1
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Johns JD, Olszewski R, Strepay D, Lopez IA, Ishiyama A, Hoa M. Emerging Mechanisms in the Pathogenesis of Menière's Disease: Evidence for the Involvement of Ion Homeostatic or Blood-Labyrinthine Barrier Dysfunction in Human Temporal Bones. Otol Neurotol 2023; 44:1057-1065. [PMID: 37733989 PMCID: PMC10840868 DOI: 10.1097/mao.0000000000004016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
HYPOTHESIS Analysis of human temporal bone specimens of patients with Menière's disease (MD) may demonstrate altered expression of gene products related to barrier formation and ionic homeostasis within cochlear structures compared with control specimens. BACKGROUND MD represents a challenging otologic disorder for investigation. Despite attempts to define the pathogenesis of MD, there remain many gaps in our understanding, including differences in protein expression within the inner ear. Understanding these changes may facilitate the identification of more targeted therapies for MD. METHODS Human temporal bones from patients with MD (n = 8) and age-matched control patients (n = 8) were processed with immunohistochemistry stains to detect known protein expression related to ionic homeostasis and barrier function in the cochlea, including CLDN11, CLU, KCNJ10, and SLC12A2. Immunofluorescence intensity analysis was performed to quantify protein expression in the stria vascularis, organ of Corti, and spiral ganglion neuron (SGN). RESULTS Expression of KCNJ10 was significantly reduced in all cochlear regions, including the stria vascularis (9.23 vs 17.52, p = 0.011), OC (14.93 vs 29.16, p = 0.014), and SGN (7.69 vs 18.85, p = 0.0048) in human temporal bone specimens from patients with MD compared with control, respectively. CLDN11 (7.40 vs 10.88, p = 0.049) and CLU (7.80 vs 17.51, p = 0.0051) expression was significantly reduced in the SGN. CONCLUSION The results of this study support that there may be differences in the expression of proteins related to ionic homeostasis and barrier function within the cochlea, potentially supporting the role of targeted therapies to treat MD.
Collapse
Affiliation(s)
- J. Dixon Johns
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A. Lopez
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| |
Collapse
|
3
|
Song Y, Guo T, Jiang Y, Zhu M, Wang H, Lu W, Jiang M, Qi M, Lan F, Cui M. KCNQ1-deficient and KCNQ1-mutant human embryonic stem cell-derived cardiomyocytes for modeling QT prolongation. Stem Cell Res Ther 2022; 13:287. [PMID: 35765105 PMCID: PMC9241307 DOI: 10.1186/s13287-022-02964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The slowly activated delayed rectifier potassium current (IKs) mediated by the KCNQ1 gene is one of the main currents involved in repolarization. KCNQ1 mutation can result in long-QT syndrome type 1 (LQT1). IKs does not participate in repolarization in mice; thus, no good model is currently available for research on the mechanism of and drug screening for LQT1. In this study, we established a KCNQ1-deficient human cardiomyocyte (CM) model and performed a series of microelectrode array (MEA) detection experiments on KCNQ1-mutant CMs constructed in other studies to explore the pathogenic mechanism of KCNQ1 deletion and mutation and perform drug screening. Method KCNQ1 was knocked out in human embryonic stem cell (hESC) H9 line using the CRISPR/cas9 system. KCNQ1-deficient and KCNQ1-mutant hESCs were differentiated into CMs through a chemically defined differentiation protocol. Subsequently, high-throughput MEA analysis and drug intervention were performed to determine the electrophysiological characteristics of KCNQ1-deficient and KCNQ1-mutant CMs. Results During high-throughput MEA analysis, the electric field potential and action potential durations in KCNQ1-deficient CMs were significantly longer than those in wild-type CMs. KCNQ1-deficient CMs also showed an irregular rhythm. Furthermore, KCNQ1-deficient and KCNQ1-mutant CMs showed different responses to different drug treatments, which reflected the differences in their pathogenic mechanisms. Conclusion We established a human CM model with KCNQ1 deficiency showing a prolonged QT interval and an irregular heart rhythm. Further, we used various drugs to treat KCNQ1-deficient and KCNQ1-mutant CMs, and the three models showed different responses to these drugs. These models can be used as important tools for studying the different pathogenic mechanisms of KCNQ1 mutation and the relationship between the genotype and phenotype of KCNQ1, thereby facilitating drug development. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02964-3.
Collapse
Affiliation(s)
- Yuanxiu Song
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Tianwei Guo
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Youxu Jiang
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road, Zhengzhou, 450053, China
| | - Min Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenjing Lu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Mengqi Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Man Qi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China.
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
5
|
Bleakley LE, Soh MS, Bagnall RD, Sadleir LG, Gooley S, Semsarian C, Scheffer IE, Berkovic SF, Reid CA. Are Variants Causing Cardiac Arrhythmia Risk Factors in Sudden Unexpected Death in Epilepsy? Front Neurol 2020; 11:925. [PMID: 33013630 PMCID: PMC7505992 DOI: 10.3389/fneur.2020.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of premature mortality in individuals with epilepsy. Acute and adaptive changes in heart rhythm in epilepsy implicate cardiac dysfunction as a potential pathogenic mechanism in SUDEP. Furthermore, variants in genes associated with Long QT syndrome (LQTS) have been identified in patients with SUDEP. LQTS is a cardiac arrhythmia condition that causes sudden cardiac death with strong similarities to SUDEP. Here, we discuss the possibility of an additive risk of death due to the functional consequences of a pathogenic variant in an LQTS gene interacting with seizure-mediated changes in cardiac function. Extending this general concept, we propose a hypothesis that common variants in LQTS genes, which cause a subtle impact on channel function and would not normally be considered risk factors for cardiac disease, may increase the risk of sudden death when combined with epilepsy. A greater understanding of the interaction between epilepsy, cardiac arrhythmia, and SUDEP will inform our understanding of SUDEP risk and subsequent potential prophylactic treatment.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ming S Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Samuel Gooley
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, VIC, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
7
|
Jędrychowska J, Korzh V. Kv2.1 voltage-gated potassium channels in developmental perspective. Dev Dyn 2019; 248:1180-1194. [PMID: 31512327 DOI: 10.1002/dvdy.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 11/11/2022] Open
Abstract
Kv2.1 voltage-gated potassium channels consist of two types of α-subunits: (a) electrically-active Kcnb1 α-subunits and (b) silent or modulatory α-subunits plus β-subunits that, similar to silent α-subunits, also regulate electrically-active subunits. Voltage-gated potassium channels were traditionally viewed, mainly by electrophysiologists, as regulators of the electrical activity of the plasma membrane in excitable cells, a role that is performed by transmembrane protein domains of α-subunits that form the electric pore. Genetic studies revealed a role for this region of α-subunits of voltage-gated potassium channels in human neurodevelopmental disorders, such as epileptic encephalopathy. The N- and C-terminal domains of α-subunits interact to form the cytoplasmic subunit of heterotetrameric potassium channels that regulate electric pores. Subsequent animal studies revealed the developmental functions of Kcnb1-containing voltage-gated potassium channels and illustrated their role during brain development and reproduction. These functions of potassium channels are discussed in this review in the context of regulatory interactions between electrically-active and regulatory subunits.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
MacRae CA. Closing the 'phenotype gap' in precision medicine: improving what we measure to understand complex disease mechanisms. Mamm Genome 2019; 30:201-211. [PMID: 31428846 DOI: 10.1007/s00335-019-09810-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
The central concept underlying precision medicine is a mechanistic understanding of each disease and its response to therapy sufficient to direct a specific intervention. To execute on this vision requires parsing incompletely defined disease syndromes into discrete mechanistic subsets and developing interventions to precisely address each of these etiologically distinct entities. This will require substantial adjustment of traditional paradigms which have tended to aggregate high-level phenotypes with very different etiologies. In the current environment, where diagnoses are not mechanistic, drug development has become so expensive that it is now impractical to imagine the cost-effective creation of new interventions for many prevalent chronic conditions. The vision of precision medicine also argues for a much more seamless integration of research and development with clinical care, where shared taxonomies will enable every clinical interaction to inform our collective understanding of disease mechanisms and drug responses. Ideally, this would be executed in ways that drive real-time and real-world discovery, innovation, translation, and implementation. Only in oncology, where at least some of the biology is accessible through surgical excision of the diseased tissue or liquid biopsy, has "co-clinical" modeling proven feasible. In most common germline disorders, while genetics often reveal the causal mutations, there still remain substantial barriers to efficient disease modeling. Aggregation of similar disorders under single diagnostic labels has directly contributed to the paucity of etiologic and mechanistic understanding by directly reducing the resolution of any subsequent studies. Existing clinical phenotypes are typically anatomic, physiologic, or histologic, and result in a substantial mismatch in information content between the phenomes in humans or in animal 'models' and the variation in the genome. This lack of one-to-one mapping of discrete mechanisms between disease and animal models causes a failure of translation and is one form of 'phenotype gap.' In this review, we will focus on the origins of the phenotyping deficit and approaches that may be considered to bridge the gap, creating shared taxonomies between human diseases and relevant models, using cardiovascular examples.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine, Genetics and Network Medicine Divisions, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale 7016, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
10
|
Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 2017; 59:358-368. [PMID: 29265344 DOI: 10.1111/epi.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Antiseizure drugs are the leading therapeutic choice for treatment of epilepsy, but their efficacy is limited by pharmacoresistance and the occurrence of unwanted side effects. Here, we examined the therapeutic efficacy of KCNQ channel activation by retigabine in preventing seizures and neurocardiac dysfunction in 2 potassium channelopathy mouse models of epilepsy with differing severity that have been associated with increased risk of sudden unexpected death in epilepsy (SUDEP): the Kcna1-/- model of severe epilepsy and the Kcnq1A340E/A340E model of mild epilepsy. METHODS A combination of behavioral, seizure threshold, electrophysiologic, and gene expression analyses was used to determine the effects of KCNQ activation in mice. RESULTS Behaviorally, Kcna1-/- mice exhibited unexpected hyperexcitability instead of the expected sedative-like response. In flurothyl-induced seizure tests, KCNQ activation decreased seizure latency by ≥50% in Kcnq1 strain mice but had no effect in the Kcna1 strain, suggesting the influence of genetic background. However, in simultaneous electroencephalography and electrocardiography recordings, KCNQ activation significantly reduced spontaneous seizure frequency in Kcna1-/- mice by ~60%. In Kcnq1A340E/A340E mice, KCNQ activation produced adverse cardiac effects including profound bradycardia and abnormal increases in heart rate variability and atrioventricular conduction blocks. Analyses of Kcnq2 and Kcnq3 mRNA levels revealed significantly elevated Kcnq2 expression in Kcna1-/- brains, suggesting that drug target alterations may contribute to the altered drug responses. SIGNIFICANCE This study shows that treatment strategies in channelopathy may have unexpected outcomes and that effective rebalancing of channel defects requires improved understanding of channel interactions at the circuit and tissue levels. The efficacy of KCNQ channel activation and manifestation of adverse effects were greatly affected by genetic background, potentially limiting KCNQ modulation as a way to prevent neurocardiac dysfunction in epilepsy and thereby SUDEP risk. Our data also uncover a potential role for KCNQ2-5 channels in autonomic control of chronotropy.
Collapse
Affiliation(s)
- Stephanie L Vanhoof-Villalba
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
11
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Kithcart A, MacRae CA. Using Zebrafish for High-Throughput Screening of Novel Cardiovascular Drugs. JACC Basic Transl Sci 2017; 2:1-12. [PMID: 30167552 PMCID: PMC6113531 DOI: 10.1016/j.jacbts.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases remain a major challenge for modern drug discovery. The diseases are chronic, complex, and the result of sophisticated interactions between genetics and environment involving multiple cell types and a host of systemic factors. The clinical events are often abrupt, and the diseases may be asymptomatic until a highly morbid event. Target selection is often based on limited information, and though highly specific agents are often identified in screening, their final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index, or substantial toxicities. Our understanding of complexity of cardiovascular disease has grown dramatically over the past 2 decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in cardiac or vascular disease. Despite these insights, the majority of active cardiovascular agents derive from a remarkably small number of classes of agents and target a very limited number of pathways. These agents have often been used initially for particular indications and then discovered serendipitously to have efficacy in other cardiac disorders or in a manner unrelated to their original mechanism of action. In this review, the rationale for in vivo screening is described, and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. An overview is provided of the complex mechanisms underlying most clinical cardiovascular diseases, and insight is offered into the limits of single downstream pathways as drug targets. The zebrafish is introduced as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology are discussed, including in vivo screening of zebrafish genetic disease models.
Collapse
Affiliation(s)
- Aaron Kithcart
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
13
|
Auerbach DS, McNitt S, Gross RA, Zareba W, Dirksen RT, Moss AJ. Genetic biomarkers for the risk of seizures in long QT syndrome. Neurology 2016; 87:1660-1668. [PMID: 27466471 DOI: 10.1212/wnl.0000000000003056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The coprevalence, severity, and biomarkers for seizures and arrhythmias in long QT syndrome (LQTS) remain incompletely understood. METHODS Using the Rochester-based LQTS Registry, this study included large cohorts of LQTS1-3 participants (LQTS+, n = 965) and those without a LQTS mutation (LQTS-, n = 936). RESULTS Compared to LQTS- participants, there was a higher prevalence of LQTS1, LQTS2, and LQTS+ participants classified as having seizures (p < 0.001, i.e., history of seizures/epilepsy or antiseizure medication). LQTS+ participants with longer corrected QT interval (QTc) durations were more likely to have seizures. LQTS2 mutations in the KCNH2 pore domain were positive predictors for both arrhythmias and seizures. In contrast, mutations in the cyclic nucleotide binding domain (cNBD) of KCNH2 conferred a negative risk of seizures, but not arrhythmias. LQTS2, KCNH2-pore, KCNH2-cNBD, QTc duration, and sex were independent predictors of seizures. LQTS+ participants with seizures had significantly longer QTc durations, and a history of seizures was the strongest independent predictor of arrhythmias (hazard ratio 4.09, 95% confidence interval 2.63-6.36, p < 0.001). CONCLUSIONS This study highlights potential biomarkers for neurocardiac electrical abnormalities in LQTS.
Collapse
Affiliation(s)
- David S Auerbach
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Scott McNitt
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert A Gross
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Wojciech Zareba
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T Dirksen
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Arthur J Moss
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
14
|
Wang W, Flores MCP, Sihn CR, Kim HJ, Zhang Y, Doyle KJ, Chiamvimonvat N, Zhang XD, Yamoah EN. Identification of a key residue in Kv7.1 potassium channel essential for sensing external potassium ions. ACTA ACUST UNITED AC 2016; 145:201-12. [PMID: 25712016 PMCID: PMC4338162 DOI: 10.1085/jgp.201411280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A glutamate at position 290 in the human Kv7.1 S5-pore linker is required for its inhibition by high concentrations of extracellular potassium. Kv7.1 voltage-gated K+ (Kv) channels are present in the apical membranes of marginal cells of the stria vascularis of the inner ear, where they mediate K+ efflux into the scala media (cochlear duct) of the cochlea. As such, they are exposed to the K+-rich (∼150 mM of external K+ (K+e)) environment of the endolymph. Previous studies have shown that Kv7.1 currents are substantially suppressed by high K+e (independent of the effects of altering the electrochemical gradient). However, the molecular basis for this inhibition, which is believed to involve stabilization of an inactivated state, remains unclear. Using sequence alignment of S5-pore linkers of several Kv channels, we identified a key residue, E290, found in only a few Kv channels including Kv7.1. We used substituted cysteine accessibility methods and patch-clamp analysis to provide evidence that the ability of Kv7.1 to sense K+e depends on E290, and that the charge at this position is essential for Kv7.1’s K+e sensitivity. We propose that Kv7.1 may use this feedback mechanism to maintain the magnitude of the endocochlear potential, which boosts the driving force to generate the receptor potential of hair cells. The implications of our findings transcend the auditory system; mutations at this position also result in long QT syndrome in the heart.
Collapse
Affiliation(s)
- Wenying Wang
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557
| | | | - Choong-Ryoul Sihn
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557
| | - Hyo Jeong Kim
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557
| | - Yinuo Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616
| | - Karen J Doyle
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616
| | - Ebenezer N Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557
| |
Collapse
|
15
|
Wu H, Chen X, Cheng J, Qi Y. SUMOylation and Potassium Channels: Links to Epilepsy and Sudden Death. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:295-321. [PMID: 26920693 DOI: 10.1016/bs.apcsb.2015.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal potassium ion channels play an essential role in the generation of the action potential and excitability of neurons. The dysfunction of ion channel subunits can cause channelopathies, which are associated in some cases with sudden unexplained death in epilepsy SUDEP. The physiological roles of neuronal ion channels have been largely determined, but little is known about the molecular mechanisms underlying neurological channelopathies, especially the determinants of the channels' regulation. SUMO (small ubiquitin-like modifier) proteins covalently conjugate lysine residues in a large number of target proteins and modify their functions. SUMO modification (SUMOylation) has emerged as an important regulatory mechanism for protein stability, function, subcellular localization, and protein-protein interactions. Since SUMO was discovered almost 20 years ago, the biological contribution of SUMOylation has not fully understood. It is until recently that the physiological impacts of SUMOylation on the regulation of neuronal potassium ion channels have been investigated. It is well established that SUMOylation controls many aspects of nuclear function, but it is now clear that it is also a key determinant in the function of potassium channels, and SUMOylation has also been implicated in a wide range of channelopathies, including epilepsy and sudden death.
Collapse
Affiliation(s)
- Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | - Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
16
|
Levin M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 2015; 25:3835-50. [PMID: 25425556 PMCID: PMC4244194 DOI: 10.1091/mbc.e13-12-0708] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243
| |
Collapse
|
17
|
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy, with an estimated 35% lifetime risk in this patient population. There is a surprising lack of awareness among patients and physicians of this increased risk of sudden death: in a recent survey, only 33% of Canadian paediatricians who treated patients with epilepsy knew the term SUDEP. Controversy prevails over whether cardiac arrhythmia or respiratory arrest is more important as the primary cause of death. Effective preventive strategies in high-risk patients will rely on definition of the mechanisms that lead from seizures to death. Here, we summarize evidence for the mechanisms that cause cardiac, respiratory and arousal abnormalities during the ictal and postictal period. We highlight potential cellular mechanisms underlying these abnormalities, such as a defect in the serotonergic system, ictal adenosine release, and changes in autonomic output. We discuss genetic mutations that cause Dravet and long QT syndromes, both of which are linked with increased risk of sudden death. We then highlight possible preventive interventions that are likely to decrease SUDEP incidence, including respiratory monitoring in epilepsy monitoring units and overnight supervision. Finally, we discuss treatments, such as selective serotonin reuptake inhibitors, that might be personalized to a specific genetic or pathological defect.
Collapse
|
18
|
Yang H, Xiong H, Huang Q, Pang J, Zheng X, Chen L, Yu R, Zheng Y. Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss. Neurosci Lett 2013; 555:97-101. [PMID: 24055606 DOI: 10.1016/j.neulet.2013.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/10/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
The C57BL/6 strain is considered an excellent model to study age-related hearing loss (AHL). Aging C57BL/6 mice are characterized by profound hearing loss but conservation of the endocochlear potential (EP). Here we show 12-month-old C57BL/6 mice display a notable hearing loss at 4, 8, 16 and 32kHz while the EP is maintained at normal level. Morphological examination shows significant outer hair cells loss in the cochlear basal turn and atrophy of the stria vascularis (SV). Fluorescence immunohistochemical studies reveal that potassium channel KCNJ10 and KCNQ1 expression dramatically decreased in the SV. Concomitant with this, mRNA levels of KCNJ10 and KCNQ1 are also reduced. In addition, three other potassium transporters, including α1-Na,K-ATPase, α2-Na,K-ATPase and NKCC1, reduce their expression at mRNA levels as well. These observations suggest that conservation of the EP in aging C57BL/6 mice is attributable to the SV generating a new balance for potassium influx and efflux at a relatively lower level.
Collapse
Affiliation(s)
- Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 2013; 33:3861-8. [PMID: 23975432 PMCID: PMC3935979 DOI: 10.1038/onc.2013.350] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/07/2013] [Accepted: 07/04/2013] [Indexed: 12/19/2022]
Abstract
Kcnq1, which encodes for the pore-forming alpha subunit of a voltage-gated potassium channel, was identified as a gastrointestinal (GI) tract cancer susceptibility gene in multiple Sleeping Beauty DNA transposon-based forward genetic screens in mice. To confirm that Kcnq1 has a functional role in GI tract cancer we created ApcMin mice that carried a targeted deletion mutation in Kcnq1. Results demonstrated that Kcnq1 is a tumor suppressor gene as Kcnq1 mutant mice developed significantly more intestinal tumors, especially in the proximal small intestine and colon, some of these tumors progressed to become aggressive adenocarcinomas. Gross tissue abnormalities were also observed in the rectum, pancreas and stomach. Colon organoid formation was significantly increased in organoids created from Kcnq1 mutant mice compared with wildtype littermate controls, suggesting a role for Kcnq1 in regulation of the intestinal crypt stem cell compartment. To identify gene expression changes due to loss of Kcnq1 we carried out microarray studies in colon and proximal small intestine. We identified altered genes involved in innate immune responses, goblet and Paneth cell function, ion channels, intestinal stem cells, EGFR and other growth regulatory signaling pathways. We also found genes implicated in inflammation and in cellular detoxification. Pathway analysis using Ingenuity Pathway Analysis (IPA) and gene set enrichment analysis (GSEA) confirmed the importance of these gene clusters and further identified significant overlap with genes regulated by MUC2 and CFTR, two important regulators of intestinal homeostasis. To investigate the role of KCNQ1 in human colorectal cancer (CRC) we measured protein levels of KCNQ1 by immunohistochemistry in tissue microarrays containing samples from CRC patients with liver metastases who had undergone hepatic resection. Results showed that low expression of KCNQ1 expression was significantly associated with poor overall survival (OS).
Collapse
|
20
|
|
21
|
Affiliation(s)
- Calum A MacRae
- Harvard Medical School, Brigham and Women's Hospital, Cardiovascular Division,
75 Francis Street, Boston, MA 02115, P-857 307 0301, F-857 307 0300, USA
| |
Collapse
|
22
|
Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacol Ther 2012; 134:180-8. [PMID: 22269465 DOI: 10.1016/j.pharmthera.2012.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022]
Abstract
The attrition rates of drugs in development, many of which attributed to unforeseen cardiotoxic side effects of the drugs being tested in humans that were not realized in preclinical animal models, are a significant problem facing the pharmaceutical industry. Recent advances in human stem cell biology have paved the way for incorporating human cell models into the two key aspects of developing new drugs: discovering new effective entities and screening for their safety. Functional cardiomyocytes can now be derived from human pluripotent stem cells (hPSCs), including both embryonic (hESCs) and induced pluripotent (hiPSCs) stem cells. Moreover, recent studies demonstrate the ability of cardiomyocytes derived from patients' iPSCs to recapitulate the phenotype of several known cardiac diseases. In the present review we describe the knowledge recently gained on this promising human cell source in order to fulfill its potential as a useful tool for drug screening.
Collapse
|
23
|
ENU mutagenesis screen to establish motor phenotypes in wild-type mice and modifiers of a pre-existing motor phenotype in tau mutant mice. J Biomed Biotechnol 2011; 2011:130947. [PMID: 22219655 PMCID: PMC3246812 DOI: 10.1155/2011/130947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/04/2011] [Indexed: 11/20/2022] Open
Abstract
Modifier screening is a powerful genetic tool. While not widely used in the vertebrate system, we applied these tools to transgenic mouse strains that recapitulate key aspects of Alzheimer's disease (AD), such as tau-expressing mice. These are characterized by a robust pathology including both motor and memory impairment. The phenotype can be modulated by ENU mutagenesis, which results in novel mutant mouse strains and allows identifying the underlying gene/mutation. Here we discuss this strategy in detail. We firstly obtained pedigrees that modify the tau-related motor phenotype, with mapping ongoing. We further obtained transgene-independent motor pedigrees: (i) hyperactive, circling ENU 37 mice with a causal mutation in the Tbx1 gene—the complete knock-out of Tbx1 models DiGeorge Syndrome; (ii) ENU12/301 mice that show sudden jerky movements and tremor constantly; they have a causal mutation in the Kcnq1 gene, modelling aspects of the Romano-Ward and Jervell and Lange-Nielsen syndromes; and (iii) ENU16/069 mice with tremor and hypermetric gait that have a causal mutation in the Mpz (Myelin Protein Zero) gene, modelling Charcot-Marie-Tooth disease type 1 (CMT1B). Together, we provide evidence for a real potential of an ENU mutagenesis to dissect motor functions in wild-type and tau mutant mice.
Collapse
|
24
|
Simultaneously reduced NKCC1 and Na,K-ATPase expression in murine cochlear lateral wall contribute to conservation of endocochlear potential following a sensorineural hearing loss. Neurosci Lett 2010; 488:204-9. [PMID: 21094218 DOI: 10.1016/j.neulet.2010.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
The mechanisms of the response in the murine cochlear lateral wall following sensorineural hearing loss (SNHL) are poorly understood. We focused on comparing the endocochlear potential (EP) with morphological changes in the lateral wall and expression of four important potassium (K(+)) transporters in a mouse model of SNHL induced by co-administration of aminoglycoside and loop diuretic. The expression of the α1 and α2 isoforms of Na,K-ATPase, Na-K-2Cl-Cotransporter-1 (NKCC1) and potassium channel KCNQ1 was assessed. The EP showed a significant decline at 12h post-treatment followed by complete recovery by 2 days post-treatment. The EP was maintained at near normal levels in animals deafened for periods up to 112 days. Despite this recovery, there was a significant and progressive decrease in the thickness of the stria vascularis, which was predominantly due to atrophy of marginal cells. Both protein and mRNA expression of α1 and α2 isoforms of Na,K-ATPase and NKCC1 in the lateral wall were dramatically reduced following a long-term deafening. KCNQ1 expression remained unchanged. These observations provide insight into the detailed mechanisms of EP modulation following SNHL and may have crucial implications in the future treatment of aminoglycoside-induced hearing loss.
Collapse
|
25
|
Kim HJ, Lv P, Sihn CR, Yamoah EN. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J Biol Chem 2010; 286:1517-27. [PMID: 20966080 DOI: 10.1074/jbc.m110.179010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Anesthesiology and Pain Medicine, Program in Communication Science, School of Medicine, University of California, Davis, California 95618, USA
| | | | | | | |
Collapse
|
26
|
Leong IUS, Skinner JR, Shelling AN, Love DR. Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf) 2010; 199:257-76. [PMID: 20331541 DOI: 10.1111/j.1748-1716.2010.02111.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Congenital long QT syndrome (LQT) is a group of cardiac disorders associated with the dysfunction of cardiac ion channels. It is characterized by prolongation of the QT-interval, episodes of syncope and even sudden death. Individuals may remain asymptomatic for most of their lives while others present with severe symptoms. This heterogeneity in phenotype makes diagnosis difficult with a greater emphasis on more targeted therapy. As a means of understanding the molecular mechanisms underlying LQT syndrome, evaluating the effect of modifier genes on disease severity as well as to test new therapies, the development of model systems remains an important research tool. Mice have predominantly been the animal model of choice for cardiac arrhythmia research, but there have been varying degrees of success in recapitulating the human symptoms; the mouse cardiac action potential (AP) and surface electrocardiograms exhibit major differences from those of the human heart. Against this background, the zebrafish is an emerging vertebrate disease modelling species that offers advantages in analysing LQT syndrome, not least because its cardiac AP much more closely resembles that of the human. This article highlights the use and potential of this species in LQT syndrome modelling, and as a platform for the in vivo assessment of putative disease-causing mutations in LQT genes, and of therapeutic interventions.
Collapse
|
27
|
Macrae CA. Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery. Expert Opin Drug Discov 2010; 5:619-632. [PMID: 20835353 DOI: 10.1517/17460441.2010.492826] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is often based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities. AREAS COVERED IN THIS REVIEW: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last two decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying potentially each and every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. WHAT THE READER WILL GAIN: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology including in vivo screening of zebrafish genetic disease models. TAKE HOME MESSAGE: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process, in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease biology, but emphasizes the importance of the rigor of the disease model.
Collapse
Affiliation(s)
- Calum A Macrae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, The Broad Institute of MIT and Harvard
| |
Collapse
|
28
|
|
29
|
Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med 2009; 1:2ra6. [PMID: 20368164 PMCID: PMC2951754 DOI: 10.1126/scitranslmed.3000289] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sudden unexplained death is a catastrophic complication of human idiopathic epilepsy, causing up to 18% of patient deaths. A molecular mechanism and an identified therapy have remained elusive. Here, we find that epilepsy occurs in mouse lines bearing dominant human LQT1 mutations for the most common form of cardiac long QT syndrome, which causes syncopy and sudden death. KCNQ1 encodes the cardiac KvLQT1 delayed rectifier channel, which has not been previously found in the brain. We have shown that, in these mice, this channel is found in forebrain neuronal networks and brainstem nuclei, regions in which a defect in the ability of neurons to repolarize after an action potential, as would be caused by this mutation, can produce seizures and dysregulate autonomic control of the heart. That long QT syndrome mutations in KCNQ1 cause epilepsy reveals the dual arrhythmogenic potential of an ion channelopathy coexpressed in heart and brain and motivates a search for genetic diagnostic strategies to improve risk prediction and prevention of early mortality in persons with seizure disorders of unknown origin.
Collapse
Affiliation(s)
- A M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pan Q, Ma J, Zhou Q, Li J, Tang Y, Liu Y, Yang Y, Xiao J, Peng L, Li P, Liang D, Zhang H, Chen YH. KCNQ1 loss-of-function mutation impairs gastric acid secretion in mice. Mol Biol Rep 2009; 37:1329-33. [PMID: 19306073 DOI: 10.1007/s11033-009-9511-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 03/06/2009] [Indexed: 11/25/2022]
Abstract
The KCNQ1 channel is abundantly expressed in the gastric parietal cells. Although the functional coupling of KCNQ1 with the H(+)/K(+)-ATPase has already been confirmed on the basis of pharmacological kinetics, the effect of a KCNQ1 loss-of-function mutation on gastric acidification remains unclear. In this study, parietal cells and gastric glands from both C57BL/6 J mice (normal control) and J343 mice (mice with a KCNQ1 loss-of-function mutation) were isolated to study the effects of KCNQ1 on gastric acidification. We found that the mutation limited intracellular acidification of parietal cells and H(+) secretion of the stomach in response to histamine. Thus, a KCNQ1 loss-of-function mutation may impair gastric acid secretion.
Collapse
Affiliation(s)
- Qin Pan
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Levic S, Gratton MA, Doyle KJ, Yamoah EN, Pegg AE. Spermine synthase deficiency leads to deafness and a profound sensitivity to alpha-difluoromethylornithine. J Biol Chem 2009; 284:930-7. [PMID: 19001365 PMCID: PMC2613633 DOI: 10.1074/jbc.m807758200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/03/2008] [Indexed: 11/06/2022] Open
Abstract
Male gyro (Gy) mice, which have an X chromosomal deletion inactivating the SpmS and Phex genes, were found to be profoundly hearing impaired. This defect was due to alteration in polyamine content due to the absence of spermine synthase, the product of the SpmS gene. It was reversed by breeding the Gy strain with CAG/SpmS mice, a transgenic line that ubiquitously expresses spermine synthase under the control of a composite cytomegalovirus-IE enhancer/chicken beta-actin promoter. There was an almost complete loss of the endocochlear potential in the Gy mice, which parallels the hearing deficiency, and this was also reversed by the production of spermine from the spermine synthase transgene. Gy mice showed a striking toxic response to treatment with the ornithine decarboxylase inhibitor alpha-difluoromethylornithine (DFMO). Within 2-3 days of exposure to DFMO in the drinking water, the Gy mice suffered a catastrophic loss of motor function resulting in death within 5 days. This effect was due to an inability to maintain normal balance and was also prevented by the transgenic expression of spermine synthase. DFMO treatment of control mice or Gy-CAG/SpmS had no effect on balance. The loss of balance in Gy mice treated with DFMO was due to inhibition of polyamine synthesis because it was prevented by administration of putrescine. Our results are consistent with a critical role for polyamines in regulation of Kir channels that maintain the endocochlear potential and emphasize the importance of normal spermidine:spermine ratio in the hearing and balance functions of the inner ear.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
32
|
Sabir IN, Killeen MJ, Grace AA, Huang CLH. Ventricular arrhythmogenesis: Insights from murine models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:208-18. [DOI: 10.1016/j.pbiomolbio.2008.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Diaz RC, Vazquez AE, Dou H, Wei D, Cardell EL, Lingrel J, Shull GE, Doyle KJ, Yamoah EN. Conservation of hearing by simultaneous mutation of Na,K-ATPase and NKCC1. J Assoc Res Otolaryngol 2007; 8:422-34. [PMID: 17674100 PMCID: PMC2538340 DOI: 10.1007/s10162-007-0089-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 06/21/2007] [Indexed: 12/13/2022] Open
Abstract
Although drug-induced and age-related hearing losses are frequent otologic problems affecting millions of people, their underlying mechanisms remain uncertain. The inner ear is exclusively endowed with a positive endocochlear potential (EP) that serves as the main driving force for the generation of receptor potential in hair cells to confer hearing. Deterioration of EP leads to hearing loss or deafness. The generation of EP relies on the activity of many ion transporters to establish active potassium (K(+)) cycling within the inner ear, including K(+) channels, the Na-K-2Cl co-transporter (NKCC1), and the alpha(1) and alpha(2) isoforms of Na,K-ATPase. We show that heterozygous deletion of either NKCC1, alpha(1)-Na,K-ATPase, or alpha(2)-Na,K-ATPase independently results in progressive, age-dependent hearing loss with minimal alteration in cochlear morphology. Double heterozygote deletion of NKCC1 with alpha(1)-Na,K-ATPase also shows a progressive, though delayed, age-dependent hearing loss. Remarkably, double heterozygote deletion of NKCC1 with alpha(2)-Na,K-ATPase demonstrates a striking preservation of hearing threshold both initially and with age. Measurements of the EP confirm the anticipated drop in potential for genotypes that demonstrate age-dependent hearing loss. The EP generated by the NKCC1 + alpha(2)-Na,K-ATPase double heterozygote, however, is maintained at a level comparable to that of the control condition, suggesting a potential advantage in this combination of ion transporter modification. These observations provide insight into the detailed mechanisms of EP generation, and results of combination-knockout experiments may have important implications in the future treatment of drug-induced and age-related hearing losses.
Collapse
Affiliation(s)
- Rodney C Diaz
- Department of Otolaryngology-Head and Neck Surgery, University of California Davis School of Medicine, 1515 Newton Court, Davis, CA 95618, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ishiguro A, Inagaki M, Kaga M. Stereotypic circling behavior in mice with vestibular dysfunction: asymmetrical effects of intrastriatal microinjection of a dopamine agonist. Int J Neurosci 2007; 117:1049-64. [PMID: 17613114 DOI: 10.1080/00207450600936874] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bronx Waltzer (bv) mouse, which has been used as a model of hearing and vestibular dysfunction, shows remarkable repetitive circling behavior. This study investigated whether the behavior is caused by the asymmetry of striatal function by observing the behavior of the bv mice following microinjection of dopamine D1 agonist, A68930 into the striatum ipsilaterally and contralaterally to the preferred direction of rotation separately. High dose of the drug induced opposite effects on ipsilateral rotations by the side of injections with statistical significance (p = .0026). These results suggested that the stereotypic circling behavior involves striatum and is based on striatal asymmetry.
Collapse
Affiliation(s)
- Akio Ishiguro
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
| | | | | |
Collapse
|
35
|
Xu T, Nie L, Zhang Y, Mo J, Feng W, Wei D, Petrov E, Calisto LE, Kachar B, Beisel KW, Vazquez AE, Yamoah EN. Roles of Alternative Splicing in the Functional Properties of Inner Ear-specific KCNQ4 Channels. J Biol Chem 2007; 282:23899-909. [PMID: 17561493 DOI: 10.1074/jbc.m702108200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the KCNQ4 channel in the auditory setting is crucial to hearing, underpinned by the finding that mutations of the channel result in an autosomal dominant form of nonsyndromic progressive high frequency hearing loss. The precise function of KCNQ4 in the inner ear has not been established. However, recently we demonstrated that there is differential expression among four splice variants of KCNQ4 (KCNQ4_v1-v4) along the tonotopic axis of the cochlea. Alternative splicing specifies the outcome of functional channels by modifying the amino acid sequences within the C terminus at a site designated as the membrane proximal region. We show that variations within the C terminus of splice variants produce profound differences in the voltage-dependent phenotype and functional expression of the channel. KCNQ4_v4 lacks exons 9-11, resulting in deletion of 54 amino acid residues adjacent to the S6 domain compared with KCNQ4_v1. Consequently, the voltage-dependent activation of KCNQ4_v4 is shifted leftward by approximately 20 mV, and the number of functional channels is increased severalfold compared with KCNQ4_v1. The properties of KCNQ4_v2 and KCNQ4_v3 fall between KCNQ4_v1 and KCNQ4_v4. Because of variations in the calmodulin binding domains of the splice variants, the channels are differentially modulated by calmodulin. Co-expression of these splice variants yielded current magnitudes suggesting that the channels are composed of heterotetramers. Indeed, a dominant negative mutant of KCNQ4_v1 cripples the currents of the entire KCNQ4 channel family. Furthermore, the dominant negative KCNQ4 mutant stifles the activity of KCNQ2-5, raising the possibility of a global disruption of KCNQ channel activity and the ensuing auditory phenotype.
Collapse
Affiliation(s)
- Tonghui Xu
- Center for Neuroscience and Communication Science Program, University of California, Davis, California 95618, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Knollmann BC, Sirenko S, Rong Q, Katchman AN, Casimiro M, Pfeifer K, Ebert SN. Kcnq1 contributes to an adrenergic-sensitive steady-state K+ current in mouse heart. Biochem Biophys Res Commun 2007; 360:212-8. [PMID: 17597584 PMCID: PMC2025686 DOI: 10.1016/j.bbrc.2007.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
It has been suggested that Kcne1 subunits are required for adrenergic regulation of Kcnq1 potassium channels. However, in adult mouse hearts, which do not express Kcne1, loss of Kcnq1 causes a Long QT phenotype during adrenergic challenge, raising the possibility that native Kcnq1 currents exist and are adrenergically regulated even in absence of Kcne1. Here, we used immunoblotting and immunohistochemical staining to show that Kcnq1 protein is present in adult mouse hearts. Voltage-clamp experiments demonstrated that Kcnq1 contributes to a steady-state outward current (I(SS)) in wild-type (Kcnq1(+/+)) ventricular myocytes during isoproterenol stimulation, resulting in a significant 7.1% increase in I(SS) density (0.43+/-0.16 pA/pF, p <0.05, n =15), an effect that was absent in Kcnq1-deficient (Kcnq1(-/-)) myocytes (-0.14+/-0.13 pA/pF, n =17). These results demonstrate for the first time that Kcnq1 protein is expressed in adult mouse hearts where it contributes to a beta-adrenergic-induced component of I(SS) that does not require co-assembly with Kcne1.
Collapse
Affiliation(s)
- Bjorn C Knollmann
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Potassium channels: new targets in cancer therapy. ACTA ACUST UNITED AC 2006; 30:375-85. [PMID: 16971052 DOI: 10.1016/j.cdp.2006.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2006] [Indexed: 01/01/2023]
Abstract
BACKGROUND Potassium channels (KCh) are the most diverse and ubiquitous class of ion channels. KCh control membrane potential and contribute to nerve and cardiac action potentials and neurotransmitter release. KCh are also involved in insulin release, differentiation, activation, proliferation, apoptosis, and several other physiological functions. The aim of this review is to provide an updated overview of the KCh role during the cell growth. Their potential use as pharmacological targets in cancer therapies is also discussed. METHODS We searched PubMed (up to 2005) and identified relevant articles. Reprints were mainly obtained by on line subscription. Additional sources were identified through cross-referencing and obtained from Library services. RESULTS KCh are responsible for some neurological and cardiovascular diseases and for a new medical discipline, channelopathies. Their role in congenital deafness, multiple sclerosis, episodic ataxia, LQT syndrome and diabetes has been proven. Furthermore, a large body of information suggests that KCh play a role in the cell cycle progression, and it is now accepted that cells require KCh to proliferate. Thus, KCh expression has been studied in a number of tumours and cancer cells. CONCLUSIONS Cancer is far from being considered a channelopathy. However, it seems appropriate to take into account the involvement of KCh in cancer progression and pathology when developing new strategies for cancer therapy.
Collapse
|
38
|
Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J, Stow LR, Cain BD, Weiner ID, Wall SM, Wingo CS. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol 2006; 292:F456-66. [PMID: 16896189 DOI: 10.1152/ajprenal.00087.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of K(+) secretion and absorption along the collecting duct are not understood fully. Because KCNQ1 participates in K(+) secretion within the inner ear and stomach, distribution of KCNQ1 in mouse kidney was studied using Northern and Western analyses, RT-PCR of isolated tubules, and immunohistochemistry. Northern blots demonstrated KCNQ1 transcripts in whole kidney. RT-PCR showed KCNQ1 mRNA in isolated distal convoluted tubule (DCT), connecting segment (CNT), collecting ducts (CD), and glomeruli. Immunoblots of kidney and stomach revealed a approximately 75-kDa protein, the expected mobility for KCNQ1. KCNQ1 was detected by immunohistochemistry throughout the distal nephron and CD. Thick ascending limbs exhibited weak basolateral immunolabel. In DCT and CNT cells, immunolabel was intense and basolateral, although KCNQ1 label was stronger in late than in early DCT. Initial collecting tubule and cortical CD KCNQ1 immunolabel was predominantly diffuse, but many cells exhibited discrete apical label. Double-labeling experiments demonstrated that principal cells, type B intercalated cells, and a few type A intercalated cells exhibited distinct apical KCNQ1 immunolabel. In inner medullary CD, principal cells exhibited distinct basolateral KCNQ1 immunolabel, whereas intercalated cells showed diffuse cytoplasmic staining. Thus KCNQ1 protein is widely distributed in mouse distal nephron and CD, with significant axial and cellular heterogeneity in location and intensity. These findings suggest that KCNQ1 has cell-specific roles in renal ion transport and may participate in K(+) secretion and/or absorption along the thick ascending limb, DCT, connecting tubule, and CD.
Collapse
Affiliation(s)
- Wencui Zheng
- North Florida/South Georgia Veterans Health System, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nie L, Gratton MA, Mu KJ, Dinglasan JN, Feng W, Yamoah EN. Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+ regulation in the inner ear. J Neurosci 2006; 25:8671-9. [PMID: 16177035 PMCID: PMC6725506 DOI: 10.1523/jneurosci.1422-05.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An outcome of the intricate K+ regulation in the cochlear duct is the endocochlear potential (EP), approximately 80 mV, the "battery" that runs hair-cell transduction; however, the detailed molecular mechanisms for the generation of the EP remain unclear. We provide strong evidence indicating that the intermediate cells (ICs) of the stria vascularis (StV) express outward K+ current that rectifies inwardly at positive potentials. The channel belongs to the ether-a-go-go-related gene (erg) family of K+ channels. We cloned an ERG1a channel in the mouse inner ear (MERG1a). The cellular distribution of MERG1a in the cochlea displayed the highest levels of immunoreactivity in the ICs and modest reactivity in the marginal cells as well as in several extrastrial cells (e.g., hair cells). Functional expression of the StV-specific MERG1a channel reveals a current that activates at relatively negative potentials (approximately-50 mV) and shows rapid inactivation reflected as inward rectification at depolarized potentials. The current was sensitive to the methanesulfonanilide drug E-4031 (IC50, approximately 165 nM) and the recombinant peptide rBeKm-1 (IC50, approximately 16 nM), and the single-channel conductance in symmetrical K+ was approximately 14 pS. The site of expression of MERG1a and its functional phenotype (e.g., modulation of the current by external K+ make it one of the most likely candidates for establishing the high throughput of K+ ions across ICs to generate EP. In addition, the property of the channel that produces marked K+ extrusion in increased external K+ may be important in shaping the dynamics of K+ cycling in the inner ear.
Collapse
Affiliation(s)
- Liping Nie
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
40
|
Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F. KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci U S A 2005; 102:17864-9. [PMID: 16314573 PMCID: PMC1308898 DOI: 10.1073/pnas.0505860102] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in the gene encoding for the K+ channel alpha-subunit KCNQ1 have been associated with long QT syndrome and deafness. Besides heart and inner ear epithelial cells, KCNQ1 is expressed in a variety of epithelial cells including renal proximal tubule and gastrointestinal tract epithelial cells. At these sites, cellular K+ ions exit through KCNQ1 channel complexes, which may serve to recycle K+ or to maintain cell membrane potential and thus the driving force for electrogenic transepithelial transport, e.g., Na+/glucose cotransport. Employing pharmacologic inhibition and gene knockout, the present study demonstrates the importance of KCNQ1 K+ channel complexes for the maintenance of the driving force for proximal tubular and intestinal Na+ absorption, gastric acid secretion, and cAMP-induced jejunal Cl- secretion. In the kidney, KCNQ1 appears dispensable under basal conditions because of limited substrate delivery for electrogenic Na+ reabsorption to KCNQ1-expressing mid to late proximal tubule. During conditions of increased substrate load, however, luminal KCNQ1 serves to repolarize the proximal tubule and stabilize the driving force for Na+ reabsorption. In mice lacking functional KCNQ1, impaired intestinal absorption is associated with reduced serum vitamin B12 concentrations, mild macrocytic anemia, and fecal loss of Na+ and K+, the latter affecting K+ homeostasis.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California at San Diego and Veterans Affairs San Diego Health Care System, San Diego, CA 92161, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|