1
|
Bersin TV, Cordova KL, Journey ML, Beckman BR, Lema SC. Food deprivation reduces sensitivity of liver Igf1 synthesis pathways to growth hormone in juvenile gopher rockfish (Sebastes carnatus). Gen Comp Endocrinol 2024; 346:114404. [PMID: 37940008 DOI: 10.1016/j.ygcen.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
2
|
Ram R, Pavan-Kumar A, Haldar C, Pathakota GB, Rasal K, Chaudhari A. Molecular cloning and expression profiling of insulin-like growth factor 2 and IGF-binding protein 6 in Clarias magur (Hamilton 1822). Anim Biotechnol 2023; 34:2262-2272. [PMID: 35714990 DOI: 10.1080/10495398.2022.2086561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Growth is an important trait in aquaculture and the major genes that regulate it are Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs). In this study, the full-length coding sequences of IGF2 and IGFBP6 genes in the Indian catfish Clarias magur were cloned and characterized. The full-length cDNA sequences of IGF2 and IGFBP6 were 885 bp (ORF 642 bp) and 928 bp (ORF 600 bp), encoding 213 and 199 amino acids, respectively. Bioinformatics analyses revealed that the magur IGF2 and IGFBP6 proteins are hydrophilic and secretory in nature. Sequence alignment with other teleosts and mammalian orthologues shows conservation of the functional domains. Gene expression analysis in 6 individuals each of high (298 ± 5.0 g) and low (210 ± 6.0 g) growth performing families showed significantly (p < 0.05) higher expression (2.5-3 fold) of IGF2, and lower expression (∼2.5 fold) of IGFBP6 in liver and muscle of fast-growing fish. This study suggests that IGF2 could be playing a major role in the growth regulation of magur. These genes and their expression patterns could be developed into growth-associated markers for magur and other catfishes.
Collapse
Affiliation(s)
- Raju Ram
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Annam Pavan-Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Chandan Haldar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Gireesh-Babu Pathakota
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Kiran Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, India
| |
Collapse
|
3
|
Bersin TV, Mapes HM, Journey ML, Beckman BR, Lema SC. Insulin-like growth factor-1 (Igf1) signaling responses to food consumption after fasting in the Pacific rockfish Sebastes carnatus. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111444. [PMID: 37201654 DOI: 10.1016/j.cbpa.2023.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics. Here, we looked at the response times of plasma Igf1 and liver Igf1 signaling-associated gene expression to refeeding after food deprivation in juvenile gopher rockfish (Sebastes carnatus), one of several species of northern Pacific Ocean Sebastes rockfishes targeted by fisheries or utilized for aquaculture. Gopher rockfish were fasted for 30 d, after which a subset was fed to satiation for 2 h, while other rockfish continued to be fasted. Refed fish exhibited higher hepatosomatic index (HSI) values and increased Igf1 after food consumption. Gene transcripts for Gh receptor 1 (ghr1), but not ghr2, increased in the liver after eating. Transcripts encoding igf1 also increased in the liver of refed fish 2-4 d after feeding, only to return to levels similar as continually fasted rockfish by 9 d after feeding. Liver mRNA abundances for Igf binding protein (Igfbp) genes igfbp1a, igfbp1b, and igfbp3a declined within 2 d of feeding. These findings provide evidence that circulating Igf1 in rockfish reflects a fish's feeding experience within the previous few days, and suggest that feeding-induced increases in Igf1 are being mediated in part by altered liver sensitivity to Gh due to upregulated Gh receptor 1 expression.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Hayley M Mapes
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
4
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
5
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
6
|
Celino-Brady FT, Breves JP, Seale AP. Sex-specific responses to growth hormone and luteinizing hormone in a model teleost, the Mozambique tilapia. Gen Comp Endocrinol 2022; 329:114119. [PMID: 36029822 DOI: 10.1016/j.ygcen.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Across the vertebrate lineage, sexual dimorphism in body size is a common phenomenon that results from trade-offs between growth and reproduction. To address how key hormones that regulate growth and reproduction interact in teleost fishes, we studied Mozambique tilapia (Oreochromis mossambicus) to determine whether the activities of luteinizing hormone (Lh) are modulated by growth hormone (Gh), and conversely, whether targets of Gh are affected by the presence of Lh. In particular, we examined how gonadal morphology and specific gene transcripts responded to ovine GH (oGH) and/or LH (oLH) in hypophysectomized male and female tilapia. Hypophysectomized females exhibited a diminished gonadosomatic index (GSI) concomitant with ovarian follicular atresia. The combination of oGH and oLH restored GSI and ovarian morphology to conditions observed in sham-operated controls. A similar pattern was observed for GSI in males. In control fish, gonadal gh receptor (ghr2) and estrogen receptor β (erβ) expression was higher in females versus males. A combination of oGH and oLH restored erβ and arβ in females. In males, testicular insulin-like growth factor 3 (igf3) expression was reduced following hypophysectomy and subsequently restored to control levels by either oGH or oLH. By contrast, the combination of both hormones was required to recover ovarian igf3 expression in females. In muscle, ghr2 expression was more responsive to oGH in males versus females. In the liver of hypophysectomized males, igf2 expression was diminished by both oGH and oLH; there was no effect of hypophysectomy, oGH, or oLH on igf2 expression in females. Collectively, our results indicate that gene transcripts associated with growth and reproduction exhibit sex-specific responses to oGH and oLH. These responses reflect, at least in part, how hormones mediate trade-offs between growth and reproduction, and thus sexual dimorphism, in teleost fishes.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
7
|
Alonso-Gómez A, Madera D, Alonso-Gómez ÁL, Valenciano AI, Delgado MJ. Daily Rhythms in the IGF-1 System in the Liver of Goldfish and Their Synchronization to Light/Dark Cycle and Feeding Time. Animals (Basel) 2022; 12:ani12233371. [PMID: 36496892 PMCID: PMC9739714 DOI: 10.3390/ani12233371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The relevance of the insulin-like growth factor-1 (IGF-1) system in several physiological processes is well-known in vertebrates, although little information about their temporal organization is available. This work aims to investigate the possible rhythmicity of the different components of the IGF-1 system (igf-1, the igf1ra and igf1rb receptors and the paralogs of its binding proteins IGFBP1 and IGFBP2) in the liver of goldfish. In addition, we also study the influence of two environmental cues, the light/dark cycle and feeding time, as zeitgebers. The hepatic igf-1 expression showed a significant daily rhythm with the acrophase prior to feeding time, which seems to be strongly dependent on both zeitgebers. Only igfbp1a-b and igfbp1b-b paralogs exhibited a robust daily rhythm of expression in the liver that persists in fish held under constant darkness or randomly fed. The hepatic expression of the two receptor subtypes did not show daily rhythms in any of the experimental conditions. Altogether these results point to the igf-1, igfbp1a-b, and igfbp1b-b as clock-controlled genes, supporting their role as putative rhythmic outputs of the hepatic oscillator, and highlight the relevance of mealtime as an external cue for the 24-h rhythmic expression of the IGF-1 system in fish.
Collapse
|
8
|
Li P, Liu W, Lu W, Wang J. Biochemical indices, gene expression, and SNPs associated with salinity adaptation in juvenile chum salmon ( Oncorhynchus keta) as determined by comparative transcriptome analysis. PeerJ 2022; 10:e13585. [PMID: 36117540 PMCID: PMC9477081 DOI: 10.7717/peerj.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Chum salmon (Oncorhynchus keta) migrate from freshwater to saltwater, and incur developmental, physiological and molecular adaptations as the salinity changes. The molecular regulation for salinity adaptation in chum salmon is currently not well defined. In this study, 1-g salmon were cultured under 0 (control group, D0), 8‰ (D8), 16‰ (D16), and 24‰ (D24) salinity conditions for 42 days. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in the gill first increased and then decreased in response to higher salinity environments where D8 exhibited the highest Na+/K+ATPase and Ca2+/Mg2+-ATPase activity and D24 exhibited the lowest. Alkaline phosphatase (AKP) activity was elevated in all salinity treatment groups relative to controls, while no significant difference in acid phosphatase (ACP) activity was observed across treatment groups. De novo transcriptome sequencing in the D0 and D24 groups using RNA-Seq analysis identified 187,836 unigenes, of which 2,143 were differentially expressed in response to environmental salinity (71 up-regulated and 2,072 down-regulated). A total of 56,020 putative single nucleotide polymorphisms (SNPs) were also identified. The growth, development, osmoregulation and maturation factors of N-methyl-D-aspartate receptors (nmdas) expressed in memory formation, as well as insulin-like growth factor 1 (igf-1) and igf-binding proteins (igfbps) were further investigated using targeted qRT-PCR. The lowest expression of all these genes occurred in the low salinity environments (D8 or D16), while their highest expression occurred in the high salinity environments (D24). These results provide preliminary insight into salinity adaptation in chum salmon and a foundation for the development of marker-assisted breeding for this species.
Collapse
Affiliation(s)
- Peilun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wei Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wanqiao Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
9
|
Transcriptomes of testis and pituitary from male Nile tilapia (O. niloticus L.) in the context of social status. PLoS One 2022; 17:e0268140. [PMID: 35544481 PMCID: PMC9094562 DOI: 10.1371/journal.pone.0268140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
African cichlids are well established models for studying social hierarchies in teleosts and elucidating the effects social dominance has on gene expression. Ascension in the social hierarchy has been found to increase plasma levels of steroid hormones, follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) as well as gonadosomatic index (GSI). Furthermore, the expression of genes related to gonadotropins and steroidogenesis and signaling along the brain-pituitary-gonad axis (BPG-axis) is affected by changes of an animal’s social status. In this study, we use RNA-sequencing to obtain an in-depth look at the transcriptomes of testes and pituitaries from dominant and subordinate male Nile tilapia living in long-term stable social hierarchies. This allows us to draw conclusions about factors along the brain-pituitary-gonad axis that are involved in maintaining dominance over weeks or even months. We identify a number of genes that are differentially regulated between dominant and subordinate males and show that in high-ranking fish this subset of genes is generally upregulated. Genes differentially expressed between the two social groups comprise growth factors, related binding proteins and receptors, components of Wnt-, Tgfβ- and retinoic acid-signaling pathway, gonadotropin signaling and steroidogenesis pathways. The latter is backed up by elevated levels of 11-ketotestosterone, testosterone and estradiol in dominant males. Luteinizing hormone (Lh) is found in higher concentration in the plasma of long-term dominant males than in subordinate animals. Our results both strengthen the existing models and propose new candidates for functional studies to expand our understanding of social phenomena in teleost fish.
Collapse
|
10
|
Thirunavukkarasar R, Kumar P, Sardar P, Sahu NP, Harikrishna V, Singha KP, Shamna N, Jacob J, Krishna G. Protein-sparing effect of dietary lipid: Changes in growth, nutrient utilization, digestion and IGF-I and IGFBP-I expression of Genetically Improved Farmed Tilapia (GIFT), reared in Inland Ground Saline Water. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Seale LA, Gilman CL, Zavacki AM, Larsen PR, Inokuchi M, Breves JP, Seale AP. Regulation of thyroid hormones and branchial iodothyronine deiodinases during freshwater acclimation in tilapia. Mol Cell Endocrinol 2021; 538:111450. [PMID: 34506867 PMCID: PMC8551029 DOI: 10.1016/j.mce.2021.111450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Euryhaline fishes are capable of maintaining osmotic homeostasis in a wide range of environmental salinities. Several pleiotropic hormones, including prolactin, growth hormone, and thyroid hormones (THs) are mediators of salinity acclimation. It is unclear, however, the extent to which THs and the pituitary-thyroid axis promote the adaptive responses of key osmoregulatory organs to freshwater (FW) environments. In the current study, we characterized circulating thyroxine (T4) and 3-3'-5-triiodothyronine (T3) levels in parallel with the outer ring deiodination (ORD) activities of deiodinases (dios) and mRNA expression of dio1, dio2, and dio3 in gill during the acclimation of Mozambique tilapia (Oreochromis mossambicus) to FW. Tilapia transferred from seawater (SW) to FW exhibited reduced plasma T4 and T3 levels at 6 h. These reductions coincided with an increase in branchial dio2-like activity and decreased branchial dio1 gene expression. To assess whether dios respond to osmotic conditions and/or systemic signals, gill filaments were exposed to osmolalities ranging from 280 to 450 mOsm/kg in an in vitro incubation system. Gene expression of branchial dio1, dio2, and dio3 was not directly affected by extracellular osmotic conditions. Lastly, we observed that dio1 and dio2 expression was stimulated by thyroid-stimulating hormone in hypophysectomized tilapia, suggesting that branchial TH metabolism is regulated by systemic signals. Our collective findings suggest that THs are involved in the FW acclimation of Mozambique tilapia through their interactions with branchial deiodinases that modulate their activities in a key osmoregulatory organ.
Collapse
Affiliation(s)
- Lucia A Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1933 East-West Road, Honolulu, HI, 96822, USA
| | - Christy L Gilman
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Reed Larsen
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
12
|
Breves JP, Springer-Miller RH, Chenoweth DA, Paskavitz AL, Chang AYH, Regish AM, Einarsdottir IE, Björnsson BT, McCormick SD. Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr. Mol Cell Endocrinol 2020; 518:110989. [PMID: 32835784 DOI: 10.1016/j.mce.2020.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.
Collapse
Affiliation(s)
- J P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - R H Springer-Miller
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - D A Chenoweth
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A L Paskavitz
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A Y H Chang
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - I E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
13
|
Zhang MQ, Chen B, Zhang JP, Chen N, Liu CZ, Hu CQ. Liver toxicity of macrolide antibiotics in zebrafish. Toxicology 2020; 441:152501. [PMID: 32454074 DOI: 10.1016/j.tox.2020.152501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections, but macrolides also expose people to the risk of adverse events include hepatotoxicity. Here, we report the liver toxicity of macrolides with different structures in zebrafish. The absorption, distribution, metabolism, excretion and toxicology (ADMET) parameters of macrolide compounds were predicted and contrasted by utilizing in silico analysis. Fluorescence imaging and Oil Red O stain assays showed all the tested macrolide drugs induced liver degeneration, changed liver size and liver steatosis in larval zebrafish. Through RNA-seq analysis, we found seven co-regulated differentially expressed genes (co-DEGs) associated with metabolism, apoptosis and immune system biological processes, and two co-regulated significant pathways including amino sugar and nucleotide sugar metabolism and apoptosis signaling pathway. We found that only fosab of seven co-DEGs was in the two co-regulated significant pathways. fosab encoded proto-oncogene c-Fos, which was closely associated with liver diseases. The whole-mount in situ hybridization showed high transcription of c-Fos induced by macrolide compounds mainly in the liver region of zebrafish larvae. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) leakage assays revealed that macrolides exerts significant cytotoxic effects on L02 cells. qRT-PCR and western blot analysis demonstrated macrolides also promoted human c-Fos expression in L02 cells. The c-Fos overexpression significantly reduced cell viability by using CCK-8 assay. These data indicate that hepatotoxicity induced by macrolides may be correlated with c-Fos expression activated by these compounds. This study may provide a biomarker for the further investigations on the mechanism of hepatotoxicity induced by macrolide drugs with different structures, and extend our understanding for improving rational clinical application of macrolides.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Postdoctoral Scientific Research Workstation, China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518110, China; Postdoctoral Mobile Research Station, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences & School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China; Shenzhen China Resources Gosun Pharmaceuticals Co., Ltd., Shenzhen 518049, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bo Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Pu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Chen
- Shenzhen China Resources Gosun Pharmaceuticals Co., Ltd., Shenzhen 518049, China.
| | - Chun-Zhao Liu
- Postdoctoral Mobile Research Station, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences & School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
14
|
Petro-Sakuma C, Celino-Brady FT, Breves JP, Seale AP. Growth hormone regulates intestinal gene expression of nutrient transporters in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2020; 292:113464. [PMID: 32171745 PMCID: PMC7253219 DOI: 10.1016/j.ygcen.2020.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Among the various ways that growth hormone (GH) underlies the growth physiology of teleost fishes, GH stimulates transport pathways that facilitate the absorption of nutrients across intestinal epithelia. The current study investigated the effects of GH on the gene expression of nutrient transporters in an omnivorous teleost, the Mozambique tilapia (Oreochromis mossambicus). We employed pituitary gland removal (hypophysectomy) and hormone replacement to assess whether GH directs the gene expression of the GH receptor (ghr2), the peptide transporters, pept1a, pept1b and pept2, the amino acid transporter, slc7a9, the Na+/glucose cotransporter, sglt1, the glucose transporter, glut2, and the myo-inositol transporter, smit2, in anterior, middle, and posterior intestine. ghr2 was predominantly expressed in posterior intestine, while pept1a, pept1b, slc7a9, sglt1, glut2, and smit2 exhibited the highest mRNA levels in anterior and/or middle intestine. While hypophysectomized tilapia exhibited diminished expression of ghr2, pept1a, pept1b, slc7a9, and glut2 compared with intact and sham-operated controls, only ghr2, pept1a, pept1b and glut2 levels were restored by GH replacement. Our findings indicate that GH supports growth, at least in part, by stimulating the gene expression of its cognate receptor and key nutrient transporters in the intestine.
Collapse
Affiliation(s)
- Cody Petro-Sakuma
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA.
| |
Collapse
|
15
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
16
|
Celino-Brady FT, Petro-Sakuma CK, Breves JP, Lerner DT, Seale AP. Early-life exposure to 17β-estradiol and 4-nonylphenol impacts the growth hormone/insulin-like growth-factor system and estrogen receptors in Mozambique tilapia, Oreochromis mossambicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105336. [PMID: 31733503 PMCID: PMC6935514 DOI: 10.1016/j.aquatox.2019.105336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 05/31/2023]
Abstract
It is widely recognized that endocrine disrupting chemicals (EDCs) released into the environment through anthropogenic activities can have short-term impacts on physiological and behavioral processes and/or sustained or delayed long-term developmental effects on aquatic organisms. While numerous studies have characterized the effects of EDCs on temperate fishes, less is known on the effects of EDCs on the growth and reproductive physiology of tropical species. To determine the long-term effects of early-life exposure to common estrogenic chemicals, we exposed Mozambique tilapia (Oreochromis mossambicus) yolk-sac fry to 17β-estradiol (E2) and nonylphenol (NP) and subsequently characterized the expression of genes involved in growth and reproduction in adults. Fry were exposed to waterborne E2 (0.1 and 1 μg/L) and NP (10 and 100 μg/L) for 21 days. After the exposure period, juveniles were reared for an additional 112 days until males were sampled. Gonadosomatic index was elevated in fish exposed to E2 (0.1 μg/L) while hepatosomatic index was decreased by exposure to NP (100 μg/L). Exposure to E2 (0.1 μg/L) induced hepatic growth hormone receptor (ghr) mRNA expression. The high concentration of E2 (1 μg/L), and both concentrations of NP, increased hepatic insulin-like growth-factor 1 (igf1) expression; E2 and NP did not affect hepatic igf2 and pituitary growth hormone (gh) levels. Both E2 (1 μg/L) and NP (10 μg/L) induced hepatic igf binding protein 1b (igfbp1b) levels while only NP (100 μg/L) induced hepatic igfbp2b levels. By contrast, hepatic igfbp6b was reduced in fish exposed to E2 (1 μg/L). There were no effects of E2 or NP on hepatic igfbp4 and igfbp5a expression. Although the expression of three vitellogenin transcripts was not affected, E2 and NP stimulated hepatic estrogen receptor (erα and erβ) mRNA expression. We conclude that tilapia exposed to E2 and NP as yolk-sac fry exhibit subsequent changes in the endocrine systems that control growth and reproduction during later life stages.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, 2525 Correa Road, Honolulu, HI 96822, USA.
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
17
|
Yang G, Chen B, Sun C, Yuan X, Zhang Y, Qin J, Li W. Molecular identification of grouper Igfbp1 and its mRNA expression in primary hepatocytes under Gh and insulin. Gen Comp Endocrinol 2019; 281:137-144. [PMID: 31176753 DOI: 10.1016/j.ygcen.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system plays a pivotal role in the regulation of growth, and IGF binding proteins (IGFBPs) are important regulatory factors in the IGF system. Generally, IGFBPs inhibit IGF actions by preventing its binding to receptors. Under some conditions, the IGFBPs can also enhance IGF actions. IGFBP1 is generally inhibitory to IGFI. In this study, the grouper (Epinephelus coioides) igfbp1 (MK621003) gene was cloned from the liver. The sequence of igfbp1 cDNA was 1055 bp and contained a 5'UTR of 127 bp and a 3'UTR of 247 bp, and the ORF of grouper igfbp1 was 741 bp, encoding 246 amino acids. The tissue distribution results showed that igfbp1 has a higher expression in the liver. In the nutritional status experiment, igfbp1 expression was significantly increased in the liver after 7 days of fasting and was markedly decreased after refeeding. In in vitro experiments, igfbp1 expression in grouper primary hepatocytes was significantly inhibited by recombinant grouper Gh (growth hormone) in a dose-dependent manner. Additionally, igfbp1 expression decreased in grouper primary hepatocytes upon incubation with insulin. This is the first report describing grouper igfbp1, and these findings contribute to understanding the roles of IGFBP1 in metabolism and growth in grouper.
Collapse
Affiliation(s)
- Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Beichen Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yazhou Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Hack NL, Cordova KL, Glaser FL, Journey ML, Resner EJ, Hardy KM, Beckman BR, Lema SC. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen Comp Endocrinol 2019; 280:168-184. [PMID: 31022390 DOI: 10.1016/j.ygcen.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.
Collapse
Affiliation(s)
- Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Frances L Glaser
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
19
|
Cleveland BM, Yamaguchi G, Radler LM, Shimizu M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci Rep 2018; 8:16054. [PMID: 30375441 PMCID: PMC6207780 DOI: 10.1038/s41598-018-34326-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023] Open
Abstract
In salmonids, the majority of circulating insulin-like growth factor-I (IGF-I) is bound to IGF binding proteins (IGFBP), with IGFBP-2b being the most abundant in circulation. We used CRISPR/Cas9 methodology to disrupt expression of a functional IGFBP-2b protein by co-targeting for gene editing IGFBP-2b1 and IGFBP-2b2 subtypes, which represent salmonid-specific gene duplicates. Twenty-four rainbow trout were produced with mutations in the IGFBP-2b1 and IGFBP-2b2 genes. Mutant fish exhibited between 8–100% and 2–83% gene disruption for IGFBP-2b1 and IGFBP-2b2, respectively, with a positive correlation (P < 0.001) in gene mutation rate between individual fish. Analysis of IGFBP-2b protein indicated reductions in plasma IGFBP-2b abundance to between 0.04–0.96-fold of control levels. Plasma IGF-I, body weight, and fork length were reduced in mutants at 8 and 10 months post-hatch, which supports that IGFBP-2b is significant for carrying IGF-I. Despite reduced plasma IGF-I and IGFBP-2b in mutants, growth retardation in mutants was less severe between 10 and 12 months post-hatch (P < 0.05), suggesting a compensatory growth response occurred. These findings indicate that gene editing using CRISPR/Cas9 and ligand blotting is a feasible approach for characterizing protein-level functions of duplicated IGFBP genes in salmonids and is useful to unravel IGF-related endocrine mechanisms.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, United States of America.
| | - Ginnosuke Yamaguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lisa M Radler
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, United States of America
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
20
|
Breves JP, Duffy TA, Einarsdottir IE, Björnsson BT, McCormick SD. In vivo effects of 17α-ethinylestradiol, 17β-estradiol and 4-nonylphenol on insulin-like growth-factor binding proteins (igfbps) in Atlantic salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:28-39. [PMID: 30075440 DOI: 10.1016/j.aquatox.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Feminizing endocrine disrupting compounds (EDCs) affect the growth and development of teleost fishes. The major regulator of growth performance, the growth hormone (Gh)/insulin-like growth-factor (Igf) system, is sensitive to estrogenic compounds and mediates certain physiological and potentially behavioral consequences of EDC exposure. Igf binding proteins (Igfbps) are key modulators of Igf activity, but their alteration by EDCs has not been examined. We investigated two life-stages (fry and smolts) of Atlantic salmon (Salmo salar), and characterized how the Gh/Igf/Igfbp system responded to waterborne 17α-ethinylestradiol (EE2), 17β-estradiol (E2) and 4-nonylphenol (NP). Fry exposed to EE2 and NP for 21 days had increased hepatic vitellogenin (vtg) mRNA levels while hepatic estrogen receptor α (erα), gh receptor (ghr), igf1 and igf2 mRNA levels were decreased. NP-exposed fry had reduced body mass and total length compared to controls. EE2 and NP reduced hepatic igfbp1b1, -2a, -2b1, -4, -5b2 and -6b1, and stimulated igfbp5a. In smolts, hepatic vtg mRNA levels were induced following 4-day exposures to all three EDCs, while erα only responded to EE2 and E2. EDC exposures did not affect body mass or fork length; however, EE2 diminished plasma Gh and Igf1 levels in parallel with reductions in hepatic ghr and igf1. In smolts, EE2 and E2 diminished hepatic igfbp1b1, -4 and -6b1, and stimulated igfbp5a. There were no signs of compromised ionoregulation in smolts, as indicated by unchanged branchial ion pump/transporter mRNA levels. We conclude that hepatic igfbps respond (directly and/or indirectly) to environmental estrogens during two key life-stages of Atlantic salmon, and thus may modulate the growth and development of exposed individuals.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Tara A Duffy
- Department of Marine and Environmental Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S. O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA.
| |
Collapse
|
21
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
22
|
Chen W, Lin H, Li W. Molecular cloning and expression profiles of IGFBP-1a in common carp (Cyprinus carpio) and its expression regulation by growth hormone in hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:50-59. [PMID: 29698715 DOI: 10.1016/j.cbpb.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
Abstract
In this study, we cloned and determined IGFBP-1a cDNA from common carp (Cyprinus carpio) liver. The 1655 bp full-length cDNA consisted of a 96 bp 5-untranslated region (UTR), a 789 bp open reading frame encoding 262 amino acid residues and a 770 bp 3-UTR containing seven mRNA instability motifs. Northern blot revealed a 1.8 kb IGFBP-1a transcript. IGFBP-1a mRNA was widely distributed in all tissues examined and predominantly expressed in the liver. During embryogenesis, IGFBP-1a mRNA was firstly observed in blastula stage, and significant increases were observed in body segment stage, lens formation stage and blood cycling stage. After hatching, its expression increased more than twenty times. Furthermore, hypoxia could significantly up-regulate IGFBP-1a expression in the liver and brain. IGFBP-1a expression increased with ovarian maturation and decreased at regressed stage. In testis, IGFBP-1a mRNA maintained relatively higher levels at recrudescing and matured stages, while it sharply declined at regressed stage. In primary cultured hepatocytes, IGFBP-1a gene was greatly down-regulated by growth hormone via the MAPK and PI3 kinase signaling pathways. These results suggest that IGFBP-1a may be involved in the IGF system regulating growth, development and reproduction in common carp.
Collapse
Affiliation(s)
- Wenbo Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
23
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Perelló-Amorós M, Vélez EJ, Vela-Albesa J, Sánchez-Moya A, Riera-Heredia N, Hedén I, Fernández-Borràs J, Blasco J, Calduch-Giner JA, Navarro I, Capilla E, Jönsson E, Pérez-Sánchez J, Gutiérrez J. Ghrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Front Endocrinol (Lausanne) 2018; 9:399. [PMID: 30105002 PMCID: PMC6077198 DOI: 10.3389/fendo.2018.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Vela-Albesa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ida Hedén
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josep A. Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- *Correspondence: Joaquim Gutiérrez
| |
Collapse
|
25
|
Garcia de la Serrana D, Macqueen DJ. Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Front Endocrinol (Lausanne) 2018; 9:80. [PMID: 29593649 PMCID: PMC5857546 DOI: 10.3389/fendo.2018.00080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor (Igf) binding protein (Igfbp) family has a broad range of physiological functions and a fascinating evolutionary history. This review focuses on the Igfbps of teleost fishes, where genome duplication events have diversified gene repertoire, function, and physiological regulation-with six core Igfbps expanded into a family of over twenty genes in some lineages. In addition to briefly summarizing the current state of knowledge on teleost Igfbp evolution, function, and expression-level regulation, we highlight gaps in our understanding and promising areas for future work.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
- *Correspondence: Daniel Garcia de la Serrana,
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
26
|
Shimizu M, Dickhoff WW. Circulating insulin-like growth factor binding proteins in fish: Their identities and physiological regulation. Gen Comp Endocrinol 2017; 252:150-161. [PMID: 28782538 DOI: 10.1016/j.ygcen.2017.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) play crucial roles in regulating the availability of IGFs to receptors and prolong the half-lives of IGFs. There are six IGFBPs present in the mammalian circulation with IGFBP-3 being most abundant. In mammals IGFBP-3 is the major carrier of circulating IGFs, facilitated by forming a ternary complex with IGF and an acid-labile subunit (ALS). IGFBP-1 is generally inhibitory to IGF action by preventing it from interacting with its receptors. In teleosts, the third-round of vertebrate whole genome duplication created paralogs of each IGFBP, except IGFBP-4. In the fish circulation, three major IGFBPs are typically detected at molecular ranges of 20-25, 28-32 and 40-50kDa. However, their identities are not well established. Three major circulating IGFBPs in Chinook salmon have been identified through protein purification and cDNA cloning. Salmon 28- and 22-kDa IGFBPs are co-orthologs of IGFBP-1, termed IGFBP-1a and -1b, respectively. They are induced under catabolic conditions such as stress and fasting but their responses are somewhat different, with IGFBP-1b being the most sensitive of the two. Cortisol stimulates production and secretion of these IGFBP-1 subtypes while, unlike in mammals, insulin may not be a primary suppressor. Salmon 41-kDa IGFBP, a major carrier of IGF-I, is not IGFBP-3, as might be expected extrapolating from mammals, but is in fact IGFBP-2b. Salmon IGFBP-2b levels in plasma are high when fish are fed, and GH treatment increases its circulating levels similar to mammalian IGFBP-3. These findings suggest that salmon IGFBP-2b acquired the role and regulation similar to mammalian IGFBP-3. Multiple replications of fish IGFBPs offer a unique opportunity to investigate molecular evolution of IGFBPs.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Walton W Dickhoff
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
27
|
Zheng GD, Zhou CX, Lin ST, Chen J, Jiang XY, Zou SM. Two grass carp (Ctenopharyngodon idella) insulin-like growth factor-binding protein 5 genes exhibit different yet conserved functions in development and growth. Comp Biochem Physiol B Biochem Mol Biol 2016; 204:69-76. [PMID: 27913274 DOI: 10.1016/j.cbpb.2016.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor binding-protein 5 (igfbp5), the most conserved member of the IGFBP family in vertebrates, plays a critical role in controlling cell survival, growth, differentiation, and apoptosis. Here, we characterized the expression patterns of igfbp5a and igfbp5b in grass carp (Ctenopharyngodon idella), which are retained in many fish species, likely from the teleost-specific whole-genome duplication. Both igfbp5a and igfbp5b encode 268- and 263-aa peptides, respectively, which share a sequence identity of 71%. Their mRNAs are not detected in zygotes. At 14hpf, grass carp igfbp5b mRNA was detected in the somites, while igfbp5a mRNA has some possible signal around the eye and head region. At 24hpf, both igfbp5a and igfbp5b mRNA appear to be limited to the presomitic mesoderm. At 36hpf, igfbp5a mRNA was only detected in the midbrain, while igfbp5b mRNA was detected in both the midbrain and notochord. Overall, both mRNAs were expressed in most adult tissues. igfbp5a and igfbp5b were significantly upregulated in the muscle and liver after injection of 10μg per kilogram body weight of zebrafish growth hormone (zGH), while their hepatic expression was downregulated by 50μg zGH. During fasting, both igfbp5a and igfbp5b mRNAs were significantly downregulated in the muscle but upregulated in the liver. Collectively, the results suggest that the two igfbp5 genes play important but different roles in the regulation of growth and development in grass carp.
Collapse
Affiliation(s)
- Guo-Dong Zheng
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Chun-Xue Zhou
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Si-Tong Lin
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jie Chen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Shu-Ming Zou
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| |
Collapse
|
28
|
Taniyama N, Kaneko N, Inatani Y, Miyakoshi Y, Shimizu M. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta). Gen Comp Endocrinol 2016; 236:146-156. [PMID: 27444127 DOI: 10.1016/j.ygcen.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/23/2023]
Abstract
Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative.
Collapse
Affiliation(s)
- Natsumi Taniyama
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yu Inatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yasuyuki Miyakoshi
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
29
|
Zhou F, Yang Q, Lei C, Chen H, Lan X. Relationship between genetic variants of POU1F1 , PROP1 , IGFBP3 genes and milk performance in Guanzhong dairy goats. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Breves JP, Phipps-Costin SK, Fujimoto CK, Einarsdottir IE, Regish AM, Björnsson BT, McCormick SD. Hepatic insulin-like growth-factor binding protein (igfbp) responses to food restriction in Atlantic salmon smolts. Gen Comp Endocrinol 2016; 233:79-87. [PMID: 27210270 DOI: 10.1016/j.ygcen.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon (Salmo salar). Fish were fasted for 3 or 10days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3days and condition factor by 10days. Plasma Gh, cortisol, and thyroxine (T4) were not altered in response to fasting, whereas Igf1 and 3,5,3'-triiodo-l-thyronine (T3) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1, -1b2, -2a, -2b1 and -2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10days of fasting. Fasting did not alter hepatic igf1 or igf2; however, muscle igf1 was diminished by 10days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na(+)/K(+)-ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Silas K Phipps-Costin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Chelsea K Fujimoto
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530 Göteborg, Sweden
| | - Amy M Regish
- USGS, Conte Anadromous Fish Research Center, P.O. Box 796, One Migratory Way, Turners Falls, MA 01376, USA
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530 Göteborg, Sweden
| | - Stephen D McCormick
- USGS, Conte Anadromous Fish Research Center, P.O. Box 796, One Migratory Way, Turners Falls, MA 01376, USA
| |
Collapse
|
31
|
Botta PE, Simó I, Sciara AA, Arranz SE. Growth hormone receptors in the atherinid Odontesthes bonariensis: characterization and expression profile after fasting-refeeding and growth hormone administration. JOURNAL OF FISH BIOLOGY 2016; 88:1870-1885. [PMID: 27097742 DOI: 10.1111/jfb.12954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
In order to improve the understanding of pejerrey Odontesthes bonariensis, growth hormone (Gh)-insulin-like growth factor-1(Igf1) axis, O. bonariensis growth hormone receptor type 1 (ghr1) and type 2 (ghr2) mRNA sequences were obtained. Both transcripts were ubiquitously expressed except in kidney, encephalon and anterior intestine. Alternative transcripts of both receptors were found in muscle. Interestingly, two different ghr2 transcripts with alternative polyadenylation (APA) sites located in the long 3' untranslated region (UTR-APA) were also found in liver. Hepatic ghr1, ghr2 and insulin-like growth factor type 1 (igf1) transcript levels were examined under two different metabolic conditions. In the first experimental condition, fish were fasted for 2 weeks and then re-fed for another 2 weeks. Despite igf1 mRNA relative expression did not show significant differences under the experimental period of time examined, both ghr transcripts decreased their expression levels after the fasting period and returned to their control levels after re-feeding. In the second treatment, recombinant O. bonariensis growth hormone (r-pjGh) was orally administered once a week. After 4 weeks of treatment, liver igf1, ghr1 and ghr2 mRNA relative expression increased (13, 4·5 and 2·1 fold, P < 0·05) compared to control values. These results add novel information to the growth hormone-insulin-like growth factor system in teleosts.
Collapse
Affiliation(s)
- P E Botta
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - I Simó
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - A A Sciara
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - S E Arranz
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
32
|
Vélez EJ, Azizi S, Millán-Cubillo A, Fernández-Borràs J, Blasco J, Chan SJ, Calduch-Giner JA, Pérez-Sánchez J, Navarro I, Capilla E, Gutiérrez J. Effects of sustained exercise on GH-IGFs axis in gilthead sea bream (Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2015; 310:R313-22. [PMID: 26661095 DOI: 10.1152/ajpregu.00230.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/08/2015] [Indexed: 11/22/2022]
Abstract
The endocrine system regulates growth mainly through the growth hormone (GH)/insulin-like growth factors (IGFs) axis and, although exercise promotes growth, little is known about its modulation of these factors. The aim of this work was to characterize the effects of 5 wk of moderate sustained swimming on the GH-IGFs axis in gilthead sea bream fingerlings. Plasma IGF-I/GH ratio and tissue gene expression of total IGF-I and three splice variants, IGF-II, three IGF binding proteins, two GH receptors, two IGF-I receptors, and the downstream molecules were analyzed. Fish under exercise (EX) grew more than control fish (CT), had a higher plasma IGF-I/GH ratio, and showed increased hepatic IGF-I expression (mainly IGF-Ia). Total IGF-I expression levels were similar in the anterior and caudal muscles; however, IGF-Ic expression increased with exercise, suggesting that this splice variant may be the most sensitive to mechanical action. Moreover, IGFBP-5b and IGF-II increased in the anterior and caudal muscles, respectively, supporting enhanced muscle growth. Furthermore, in EX fish, hepatic IGF-IRb was reduced together with both GHRs; GHR-II was also reduced in anterior muscle, while GHR-I showed higher expression in the two muscle regions, indicating tissue-dependent differences and responses to exercise. Exercise also increased gene and protein expression of target of rapamycin (TOR), suggesting enhanced muscle protein synthesis. Altogether, these data demonstrate that moderate sustained activity may be used to increase the plasma IGF-I/GH ratio and to potentiate growth in farmed gilthead sea bream, modulating the gene expression of different members of the GH-IGFs axis (i.e., IGF-Ic, IGF-II, IGFBP-5b, GHR-I, and TOR).
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Antonio Millán-Cubillo
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Shu Jin Chan
- Departments of Biochemistry, and Molecular Biology and Medicine, The Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois; and
| | - Josep A Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain;
| |
Collapse
|
33
|
Fukuda M, Kaneko N, Kawaguchi K, Hevrøy EM, Hara A, Shimizu M. Development of a time-resolved fluoroimmunoassay for salmon insulin-like growth factor binding protein-1b. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:66-73. [DOI: 10.1016/j.cbpa.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
|