1
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
2
|
Ye K, Liu X, Li D, Gao L, Zheng K, Qu J, Xing N, Yang F, Liu B, Li A, Pang Q. Extracellular matrix-regulator MMPA is required for the orderly proliferation of neoblasts and differentiation of ectodermal progenitor cells in the planarian Dugesia japonica. Biochem Biophys Res Commun 2023; 659:1-9. [PMID: 37030019 DOI: 10.1016/j.bbrc.2023.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Matrix metalloproteinases (MMPs) are members of a family of zinc-dependent metallopeptidase proteins that are widely found in plants, animals, and microorganisms. As the regulators of the extracellular matrix and basement membrane, MMPs play an important role in embryogenesis, development, innate immunity, and regeneration. However, the function of MMP family in planarian, a model for regeneration research, is still ambiguous. Here, we cloned 5 MMPs genes from Dugesia japonica and found that DjMMPA was associated with the process of regeneration, neoblasts cell maintenance confusion and destruction. Loss of DjMMPA led to homeostasis confusion and eventually death, owing to neoblasts proliferation disorder. Additionally, DjMMPA RNAi-treated animals had impaired regeneration after amputation. Furthermore, knockdown of DjMMPA had noticeable defects in cell differentiation of ectoderm, especially in eyes and neural progenitor cells, possibly by inhibiting Wnt signaling. Our results suggest that extracellular matrix-regulator MMPA is required for the orderly proliferation of neoblasts and differentiation of ectodermal progenitor cells in the planarian, which provide valuable information for further explorations into the molecular mechanism of MMPS, stem cells, and regeneration.
Collapse
|
3
|
Zhang HC, Shi CY, Zhao WJ, Chen GW, Liu DZ. Toxicity of herbicide glyphosate to planarian Dugesia japonica and its potential molecular mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106425. [PMID: 36805197 DOI: 10.1016/j.aquatox.2023.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate (GLY) is one of the most widely used agrochemicals in the world, and its exposure has become a public health concern. The freshwater planarian is an ideal test organism for detecting the toxicity of pollutants and has been an emerging animal model in toxicological studies. Nevertheless, the underlying toxicity mechanism of GLY to planarians has not been thoroughly explored. To elucidate the toxicity effects and molecular mechanism involved in GLY exposure of planarians, we studied the acute toxicity, histological change, and transcriptional response of Dugesia japonica subjected to GLY. Significant morphological malformations and histopathological changes were observed in planarians after GLY exposure for different times. Also, a number of differentially expressed genes (DEGs) were obtained at 1, 3 and 5 d after exposure; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs were performed, and a global and dynamic view was obtained in planarians upon GLY exposure at the transcriptomic level. Furthermore, real-time quantitative PCR (qRT-PCR) was conducted on nine DEGs associated with detoxification, apoptosis, stress response, DNA repair, etc. The expression patterns were well consistent with the RNA sequencing (RNA-seq) results at different time points, which confirmed the reliability and accuracy of the transcriptome data. Collectively, our results established that GLY could pose adverse effects on the morphology and histo-architecture of D. japonica, and the planarians are capable of responding to the disadvantageous stress by dysregulating the related genes and pathways concerning immune response, detoxification, energy metabolism, DNA damage repair, etc. To the best of our knowledge, this is the first report of transcriptomic analyses of freshwater planarians exposed to environmental pollutants, and it provided detailed sequencing data deriving from transcriptome profiling to deepen our understanding the molecular toxicity mechanism of GLY to planarians.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Jing Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Yang Y, Jin F, Liu W, Huo G, Zhou F, Yan J, Zhou K, Li P. Comparative transcriptome, digital gene expression and proteome profiling analyses provide insights into the brachyurization from the megalopa to the first juvenile in Eriocheir sinensis. Heliyon 2023; 9:e12736. [PMID: 36685450 PMCID: PMC9853305 DOI: 10.1016/j.heliyon.2022.e12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/08/2023] Open
Abstract
Eriocheir sinensis larva normally experiences 11 stages. The reduced abdomen folded beneath the thorax is the most prominent characteristic of morphological alteration from megalopa to juvenile crab. Up to date, the molecular mechanisms of brachyurization remain a mystery. Here, transcriptome library, digital gene expression (DGE) libraries and proteome libraries at two developmental stages [the megalopa stage of E. sinensis (stage M) and the first stage of juvenile crab (stage J1)] of the Chinese mitten crab larva were constructed for RNA sequencing and iTRAQ approaches followed by bioinformatics analysis, respectively. In total, 1106 genes and 871 proteins were differentially expressed between the stage M and stage J1. Moreover, several important pathways were identified, including biosynthesis of secondary metabolites, metabolic pathways, focal adhesion, and some disease pathways. Besides, muscle contraction, oxidative phosphorylation, calcium signaling, PI3K-Akt, DNA replication pathway, and integrin signaling pathway also had important functions in brachyurization process. Furthermore, the components, actin, actin-related protein, collagens, filamin-A/B, laminin, integrins, paxillin, and fibronectin had up-regulated expression levels in M stage compared to J1 stage.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Fangcao Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wanyi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangming Huo
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China,Corresponding author. College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
5
|
Chen R, Mukhtar I, Wei S, Wu S, Chen J. Morphological and molecular features of early regeneration in the marine annelid Ophryotrocha xiamen. Sci Rep 2022; 12:1799. [PMID: 35110576 PMCID: PMC8810878 DOI: 10.1038/s41598-022-04870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Regeneration capability varies in the phylum Annelida making them an excellent group to investigate the differences between closely related organisms. Several studies have described the process of regeneration, while the underlying molecular mechanism remains unclear, especially during the early stage (wound healing and blastema formation). In this study, the newly identified Ophryotrocha xiamen was used to explore the early regeneration. The detailed morphological and molecular analyses positioned O. xiamen within 'labronica' clade. We analyzed the morphological changes during regeneration process (0-3 days post amputation) and molecular changes during the early regeneration stage (1 day post amputation). Wound healing was achieved within one day and a blastema formed one day later. A total of 243 DEGs were mainly involved in metabolism and signal transduction. Currently known regeneration-related genes were identified in O. xiamen which could help with exploring the functions of genes involved in regeneration processes. According to their conserved motif, we identified 8 different Hox gene fragments and Hox5 and Lox2 were found to be absent in early regeneration and during regular growth. Our data can promote further use of O. xiamen which can be used as an experimental model for resolving crucial problems of developmental biology in marine invertebrates.
Collapse
Affiliation(s)
- Ruanni Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Shurong Wei
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Siyi Wu
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
6
|
Yan X, Chang Y, Zhao W, Qian C, Yin X, Fan X, Zhu X, Zhao X, Ma XF. Transcriptome profiling reveals that foliar water uptake occurs with C 3 and crassulacean acid metabolism facultative photosynthesis in Tamarix ramosissima under extreme drought. AOB PLANTS 2022; 14:plab060. [PMID: 35047161 PMCID: PMC8763614 DOI: 10.1093/aobpla/plab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/14/2022] [Indexed: 05/21/2023]
Abstract
Tamarix ramosissima is a typical desert plant species that is widely distributed in the desert areas of Northwest China. It plays a significant role in sand fixation and soil water conservation. In particular, how it uses water to survive in the desert plays an important role in plant growth and ecosystem function. Previous studies have revealed that T. ramosissima can alleviate drought by absorbing water from its leaves under extreme drought conditions. To date, there is no clear molecular regulation mechanism to explain foliar water uptake (FWU). In the present study, we correlated diurnal meteorological data, sap flow and photosynthetic parameters to determine the physical and biological characteristics of FWU. Our results suggested that the lesser the groundwater, the easier it is for T. ramosissima to absorb water via the leaves. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of the transcriptome profile of plants subjected to high humidity suggested that FWU was highly correlated to carbohydrate metabolism, energy transfer, pyruvate metabolism, hormone signal transduction and plant-pathogen interaction. Interestingly, as a C3 plant, genes such as PEPC, PPDK, MDH and RuBP, which are involved in crassulacean acid metabolism (CAM) photosynthesis, were highly upregulated and accompanied by FWU. Therefore, we proposed that in the case of sufficient water supply, C3 photosynthesis is used in T. ramosissima, whereas in cases of extreme drought, starch is degraded to provide CO2 for CAM photosynthesis to make full use of the water obtained via FWU and the water that was transported or stored to assimilating branches and stems. This study may provide not only an important theoretical foundation for FWU and conversion from C3 plants to CAM plants but also for engineering improved photosynthesis in high-yield drought-tolerant plants and mitigation of climate change-driven drought.
Collapse
Affiliation(s)
- Xia Yan
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
- Key Laboratory of Inland River Ecohydrology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Yan Chang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Weijia Zhao
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhu
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiangqiang Zhao
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiao-Fei Ma
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
- Key Laboratory of Stress Physiology and Ecology in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Corresponding author’s e-mail address:
| |
Collapse
|
7
|
Transcription Factors Active in the Anterior Blastema of Schmidtea mediterranea. Biomolecules 2021; 11:biom11121782. [PMID: 34944426 PMCID: PMC8698962 DOI: 10.3390/biom11121782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Regeneration, the restoration of body parts after injury, is quite widespread in the animal kingdom. Species from virtually all Phyla possess regenerative abilities. Human beings, however, are poor regenerators. Yet, the progress of knowledge and technology in the fields of bioengineering, stem cells, and regenerative biology have fostered major advancements in regenerative medical treatments, which aim to regenerate tissues and organs and restore function. Human induced pluripotent stem cells can differentiate into any cell type of the body; however, the structural and cellular complexity of the human tissues, together with the inability of our adult body to control pluripotency, require a better mechanistic understanding. Planarians, with their capacity to regenerate lost body parts thanks to the presence of adult pluripotent stem cells could help providing such an understanding. In this paper, we used a top-down approach to shortlist blastema transcription factors (TFs) active during anterior regeneration. We found 44 TFs—31 of which are novel in planarian—that are expressed in the regenerating blastema. We analyzed the function of half of them and found that they play a role in the regeneration of anterior structures, like the anterior organizer, the positional instruction muscle cells, the brain, the photoreceptor, the intestine. Our findings revealed a glimpse of the complexity of the transcriptional network governing anterior regeneration in planarians, confirming that this animal model is the perfect playground to study in vivo how pluripotency copes with adulthood.
Collapse
|
8
|
Tian Q, Sun Y, Gao T, Li J, Fang H, Zhang S. Djnedd4L Is Required for Head Regeneration by Regulating Stem Cell Maintenance in Planarians. Int J Mol Sci 2021; 22:ijms222111707. [PMID: 34769140 PMCID: PMC8583885 DOI: 10.3390/ijms222111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
SUMOylation and ubiquitylation are homologous processes catalyzed by homologous enzymes, and they are involved in nearly all aspects of eukaryotic biology. Planarians, which have the remarkable ability to regenerate their central nervous system (CNS), provide an excellent opportunity to investigate the molecular processes of CNS regeneration in vivo. In this study, we analyzed gene expression profiles during head regeneration with an RNA-seq-based screening approach and found that Djnedd4L and Djubc9 were required for head regeneration in planarians. RNA interference targeting of Djubc9 caused the phospho-H3 mitotic cells to decrease in quantity, or even become absent as a part of the Djubc9 RNAi phenotype, which also showed the collapse of the stem cell lineage along with the reduced expression of epidermal differentiation markers. Furthermore, we found that Djnedd4L RNAi induced increased cell division and promoted the premature differentiation during regeneration. Taken together, our findings show that Djubc9 and Djnedd4L are required for stem cell maintenance in the planarian Dugesia japonica, which helps to elucidate the role of SUMOylation and ubiquitylation in regulating the regeneration process.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Correspondence: (H.F.); (S.Z.)
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou 450001, China
- Correspondence: (H.F.); (S.Z.)
| |
Collapse
|
9
|
Sahu R, Sahu SK, Nishank SS. de novo transcriptome profile of two earthworms Lampito mauritii and Drawida calebi during regeneration. Biochem Biophys Rep 2021; 27:101092. [PMID: 34409173 PMCID: PMC8361223 DOI: 10.1016/j.bbrep.2021.101092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
Earthworms have remarkable ability to regenerate its tail and head region. However the list of genes expressed in this regeneration process has been less explored baring a few species. The current study involves the de novo transcriptome sequencing of intact tail and regenerating tail (15 day post amputation) of earthworms belonging to two different genera Lampito mauritii (Kinberg, 1867) and Drawida calebi (Gates, 1945). This study contains one de-novo and one reference based transcriptome analysis each from one genus of two earthworm genera. From a total of 119.92 million (150 × 2) reads, 112.95 million high quality adapter free reads were utilized in analysis. Assembly of high-quality reads was performed separately for Lampito mauritii (LM sample) and Drawida calebi (DC sample) that resulted in 66368 and 1,61,289 transcripts respectively. About 25.21% of transcripts were functionally annotated for DC sample and 38.27% for LM samples against Annelida sequences. A total of 239 genes were expressed exclusively in regenerated tissue compared to intact sample in DC whereas about 241 genes were exclusively expressed in regenerated tissue of LM compared to its intact sample. Majority of genes in Drawida and Lampito were dedicated to immune response, maintenance of cytoskeleton, resisting oxidative stress and promoting neuronal regeneration for cell-cell communication during tail regeneration. Upregulation of genes such as beta catenin, Sox, notch, FGF, frizzled. Similarity with annelid worm Capitella telesta.
Collapse
Affiliation(s)
- Ranjan Sahu
- Post Graduate Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Sanjat Kumar Sahu
- Dept. of Environment Science, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
| | - Sudhansu Sekhar Nishank
- Post Graduate Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| |
Collapse
|
10
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
11
|
Tian Q, Sun Y, Gao T, Li J, Hao Z, Fang H, Zhang S. TBX2/3 is required for regeneration of dorsal-ventral and medial-lateral polarity in planarians. J Cell Biochem 2021; 122:731-738. [PMID: 33586232 DOI: 10.1002/jcb.29905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
The molecular mechanisms responsible for axis establishment during non-embryonic processes remain elusive. The planarian flatworm is an ideal model organism to study body axis polarization and patterning in vivo. Here, we identified a homolog of the TBX2/3 in the planarian Dugesia japonica. RNA interference (RNAi) knockdown of TBX2/3 results in the ectopic formation of protrusions in the midline of the dorsal surface which shows an abnormal expression of midline and ventral cell markers. Additionally, the TBX2/3 RNAi animals also show the duplication of expression of the boundary marker at the lateral edge. Furthermore, TBX2/3 is expressed in muscle cells and co-expressed with bmp4. Inhibition of bone morphogenetic protein (BMP) signaling reduces the expression of TBX2/3 at the midline. These results suggest that TBX2/3 RNAi results in phenotypic characters caused by inhibition of the BMP signal, indicating that TBX2/3 is required for DV and ML patterning, and might be a downstream gene of BMP signaling.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, New York University, New York, USA
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Fu Y, Liu L, Wang C, Zhu F, Liu X. Suppression of limb regeneration by RNA interference of WNT4 in the swimming crab Portunus trituberculatus. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:41-49. [DOI: 10.1016/j.cbpb.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/29/2019] [Accepted: 05/01/2019] [Indexed: 02/02/2023]
|
13
|
Tian Q, Zhao G, Sun Y, Yuan D, Guo Q, Zhang Y, Liu J, Zhang S. Exportin-1 is required for the maintenance of the planarian epidermal lineage. Int J Biol Macromol 2019; 126:1050-1055. [PMID: 30615964 DOI: 10.1016/j.ijbiomac.2019.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 01/27/2023]
Abstract
Nucleocytoplasmic transport is essential for normal cellular function that mediates cargo transport from the cytoplasm to the nucleus. However, the mechanisms of nucleocytoplasmic transport that integrate stem cell development remain largely unknown. Since it has a large population of stem cells, the planarian flatworm is an ideal system for the study of adult stem cell lineage development in vivo. Here, we focus on exportin-1, which is the most conserved nuclear export receptor. Homologs of exportin-1 have no currently known role in stem cell biology. RNA interference targeting exportin-1 caused a failure in anterior and posterior regeneration, and resulted in curly and lysis phenotypes in both intact and regenerating flatworms. During the course of exportin-1 RNAi phenotype, cell division was significantly decreased, and the expression of the epidermal cell markers (vimentin and laminB) were lost from the intact body. Additionally, the expression levels of the neoblast marker piwiA decreased. By contrast, the expression levels of the epidermal progenitor markers NB21.11e and AGAT1 increased. These results suggest that exportin-1 is required for the maintenance of the epidermal lineage in planarians. Inhibition of exportin-1 could promote the premature differentiation of neoblasts to the epidermal lineages, disrupting the proper epidermal maturation.
Collapse
Affiliation(s)
- Qingnan Tian
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guixia Zhao
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Yuan
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Guo
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhe Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqian Liu
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Shoutao Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Wang R, Lin Y, Jin Q, Yao C, Zhong Y, Wu T. RNA-Seq analysis of gynoecious and weak female cucumber revealing the cell cycle pathway may regulate sex determination in cucumber. Gene 2019; 687:289-297. [DOI: 10.1016/j.gene.2018.11.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
15
|
Önlü S, Saçan MT. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:20-28. [PMID: 29506002 DOI: 10.1016/j.jhazmat.2018.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Freshwater planarian Dugesia japonica has a critical ecological importance owing to its unique properties. This study presents for the first time an in silico approach to determine a priori the acute toxicity of contaminants of emerging concern towards D. japonica. Quantitative structure-toxicity/toxicity-toxicity relationship (QSTR/QTTR) models provided here allow producing reliable information using the existing data, thus, reducing the demand of in vivo and in vitro experiments, and contributing to the need for a more holistic approach to environmental safety assessment. Both models are promising for being notably simple and robust, meeting rigorous validation metrics and the OECD criteria. The QTTR model based on the available Daphnia magna data might also contribute to the US EPA Interspecies Correlation Estimation web application. Moreover, the proposed models were applied on hundreds of environmentally significant chemicals lacking experimental D. japonica toxicity data and predicted toxicity values were reported for the first time. The models presented here can be used as potential tools in toxicity assessment, screening and prioritization of chemicals and development of risk management measures in a scientific and regulatory frame.
Collapse
Affiliation(s)
- Serli Önlü
- Boğaziçi University, Institute of Environmental Sciences, Ecotoxicology and Chemometrics Lab, Hisar Campus, Bebek, 34342 Istanbul, Turkey
| | - Melek Türker Saçan
- Boğaziçi University, Institute of Environmental Sciences, Ecotoxicology and Chemometrics Lab, Hisar Campus, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
16
|
Wang Y, Jin X, Rui H, Liu T, Hou J. Cold Temperature Regulation of Zoospore Release in Phytophthora sojae: The Genes That Differentially Expressed by Cold Temperature. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Tang W, Xiao Y, Li G, Zheng X, Yin Y, Wang L, Zhu Y. Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:127-134. [PMID: 29425843 DOI: 10.1016/j.ecoenv.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yuanyuan Xiao
- School of Life Sciences, Southwest University, Chongqing 400716, China
| | - Guannan Li
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xi Zheng
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yaru Yin
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lingyan Wang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
18
|
Yuan J, Wang Z, Zou D, Peng Q, Peng R, Zou F. Expression profiling of planarians shed light on a dual role of programmed cell death during the regeneration. J Cell Biochem 2018; 119:5875-5884. [PMID: 29575081 DOI: 10.1002/jcb.26779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Abstract
Most animals hold the ability to regenerate damaged cells, tissues, and even any lost part of their bodies. To date, there is little known about the precise regulatory mechanism of regeneration and many fundamental questions remain unanswered. To further understand the precise regulatory mechanism of regeneration, we used planarian Dugesia japonica as a model and sequenced the transcriptomes of their regenerated tissues at different regeneration stages. Through de novo assembly and expression profiling, we found that Heat shock protein and MAPK pathway were involved into early response of regeneration in D. japonica. In addition, immune response, cell proliferation, and migration were activated during regeneration. Of notes, our results revealed a specific functional role of programmed cell death (PCD) in regeneration of D. japonica. PCD may not only remove the damaged and superfluous tissues for further patterning with regenerated tissues, but also provide signals to trigger neoblasts proliferation and differentiation directly. Together, our results revealed Heat shock protein and MAPK pathway mediated early response of regeneration and found a dual role of PCD in regeneration D. japonica. Meanwhile, we constructed regulatory networks of apoptosis, autophagy, and related signaling pathways and proposed a schematic model, which provided a global landscape of regeneration.
Collapse
Affiliation(s)
- Junsong Yuan
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhihong Wang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Di Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Quekun Peng
- Department of Biomedical Science, Chengdu Medical College, Chengdu, Sichuan, China
| | - Rui Peng
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
19
|
Hagstrom D, Zhang S, Ho A, Tsai ES, Radić Z, Jahromi A, Kaj KJ, He Y, Taylor P, Collins EMS. Planarian cholinesterase: molecular and functional characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity. Arch Toxicol 2017; 92:1161-1176. [PMID: 29167930 DOI: 10.1007/s00204-017-2130-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 µM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Siqi Zhang
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alicia Ho
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eileen S Tsai
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aryo Jahromi
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kelson J Kaj
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yingtian He
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eva-Maria S Collins
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA. .,Biology Department, Swarthmore College, Swarthmore, PA, 19081, USA.
| |
Collapse
|
20
|
Guo Q, Zhao G, Ni J, Guo Y, Zhang Y, Tian Q, Zhang S. Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration. Biochem Biophys Res Commun 2017; 493:1224-1229. [DOI: 10.1016/j.bbrc.2017.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 01/13/2023]
|
21
|
Differentially expressed genes in the silk gland of silkworm ( Bombyx mori ) treated with TiO 2 NPs. Gene 2017; 611:21-26. [DOI: 10.1016/j.gene.2017.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
|
22
|
Liu S, Chen G, Xu H, Zou W, Yan W, Wang Q, Deng H, Zhang H, Yu G, He J, Weng S. Transcriptome analysis of mud crab (Scylla paramamosain) gills in response to Mud crab reovirus (MCRV). FISH & SHELLFISH IMMUNOLOGY 2017; 60:545-553. [PMID: 27492124 DOI: 10.1016/j.fsi.2016.07.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/22/2016] [Accepted: 07/31/2016] [Indexed: 05/26/2023]
Abstract
Mud crab (Scylla paramamosain) is an economically important marine cultured species in China's coastal area. Mud crab reovirus (MCRV) is the most important pathogen of mud crab, resulting in large economic losses in crab farming. In this paper, next-generation sequencing technology and bioinformatics analysis are used to study transcriptome differences between MCRV-infected mud crab and normal control. A total of 104.3 million clean reads were obtained, including 52.7 million and 51.6 million clean reads from MCRV-infected (CA) and controlled (HA) mud crabs respectively. 81,901, 70,059 and 67,279 unigenes were gained respectively from HA reads, CA reads and HA&CA reads. A total of 32,547 unigenes from HA&CA reads called All-Unigenes were matched to at least one database among Nr, Nt, Swiss-prot, COG, GO and KEGG databases. Among these, 13,039, 20,260 and 11,866 unigenes belonged to the 3, 258 and 25 categories of GO, KEGG pathway, and COG databases, respectively. Solexa/Illumina's DGE platform was also used, and about 13,856 differentially expressed genes (DEGs), including 4444 significantly upregulated and 9412 downregulated DEGs were detected in diseased crabs compared with the control. KEGG pathway analysis revealed that DEGs were obviously enriched in the pathways related to different diseases or infections. This transcriptome analysis provided valuable information on gene functions associated with the response to MCRV in mud crab, as well as detail information for identifying novel genes in the absence of the mud crab genome database.
Collapse
Affiliation(s)
- Shanshan Liu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Guanxing Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Haidong Xu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Weibin Zou
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Wenrui Yan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Qianqian Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hengwei Deng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Heqian Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Guojiao Yu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
23
|
Zhuo Z, Fang S, Hu Q, Huang D, Feng J. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Sci Rep 2016; 6:37923. [PMID: 27901057 PMCID: PMC5128800 DOI: 10.1038/srep37923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
The absorption of different iron sources is a trending research topic. Many studies have revealed that organic iron exhibits better bioavailability than inorganic iron, but the concrete underlying mechanism is still unclear. In the present study, we examined the differences in bioavailability of ferrous sulfate and ferrous glycinate in the intestines of SD rats using Illumina sequencing technology. Digital gene expression analysis resulted in the generation of almost 128 million clean reads, with expression data for 17,089 unigenes. A total of 123 differentially expressed genes with a |log2(fold change)| >1 and q-value < 0.05 were identified between the FeSO4 and Fe-Gly groups. Gene Ontology functional analysis revealed that these genes were involved in oxidoreductase activity, iron ion binding, and heme binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed relevant important pathways. In addition, the expression patterns of 9 randomly selected genes were further validated by qRT-PCR, which confirmed the digital gene expression results. Our study showed that the two iron sources might share the same absorption mechanism, and that differences in bioavailability between FeSO4 and Fe-Gly were not only in the absorption process but also during the transport and utilization process.
Collapse
Affiliation(s)
- Zhao Zhuo
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shenglin Fang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiaoling Hu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Danping Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
24
|
Jiang X, Qiu L, Zhao H, Song Q, Zhou H, Han Q, Diao X. Transcriptomic responses of Perna viridis embryo to Benzo(a)pyrene exposure elucidated by RNA sequencing. CHEMOSPHERE 2016; 163:125-132. [PMID: 27522184 DOI: 10.1016/j.chemosphere.2016.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The green mussel Perna viridis is an ideal biomonitor to evaluate marine environmental pollution. Benzo(a)pyrene (BaP) is a typical polycyclic aromatic hydrocarbon (PAH), which is well known for the mutagenic and carcinogenic characteristics. However, the toxicological effects of BaP on Perna viridis embryo are still unclear. In this study, we investigated the embryo transcriptomic profile of Perna viridis treated with BaP via digital gene expression analysis. A total of 92,362,742 reads were produced from two groups (control and BaP exposure) by whole transcriptome sequencing (RNA-Seq). Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. Genes involved in various molecular pathways of toxicological effects were enriched further. The differential expression genes (DEGs) were related to stress response, infectious disease and innate immunity. Quantitative real-time PCR (qRT-PCR) measured expressional levels of six genes confirmed through the DGE analysis. This study reveals that RNA-seq for transcriptome profiling of P. viridis embryo can better understand the embryo toxic effects of BaP. Furthermore, it also suggests that RNA-seq is a superior tool for generating novel and valuable information for revealing the toxic effects caused by BaP at transcriptional level.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Liguo Qiu
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China.
| | - Qian Han
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Chan JD, Zhang D, Liu X, Zarowiecki M, Berriman M, Marchant JS. Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca 2+ channel in neuromuscular function and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1036-1045. [PMID: 27771293 DOI: 10.1016/j.bbamcr.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022]
Abstract
The robust regenerative capacity of planarian flatworms depends on the orchestration of signaling events from early wounding responses through the stem cell enacted differentiative outcomes that restore appropriate tissue types. Acute signaling events in excitable cells play an important role in determining regenerative polarity, rationalized by the discovery that sub-epidermal muscle cells express critical patterning genes known to control regenerative outcomes. These data imply a dual conductive (neuromuscular signaling) and instructive (anterior-posterior patterning) role for Ca2+ signaling in planarian regeneration. Here, to facilitate study of acute signaling events in the excitable cell niche, we provide a de novo transcriptome assembly from the planarian Dugesia japonica allowing characterization of the diverse ionotropic portfolio of this model organism. We demonstrate the utility of this resource by proceeding to characterize the individual role of each of the planarian voltage-operated Ca2+ channels during regeneration, and demonstrate that knockdown of a specific voltage operated Ca2+ channel (Cav1B) that impairs muscle function uniquely creates an environment permissive for anteriorization. Provision of the full transcriptomic dataset should facilitate further investigations of molecules within the planarian voltage-gated channel portfolio to explore the role of excitable cell physiology on regenerative outcomes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- John D Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Dan Zhang
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Xiaolong Liu
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Magdalena Zarowiecki
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Matthew Berriman
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States; The Stem Cell Institute, University of Minnesota Medical School, MN 55455, United States.
| |
Collapse
|
26
|
Hao HT, Zhao X, Shang QH, Wang Y, Guo ZH, Zhang YB, Xie ZK, Wang RY. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens. PLoS One 2016; 11:e0158621. [PMID: 27513952 PMCID: PMC4981348 DOI: 10.1371/journal.pone.0158621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles.
Collapse
Affiliation(s)
- Hai-Ting Hao
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Han Shang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Bao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Kui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-Yu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Pang Q, Gao L, Hu W, An Y, Deng H, Zhang Y, Sun X, Zhu G, Liu B, Zhao B. De Novo Transcriptome Analysis Provides Insights into Immune Related Genes and the RIG-I-Like Receptor Signaling Pathway in the Freshwater Planarian (Dugesia japonica). PLoS One 2016; 11:e0151597. [PMID: 26986572 PMCID: PMC4795655 DOI: 10.1371/journal.pone.0151597] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Background The freshwater planarian Dugesia japonica (D. japonica) possesses extraordinary ability to regenerate lost organs or body parts. Interestingly, in the process of regeneration, there is little wound infection, suggesting that D. japonica has a formidable innate immune system. The importance of immune system prompted us to search for immune-related genes and RIG-I-like receptor signaling pathways. Results Transcriptome sequencing of D. japonica was performed on an IlluminaHiSeq2000 platform. A total of 27,180 transcripts were obtained by Trinity assembler. CEGMA analysis and mapping of all trimmed reads back to the assembly result showed that our transcriptome assembly covered most of the whole transcriptome. 23,888 out of 27,180 transcripts contained ORF (open reading fragment), and were highly similar to those in Schistosoma mansoni using BLASTX analysis. 8,079 transcripts (29.7%) and 8,668 (31.9%) were annotated by Blast2GO and KEGG respectively. A DYNLRB-like gene was cloned to verify its roles in the immune response. Finally, the expression patterns of 4 genes (RIG-I, TRAF3, TRAF6, P38) in the RIG-I-like receptor signaling pathway were detected, and the results showed they are very likely to be involved in planarian immune response. Conclusion RNA-Seq analysis based on the next-generation sequencing technology was an efficient approach to discover critical genes and to understand their corresponding biological functions. Through GO and KEGG analysis, several critical and conserved signaling pathways and genes related to RIG-I-like receptor signaling pathway were identified. Four candidate genes were selected to identify their expression dynamics in the process of pathogen stimulation. These annotated transcripts of D. japonica provide a useful resource for subsequent investigation of other important pathways.
Collapse
Affiliation(s)
- Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Wenjing Hu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Yang An
- Immolife-biotech Co., Ltd., Nanjing 210000, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Yichao Zhang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Xiaowen Sun
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Guangzhong Zhu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- Shenzhen University Health Science Center, Shenzhen 518060, China
- * E-mail: (BSZ); (BHL)
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
- * E-mail: (BSZ); (BHL)
| |
Collapse
|
28
|
Tripathy S, Padhi SK, Sen R, Mohanty S, Samanta M, Maiti NK. Profiling of Brevibacillus borstelensis transcriptome exposed to high temperature shock. Genomics 2015; 107:33-9. [PMID: 26585522 DOI: 10.1016/j.ygeno.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
To understand the molecular mechanisms underlying the ability of the bacteria to survive at high temperature, gene expression profile of Brevibacillusborstelensis at 55°C during 5 and 10min heat shock period was carried out by high-throughput sequencing technology. A total of 2555 non-redundant transcripts were annotated. A total of 575 genes at 5min and 400 genes at 10min exhibited significant differential expression in response to temperature upshift from 50 to 55°C. Genes up-regulated under heat shock were associated with metabolism (mtnE), membrane transport, signal transduction, transcriptional regulation (ycxD, codY) and folding and sorting (hsp90). A larger number of genes encoding hypothetical proteins were identified. RT-PCR experimental results carried out on genes expressed under heat shock were found to be consistent with transcriptome data. The results enhance our understanding of adaptation strategy of thermophilic bacteria thereby providing a strong background for in depth research in thermophiles.
Collapse
Affiliation(s)
- S Tripathy
- Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kaushalyaganga, Bhubaneswar 751002, Orissa, India
| | - S K Padhi
- Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kaushalyaganga, Bhubaneswar 751002, Orissa, India
| | - R Sen
- Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kaushalyaganga, Bhubaneswar 751002, Orissa, India
| | - S Mohanty
- Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kaushalyaganga, Bhubaneswar 751002, Orissa, India
| | - M Samanta
- Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kaushalyaganga, Bhubaneswar 751002, Orissa, India
| | - N K Maiti
- Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kaushalyaganga, Bhubaneswar 751002, Orissa, India.
| |
Collapse
|
29
|
Yu Y, Zeng L, Yan Z, Liu T, Sun K, Zhu T, Zhu A. Identification of Ramie Genes in Response to Pratylenchus coffeae Infection Challenge by Digital Gene Expression Analysis. Int J Mol Sci 2015; 16:21989-2007. [PMID: 26378527 PMCID: PMC4613293 DOI: 10.3390/ijms160921989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/08/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
Root lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs. In this study, the transcriptome of the resistant ramie cultivar Qingdaye was characterized using Illumina sequence technology. About 46.3 million clean pair end (PE) reads were generated and assembled into 40,826 unigenes with a mean length of 830 bp. Digital gene expression (DGE) analysis was performed on both the control roots (CK) and P. coffeae-challenged roots (CH), and the differentially expressed genes (DEGs) were identified. Approximately 10.16 and 8.07 million cDNA reads in the CK and CH cDNA libraries were sequenced, respectively. A total of 137 genes exhibited different transcript abundances between the two libraries. Among them, the expressions of 117 and 20 DEGs were up- and down-regulated in P. coffeae-challenged ramie, respectively. The expression patterns of 15 candidate genes determined by qRT-PCR confirmed the results of DGE analysis. Time-course expression profiles of eight defense-related genes in susceptible and resistant ramie cultivars were different after P. coffeae inoculation. The differential expression of protease inhibitors, pathogenesis-related proteins (PRs), and transcription factors in resistant and susceptible ramie during P. coffeae infection indicated that cystatin likely plays an important role in nematode resistance.
Collapse
Affiliation(s)
- Yongting Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhun Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Kai Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Taotao Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
30
|
Geng X, Wang G, Qin Y, Zang X, Li P, Geng Z, Xue D, Dong Z, Ma K, Chen G, Xu C. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians. PLoS One 2015; 10:e0132045. [PMID: 26131905 PMCID: PMC4488856 DOI: 10.1371/journal.pone.0132045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.
Collapse
Affiliation(s)
- Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
| | - Gaiping Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Yanli Qin
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Zhi Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Deming Xue
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Kexue Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
- * E-mail: (CSX); (GWC)
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
- * E-mail: (CSX); (GWC)
| |
Collapse
|
31
|
Zhang H, Wang X, Lyu K, Gao S, Wang G, Fan C, Zhang XA, Yan J. Time Point-Based Integrative Analyses of Deep-Transcriptome Identify Four Signal Pathways in Blastemal Regeneration of Zebrafish Lower Jaw. Stem Cells 2015; 33:806-18. [DOI: 10.1002/stem.1899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/09/2014] [Accepted: 10/30/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Hui Zhang
- Department of Biology; Institute for Marine Biosystem and Neurosciences, College of Fisheries and Life Sciences; Shanghai Ocean University Shanghai People's Republic of China
| | - Xuelong Wang
- Department of Biology; Institute for Marine Biosystem and Neurosciences, College of Fisheries and Life Sciences; Shanghai Ocean University Shanghai People's Republic of China
| | - Kailun Lyu
- Department of Biology; Institute for Marine Biosystem and Neurosciences, College of Fisheries and Life Sciences; Shanghai Ocean University Shanghai People's Republic of China
| | - Siqi Gao
- Department of Biology; Institute for Marine Biosystem and Neurosciences, College of Fisheries and Life Sciences; Shanghai Ocean University Shanghai People's Republic of China
| | - Guan Wang
- Genergy Biotechnology (Shanghai) Co., Ltd.; Shanghai People's Republic of China
| | - Chunxin Fan
- Department of Biology; Institute for Marine Biosystem and Neurosciences, College of Fisheries and Life Sciences; Shanghai Ocean University Shanghai People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources; Ministry of Education, Shanghai Ocean University; Shanghai People's Republic of China
| | - Xin A. Zhang
- Stephenson Cancer Center and Department of Physiology; The University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma USA
| | - Jizhou Yan
- Department of Biology; Institute for Marine Biosystem and Neurosciences, College of Fisheries and Life Sciences; Shanghai Ocean University Shanghai People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources; Ministry of Education, Shanghai Ocean University; Shanghai People's Republic of China
| |
Collapse
|
32
|
Early responses of silkworm midgut to microsporidium infection – A Digital Gene Expression analysis. J Invertebr Pathol 2015; 124:6-14. [DOI: 10.1016/j.jip.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023]
|
33
|
Guan D, Mo F, Han Y, Gu W, Zhang M. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:300-6. [PMID: 25543212 DOI: 10.1016/j.etap.2014.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 05/06/2023]
Abstract
Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.
Collapse
Affiliation(s)
- Delong Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fei Mo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Han
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
34
|
Tripathy S, Sen R, Padhi S, Sahu D, Nandi S, Mohanty S, Maiti N. Survey of the transcriptome of Brevibacillus borstelensis exposed to low temperature shock. Gene 2014; 550:207-13. [DOI: 10.1016/j.gene.2014.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/28/2022]
|
35
|
Ding H, Qin C, Luo X, Li L, Chen Z, Liu H, Gao J, Lin H, Shen Y, Zhao M, Lübberstedt T, Zhang Z, Pan G. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid. Int J Mol Sci 2014; 15:13892-915. [PMID: 25116687 PMCID: PMC4159830 DOI: 10.3390/ijms150813892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in different tissues or developmental stages, different global expression patterns prevail, which might nevertheless be related to heterosis. Our results support the hypotheses that multiple molecular mechanisms (dominance and overdominance modes) contribute to heterosis.
Collapse
Affiliation(s)
- Haiping Ding
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Cheng Qin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
- Zunyi Academy of Agricultural Sciences, Zunyi 563102, China; E-Mail:
| | - Xirong Luo
- Zunyi Academy of Agricultural Sciences, Zunyi 563102, China; E-Mail:
| | - Lujiang Li
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Zhe Chen
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Hongjun Liu
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Jian Gao
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Haijian Lin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Yaou Shen
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
| | - Maojun Zhao
- Life Science College, Sichuan Agricultural University, Ya’an 625014, China; E-Mail:
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; E-Mail:
| | - Zhiming Zhang
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Z.); (G.P.); Tel.: +86-28-8629-0917 (G.P.); Fax: +86-28-8629-0916 (G.P.)
| | - Guangtang Pan
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China; E-Mails: (H.D.); ; (C.Q.); (L.L.); (Z.C.); (H.L.); (J.G.); (H.L.); (Y.S.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Z.); (G.P.); Tel.: +86-28-8629-0917 (G.P.); Fax: +86-28-8629-0916 (G.P.)
| |
Collapse
|
36
|
Liu Y, Liu M, Li X, Cao B, Ma X. Identification of differentially expressed genes in leaf of Reaumuria soongorica under PEG-induced drought stress by digital gene expression profiling. PLoS One 2014; 9:e94277. [PMID: 24736242 PMCID: PMC3988058 DOI: 10.1371/journal.pone.0094277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
Reaumuria soongorica (Pall.) Maxim., a resurrection semi-shrub, is a typical constructive and dominant species in desert ecosystems in northwestern China. However, the gene expression characteristics of R. soongorica under drought stress have not been elucidated. Digital gene expression analysis was performed using Illumina technique to investigate differentially expressed genes (DEGs) between control and PEG-treated samples of R. soongorica. A total of 212,338 and 211,052 distinct tags were detected in the control and PEG-treated libraries, respectively. A total of 1,325 genes were identified as DEGs, 379 (28.6%) of which were up-regulated and 946 (71.4%) were down-regulated in response to drought stress. Functional annotation analysis identified numerous drought-inducible genes with various functions in response to drought stress. A number of regulatory proteins, functional proteins, and proteins induced by other stress factors in R. soongorica were identified. Alteration in the regulatory proteins (transcription factors and protein kinase) may be involved in signal transduction. Functional proteins, including flavonoid biosynthetic proteins, late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), and aquaporin and proline transporter may play protective roles in response to drought stress. Flavonoids, LEA proteins and sHSP function as reactive oxygen species scavenger or molecular chaperone. Aquaporin and proline transporters regulate the distribution of water and proline throughout the whole plant. The tolerance ability of R. soongorica may be gained through effective signal transduction and enhanced protection of functional proteins to reestablish cellular homeostasis. DEGs obtained in this study may provide useful insights to help further understand the drought-tolerant mechanism of R. soongorica.
Collapse
Affiliation(s)
- Yubing Liu
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- * E-mail:
| | - Meiling Liu
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinrong Li
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Bo Cao
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
| |
Collapse
|
37
|
Ding N, Han Q, Li Q, Zhao X, Li J, Su J, Wang Q. Comprehensive analysis of Sichuan white geese (Anser cygnoides) transcriptome. Anim Sci J 2014; 85:650-9. [PMID: 24725216 DOI: 10.1111/asj.12197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
High-throughput RNA sequencing was performed for comprehensively analyzing the transcriptome of geese. A total of 28,803,759 bp of raw sequence data was generated by 454 GS Flx+. After removal of adaptor sequences, 28,730,361 bp remained and 117,279 reads were obtained, with an average length of 244 bases. Simultaneously, complementary DNA samples from two different reproductive stages of goose ovarian, hypothalamus and pituitary tissue were sequenced separately using Illumina MiSeq platform. A total of 12 688 673 148 bp of raw sequence data were generated by Illumina MiSeq. After removal of adaptor sequences, 8 198 126 562 bp remained and 60 382 786 clean reads were obtained, with an average length of 135 bases. Assembly of all the reads from both 454 Flx+ and Illumina platforms formed 56,839 contigs. The sequence size ranges from 38 to 28,206 bp in size, with an average size of 2584 bp and an N50 of 4624. The assembly produced a substantial number of large contigs: 35,545 (62.5%) were longer than 1 kb, of which 8850 (15.6%) were longer than 5 kb. The sequencing depth was 85 X on average. We performed comprehensive function annotations on unigenes including protein sequence similarity, gene ontology (GO) term classification, and Kyoto Encylcopedia of Genes and Genomes (KEGG) pathway enrichment. GO analysis showed that approximately 63% of the contigs had annotation information, among the 35,953 annotated isotigs in Nr database, 24,783 (68.9%) sequences were assigned with one or more GO terms. There were 14,634 (40.7%) isotigs for biological processes, 10,557(29.3%) isotigs for cellular component, 22,607 (62.9%) isotigs for molecular function. The result of KEGG pathway mapping 8926 sequences had the pathway annotation, and took part in 477 pathways. Additionally, 10,685 simple sequence repeat (SSR) markers were identified from the assembled sequences. The most frequent repeat motifs were trinucleotides, which accounted for 53.03% of all SSRs, followed by dinucleotides (39.9%), tetranucleotides (5.08%), pentanucleotides (1.68%) and hexanucleotides (0.32%). Transcriptome sequencing on mixture issue of the geese yielded substantial transcriptional sequences and potentially useful SSR markers which provide an important data source for geese research.
Collapse
Affiliation(s)
- Ning Ding
- Chongqing Academy of Animal Science, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Sasidharan V, Lu YC, Bansal D, Dasari P, Poduval D, Seshasayee A, Resch AM, Graveley BR, Palakodeti D. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. RNA (NEW YORK, N.Y.) 2013; 19:1394-1404. [PMID: 23974438 PMCID: PMC3854530 DOI: 10.1261/rna.038653.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
In recent years, the planarian Schmidtea mediterranea has emerged as a tractable model system to study stem cell biology and regeneration. MicroRNAs are small RNA species that control gene expression by modulating translational repression and mRNA stability and have been implicated in the regulation of various cellular processes. Though recent studies have identified several miRNAs in S. mediterranea, their expression in neoblast subpopulations and during regeneration has not been examined. Here, we identify several miRNAs whose expression is enriched in different neoblast subpopulations and in regenerating tissue at different time points in S. mediterranea. Some of these miRNAs were enriched within 3 h post-amputation and may, therefore, play a role in wound healing and/or neoblast migration. Our results also revealed miRNAs, such as sme-miR-2d-3p and the sme-miR-124 family, whose expression is enriched in the cephalic ganglia, are also expressed in the brain primordium during CNS regeneration. These results provide new insight into the potential biological functions of miRNAs in neoblasts and regeneration in planarians.
Collapse
Affiliation(s)
- Vidyanand Sasidharan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Yi-Chien Lu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Pranavi Dasari
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Deepak Poduval
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| | - Aswin Seshasayee
- National Center for Biological Sciences, Bangalore 560065, India
| | - Alissa M. Resch
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Brenton R. Graveley
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, Bangalore 560065, India
| |
Collapse
|
39
|
Men L, Yan S, Liu G. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genomics 2013; 14:548. [PMID: 23941306 PMCID: PMC3765852 DOI: 10.1186/1471-2164-14-548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Larix gmelinii is a dominant tree species in China's boreal forests and plays an important role in the coniferous ecosystem. It is also one of the most economically important tree species in the Chinese timber industry due to excellent water resistance and anti-corrosion of its wood products. Unfortunately, in Northeast China, L. gmelinii often suffers from serious attacks by diseases and insects. The application of exogenous volatile semiochemicals may induce and enhance its resistance against insect or disease attacks; however, little is known regarding the genes and molecular mechanisms related to induced resistance. RESULTS We performed de novo sequencing and assembly of the L. gmelinii transcriptome using a short read sequencing technology (Illumina). Chemical defenses of L. gmelinii seedlings were induced with jasmonic acid (JA) or methyl jasmonate (MeJA) for 6 hours. Transcriptomes were compared between seedlings induced by JA, MeJA and untreated controls using a tag-based digital gene expression profiling system. In a single run, 25,977,782 short reads were produced and 51,157 unigenes were obtained with a mean length of 517 nt. We sequenced 3 digital gene expression libraries and generated between 3.5 and 5.9 million raw tags, and obtained 52,040 reliable reference genes after removing redundancy. The expression of disease/insect-resistance genes (e.g., phenylalanine ammonialyase, coumarate 3-hydroxylase, lipoxygenase, allene oxide synthase and allene oxide cyclase) was up-regulated. The expression profiles of some abundant genes under different elicitor treatment were studied by using real-time qRT-PCR.The results showed that the expression levels of disease/insect-resistance genes in the seedling samples induced by JA and MeJA were higher than those in the control group. The seedlings induced with MeJA elicited the strongest increases in disease/insect-resistance genes. CONCLUSIONS Both JA and MeJA induced seedlings of L. gmelinii showed significantly increased expression of disease/insect-resistance genes. MeJA seemed to have a stronger induction effect than JA on expression of disease/insect-resistance related genes. This study provides sequence resources for L. gmelinii research and will help us to better understand the functions of disease/insect-resistance genes and the molecular mechanisms of secondary metabolisms in L. gmelinii.
Collapse
Affiliation(s)
- Lina Men
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No, 26 Hexing Road, Harbin 150040, P, R, China.
| | | | | |
Collapse
|
40
|
Wang Z, Chen J, Liu W, Luo Z, Wang P, Zhang Y, Zheng R, Shi J. Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One 2013; 8:e71562. [PMID: 23951189 PMCID: PMC3741379 DOI: 10.1371/journal.pone.0071562] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/01/2013] [Indexed: 11/24/2022] Open
Abstract
Background The molecular mechanisms that govern cambial activity in angiosperms are well established, but little is known about these molecular mechanisms in gymnosperms. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), a diploid (2n = 2x = 22) gymnosperm, is one of the most important industrial and commercial timber species in China. Here, we performed transcriptome sequencing to identify the repertoire of genes expressed in cambium tissue of Chinese fir. Methodology/Principal Findings Based on previous studies, the four stage-specific cambial tissues of Chinese fir were defined using transmission electron microscopy (TEM). In total, 20 million sequencing reads (3.6 Gb) were obtained using Illumina sequencing from Chinese fir cambium tissue collected at active growth stage, with a mean length of 131 bp and a N50 of 90 bp. SOAPdenovo software was used to assemble 62,895 unigenes. These unigenes were further functionally annotated by comparing their sequences to public protein databases. Expression analysis revealed that the altered expression of six homologous genes (ClWOX1, ClWOX4, ClCLV1-like, ClCLV-like, ClCLE12, and ClPIN1-like) correlated positively with changes in cambial activities; moreover, these six genes might be directly involved in cambial function in Chinese fir. Further, the full-length cDNAs and DNAs for ClWOX1 and ClWOX4 were cloned and analyzed. Conclusions In this study, a large number of tissue/stage-specific unigene sequences were generated from the active growth stage of Chinese fir cambium. Transcriptome sequencing of Chinese fir not only provides extensive genetic resources for understanding the molecular mechanisms underlying cambial activities in Chinese fir, but also is expected to be an important foundation for future genetic studies of Chinese fir. This study indicates that ClWOX1 and ClWOX4 could be possible reverse genetic target genes for revealing the molecular mechanisms of cambial activities in Chinese fir.
Collapse
Affiliation(s)
- Zhanjun Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Weidong Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Zhanshou Luo
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Yanjuan Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Renhua Zheng
- Fujian Academies of Forestry, Southern Mountain Timber Forest Cultivation Lab, the Ministry of Forestry, Fuzhou, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
41
|
Transcriptome profiling of the goose (Anser cygnoides) ovaries identify laying and broodiness phenotypes. PLoS One 2013; 8:e55496. [PMID: 23405160 PMCID: PMC3566205 DOI: 10.1371/journal.pone.0055496] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/23/2012] [Indexed: 01/28/2023] Open
Abstract
Background The geese have strong broodiness and poor egg performance. These characteristics are the key issues that hinder the goose industry development. Yet little is known about the mechanisms responsible for follicle development due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to produce a comprehensive and integrated genomic resource and to better understand the biological mechanisms of goose follicle development. Methodology/Principal Findings In this study, we performed de novo transcriptome assembly and gene expression analysis using short-read sequencing technology (Illumina). We obtained 67,315,996 short reads of 100 bp, which were assembled into 130,514 unique sequences by Trinity strategy (mean size = 753bp). Based on BLAST results with known proteins, these analyses identified 52,642 sequences with a cut-off E-value above 10−5. Assembled sequences were annotated with gene descriptions, gene ontology and clusters of orthologous group terms. In addition, we investigated the transcription changes during the goose laying/broodiness period using a tag-based digital gene expression (DGE) system. We obtained a sequencing depth of over 4.2 million tags per sample and identified a large number of genes associated with follicle development and reproductive biology including cholesterol side-chain cleavage enzyme gene and dopamine beta-hydroxylas gene. We confirm the altered expression levels of the two genes using quantitative real-time PCR (qRT-PCR). Conclusions/Significance The obtained goose transcriptome and DGE profiling data provide comprehensive gene expression information at the transcriptional level that could promote better understanding of the molecular mechanisms underlying follicle development and productivity.
Collapse
|
42
|
Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M, Ferreira HB, Zaha A, Blaxter ML, Maizels RM, Fernández C. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 2012; 6:e1897. [PMID: 23209850 PMCID: PMC3510090 DOI: 10.1371/journal.pntd.0001897] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/25/2012] [Indexed: 01/14/2023] Open
Abstract
Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths. Cestodes are a neglected group of platyhelminth parasites, despite causing chronic infections to humans and domestic animals worldwide. We used Echinococcus granulosus as a model to study the molecular basis of the host-parasite cross-talk during cestode infections. For this purpose, we carried out a survey of the genes expressed by parasite larval stages interfacing with definitive and intermediate hosts. Sequencing from several high quality cDNA libraries provided numerous insights into the expression of genes involved in important aspects of E. granulosus biology, e.g. its metabolism (energy production and antioxidant defences) and the synthesis of key parasite structures (notably, the one exposed to humans and livestock intermediate hosts). Our results also uncovered the existence of an intriguing set of abundant repeat-associated non-protein coding transcripts that may participate in the regulation of gene expression in all surveyed stages. The dataset now generated constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic studies focused on cestodes and platyhelminths. In particular, the detailed characterization of a range of newly discovered genes will contribute to a better understanding of the biology of cestode infections and, therefore, to the development of products allowing their efficient control.
Collapse
Affiliation(s)
- John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - James D. Wasmuth
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cristiano V. Bizarro
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chris Sanford
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matthew Berriman
- Parasite Genomics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Henrique B. Ferreira
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mark L. Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (RMM); (CF)
| | - Cecilia Fernández
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- * E-mail: (RMM); (CF)
| |
Collapse
|
43
|
Li C, Weng S, Chen Y, Yu X, Lü L, Zhang H, He J, Xu X. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique. PLoS One 2012; 7:e47442. [PMID: 23071809 PMCID: PMC3469548 DOI: 10.1371/journal.pone.0047442] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. METHODOLOGY/PRINCIPAL FINDINGS This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. CONCLUSIONS/SIGNIFICANCE The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yonggui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaoqiang Yu
- Division of Cell Biology and Biophysics, School of Biological Science, University of Missouri-Kansas City, Kansas City, United States of America
| | - Ling Lü
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Haiqing Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (XX); (JH)
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (XX); (JH)
| |
Collapse
|
44
|
Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One 2012; 7:e36234. [PMID: 22558397 PMCID: PMC3338685 DOI: 10.1371/journal.pone.0036234] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 03/29/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. METHODOLOGY/PRINCIPAL FINDINGS Illumina paired-end (PE) RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts (≥ 100 bp), which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE) tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified. CONCLUSIONS/SIGNIFICANCE The combined de novo transcriptome assembly strategy can be applied to other organisms whose reference genomes are not available. The data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including development of leaves and storage roots, tissue-specific gene expression, potential biotic and abiotic stress response in sweet potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Zheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
45
|
Qin YF, Zhao JM, Bao ZX, Zhu ZY, Mai J, Huang YB, Li JB, Chen G, Lu P, Chen SJ, Su LL, Fang HM, Lu JK, Zhang YZ, Zhang ST. Identification of small non-coding RNAs in the planarian Dugesia japonica via deep sequencing. Genomics 2012; 99:315-21. [PMID: 22425900 DOI: 10.1016/j.ygeno.2012.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/21/2012] [Accepted: 03/01/2012] [Indexed: 01/17/2023]
Abstract
Freshwater planarian flatworm possesses an extraordinary ability to regenerate lost body parts after amputation; it is perfect organism model in regeneration and stem cell biology. Recently, small RNAs have been an increasing concern and studied in many aspects, including regeneration and stem cell biology, among others. In the current study, the large-scale cloning and sequencing of sRNAs from the intact and regenerative planarian Dugesia japonica are reported. Sequence analysis shows that sRNAs between 18nt and 40nt are mainly microRNAs and piRNAs. In addition, 209 conserved miRNAs and 12 novel miRNAs are identified. Especially, a better screening target method, negative-correlation relationship of miRNAs and mRNA, is adopted to improve target prediction accuracy. Similar to miRNAs, a diverse population of piRNAs and changes in the two samples are also listed. The present study is the first to report on the important role of sRNAs during planarian Dugesia japonica regeneration.
Collapse
Affiliation(s)
- Yun-Fei Qin
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Siebert S, Robinson MD, Tintori SC, Goetz F, Helm RR, Smith SA, Shaner N, Haddock SHD, Dunn CW. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows. PLoS One 2011; 6:e22953. [PMID: 21829563 PMCID: PMC3146525 DOI: 10.1371/journal.pone.0022953] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/01/2011] [Indexed: 02/02/2023] Open
Abstract
We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing.
Collapse
Affiliation(s)
- Stefan Siebert
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (SS); (CWD)
| | - Mark D. Robinson
- Epigenetics Laboratory, Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sophia C. Tintori
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Freya Goetz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Rebecca R. Helm
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Nathan Shaner
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Casey W. Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (SS); (CWD)
| |
Collapse
|