to assess the role of these peptides in the regulation of feeding of dourado, the effects of fasting and feeding on mRNA expression levels of orexin, CART and CCK in the brain as well as CCK in the intestine were assessed. Whereas orexin and CCK have widespread mRNA distributions in the brain and peripheral organs, CART seems to be mostly limited to the brain. Orexin brain expression increased with fasting and displayed periprandial changes, suggesting it is involved in both long- and short-term regulation of feeding and appetite. CART and CCK hypothalamic expressions were not affected by fasting, but displayed periprandial changes with post-feeding decreases, suggesting roles in short-term satiation. CCK expression in the anterior intestine was not affected by fasting and did not display periprandial changes. Overall, our results suggest that orexin, CART and CCK are involved in the physiology of feeding of dourado.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| | - Rafael Estevan Sabioni
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
37
|
Characterization and comparative profiling of the small RNA transcriptomes in the Hemipteran insect Nilaparvata lugens. Gene 2016; 595:83-91. [PMID: 27693372 DOI: 10.1016/j.gene.2016.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a group of small RNAs involved in various biological processes through negative regulation of mRNAs at the post-transcriptional level. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive insect pests of rice. In the present study, two small RNA libraries of virulent N. lugens populations (Biotype I survives on susceptive rice variety TN1 and Biotype Y survives on moderately resistant rice variety YHY15) were constructed and sequenced using the high-throughput sequencing technology in order to identify the relationship between miRNAs of N.lugens and adaptation of BPH pests to rice resistance. In total 15,758,632 and 11,442,592 reads, corresponding to 3,144,026 and 2,550,049 unique sequences, were obtained in the two libraries (BPH-TN1 and BPH-YHY15 libraries), respectively. A total of 41 potential novel miRNAs were predicted in the two libraries, and 26 miRNAs showed significantly differential expression between two libraries. All miRNAs were significantly up-regulated in the BPH-TN1 library. Target genes likely regulated by these differentially expressed miRNAs were predicted using computational prediction. The functional annotation of target genes performed by Gene Ontology enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) indicated that a majority of differential miRNAs were involved in "Metabolism" pathway. These results provided an understanding of the role of miRNAs in BPH to adaptability of BPH on rice resistance, and will be useful in developing new control strategies for host defense against BPH.
Collapse
|
38
|
White SL, Volkoff H, Devlin RH. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon. Horm Behav 2016; 84:18-28. [PMID: 27149948 DOI: 10.1016/j.yhbeh.2016.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 04/01/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals.
Collapse
Affiliation(s)
- Samantha L White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada.
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| |
Collapse
|
39
|
Garland T, Zhao M, Saltzman W. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior. Integr Comp Biol 2016; 56:207-24. [PMID: 27252193 PMCID: PMC5964798 DOI: 10.1093/icb/icw040] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels.
Collapse
Affiliation(s)
- Theodore Garland
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Meng Zhao
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Wendy Saltzman
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| |
Collapse
|
40
|
Wang T, Yuan D, Zhou C, Lin F, Wei R, Chen H, Wu H, Xin Z, Liu J, Gao Y, Chen D, Yang S, Wang Y, Pu Y, Li Z. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:883-893. [PMID: 26690629 DOI: 10.1007/s10695-015-0182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.
Collapse
Affiliation(s)
- Tao Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Dengyue Yuan
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Chaowei Zhou
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Fangjun Lin
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Rongbin Wei
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hu Chen
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hongwei Wu
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiming Xin
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Ju Liu
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundi Gao
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yan Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundan Pu
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiqiong Li
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China.
| |
Collapse
|
41
|
Dalmolin C, Almeida DV, Figueiredo MA, Marins LF. Food intake and appetite control in a GH-transgenic zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1131-1141. [PMID: 25990920 DOI: 10.1007/s10695-015-0074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. The regulatory network for GH is complex and includes many central and peripheral endocrine factors as well as that from the environment. It is known that GH transgenesis results in increased growth, food intake, and consequent metabolic rates in fishes. However, the manner in which GH transgenesis alters the energetic metabolism in fishes has not been well explored. In order to elucidate these consequences, we examined the effect of GH overexpression on appetite control mechanisms in a transgenic zebrafish (Danio rerio) model. To this, we analyzed feeding behavior and the expression of the main appetite-related genes in two different feeding periods (fed and fasting) in non-transgenic (NT) and transgenic (T) zebrafish as well as glycaemic parameters of them. Our initial results have shown that NT males and females present the same feeding behavior and expression of main appetite-controlling genes; therefore, the data of both sexes were properly grouped. Following grouped data analyses, we compared the same parameters in NT and T animals. Feeding behavior results have shown that T animals eat significantly more and faster than NT siblings. Gene expression results pointed out that gastrointestinal (GT) cholecystokinin has a substantial contribution to the communication between peripheral and central control of food intake. Brain genes expression analyses revealed that T animals have a down-regulation of two strong and opposite peptides related to food intake: the anorexigenic proopiomelanocortin (pomc) and the orexigenic neuropeptide Y (npy). The down-regulation of pomc in T when compared with NT is an expected result, since the decrease in an anorexigenic factor might keep the transgenic fish hungry. The down-regulation of npy seemed to be contradictory at first, but if we consider the GH's capacity to elevate blood glucose, and that NPY is able to respond to humoral factors like glucose, this down-regulation makes sense. In fact, our last experiment showed that transgenics presented elevated blood glucose levels, confirming that npy might responded to this humoral factor. In conclusion, we have shown that GT responds to feeding status without interference of transgenesis, whereas brain responds to GH transgenesis without any effect of treatment. It is clear that transgenic zebrafish eat more and faster, and it seems that it occurs due to pomc down-regulation, since npy might be under regulation of the humoral factor glucose.
Collapse
Affiliation(s)
- Camila Dalmolin
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Daniela Volcan Almeida
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marcio Azevedo Figueiredo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
42
|
Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. Mol Cell Endocrinol 2015; 413:178-88. [PMID: 26123591 DOI: 10.1016/j.mce.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which elevated feeding response is controlled, independently of food availability and growth.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Michelle Chan
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada.
| |
Collapse
|
43
|
Volkoff H. Cloning, tissue distribution and effects of fasting on mRNA expression levels of leptin and ghrelin in red-bellied piranha (Pygocentrus nattereri). Gen Comp Endocrinol 2015; 217-218:20-7. [PMID: 25980684 DOI: 10.1016/j.ygcen.2015.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022]
Abstract
cDNAs encoding the appetite regulating peptides leptin and ghrelin were isolated in red-bellied piranha (Characiforme, Serrasalmidae) and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish and Siluriformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to better understand the role of these peptides in the regulation of feeding of red-bellied piranha, the mRNA expression levels of leptin and ghrelin were examined in both brain and intestine, in fed and 7-day fasted fish. No significant differences in expression were seen in whole brain for either peptide. Within the intestine, there was a decrease in leptin mRNA expression and an increase in ghrelin mRNA expression in fasted fish, compared to fed fish. The results suggest that leptin and ghrelin might play a major role in the regulation of feeding and energy homeostasis of red-bellied piranha and this role might be more prominent in the intestine than in the brain.
Collapse
Affiliation(s)
- Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
44
|
Volkoff H. Cloning and tissue distribution of appetite-regulating peptides in pirapitinga (Piaractus brachypomus
). J Anim Physiol Anim Nutr (Berl) 2015; 99:987-1001. [DOI: 10.1111/jpn.12318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- H. Volkoff
- Departments of Biology and Biochemistry; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|
45
|
Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue Cell 2015; 47:123-31. [PMID: 25771084 DOI: 10.1016/j.tice.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/16/2023]
Abstract
The endocrine cells (ECs) of the gastrointestinal mucosa form the largest endocrine system in the body, not only in terms of cell numbers but also in terms of the different produced substances. Data describing the association between the relative distributions of the peptide-specific ECs in relation to feeding habits can be useful tools that enable the creation of a general expected pattern of EC distribution. We aimed to investigate the distribution of ECs immunoreactive for the peptides gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in different segments of the digestive tract of carnivorous fish dorado (Salminus brasiliensis) by using immunohistochemistry procedures. The distribution of endocrine cells immunoreactive for gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in digestive tract of dorado S. brasiliensis was examined by immunohistochemistry. The results describe the association between the distribution of the peptide-specific endocrine cells and feeding habits in different carnivorous fish. The largest number of endocrine cells immunoreactive for GAS, CCK-8, and CGRP were found in the pyloric stomach region and the pyloric caeca. However, NPY-immunoreactive endocrine cells were markedly restricted to the midgut. The distribution pattern of endocrine cells identified in S. brasiliensis is similar to that found in other carnivorous fishes.
Collapse
|
46
|
Soengas JL. Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 2014; 205:36-48. [PMID: 24530522 DOI: 10.1016/j.ygcen.2014.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Food intake in fish is a complex process regulated through many different factors including abundance of energy and nutrients. In recent years, evidence have been obtained in several fishes, mainly in rainbow trout, regarding the presence and functioning in brain areas of metabolic sensors informing about changes in the levels of nutrients like glucose and fatty acids. The activity of these sensors relate to the control of food intake through changes in the expression of anorexigenic and orexigenic neuropeptides. The present review will provide a picture of the main results obtained to date in these studies, as well as perspectives for future research in the field.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
47
|
Martínez-Chávez CC, Tello-Ballinas A, Fonseca-Madrigal J, Ross LG, Martínez-Palacios CA. Photoperiodic growth enhancement in a tropical batch spawning atherinopsid, pike silverside Chirostoma estor. JOURNAL OF FISH BIOLOGY 2014; 85:546-553. [PMID: 24976358 DOI: 10.1111/jfb.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
The effect of photoperiod on growth and survival in early life was determined in the tropical batch spawning atherinopsid, pike silverside Chirostoma estor. The results demonstrate high sensitivity of newly hatched C. estor to photoperiod treatments up to 90 days post hatch shown by improved growth in mass (43%) under continuous illumination. This is accompanied by increased fat deposition, which suggests a critical interaction between different photoperiod-mediated mechanisms. A thorough understanding of these mechanisms can help to optimize the development of aquaculture of C. estor and similar species.
Collapse
Affiliation(s)
- C C Martínez-Chávez
- Laboratorio de Acuicultura y Nutrición, Instituto de Investigaciones Agropecuarias y Forestales, UMSNH, Av. San Juanito Itzícuaro, S/N Morelia, Michoacán, C.P. 58330, México
| | | | | | | | | |
Collapse
|
48
|
Wang T, Yuan D, Zhou C, Lin F, Chen H, Wu H, Wei R, Xin Z, Liu J, Gao Y, Chen D, Yang S, Pu Y, Li Z. Characterization of Schizothorax prenanti cgnrhII gene: fasting affects cgnrhII expression. JOURNAL OF FISH BIOLOGY 2014; 85:407-420. [PMID: 24942636 DOI: 10.1111/jfb.12430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
In this study, the role of chicken gonadotropin-releasing hormone II (cgnrhII) in feeding regulation was investigated in Schizothorax prenanti. First, the full-length S. prenanti cgnrhII cDNA consisted of 693 bp with an open reading frame of 261 bp encoding a protein of 86 amino acids. Next, cgnrhII was widely expressed in the central and peripheral tissues. Last, there were significant changes in cgnrhII mRNA expression in the fasted group compared to the fed group in the S. prenanti hypothalamus during 24 h fasting (P < 0.05). Furthermore, the cgnrhII gene expression presented a significant decrease in the fasted group compared with the fed group (P < 0.05) on days 3, 5 and 7, after re-feeding, there was no significant changes in cgnrhII mRNA expression level between refed and fed group on day 9 (P > 0.05). Thus, the results suggest that cGnRH II expression is influenced by fasting and the gene may be involved in feeding regulation in S. prenanti.
Collapse
Affiliation(s)
- T Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
50
|
Volkoff H. Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: cloning, tissue distribution and effect of fasting on mRNA expression levels. Peptides 2014; 56:116-24. [PMID: 24721336 DOI: 10.1016/j.peptides.2014.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
Abstract
cDNAs encoding the appetite regulating peptides apelin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK), peptide YY (PYY) and orexin were isolated in red-bellied piranha and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish, as well as to Cypriniformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to assess the role of these peptides in the regulation of feeding of red-bellied piranha, we compared the brain mRNA expression levels of these peptides, as well as the gut mRNA expression of CCK and PYY, between fed and 7-day fasted fish. Within the brain, fasting induced a significant increase in both apelin and orexin mRNA expressions and a decrease in CART mRNA expression, but there where were no significant differences for either PYY or CCK brain mRNA expressions between fed and fasted fish. Within the intestine, PYY mRNA expression was lower in fasted fish compared to fed fish but there was no significant difference for CCK intestine mRNA expression between fed and fasted fish. Our results suggest that these peptides, perhaps with the exception of CCK, play a major role in the regulation of feeding of red-bellied piranha.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|