1
|
Zhao X, Zhuang Y, Xie W, Yang Y, Pu J, Fan Z, Chen Y, Lin Y, Lai Z. Allelic Expression Dynamics of Regulatory Factors During Embryogenic Callus Induction in ABB Banana ( Musa spp. cv. Bengal, ABB Group). PLANTS (BASEL, SWITZERLAND) 2025; 14:761. [PMID: 40094726 PMCID: PMC11902074 DOI: 10.3390/plants14050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
The regulatory mechanisms underlying embryogenic callus (EC) formation in polyploid bananas remain unexplored, posing challenges for genetic transformation and biotechnological applications. Here, we conducted transcriptome sequencing on cultured explants, non-embryogenic callus, EC, and browning callus in the ABB cultivar 'MJ' (Musa spp. cv. Bengal). Our analysis of differentially expressed genes (DEGs) revealed significant enrichment in plant hormones, MAPK, and zeatin biosynthesis pathways. Notably, most genes in the MJ variety exhibited balanced expression of the A and B alleles, but A-specific allele expression was dominant in the key signaling pathways, whereas B-specific allele expression was very rare during EC induction. In the auxin signaling pathway, six A-specific MJARF genes were markedly downregulated, underscoring their critical roles in the negative regulation of callus formation. Additionally, six A-specific MJEIN3 alleles were found to play negative regulatory roles in ethylene signaling during EC development. We also identified phenylpropanoids responsible for enzymatic browning. Furthermore, the expression patterns of transcription factors in bananas exhibited specific expression modes, highlighting the unique mechanisms of callus formation. This study enhanced our understanding of the regulatory roles of these alleles in EC induction and offers new insights into the utilization of alleles to improve the efficiency of somatic embryogenesis in bananas.
Collapse
Affiliation(s)
- Xiaobing Zhao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (Z.F.); (Y.C.)
| | - Yiting Zhuang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (W.X.); (Y.Y.); (J.P.)
| | - Wangyang Xie
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (W.X.); (Y.Y.); (J.P.)
| | - Yixin Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (W.X.); (Y.Y.); (J.P.)
| | - Jingyu Pu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (W.X.); (Y.Y.); (J.P.)
| | - Zhengyang Fan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (Z.F.); (Y.C.)
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (Z.F.); (Y.C.)
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (Z.F.); (Y.C.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (Z.F.); (Y.C.)
| |
Collapse
|
2
|
Song W, Zhang J, Lu W, Liang S, Cai H, Guo Y, Chen S, Wang J, Guo T, Liu H, Rao D. A Cyclin Gene OsCYCB1;5 Regulates Seed Callus Induction in Rice Revealed by Genome Wide Association Study. RICE (NEW YORK, N.Y.) 2024; 17:64. [PMID: 39402219 PMCID: PMC11473481 DOI: 10.1186/s12284-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Plant tissue culture is extensively employed in plant functional genomics research and crop genetic improvement breeding. The callus induction ability is critical for utilizing Agrobacterium-mediated genetic transformation. In this study, we conducted a genome-wide association study (GWAS) utilizing 368 rice accessions to identify traits associated with callus induction rate (CIR), resulting in the identification of a total of 104 significant SNP loci. Integrated with gene function annotation and transcriptome analysis, 13 high-confidence candidate genes involved in auxin-related, CYC cyclins, and histone H3K9-specific methyltransferase were identified in significant loci. Furthermore, we also verified a candidate gene, Os05g0493500 (OsCycB1;5), and employed the CRISPR/Cas9 system to generate OsCycB1;5 knockout mutants in rice (Oryza sativa L.). The OscycB1;5 mutant displays significantly reduced callus induction and proliferation capacity, this result indicating OsCycB1;5 is required for the callus formation in rice. Overall, this study provides several reliable loci and high-confidence candidate genes that may significantly affect callus formation in rice. This information will offer valuable insights into the mechanisms underlying callus formation not only in rice but also in other plants.
Collapse
Affiliation(s)
- Wenjing Song
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Zhang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Lu
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Liang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hairong Cai
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyi Chen
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Dehua Rao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
4
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
5
|
Li T, Shen T, Shi K, Zhang Y. Transcriptome analysis reveals the effect of propyl gallate on kiwifruit callus formation. PLANT CELL REPORTS 2024; 43:60. [PMID: 38334781 DOI: 10.1007/s00299-024-03140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE Exploring the potential action mechanisms of reactive oxygen species during the callus inducing, they can activate specific metabolic pathways in explants to regulate callus development. Reactive oxygen species (ROS) play an important role in the regulation of plant growth and development, but the mechanism of their action on plant callus formation remains to be elucidated. To address this question, kiwifruit was selected as the explant for callus induction, and the influence of ROS on callus formation was investigated by introducing propyl gallate (PG) as an antioxidant into the medium used for inducing callus. The results have unveiled that the inclusion of PG in the medium has disturbed the equilibrium of ROS during the formation of the kiwifruit callus. We selected the callus that was induced by the addition of 0.05 mmol/L PG to the MS medium. The callus exhibited a significant difference in the amount compared to the control medium without PG. The callus induced by the MS medium without PG was used as the control for comparison. KEGG enrichment indicated that PG exposure resulted in significant differences in gene expression in related pathways, such as phytohormone signaling and glutathione in kiwifruit callus. Weighted gene co-expression analysis indicated that the pertinent regulatory networks of both ROS and phytohormone signaling were critical for the establishment of callus in kiwifruit leaves. In addition, during the process of callus establishment, the ROS level of the explants was also closely related to the genes for transmembrane transport of substances, cell wall formation, and plant organ establishment. This investigation expands the theory of ROS-regulated callus formation and presents a new concept for the expeditious propagation of callus in kiwifruit.
Collapse
Affiliation(s)
- Tianyuan Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Tin Shen
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Kai Shi
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yunfeng Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
6
|
Xu C, Chang P, Guo S, Yang X, Liu X, Sui B, Yu D, Xin W, Hu Y. Transcriptional activation by WRKY23 and derepression by removal of bHLH041 coordinately establish callus pluripotency in Arabidopsis regeneration. THE PLANT CELL 2023; 36:158-173. [PMID: 37804093 PMCID: PMC10734573 DOI: 10.1093/plcell/koad255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Induction of the pluripotent cell mass termed callus from detached organs or tissues is an initial step in typical in vitro plant regeneration, during which auxin-induced ectopic activation of root stem cell factors is required for subsequent de novo shoot regeneration. While Arabidopsis (Arabidopsis thaliana) AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and their downstream transcription factors LATERAL ORGAN BOUNDARIES DOMAIN (LBD) are known to play key roles in directing callus formation, the molecules responsible for activation of root stem cell factors and thus establishment of callus pluripotency are unclear. Here, we identified Arabidopsis WRKY23 and BASIC HELIX-LOOP-HELIX 041 (bHLH041) as a transcriptional activator and repressor, respectively, of root stem cell factors during establishment of auxin-induced callus pluripotency. We show that auxin-induced WRKY23 downstream of ARF7 and ARF19 directly activates the transcription of PLETHORA 3 (PLT3) and PLT7 and thus that of the downstream genes PLT1, PLT2, and WUSCHEL-RELATED HOMEOBOX 5 (WOX5), while LBD-induced removal of bHLH041 derepresses the transcription of PLT1, PLT2, and WOX5. We provide evidence that transcriptional activation by WRKY23 and loss of bHLH041-imposed repression act synergistically in conferring shoot-regenerating capability on callus cells. Our findings thus disclose a transcriptional mechanism underlying auxin-induced cellular reprogramming, which, together with previous studies, outlines the molecular framework of auxin-induced pluripotent callus formation for in vitro plant regeneration programs.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
| | - Pengjie Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Sui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
7
|
Pírek P, Kryštofová K, Kováčová I, Kromerová A, Zachová D, Helia O, Panzarová K, Fajkus J, Zdráhal Z, Lochmanová G, Fojtová M. Unraveling Epigenetic Changes in A. thaliana Calli: Impact of HDAC Inhibitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:4177. [PMID: 38140504 PMCID: PMC10747063 DOI: 10.3390/plants12244177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The ability for plant regeneration from dedifferentiated cells opens up the possibility for molecular bioengineering to produce crops with desirable traits. Developmental and environmental signals that control cell totipotency are regulated by gene expression via dynamic chromatin remodeling. Using a mass spectrometry-based approach, we investigated epigenetic changes to the histone proteins during callus formation from roots and shoots of Arabidopsis thaliana seedlings. Increased levels of the histone H3.3 variant were found to be the major and most prominent feature of 20-day calli, associated with chromatin relaxation. The methylation status in root- and shoot-derived calli reached the same level during long-term propagation, whereas differences in acetylation levels provided a long-lasting imprint of root and shoot origin. On the other hand, epigenetic signs of origin completely disappeared during 20 days of calli propagation in the presence of histone deacetylase inhibitors (HDACi), sodium butyrate, and trichostatin A. Each HDACi affected the state of post-translational histone modifications in a specific manner; NaB-treated calli were epigenetically more similar to root-derived calli, and TSA-treated calli resembled shoot-derived calli.
Collapse
Affiliation(s)
- Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Karolína Kryštofová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Ingrid Kováčová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Anna Kromerová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Klára Panzarová
- PSI (Photon Systems Instruments), spol. s.r.o., 66424 Drásov, Czech Republic;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| |
Collapse
|
8
|
Joshi S, Hill K, Chakrabarti M, Perry SE. Regulatory mechanisms of the LBD40 transcription factor in Arabidopsis thaliana somatic embryogenesis. PLANT DIRECT 2023; 7:e547. [PMID: 38075399 PMCID: PMC10699890 DOI: 10.1002/pld3.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 10/16/2024]
Abstract
Somatic embryogenesis (SE) is a process by which an embryo is derived from somatic tissue. Transcription factors (TFs) have been identified that control this process. One such TF that promotes SE is AGAMOUS-like 15 (AGL15). Prior work has shown that AGL15 can both induce and repress gene expression. One way this type of dual function TF works is via protein interactions, so a yeast 2-hybrid (Y2H) screen was undertaken. One intriguing protein with which AGL15 interacted in Y2H was LBD40. LBD40 encodes a LATERAL ORGAN BOUNDARIES (LOB)-domain TF that is unique to plants and is primarily expressed during seed development. Here, we confirm the AGL15-LBD40 interaction by quantitative assays and in planta co-immunoprecipation. We also document a role for LBD40, and the closely related protein LBD41, in supporting SE. To determine downstream genes potentially controlled by LBD40, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) was used. More than 400 binding regions for LBD40 were consistently found genome-wide. To determine genes responsive to LBD40/41 accumulation, RNA-seq analysis of transcriptomes of wild-type control and loss-of-function lbd40/lbd41 was performed. Combining these datasets provides insight into genes directly and indirectly controlled by these LOB domain TFs. The gene ontology (GO) enrichment analysis of these regulated genes showed an overrepresentation of biological processes that are associated with SE, further indicating the importance of LBD40 in SE. This work provides insight into SE, a poorly understood, but essential process to generate transgenic plants to meet agricultural demands or test gene function. This manuscript reports on experiments to understand the role that LDB40, a TF, plays in support of SE by investigating genes directly and indirectly controlled by LBD40 and examining physical and genetic interactions with other TFs active in SE. We uncover targets of LBD40 and an interacting TF of the MADS family and investigate targets involvement in SE.
Collapse
Affiliation(s)
- Sanjay Joshi
- Kentucky Tobacco Research and Development Center, 1401 University Dr.University of KentuckyLexingtonKYUSA
| | - Kristine Hill
- Sociology, Philosophy and Anthropology DepartmentUniversity of ExeterExeterUK
| | - Manohar Chakrabarti
- School for Integrative Biological and Chemical SciencesUniversity of Texas Rio Grande ValleyEdinburgTXUSA
| | - Sharyn E. Perry
- Dept. of Plant and Soil Sciences, 1405 Veterans Dr., Plant Science BuildingUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
9
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
10
|
Bo C, Su C, Teng J, Sheng W, Xue T, Zhu Y, Xue J. Transcriptome Profiling Reveals Differential Gene Expression during the Process of Microtuber Formation in Pinellia ternata. Int J Mol Sci 2023; 24:11604. [PMID: 37511363 PMCID: PMC10380585 DOI: 10.3390/ijms241411604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Chuandong Su
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jingtong Teng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei Sheng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
11
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|
12
|
Ho BL, Chen JC, Huang TP, Fang SC. Protocorm-like-body extract of Phalaenopsis aphrodite combats watermelon fruit blotch disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1054586. [PMID: 36523623 PMCID: PMC9745142 DOI: 10.3389/fpls.2022.1054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Bacterial fruit blotch, caused by the seedborne gram-negative bacterium Acidovorax citrulli, is one of the most destructive bacterial diseases of cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable means to control bacterial fruit blotch remain limited. Transcriptomic analyses of tissue culture-based regeneration processes have revealed that organogenesis-associated cellular reprogramming is often associated with upregulation of stress- and defense-responsive genes. Yet, there is limited evidence supporting the notion that the reprogrammed cellular metabolism of the regenerated tissued confers bona fide antimicrobial activity. Here, we explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was potent in slowing growth of A. citrulli, reducing the number of bacteria attached to watermelon seeds, and alleviating disease symptoms of watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity can be fractionated chemically, we predict that reprogrammed cellular activity during the PLB regeneration process produces metabolites with antibacterial activity. In conclusion, our data demonstrated the antibacterial activity in developing PLBs and revealed the potential of using orchid PLBs to discover chemicals to control bacterial fruit blotch disease.
Collapse
Affiliation(s)
- Bo-Lin Ho
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- Master’s and PhD Degree Program of Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
13
|
Deng J, Sun W, Zhang B, Sun S, Xia L, Miao Y, He L, Lindsey K, Yang X, Zhang X. GhTCE1-GhTCEE1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton. THE PLANT CELL 2022; 34:4554-4568. [PMID: 35972347 PMCID: PMC9614502 DOI: 10.1093/plcell/koac252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.
Collapse
Affiliation(s)
| | | | - Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangrong He
- Authors for correspondence: (X.Y.), (L.K.), (L.H.)
| | | | - Xiyan Yang
- Authors for correspondence: (X.Y.), (L.K.), (L.H.)
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Temmerman A, Marquez-Garcia B, Depuydt S, Bruznican S, De Cuyper C, De Keyser A, Boyer FD, Vereecke D, Struk S, Goormachtig S. MAX2-dependent competence for callus formation and shoot regeneration from Arabidopsis thaliana root explants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6272-6291. [PMID: 35738874 DOI: 10.1093/jxb/erac281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Although the division of the pericycle cells initiates both lateral root development and root-derived callus formation, these developmental processes are affected differently in the strigolactone and karrikin/KARRIKIN INSENSITIVE 2 (KAI2) ligand signalling mutant more axillary growth 2 (max2). Whereas max2 produces more lateral roots than the wild type, it is defective in the regeneration of shoots from root explants. We suggest that the decreased shoot regeneration of max2 originates from delayed formation of callus primordium, yielding less callus material to regenerate shoots. Indeed, when incubated on callus-inducing medium, the pericycle cell division was reduced in max2 and the early gene expression varied when compared with the wild type, as determined by a transcriptomics analysis. Furthermore, the expression of the LATERAL ORGAN BOUNDARIES DOMAIN genes and of callus-induction genes was modified in correlation with the max2 phenotype, suggesting a role for MAX2 in the regulation of the interplay between cytokinin, auxin, and light signalling in callus initiation. Additionally, we found that the in vitro shoot regeneration phenotype of max2 might be caused by a defect in KAI2, rather than in DWARF14, signalling. Nevertheless, the shoot regeneration assays revealed that the strigolactone biosynthesis mutants max3 and max4 also play a minor role.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Belen Marquez-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, Korea
| | - Silvia Bruznican
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Danny Vereecke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| |
Collapse
|
15
|
Bull T, Michelmore R. Molecular Determinants of in vitro Plant Regeneration: Prospects for Enhanced Manipulation of Lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:888425. [PMID: 35615120 PMCID: PMC9125155 DOI: 10.3389/fpls.2022.888425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
In vitro plant regeneration involves dedifferentiation and molecular reprogramming of cells in order to regenerate whole organs. Plant regeneration can occur via two pathways, de novo organogenesis and somatic embryogenesis. Both pathways involve intricate molecular mechanisms and crosstalk between auxin and cytokinin signaling. Molecular determinants of both pathways have been studied in detail in model species, but little is known about the molecular mechanisms controlling de novo shoot organogenesis in lettuce. This review provides a synopsis of our current knowledge on molecular determinants of de novo organogenesis and somatic embryogenesis with an emphasis on the former as well as provides insights into applying this information for enhanced in vitro regeneration in non-model species such as lettuce (Lactuca sativa L.).
Collapse
Affiliation(s)
- Tawni Bull
- The Genome Center, University of California, Davis, Davis, CA, United States
- Graduate Group in Horticulture and Agronomy, University of California, Davis, Davis, CA, United States
| | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Transcriptomic Changes in Internode Explants of Stinging Nettle during Callogenesis. Int J Mol Sci 2021; 22:ijms222212319. [PMID: 34830202 PMCID: PMC8618292 DOI: 10.3390/ijms222212319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Callogenesis, the process during which explants derived from differentiated plant tissues are subjected to a trans-differentiation step characterized by the proliferation of a mass of cells, is fundamental to indirect organogenesis and the establishment of cell suspension cultures. Therefore, understanding how callogenesis takes place is helpful to plant tissue culture, as well as to plant biotechnology and bioprocess engineering. The common herbaceous plant stinging nettle (Urtica dioica L.) is a species producing cellulosic fibres (the bast fibres) and a whole array of phytochemicals for pharmacological, nutraceutical and cosmeceutical use. Thus, it is of interest as a potential multi-purpose plant. In this study, callogenesis in internode explants of a nettle fibre clone (clone 13) was studied using RNA-Seq to understand which gene ontologies predominate at different time points. Callogenesis was induced with the plant growth regulators α-napthaleneacetic acid (NAA) and 6-benzyl aminopurine (BAP) after having determined their optimal concentrations. The process was studied over a period of 34 days, a time point at which a well-visible callus mass developed on the explants. The bioinformatic analysis of the transcriptomic dataset revealed specific gene ontologies characterizing each of the four time points investigated (0, 1, 10 and 34 days). The results show that, while the advanced stage of callogenesis is characterized by the iron deficiency response triggered by the high levels of reactive oxygen species accumulated by the proliferating cell mass, the intermediate and early phases are dominated by ontologies related to the immune response and cell wall loosening, respectively.
Collapse
|
17
|
Morinaka H, Mamiya A, Tamaki H, Iwamoto A, Suzuki T, Kawamura A, Ikeuchi M, Iwase A, Higashiyama T, Sugimoto K, Sugiyama M. Transcriptome Dynamics of Epidermal Reprogramming during Direct Shoot Regeneration in Torenia fournieri. PLANT & CELL PHYSIOLOGY 2021; 62:1335-1354. [PMID: 34223624 PMCID: PMC8579340 DOI: 10.1093/pcp/pcab101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/23/2021] [Accepted: 07/05/2021] [Indexed: 05/26/2023]
Abstract
Shoot regeneration involves reprogramming of somatic cells and de novo organization of shoot apical meristems (SAMs). In the best-studied model system of shoot regeneration using Arabidopsis, regeneration is mediated by the auxin-responsive pluripotent callus formation from pericycle or pericycle-like tissues according to the lateral root development pathway. In contrast, shoot regeneration can be induced directly from fully differentiated epidermal cells of stem explants of Torenia fournieri (Torenia), without intervening the callus mass formation in culture with cytokinin; yet, its molecular mechanisms remain unaddressed. Here, we characterized this direct shoot regeneration by cytological observation and transcriptome analyses. The results showed that the gene expression profile rapidly changes upon culture to acquire a mixed signature of multiple organs/tissues, possibly associated with epidermal reprogramming. Comparison of transcriptomes between three different callus-inducing cultures (callus induction by auxin, callus induction by wounding and protoplast culture) of Arabidopsis and the Torenia stem culture identified genes upregulated in all the four culture systems as candidates of common factors of cell reprogramming. These initial changes proceeded independently of cytokinin, followed by cytokinin-dependent, transcriptional activations of nucleolar development and cell cycle. Later, SAM regulatory genes became highly expressed, leading to SAM organization in the foci of proliferating cells in the epidermal layer. Our findings revealed three distinct phases with different transcriptomic and regulatory features during direct shoot regeneration from the epidermis in Torenia, which provides a basis for further investigation of shoot regeneration in this unique culture system.
Collapse
Affiliation(s)
- Hatsune Morinaka
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akihito Mamiya
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroaki Tamaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co. Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Akitoshi Iwamoto
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ayako Kawamura
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Ikeuchi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Akira Iwase
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Xu E, Chai L, Zhang S, Yu R, Zhang X, Xu C, Hu Y. Catabolism of strigolactones by a carboxylesterase. NATURE PLANTS 2021; 7:1495-1504. [PMID: 34764442 DOI: 10.1038/s41477-021-01011-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs. We show that overexpression of AtCXE15 promotes shoot branching by dampening SL-inhibited axillary bud outgrowth. We further demonstrate that AtCXE15 could bind and efficiently hydrolyse SLs both in vitro and in planta. We also provide evidence that AtCXE15 is capable of catalysing hydrolysis of diverse SL analogues and that such CXE15-dependent catabolism of SLs is evolutionarily conserved in seed plants. These results disclose a catalytic mechanism underlying homoeostatic regulation of SLs in plants, which also provides a rational approach to spatial-temporally manipulate the endogenous SLs and thus architecture of crops and ornamental plants.
Collapse
Affiliation(s)
- Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liang Chai
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xixi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- National Center for Plant Gene Research, Beijing, China.
| |
Collapse
|
19
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
20
|
Bednarek PT, Pachota KA, Dynkowska WM, Machczyńska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci 2021; 22:7546. [PMID: 34299165 PMCID: PMC8304781 DOI: 10.3390/ijms22147546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.A.P.); (W.M.D.); (J.M.); (R.O.)
| | | | | | | | | |
Collapse
|
21
|
Zhao X, Song J, Zeng Q, Ma Y, Fang H, Yang L, Deng B, Liu J, Fang J, Zuo L, Yue J. Auxin and cytokinin mediated regulation involved in vitro organogenesis of papaya. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153405. [PMID: 33743435 DOI: 10.1016/j.jplph.2021.153405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In vitro organogenesis is a multistep process which is largely controlled by the balance between auxin and cytokinin. Previous studies revealed a complex network regulating in vitro organogenesis in Arabidopsis thaliana; however, our knowledge of the molecular mechanisms underlying de novo shoot formation in papaya (Carica papaya) remains limited. Here, we optimized multiple factors to achieve an efficient and reproducible protocol for the induction of papaya callus formation and shoot regeneration. Subsequently, we analyzed the dynamic transcriptome profiles of samples undergoing this process, identified 5381, 642, 4047, and 2386 differentially expressed genes (DEGs), including 447, 66, 350, and 263 encoding transcription factors (TFs), in four stage comparisons. The DEGs were mainly involved in phytohormone modulation and transduction processes, particularly for auxin and cytokinin. Of these, 21 and 7 candidate genes involved in the auxin and cytokinin pathways, respectively, had distinct expression patterns throughout in vitro organogenesis. Furthermore, we found two genes encoding key TFs, CpLBD19 and CpESR1, were sharply induced on callus induction medium and shoot induction medium, indicating these two TFs may serve as proxies for callus induction and shoot formation in papaya. We therefore report a regulatory network of auxin and cytokinin signaling in papaya according to the one previously modeled for Arabidopsis. Our comprehensive analyses provide insight into the early molecular regulation of callus initiation and shoot formation in papaya, and are useful for the further identification of the regulators governing in vitro organogenesis.
Collapse
Affiliation(s)
- Xiaobing Zhao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Jinjin Song
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Qiuxia Zeng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yaying Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Hanmei Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Liyuan Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Liping Zuo
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
22
|
Czernicka M, Chłosta I, Kęska K, Kozieradzka-Kiszkurno M, Abdullah M, Popielarska-Konieczna M. Protuberances are organized distinct regions of long-term callus: histological and transcriptomic analyses in kiwifruit. PLANT CELL REPORTS 2021; 40:637-665. [PMID: 33544186 PMCID: PMC7954764 DOI: 10.1007/s00299-021-02661-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Macroscopic, ultrastructural, and molecular features-like a ball shape, the presence of starch granules, and the up-regulation of genes involved in carbohydrate metabolism and secondary metabolite biosynthesis-distinguish PT regions within a callus. The modification of the mass of pluripotent cells into de novo shoot bud regeneration is highly relevant to developmental biology and for agriculture and biotechnology. This study deals with protuberances (PT), structures that appear during the organogenic long-term culturing of callus (OC) in kiwifruit. These ball-shaped regions of callus might be considered the first morphological sign of the subsequent shoot bud development. Sections of PT show the regular arrangement of some cells, especially on the surface, in contrast to the regions of OC beyond the PT. The cells of OC possess chloroplasts; however, starch granules were observed only in PTs' plastids. Transcriptomic data revealed unique gene expression for each kind of sample: OC, PT, and PT with visible shoot buds (PT-SH). Higher expression of the gene involved in lipid (glycerol-3-phosphate acyltransferase 5 [GPAT5]), carbohydrate (granule-bound starch synthase 1 [GBSS1]), and secondary metabolite (beta-glucosidase 45 [BGL45]) pathways were detected in PT and could be proposed as the markers of these structures. The up-regulation of the regulatory associated protein of TOR (RAPTOR1) was found in PT-SH. The highest expression of the actinidain gene in leaves from two-year-old regenerated plants suggests that the synthesis of this protein takes place in fully developed organs. The findings indicate that PT and PT-SH are specific structures within OC but have more features in common with callus tissue than with organs.
Collapse
Affiliation(s)
- Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, 29-Listopada 54, 31-425, Kraków, Poland
| | - Iwona Chłosta
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, The Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland
| | - Kinga Kęska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, 29-Listopada 54, 31-425, Kraków, Poland
| | | | - Mohib Abdullah
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, The Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland
| | - Marzena Popielarska-Konieczna
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, The Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
23
|
Gao Y, Wang QM, An Q, Cui J, Zhou Y, Qi X, Zhang L, Li L. A novel micropropagation of Lycium ruthenicum and epigenetic fidelity assessment of three types of micropropagated plants in vitro and ex vitro. PLoS One 2021; 16:e0247666. [PMID: 33621255 PMCID: PMC7901770 DOI: 10.1371/journal.pone.0247666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Lycium ruthenicum is an excellent eco-economic shrub. Numerous researches have been conducted for the function of its fruits but scarcely focused on the somaclonal variation and DNA methylation. An efficient micropropagation protocol from leaves and stems of L. ruthenicum was developed in this study, in which not only the leaf explants but also the stem explants of L. ruthenicum were dedifferentiated and produced adventitious buds/multiple shoots on one type of medium. Notably, the efficient indirect organogenesis of stem explants was independent of exogenous auxin, which is contrary to the common conclusion that induction and proliferation of calli is dependent on exogenous auxin. We proposed that sucrose supply might be the crucial regulator of stem callus induction and proliferation of L. ruthenicum. Furthermore, results of methylation-sensitive amplified polymorphism (MSAP) showed that DNA methylation somaclonal variation (MSV) of CNG decreased but that of CG increased after acclimatization. Three types of micropropagated plants (from leaf calli, stem calli and axillary buds) were epigenetically diverged more from each other after acclimatization and the ex vitro micropropagated plants should be selected to determine the fidelity. In summary, plants micropropagated from axillary buds and leaves of L. ruthenicum was more fidelity and might be suitable for preservation and propagation of elite germplasm. Also, leaf explants should be used in transformation. Meanwhile, plants from stem calli showed the highest MSV and might be used in somaclonal variation breeding. Moreover, one MSV hotspot was found based on biological replicates. The study not only provided foundations for molecular breeding, somaclonal variation breeding, preservation and propagation of elite germplasm, but also offered clues for further revealing novel mechanisms of both stem-explant dedifferentiation and MSV of L. ruthenicum.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qin-Mei Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qinxia An
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jianguo Cui
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yongbin Zhou
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinyu Qi
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Lijie Zhang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Lujia Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Natural Variation in Plant Pluripotency and Regeneration. PLANTS 2020; 9:plants9101261. [PMID: 32987766 PMCID: PMC7598583 DOI: 10.3390/plants9101261] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into the genetic factors underlying this variation may help to improve numerous biotechnological applications that exploit in vitro regeneration. Here, we review the state of the art on the molecular framework of de novo shoot organogenesis from root explants in Arabidopsis, which is a complex process controlled by multiple quantitative trait loci of various effect sizes. Two types of factors are distinguished that contribute to natural regenerative variation: master regulators that are conserved in all experimental systems (e.g., WUSCHEL and related homeobox genes) and conditional regulators whose relative role depends on the explant and the incubation settings. We further elaborate on epigenetic variation and protocol variables that likely contribute to differential explant responsivity within species and conclude that in vitro shoot organogenesis occurs at the intersection between (epi) genetics, endogenous hormone levels, and environmental influences.
Collapse
|
25
|
Aremu AO, Fawole OA, Makunga NP, Masondo NA, Moyo M, Buthelezi NMD, Amoo SO, Spíchal L, Doležal K. Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects. Biomolecules 2020; 10:biom10091222. [PMID: 32842660 PMCID: PMC7563339 DOI: 10.3390/biom10091222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.
Collapse
Affiliation(s)
- Adeyemi O. Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Olaniyi A. Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Nqobile A. Masondo
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Mack Moyo
- Department of Horticulture, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| | - Nana M. D. Buthelezi
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Stephen O. Amoo
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa;
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
- Agricultural Research Council, Roodeplaat Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.S.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.S.); (K.D.)
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
26
|
Zhao N, Zhang K, Wang C, Yan H, Liu Y, Xu W, Su Z. Systematic Analysis of Differential H3K27me3 and H3K4me3 Deposition in Callus and Seedling Reveals the Epigenetic Regulatory Mechanisms Involved in Callus Formation in Rice. Front Genet 2020; 11:766. [PMID: 32765593 PMCID: PMC7379484 DOI: 10.3389/fgene.2020.00766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth and development occurs through meristematic cell activity, and cell fate transition is accompanied by epigenetic modifications. Callus with cell pluripotency exhibits the ability to undergo continued cell division, and is ideal for studying plant meristematic differentiation. By comparing the differential epigenetic modifications between callus and seedling, the changes in chromatin state and effects of various epigenetic modifications on the growth and development of plants can be revealed, and the key genes related to plant growth and development can be identified, providing novel insights into the regulation of plant growth and development. In this study, we performed ChIP assays using various antibodies in rice seed-induced callus and seedlings grown for about 15 days to examine the differential deposition of H3K27me3 and H3K4me3. Furthermore, data for DNase I-hypersensitive sites in the corresponding tissues were downloaded from National Center for Biotechnology Information. We analyzed 4,562 callus H3K27me3-decreased genes especially those encoding transcription factors in callus, and found that most of the transcription factors, including AP2-ERREBP, NAC, and HB gene families, were related to growth and development. Genes related to meristemization, such as OsWOX9, OsWOX11, OsPLT4, OsPLT5, and OsSHR, were also included. In contrast, H3K4me3 positively regulated callus characteristics through its higher deposition in the callus than in the seedling. We further performed transcriptomic analysis on 45 sets of Affymetrix GeneChip arrays and identified 1,565 genes preferentially expressed in the callus. Callus development and root development in rice were found to share a common regulatory mechanism. We found that these genes, which are associated with meristems, require the removal of H3K27me3 and the deposition of H3K4me3, and DNase I-hypersensitive sites to maintain a relatively active state in the callus than in the seedling. The present study provides novel data about the epigenetic mechanisms involved in callus formation and additional resources for the study of cell division and differentiation in plants.
Collapse
Affiliation(s)
- Nannan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Xu C, Hu Y. The molecular regulation of cell pluripotency in plants. ABIOTECH 2020; 1:169-177. [PMID: 36303568 PMCID: PMC9590476 DOI: 10.1007/s42994-020-00028-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
Plants have a remarkably regenerative capability to replace the damaged organs or form the new organs and individuals both in vivo and in vitro, which is fundamental for their developmental plasticity and the agricultural practices. The regenerative capacities of plants are highly dependent on the totipotency or pluripotency of somatic cells, whose fates are directed by phytohormones, wounding, and other stimuli. Recent studies have revealed that the two types of cellular reprogramming are involved in the acquisition of cell pluripotency during plant in vitro and in vivo regeneration programs. This review focuses on the recent advances of the cellular origin, molecular characteristic, and genetic and epigenetic regulations of cell pluripotency acquisition in plants, highlighting the molecular frameworks of cellular reprogramming activated by diverse stimuli and their possible potentials in regeneration-based plant biotechnologies.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,National Center for Plant Gene Research, Beijing, 100093 China
| |
Collapse
|
28
|
Song H, Cai Z, Liao J, Zhang S. Phosphoproteomic and Metabolomic Analyses Reveal Sexually Differential Regulatory Mechanisms in Poplar to Nitrogen Deficiency. J Proteome Res 2020; 19:1073-1084. [PMID: 31991081 DOI: 10.1021/acs.jproteome.9b00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen (N) is a key factor impacting physiological processes in plants. Many proteins have been investigated in male and female poplars under N limitation. However, little is known about sex differences in the protein modifications and metabolites that occur in poplar leaves in response to N deficiency. In this study, as compared to N-deficient males, N-deficient females suffered greater damage from N deficiency, including chloroplast disorganization and lipid peroxidation of cellular membranes. Male poplars had greater osmotic adjustment ability than did females, allowing greater accumulation of soluble metabolites. In addition, as compared to that in N-deficient males, glycolysis was less suppressed in N-deficient females for increased enzyme activities to consume excess energy. Moreover, we found that pronounced protein phosphorylation occurred during carbon metabolism and substance transport processes in both sexes of poplar under N-limiting conditions. Sex-specific metabolites mainly included intermediates in glycolysis, amino acids, and phenylpropanoid-derived metabolites. This study provides new molecular evidence that female poplars suffer greater negative effects from N deficiency than do male poplars.
Collapse
Affiliation(s)
- Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Liao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
29
|
Radoeva T, Albrecht C, Piepers M, de Vries S, Weijers D. Suspensor-derived somatic embryogenesis in Arabidopsis. Development 2020; 147:dev.188912. [DOI: 10.1242/dev.188912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
In many flowering plants, asymmetric division of the zygote generates apical and basal cells with different fates. In Arabidopsis thaliana, the apical cell generates the embryo while the basal cell divides anticlinally, leading to a suspensor of 6-9 cells that remain extra-embryonic and eventually senesce. In some genetic backgrounds, or upon ablation of the embryo, suspensor cells can undergo periclinal cell divisions and eventually form a second, twin embryo. Likewise, embryogenesis can be induced from somatic cells by various genes, but the relation to suspensor-derived embryos is unclear. Here, we addressed the nature of the suspensor to embryo fate transformation, and its genetic triggers. We expressed most known embryogenesis-inducing genes specifically in suspensor cells. We next analyzed morphology and fate marker expression in embryos in which suspensor division were activated by different triggers to address the developmental paths towards reprogramming. Our results show that reprogramming of Arabidopsis suspensor cells towards embryonic identity is a specific cellular response that is triggered by defined regulators, follows a conserved developmental trajectory and shares similarity to the process of somatic embryogenesis from post-embryonic tissues.
Collapse
Affiliation(s)
- Tatyana Radoeva
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Catherine Albrecht
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marcel Piepers
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sacco de Vries
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dolf Weijers
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
30
|
Sun RZ, Zuo EH, Qi JF, Liu Y, Lin CT, Deng X. A role of age-dependent DNA methylation reprogramming in regulating the regeneration capacity of Boea hygrometrica leaves. Funct Integr Genomics 2019; 20:133-149. [PMID: 31414312 DOI: 10.1007/s10142-019-00701-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/09/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
Plants can regenerate new individuals under appropriate culture conditions. Although the molecular basis of shoot regeneration has steadily been unraveled, the role of age-dependent DNA methylation status in the regulation of explant regeneration remains practically unknown. Here, we established an effective auxin/cytokinin-induced shoot regeneration system for the resurrection plant Boea hygrometrica via direct organogenesis and observed that regeneration was postponed with increasing age of donor plants. Global transcriptome analysis revealed significant upregulation of genes required for hormone signaling and phenylpropanoid biosynthesis and downregulation of photosynthetic genes during regeneration. Transcriptional changes in the positive/negative regulators and cell wall-related proteins involved in plant regeneration, such as ELONGATED HYPOCOTYL5 (HY5), LATERAL ORGAN BOUNDARIES DOMAIN, SHOOT-MERISTEMLESS, and WUSCHEL, were associated with the regeneration process. Comparison of DNA methylation profiling between leaves from young seedlings (YL) and mature plants (ML) revealed increased asymmetrical methylation in ML, which was predominantly distributed in promoter regions of genes, such as HY5 and a member of ABA-responsive element (ABRE) binding protein/ABRE binding factor, as well as genes encoding glycine-rich cell wall structural protein, CENTRORADIALIS-like protein, and beta-glucosidase 40-like essential for shoot meristem and cell wall architecture. Their opposite transcription response in ML explants during regeneration compared with those from YL demonstrated the putative involvement of DNA methylation in regeneration. Moreover, a significant lower expression of DNA glycosylase-lyase required for DNA demethylation in ML was coincident with its postponed regeneration compared with those in YL. Taken together, our results suggest a role of promoter demethylation in B. hygrometrica regeneration.
Collapse
Affiliation(s)
- Run-Ze Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - En-Hui Zuo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Feng Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yang Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
31
|
Fehér A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? FRONTIERS IN PLANT SCIENCE 2019; 10:536. [PMID: 31134106 PMCID: PMC6524723 DOI: 10.3389/fpls.2019.00536] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant developmental biology. The history of plant cell and tissue culture dates back to more than a century. Its basic methodology and terminology were formulated preceding modern plant biology. Recent progress in molecular and cell biology techniques allowed unprecedented insights into the underlying processes of plant cell/tissue culture and regeneration. The main aim of this review is to provide a theoretical framework supported by recent experimental findings to reconsider certain historical, even dogmatic, statements widely used by plant scientists and teachers such as "plant cells are totipotent" or "callus is a mass of dedifferentiated cells," or "somatic embryos have a single cell origin." These statements are based on a confused terminology. Clarification of it might help to avoid further misunderstanding and to overcome potential "terminology-raised" barriers in plant research.
Collapse
Affiliation(s)
- Attila Fehér
- Department of Plant Biology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- *Correspondence: Attila Fehér, ;
| |
Collapse
|
32
|
Lee K, Park OS, Seo PJ. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:961-975. [PMID: 29923261 DOI: 10.1111/tpj.14002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 05/20/2023]
Abstract
Plant somatic cells can be reprogrammed by in vitro tissue culture methods, and massive genome-wide chromatin remodeling occurs, particularly during callus formation. Since callus tissue resembles root primordium, conversion of tissue identity is essentially required when leaf explants are used. Consistent with the fact that the differentiation state is defined by chromatin structure, which permits limited gene profiles, epigenetic changes underlie cellular reprogramming for changes to tissue identity. Although a histone methylation process suppressing leaf identity during leaf-to-callus transition has been demonstrated, the epigenetic factor involved in activation of root identity remains elusive. Here, we report that JUMONJI C DOMAIN-CONTAINING PROTEIN 30 (JMJ30) stimulates callus formation by promoting expression of a subset of LATERAL ORGAN BOUNDARIES-DOMAIN (LBD) genes that establish root primordia. The JMJ30 protein binds to promoters of the LBD16 and LBD29 genes along with AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and activates LBD expression. Consistently, the JMJ30-deficient mutant displays reduced callus formation with low LBD transcript levels. The ARF-JMJ30 complex catalyzes the removal of methyl groups from H3K9me3, especially at the LBD16 and LBD29 loci to activate their expression during leaf-to-callus transition. Moreover, the ARF-JMJ30 complex further recruits ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2), which promotes deposition of H3K36me3 at the LBD16 and LBD29 promoters, and the tripartite complex ensures stable LBD activation during callus formation. These results indicate that the coordinated epigenetic modifications promote callus formation by establishing root primordium identity.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ok-Sun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
33
|
Perez-Garcia P, Moreno-Risueno MA. Stem cells and plant regeneration. Dev Biol 2018; 442:3-12. [PMID: 29981693 DOI: 10.1016/j.ydbio.2018.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Multicellular organisms show the ability to replace damage cells, tissues and even whole organs through regeneration mechanisms. Plants show a remarkable regenerative potential. While the basic principles of plant regeneration have been known for a number of decades, the molecular and cellular mechanisms underlying such principles are currently starting to emerge. Some of these mechanisms point to the existence of highly reprogrammable cells. Developmental plasticity is a hallmark for stem cells, and stem cells are responsible for the generation of distinctive cell types forming plants. In the last years, a number of players and molecular mechanism regulating stem cell maintenance have been described, and some of them have also been involved in regenerative processes. These discoveries in plant stem cell regulation and regeneration invite us to rethink several of the classical concepts in plant biology such as cell fate specification and even the actual meaning of what we consider stem cells in plants. In this review we will cover some of these discoveries, focusing on the role of the plant stem cell function and regulation during cell and organ regeneration.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Miguel A Moreno-Risueno
- Departamento de Biotecnología y Biología Vegetal, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
34
|
Fukudome A, Goldman JS, Finlayson SA, Koiwa H. Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:799-812. [PMID: 29573374 DOI: 10.1111/tpj.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
De novo shoot organogenesis (DNSO) is a post-embryonic development programme that has been widely exploited by plant biotechnology. DNSO is a hormonally regulated process in which auxin and cytokinin (CK) coordinate suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery. Here we report that silencing Arabidopsis thaliana carboxyl-terminal domain (CTD) phosphatase-like 4 (CPL4RNAi ) resulted in increased phosphorylation levels of RNA polymerase II (pol II) CTD and altered lateral root development and DNSO efficiency of the host plants. Under standard growth conditions, CPL4RNAi lines produced no or few lateral roots. When induced by high concentrations of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. In contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines was observed even under 10 times less the CK required for the wild-type explants. Transcriptome analysis showed that CPL4RNAi , but not wild-type explants, expressed high levels of shoot meristem-related genes even during priming on medium with a high auxin/CK ratio, and during subsequent shoot induction with a lower auxin/CK ratio. Conversely, CPL4RNAi enhanced the inhibitory phenotype of the shoot redifferentiation defective2-1 mutation, which affected snRNA biogenesis and formation of the auxin gradient. These results indicated that CPL4 functions in multiple regulatory pathways that positively and negatively affect DNSO.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jared S Goldman
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
35
|
Xu C, Cao H, Xu E, Zhang S, Hu Y. Genome-Wide Identification of Arabidopsis LBD29 Target Genes Reveals the Molecular Events behind Auxin-Induced Cell Reprogramming during Callus Formation. PLANT & CELL PHYSIOLOGY 2018; 59:744-755. [PMID: 29121271 DOI: 10.1093/pcp/pcx168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/27/2017] [Indexed: 05/18/2023]
Abstract
Auxin-induced callus formation represents an important cell reprogramming process during in vitro regeneration of plants, in which the pericycle or pericycle-like cells within plant organs are reprogrammed into the pluripotent cell mass termed callus that is generally required for subsequent regeneration of root or shoot. However, the molecular events behind cell reprogramming during auxin-induced callus formation are largely elusive. We previously identified that auxin-induced LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors act as the master regulators to trigger auxin-induced callus formation. Here, by ChIP-seq (chromatin immunoprecipitation-based sequencing) and RNA sequencing approaches, we identified the potential LBD29 target genes at the genome-wide level and outlined the molecular events of LBD-triggered cell reprogramming during callus formation. We showed that LBD29 preferentially bound to the G-box (CACGTG) and TGGGC[C/T] motifs and potentially targeted >350 genes, among which the genes related to methylation, reactive oxygen species (ROS) metabolism, cell wall hydrolysis and lipid metabolism were rapidly activated, while most of the light-responsive genes were suppressed by LBD29. Further examination of a few representative genes validated that they were targeted by LBD29 and participated in the regulation of cell reprogramming during callus formation. Our data not only outline a framework of the early molecular events behind auxin-induced cell reprogramming of callus formation, but also provide a valuable resource for identification of genes that regulate cell fate switch during in vitro regeneration of plants.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifen Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
36
|
Lee K, Seo PJ. Dynamic Epigenetic Changes during Plant Regeneration. TRENDS IN PLANT SCIENCE 2018; 23:235-247. [PMID: 29338924 DOI: 10.1016/j.tplants.2017.11.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/18/2023]
Abstract
Plants have the remarkable ability to drive cellular dedifferentiation and regeneration. Changes in epigenetic landscapes accompany the cell fate transition. Notably, modifications of chromatin structure occur primarily during callus formation via an in vitro tissue culture process and, thus, pluripotent callus cells have unique epigenetic signatures. Here, we highlight the latest progress in epigenetic regulation of callus formation in plants, which addresses fundamental questions related to cell fate changes and pluripotency establishment. Global and local modifications of chromatin structure underlie callus formation, and the combination and sequence of epigenetic modifications further shape intricate cell fate changes. This review illustrates how a series of chromatin marks change dynamically during callus formation and their biological relevance in plant regeneration.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
37
|
Mo Z, Feng G, Su W, Liu Z, Peng F. Transcriptomic Analysis Provides Insights into Grafting Union Development in Pecan (Carya illinoinensis). Genes (Basel) 2018; 9:genes9020071. [PMID: 29401757 PMCID: PMC5852567 DOI: 10.3390/genes9020071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022] Open
Abstract
Pecan (Carya illinoinensis), as a popular nut tree, has been widely planted in China in recent years. Grafting is an important technique for its cultivation. For a successful grafting, graft union development generally involves the formation of callus and vascular bundles at the graft union. To explore the molecular mechanism of graft union development, we applied high throughput RNA sequencing to investigate the transcriptomic profiles of graft union at four timepoints (0 days, 8 days, 15 days, and 30 days) during the pecan grafting process. After de novo assembly, 83,693 unigenes were obtained, and 40,069 of them were annotated. A total of 12,180 differentially expressed genes were identified between by grafting. Genes involved in hormone signaling, cell proliferation, xylem differentiation, cell elongation, secondary cell wall deposition, programmed cell death, and reactive oxygen species (ROS) scavenging showed significant differential expression during the graft union developmental process. In addition, we found that the content of auxin, cytokinin, and gibberellin were accumulated at the graft unions during the grafting process. These results will aid in our understanding of successful grafting in the future.
Collapse
Affiliation(s)
- Zhenghai Mo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Gang Feng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenchuan Su
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhuangzhuang Liu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
38
|
Xu C, Cao H, Zhang Q, Wang H, Xin W, Xu E, Zhang S, Yu R, Yu D, Hu Y. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. NATURE PLANTS 2018; 4:108-115. [PMID: 29358751 DOI: 10.1038/s41477-017-0095-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation. We show that auxin stabilizes AtbZIP59 and enhances its interaction with LBD, and that disruption of AtbZIP59 dampens auxin-induced callus formation whereas overexpression of AtbZIP59 triggers autonomous callus formation. AtbZIP59-LBD16 directly targets a FAD-binding Berberine (FAD-BD) gene and promotes its transcription, which contributes to callus formation. These findings define the AtbZIP59-LBD complex as a critical regulator of auxin-induced cell fate change during callus formation, which provides a new insight into the molecular regulation of plant regeneration and possible developmental programs.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huifen Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hongzhe Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- National Center for Plant Gene Research, Beijing, China.
| |
Collapse
|
39
|
Horstman A, Bemer M, Boutilier K. A transcriptional view on somatic embryogenesis. ACTA ACUST UNITED AC 2017; 4:201-216. [PMID: 29299323 PMCID: PMC5743784 DOI: 10.1002/reg2.91] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Somatic embryogenesis is a form of induced plant cell totipotency where embryos develop from somatic or vegetative cells in the absence of fertilization. Somatic embryogenesis can be induced in vitro by exposing explants to stress or growth regulator treatments. Molecular genetics studies have also shown that ectopic expression of specific embryo‐ and meristem‐expressed transcription factors or loss of certain chromatin‐modifying proteins induces spontaneous somatic embryogenesis. We begin this review with a general description of the major developmental events that define plant somatic embryogenesis and then focus on the transcriptional regulation of this process in the model plant Arabidopsis thaliana (arabidopsis). We describe the different somatic embryogenesis systems developed for arabidopsis and discuss the roles of transcription factors and chromatin modifications in this process. We describe how these somatic embryogenesis factors are interconnected and how their pathways converge at the level of hormones. Furthermore, the similarities between the developmental pathways in hormone‐ and transcription‐factor‐induced tissue culture systems are reviewed in the light of our recent findings on the somatic embryo‐inducing transcription factor BABY BOOM.
Collapse
Affiliation(s)
- Anneke Horstman
- Bioscience Wageningen University and Research Wageningen The Netherlands.,Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Kim Boutilier
- Bioscience Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
40
|
Liu Y, Zhang HL, Guo HR, Xie L, Zeng RZ, Zhang XQ, Zhang ZS. Transcriptomic and Hormonal Analyses Reveal that YUC-Mediated Auxin Biogenesis Is Involved in Shoot Regeneration from Rhizome in Cymbidium. FRONTIERS IN PLANT SCIENCE 2017; 8:1866. [PMID: 29163591 PMCID: PMC5664085 DOI: 10.3389/fpls.2017.01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 05/22/2023]
Abstract
Cymbidium, one of the most important orchid genera in horticulture, can be classified into epiphytic and terrestrial species. Generally, epiphytic Cymbidium seedlings can be easily propagated by tissue culture, but terrestrial seedlings are difficult to propagate. To date, the molecular mechanisms underlying the differences in the ease with which terrestrial and epiphytic cymbidiums can be propagated are largely unknown. Using RNA-sequencing, quantitative reverse transcription PCR and enzyme-linked immunosorbent assay, Cymbidium 'Xiaofeng' (CXF), which can be efficiently micropropagated, and terrestrial Cymbidium sinense 'Qijianbaimo' (CSQ), which has a low regeneration ability, were used to explore the molecular mechanisms underlying the micropropagation ability of Cymbidium species. To this end, 447 million clean short reads were generated, and 31,264 annotated unigenes were obtained from 10 cDNA libraries. A total of 1,290 differentially expressed genes (DEGs) were identified between CXF and CSQ during shoot induction. Gene ontology (GO) enrichment analysis indicated that the DEGs were significantly enriched in auxin pathway-related GO terms. Further analysis demonstrated that YUC and GH3 family genes, which play crucial roles in the regulation of auxin/IAA (indole-3-acetic acid) metabolism, acted quickly in response to shoot induction culture in vitro and were closely correlated with variation in shoot regeneration between CXF and CSQ. In addition, the study showed that IAA accumulated rapidly and significantly during shoot induction in CXF compared to that in CSQ; in contrast, no significant changes in other hormones were observed between CXF and CSQ. Furthermore, shoot regeneration in CXF was inhibited by a yucasin-auxin biosynthesis inhibitor, indicating that increased IAA level is required for high-frequency shoot regeneration in CXF. In conclusion, our study revealed that YUC-mediated auxin biogenesis is involved in shoot regeneration from rhizome in Cymbidium.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhi-Sheng Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Eggermont L, Verstraeten B, Van Damme EJM. Genome-Wide Screening for Lectin Motifs in Arabidopsis thaliana. THE PLANT GENOME 2017; 10. [PMID: 28724081 DOI: 10.3835/plantgenome2017.02.0010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For more than three decades, served as a model for plant biology research. At present only a few protein families have been studied in detail in . This study focused on all sequences with lectin motifs in the genome of . Based on amino acid sequence similarity (BLASTp searches), 217 putative lectin genes were retrieved belonging to 9 out of 12 different lectin families. The domain organization and genomic distribution for each lectin family were analyzed. Domain architecture analysis revealed that most of these lectin gene sequences are linked to other domains, often belonging to protein families with catalytic activity. Many protein domains identified are known to play a role in stress signaling and defense, suggesting a major contribution of the putative lectins in development and plant defense. This genome-wide screen for different lectin motifs will help to unravel the functional characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and showed that most lectin sequences that share the same domain architecture evolved together. Furthermore, the amino acids responsible for carbohydrate binding are largely conserved. Our results provide information about the evolutionary relationships and functional divergence of the lectin motifs in .
Collapse
|
42
|
Jamaluddin ND, Mohd Noor N, Goh HH. Genome-wide transcriptome profiling of Carica papaya L. embryogenic callus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:357-368. [PMID: 28461724 PMCID: PMC5391361 DOI: 10.1007/s12298-017-0429-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 05/22/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool to study global gene expression patterns in plant development. We report the first transcriptome profile analysis of papaya embryogenic callus to improve our understanding on genes associated with somatic embryogenesis. By using 3' mRNA-sequencing, we generated 6,190,687 processed reads and 47.0% were aligned to papaya genome reference, in which 21,170 (75.4%) of 27,082 annotated genes were found to be expressed but only 41% was expressed at functionally high levels. The top 10% of genes with high transcript abundance were significantly enriched in biological processes related to cell proliferation, stress response, and metabolism. Genes functioning in somatic embryogenesis such as SERK and LEA, hormone-related genes, stress-related genes, and genes involved in secondary metabolite biosynthesis pathways were highly expressed. Transcription factors such as NAC, WRKY, MYB, WUSCHEL, Agamous-like MADS-box protein and bHLH important in somatic embryos of other plants species were found to be expressed in papaya embryogenic callus. Abundant expression of enolase and ADH is consistent with proteome study of papaya somatic embryo. Our study highlights that some genes related to secondary metabolite biosynthesis, especially phenylpropanoid biosynthesis, were highly expressed in papaya embryogenic callus, which might have implication for cell factory applications. The discovery of all genes expressed in papaya embryogenic callus provides an important information into early biological processes during the induction of embryogenesis and useful for future research in other plant species.
Collapse
Affiliation(s)
- Nur Diyana Jamaluddin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Darul Ehsan Malaysia
| |
Collapse
|
43
|
Perry SE, Zheng Q, Zheng Y. Transcriptome analysis indicates that GmAGAMOUS-Like 15 may enhance somatic embryogenesis by promoting a dedifferentiated state. PLANT SIGNALING & BEHAVIOR 2016; 11:e1197463. [PMID: 27302197 PMCID: PMC4991326 DOI: 10.1080/15592324.2016.1197463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis (SE) is an important avenue for regeneration of many plants. Although documented over half a century ago, the process of SE remains poorly understood and many factors impact upon competence for SE. We recently reported that a Glycine max ortholog of a MADS-domain transcription factor that promotes SE in Arabidopsis also enhances SE in soybean. We recently assessed transcriptomes in 35Spro:GmAGL15 compared to control during an early time-course of SE and in response to 35Spro:AtAGL15. We expand here upon discussion of the types of genes regulated by overexpression of AGL15 and characterize the step of SE that may be affected by altered accumulation of AGL15.
Collapse
Affiliation(s)
- Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington KY, USA
| | - Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington KY, USA
| | - Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington KY, USA
| |
Collapse
|
44
|
He F, Yoo S, Wang D, Kumari S, Gerstein M, Ware D, Maslov S. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:472-480. [PMID: 27015116 DOI: 10.1111/tpj.13175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Transcriptome data sets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by a lack of metadata or differences in annotation styles of different labs. In this study, we carefully selected and integrated 6057 Arabidopsis microarray expression samples from 304 experiments deposited to the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI). Metadata such as tissue type, growth conditions and developmental stage were manually curated for each sample. We then studied the global expression landscape of the integrated data set and found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome, compared with aerial tissues, but the transcriptome of cultured root is more similar to the transcriptome of aerial tissues, as the cultured root samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating the re-use of plant transcriptome data. As a proof of principle, we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified the accuracy of our predictions with sample metadata provided by the authors.
Collapse
Affiliation(s)
- Fei He
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Shinjae Yoo
- Computational Science Center, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Institute of Advanced Computational Science at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Daifeng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 17724, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 17724, USA
- USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit, USDA-ARS, Ithaca, NY, 14853, USA
| | - Sergei Maslov
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
45
|
Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). J Proteomics 2016; 131:61-70. [DOI: 10.1016/j.jprot.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022]
|
46
|
De Smet S, Cuypers A, Vangronsveld J, Remans T. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. Int J Mol Sci 2015; 16:19195-224. [PMID: 26287175 PMCID: PMC4581294 DOI: 10.3390/ijms160819195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/01/2015] [Indexed: 01/23/2023] Open
Abstract
Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.
Collapse
Affiliation(s)
- Stefanie De Smet
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tony Remans
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
47
|
Sugiyama M. Historical review of research on plant cell dedifferentiation. JOURNAL OF PLANT RESEARCH 2015; 128:349-59. [PMID: 25725626 DOI: 10.1007/s10265-015-0706-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 05/23/2023]
Abstract
Plant cell dedifferentiation has long attracted interest as a key process for understanding the plasticity of plant development. In early studies, typical examples of plant cell dedifferentiation were described as physiological and cytological changes associated with wound healing or regenerative development. Subsequently, plant tissue and cell culture techniques, in which exciting progress was achieved after discovery of the hormonal control of cell proliferation and organogenesis in vitro in the 1950s, have been used extensively to study dedifferentiation. The pioneer studies of plant tissue/cell culture led to the hypothesis that many mature plant cells retain totipotency and related dedifferentiation to the initial step of the expression of totipotency. Plant tissue/cell cultures have provided experimental systems not only for physiological analysis, but also for genetic and molecular biological analysis, of dedifferentiation. More recently, proteomic, transcriptomic, and epigenetic analyses have been applied to the study of plant cell dedifferentiation. All of these works have expanded our knowledge of plant cell dedifferentiation, and current research is contributing to unraveling the molecular mechanisms. The present article provides a brief overview of the history of research on plant cell dedifferentiation.
Collapse
Affiliation(s)
- Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan,
| |
Collapse
|
48
|
Gandhi SG, Mahajan V, Bedi YS. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. PLANTA 2015; 241:303-17. [PMID: 25549846 DOI: 10.1007/s00425-014-2232-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/16/2014] [Indexed: 05/02/2023]
Abstract
Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.
Collapse
Affiliation(s)
- Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu Tawi, 180001, India,
| | | | | |
Collapse
|
49
|
Cheng Y, Liu H, Cao L, Wang S, Li Y, Zhang Y, Jiang W, Zhou Y, Wang H. Down-regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:825. [PMID: 26528298 PMCID: PMC4602110 DOI: 10.3389/fpls.2015.00825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
The ICK/KRP cyclin-dependent kinase (CDK) inhibitors are important plant cell cycle regulators sharing only limited similarity with the metazoan CIP/KIP family of CDK inhibitors. Information is still limited regarding the specific functions of different ICK/KRP genes in planta. We have shown previously that down-regulation of multiple CDK inhibitor ICK/KRP genes up-regulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. In this study, we observed that the quintuple ick1/2/5/6/7 mutant had more cells in the cortical layer of the root apical meristem (RAM) than the wild type (Wt) while its RAM length was similar to that of the Wt, suggesting a faster cell cycle rate in the quintuple mutant. We further investigated the effects of down-regulating ICK genes on tissue culture responses. The cotyledon explants of ick1/2/5/6/7 could form callus efficiently in the absence of cytokinin and also required a lower concentration of 2,4-D for callus induction compared to the Wt plants, suggesting increased competence for callus induction in the mutant. In addition, the quintuple ick mutant showed enhanced abilities to regenerate shoots and roots, suggesting that increased competence to enter the cell cycle in the quintuple mutant might make it possible for more cells to become proliferative and be utilized to form shoots or roots. These findings indicate that CDK activity is a major factor underlying callus induction and increased cell proliferation can enhance in vitro organogenesis.
Collapse
Affiliation(s)
- Yan Cheng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Han Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Ling Cao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Department of Biochemistry, University of Saskatchewan, SaskatoonSK, Canada
| | - Sheng Wang
- Department of Biochemistry, University of Saskatchewan, SaskatoonSK, Canada
| | - Yongpeng Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuanyuan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Wei Jiang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Hong Wang, Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada, ; Yongming Zhou, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China,
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, SaskatoonSK, Canada
- *Correspondence: Hong Wang, Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada, ; Yongming Zhou, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|
50
|
Motte H, Vereecke D, Geelen D, Werbrouck S. The molecular path to in vitro shoot regeneration. Biotechnol Adv 2014; 32:107-21. [DOI: 10.1016/j.biotechadv.2013.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/20/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|