1
|
Quigley KS, Gianaros PJ, Norman GJ, Jennings JR, Berntson GG, de Geus EJC. Publication guidelines for human heart rate and heart rate variability studies in psychophysiology-Part 1: Physiological underpinnings and foundations of measurement. Psychophysiology 2024; 61:e14604. [PMID: 38873876 PMCID: PMC11539922 DOI: 10.1111/psyp.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 06/15/2024]
Abstract
This Committee Report provides methodological, interpretive, and reporting guidance for researchers who use measures of heart rate (HR) and heart rate variability (HRV) in psychophysiological research. We provide brief summaries of best practices in measuring HR and HRV via electrocardiographic and photoplethysmographic signals in laboratory, field (ambulatory), and brain-imaging contexts to address research questions incorporating measures of HR and HRV. The Report emphasizes evidence for the strengths and weaknesses of different recording and derivation methods for measures of HR and HRV. Along with this guidance, the Report reviews what is known about the origin of the heartbeat and its neural control, including factors that produce and influence HRV metrics. The Report concludes with checklists to guide authors in study design and analysis considerations, as well as guidance on the reporting of key methodological details and characteristics of the samples under study. It is expected that rigorous and transparent recording and reporting of HR and HRV measures will strengthen inferences across the many applications of these metrics in psychophysiology. The prior Committee Reports on HR and HRV are several decades old. Since their appearance, technologies for human cardiac and vascular monitoring in laboratory and daily life (i.e., ambulatory) contexts have greatly expanded. This Committee Report was prepared for the Society for Psychophysiological Research to provide updated methodological and interpretive guidance, as well as to summarize best practices for reporting HR and HRV studies in humans.
Collapse
Affiliation(s)
- Karen S. Quigley
- Department of Psychology, Northeastern University, Boston,
Massachusetts, USA
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA
| | - Greg J. Norman
- Department of Psychology, The University of Chicago,
Chicago, Illinois, USA
| | - J. Richard Jennings
- Department of Psychiatry & Psychology, University of
Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary G. Berntson
- Department of Psychology & Psychiatry, The Ohio State
University, Columbus, Ohio, USA
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Che Z, O'Donovan S, Xiao X, Wan X, Chen G, Zhao X, Zhou Y, Yin J, Chen J. Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207600. [PMID: 36759957 DOI: 10.1002/smll.202207600] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Triboelectric nanogenerators (TENGs) have gained significant traction in recent years in the bioengineering community. With the potential for expansive applications for biomedical use, many individuals and research groups have furthered their studies on the topic, in order to gain an understanding of how TENGs can contribute to healthcare. More specifically, there have been a number of recent studies focusing on implantable triboelectric nanogenerators (I-TENGs) toward self-powered cardiac systems healthcare. In this review, the progression of implantable TENGs for self-powered cardiovascular healthcare, including self-powered cardiac monitoring devices, self-powered therapeutic devices, and power sources for cardiac pacemakers, will be systematically reviewed. Long-term expectations of these implantable TENG devices through their biocompatibility and other utilization strategies will also be discussed.
Collapse
Affiliation(s)
- Ziyuan Che
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sarah O'Donovan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Wan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Tibbs GR, Uprety R, Warren JD, Beyer NP, Joyce RL, Ferrer MA, Mellado W, Wong VSC, Goldberg DC, Cohen MW, Costa CJ, Li Z, Zhang G, Dephoure NE, Barman DN, Sun D, Ingólfsson HI, Sauve AA, Willis DE, Goldstein PA. An anchor-tether 'hindered' HCN1 inhibitor is antihyperalgesic in a rat spared nerve injury neuropathic pain model. Br J Anaesth 2023; 131:745-763. [PMID: 37567808 PMCID: PMC10541997 DOI: 10.1016/j.bja.2023.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS In silico molecular dynamics simulation, in vitro electrophysiology, and in vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. In vitro and in vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rajendra Uprety
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nicole P Beyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rebecca L Joyce
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Ferrer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Noah E Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dipti N Barman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Delin Sun
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Liu CM, Chen YC, Hu YF. Harnessing cell reprogramming for cardiac biological pacing. J Biomed Sci 2023; 30:74. [PMID: 37633890 PMCID: PMC10463311 DOI: 10.1186/s12929-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Electrical impulses from cardiac pacemaker cardiomyocytes initiate cardiac contraction and blood pumping and maintain life. Abnormal electrical impulses bring patients with low heart rates to cardiac arrest. The current therapy is to implant electronic devices to generate backup electricity. However, complications inherent to electronic devices remain unbearable suffering. Therefore, cardiac biological pacing has been developed as a hardware-free alternative. The approaches to generating biological pacing have evolved recently using cell reprogramming technology to generate pacemaker cardiomyocytes in-vivo or in-vitro. Different from conventional methods by electrical re-engineering, reprogramming-based biological pacing recapitulates various phenotypes of de novo pacemaker cardiomyocytes and is more physiological, efficient, and easy for clinical implementation. This article reviews the present state of the art in reprogramming-based biological pacing. We begin with the rationale for this new approach and review its advances in creating a biological pacemaker to treat bradyarrhythmia.
Collapse
Affiliation(s)
- Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Fontenla A, Tamargo J, Salgado R, López-Gil M, Mejía E, Matía R, Toquero J, Montilla I, Rajjoub EA, García-Fernandez FJ, Miracle A, Rey JR, Bueno H. Ivabradine for controlling heart rate in permanent atrial fibrillation: A translational clinical trial. Heart Rhythm 2023; 20:822-830. [PMID: 37245897 DOI: 10.1016/j.hrthm.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Pharmacological options for rate control in atrial fibrillation are scarce. Ivabradine was postulated to reduce the ventricular rate in this setting. OBJECTIVES The objectives of this study were to evaluate the mechanism of inhibition of atrioventricular conduction produced by ivabradine and to determine its efficacy and safety in atrial fibrillation. METHODS The effects of ivabradine on atrioventricular node and ventricular cells were studied by in vitro whole-cell patch-clamp experiments and mathematical simulation of human action potentials. In parallel, a multicenter, randomized, open-label, phase III clinical trial compared ivabradine with digoxin for uncontrolled permanent atrial fibrillation despite β-blocker or calcium channel blocker treatment. RESULTS Ivabradine 1 μM inhibited "funny" current and rapidly activating delayed rectifier potassium channel current by 28.9% and 22.8%, respectively (P < .05). The sodium channel current and L-type calcium channel current were reduced only at 10 μM. Ivabradine slowed the firing frequency of a modeled human atrioventricular node action potential by 10.6% and induced a minimal prolongation of ventricular action potential. Thirty-five (51.5%) patients were randomized to ivabradine and 33 (49.5%) to digoxin. The mean daytime heart rate decreased by 11.6 beats/min (-11.5%) in the ivabradine arm (P = .02) vs 19.6 (-20.6%) in the digoxin arm (P < .001), although the noninferiority margin of efficacy was not met (Z = -1.95; P = .97). The primary safety end point occurred in 3 patients (8.6%) on ivabradine and in 8 (24.2%) on digoxin (P = .10). CONCLUSION Ivabradine produced a moderate rate reduction in patients with permanent atrial fibrillation. The inhibition of funny current in the atrioventricular node seems to be the main mechanism responsible for this reduction. Compared with digoxin, ivabradine was less effective, was better tolerated, and had a similar rate of serious adverse events.
Collapse
Affiliation(s)
- Adolfo Fontenla
- Cardiology Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain; Cardiology Department. Complejo Hospitalario Ruber Juan Bravo, Madrid, Spain; Research Institute Hospital Universitario 12 de Octubre (I+12), Madrid, Spain.
| | - Juan Tamargo
- Pharmacology and Toxicology Department, School of Medicine, Universidad Complutense de Madrid, Madrid Spain
| | - Ricardo Salgado
- Cardiology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - María López-Gil
- Research Institute Hospital Universitario 12 de Octubre (I+12), Madrid, Spain
| | - Elena Mejía
- Cardiology Department, Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Roberto Matía
- Cardiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jorge Toquero
- Cardiology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Isabel Montilla
- Cardiology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Ez-Alddin Rajjoub
- Research Institute Hospital Universitario 12 de Octubre (I+12), Madrid, Spain
| | | | - Angel Miracle
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Juan-Ramón Rey
- Cardiology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Hector Bueno
- Research Institute Hospital Universitario 12 de Octubre (I+12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Carlos III Health Institute, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
6
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
7
|
Shenfu Injection: A Famous Chinese Prescription That Promotes HCN4 Activity in Bone Marrow Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9912844. [PMID: 34457032 PMCID: PMC8387162 DOI: 10.1155/2021/9912844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022]
Abstract
We investigated the effects of Shenfu Injection (SFI) on HCN4 activity in bone marrow mesenchymal stem cells (BMSCs). The sample of BMSCs was divided into six groups: a control group, a high-dose SFI group (0.25 ml/ml), a middle-dose SFI group (0.1 ml/ml), a low-dose SFI group (0.05 ml/ml), an adenovirus-encoded control vector group, and an adenovirus-encoded HCN4 group. Cell ultrastructure was observed using a transmission electron microscope. Quantitative reverse transcription PCR (RT-qPCR) was performed to detect HCN4 expression, and HCN4 activity was detected using the whole-cell patch clamp technique. An enzyme-linked immunosorbent assay was performed to detect cAMP content. Application of flow cytometry confirmed that the isolated cells showed BMSC-like phenotypes. Differentiation of BMSCs in both the SFI and the adenovirus-encoding HCN4 groups occurred according to the cellular ultrastructure. Application of the whole-cell patch clamp technique revealed that SFI could activate the inward pacing current of BMSCs in a concentration-dependent manner. The RT-qPCR results showed that HCN4 expression was significantly higher in the high-dose SFI group than in the medium- and low-dose groups, whereas the cAMP content in the overexpressed HCN4 group decreased significantly; this content in the high-dose SFI group increased significantly. In conclusion, SFI promotes HCN4 activity in BMSCs, which could explain its treatment effect when administered to patients with cardiovascular diseases.
Collapse
|
8
|
Mishra P, Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol Rep 2021; 9:e14963. [PMID: 34342171 PMCID: PMC8329439 DOI: 10.14814/phy2.14963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Degeneracy, the ability of multiple structural components to elicit the same characteristic functional properties, constitutes an elegant mechanism for achieving biological robustness. In this study, we sought electrophysiological signatures for the expression of ion-channel degeneracy in the emergence of intrinsic properties of rat hippocampal granule cells. We measured the impact of four different ion-channel subtypes-hyperpolarization-activated cyclic-nucleotide-gated (HCN), barium-sensitive inward rectifier potassium (Kir ), tertiapin-Q-sensitive inward rectifier potassium, and persistent sodium (NaP) channels-on 21 functional measurements employing pharmacological agents, and report electrophysiological data on two characteristic signatures for the expression of ion-channel degeneracy in granule cells. First, the blockade of a specific ion-channel subtype altered several, but not all, functional measurements. Furthermore, any given functional measurement was altered by the blockade of many, but not all, ion-channel subtypes. Second, the impact of blocking each ion-channel subtype manifested neuron-to-neuron variability in the quantum of changes in the electrophysiological measurements. Specifically, we found that blocking HCN or Ba-sensitive Kir channels enhanced action potential firing rate, but blockade of NaP channels reduced firing rate of granule cells. Subthreshold measures of granule cell intrinsic excitability (input resistance, temporal summation, and impedance amplitude) were enhanced by blockade of HCN or Ba-sensitive Kir channels, but were not significantly altered by NaP channel blockade. We confirmed that the HCN and Ba-sensitive Kir channels independently altered sub- and suprathreshold properties of granule cells through sequential application of pharmacological agents that blocked these channels. Finally, we found that none of the sub- or suprathreshold measurements of granule cells were significantly altered upon treatment with tertiapin-Q. Together, the heterogeneous many-to-many mapping between ion channels and single-neuron intrinsic properties emphasizes the need to account for ion-channel degeneracy in cellular- and network-scale physiology.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
9
|
Shemer Y, Mekies LN, Ben Jehuda R, Baskin P, Shulman R, Eisen B, Regev D, Arbustini E, Gerull B, Gherghiceanu M, Gottlieb E, Arad M, Binah O. Investigating LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22157874. [PMID: 34360639 PMCID: PMC8346174 DOI: 10.3390/ijms22157874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (If) density; (2) prolonged action potential duration and increased L-type Ca2+ current (ICa,L) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na+/Ca2+ exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Lucy N. Mekies
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
- Department of Biotechnology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Rita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, Policlinico San Matteo, 27100 Pavia, Italy;
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany;
| | | | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel;
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
- Correspondence: ; Tel.: +972-4-8295262; Fax: +972-4-8513919
| |
Collapse
|
10
|
Peters CH, Liu PW, Morotti S, Gantz SC, Grandi E, Bean BP, Proenza C. Bidirectional flow of the funny current (I f) during the pacemaking cycle in murine sinoatrial node myocytes. Proc Natl Acad Sci U S A 2021; 118:e2104668118. [PMID: 34260402 PMCID: PMC8285948 DOI: 10.1073/pnas.2104668118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of -30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that β-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Stephanie C Gantz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
11
|
Giannetti F, Benzoni P, Campostrini G, Milanesi R, Bucchi A, Baruscotti M, Dell'Era P, Rossini A, Barbuti A. A detailed characterization of the hyperpolarization-activated "funny" current (I f) in human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes with pacemaker activity. Pflugers Arch 2021; 473:1009-1021. [PMID: 33934225 PMCID: PMC8245366 DOI: 10.1007/s00424-021-02571-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
Properties of the funny current (If) have been studied in several animal and cellular models, but so far little is known concerning its properties in human pacemaker cells. This work provides a detailed characterization of If in human-induced pluripotent stem cell (iPSC)–derived pacemaker cardiomyocytes (pCMs), at different time points. Patch-clamp analysis showed that If density did not change during differentiation; however, after day 30, it activates at more negative potential and with slower time constants. These changes are accompanied by a slowing in beating rate. If displayed the voltage-dependent block by caesium and reversed (Erev) at − 22 mV, compatibly with the 3:1 K+/Na+ permeability ratio. Lowering [Na+]o (30 mM) shifted the Erev to − 39 mV without affecting conductance. Increasing [K+]o (30 mM) shifted the Erev to − 15 mV with a fourfold increase in conductance. pCMs express mainly HCN4 and HCN1 together with the accessory subunits CAV3, KCR1, MiRP1, and SAP97 that contribute to the context-dependence of If. Autonomic agonists modulated the diastolic depolarization, and thus rate, of pCMs. The adrenergic agonist isoproterenol induced rate acceleration and a positive shift of If voltage-dependence (EC50 73.4 nM). The muscarinic agonists had opposite effects (Carbachol EC50, 11,6 nM). Carbachol effect was however small but it could be increased by pre-stimulation with isoproterenol, indicating low cAMP levels in pCMs. In conclusion, we demonstrated that pCMs display an If with the physiological properties expected by pacemaker cells and may thus represent a suitable model for studying human If-related sinus arrhythmias.
Collapse
Affiliation(s)
- Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Giulia Campostrini
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, The Netherlands
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
12
|
Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci 2021; 22:ijms22094772. [PMID: 33946275 PMCID: PMC8125662 DOI: 10.3390/ijms22094772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.
Collapse
|
13
|
Benzoni P, Campostrini G, Landi S, Bertini V, Marchina E, Iascone M, Ahlberg G, Olesen MS, Crescini E, Mora C, Bisleri G, Muneretto C, Ronca R, Presta M, Poliani PL, Piovani G, Verardi R, Di Pasquale E, Consiglio A, Raya A, Torre E, Lodrini AM, Milanesi R, Rocchetti M, Baruscotti M, DiFrancesco D, Memo M, Barbuti A, Dell'Era P. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 2021; 116:1147-1160. [PMID: 31504264 PMCID: PMC7177512 DOI: 10.1093/cvr/cvz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.
Collapse
Affiliation(s)
- Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Valeria Bertini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Maria Iascone
- USSD Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy
| | - Gustav Ahlberg
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Morten Salling Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elisabetta Crescini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Cristina Mora
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Gianluigi Bisleri
- Department of Surgery, Division of Cardiac Surgery, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Claudio Muneretto
- Clinical Department of Cardiovascular Surgery, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Pier Luigi Poliani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Piovani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Rosanna Verardi
- Department of Trasfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, viale Europa 11, 25123 Brescia, Italy
| | - Elisa Di Pasquale
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milan, Italy
| | - Antonella Consiglio
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy.,Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908 Hospitalet de Llobregat, C/Feixa Larga s/n, 08907 Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Carrer Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23 08010 Barcelona, Spain.,Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Raffaella Milanesi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
14
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hart NH. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports (Basel) 2021; 9:22. [PMID: 33572708 PMCID: PMC7912285 DOI: 10.3390/sports9020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the angiotensin-converting enzyme (ACE) (rs4343), alpha-actinin-3 (ACTN3) (rs1815739), adrenoceptor-beta-1 (ADRB1) (rs1801253), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) (rs8192678) genes have previously been associated with elite athletic performance. This study assessed the influence of polymorphisms in these candidate genes towards endurance test performance in 46 players from a single Australian Football League (AFL) team. Each player provided saliva buccal swab samples for DNA analysis and genotyping and were required to perform two independent two-kilometre running time-trials, six weeks apart. Linear mixed models were created to account for repeated measures over time and to determine whether player genotypes are associated with overall performance in the two-kilometre time-trial. The results showed that the ADRB1 Arg389Gly CC (p = 0.034) and PPARGC1A Gly482Ser GG (p = 0.031) genotypes were significantly associated with a faster two-kilometre time-trial. This is the first study to link genetic polymorphism to an assessment of endurance performance in Australian Football and provides justification for further exploratory or confirmatory studies.
Collapse
Affiliation(s)
- Ysabel Jacob
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
| | - Ryan S. Anderton
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- School of Health Science, University of Notre Dame Australia, Perth 6160, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Jodie L. Cochrane Wilkie
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Brent Rogalski
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Simon M. Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Tania Spiteri
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Nicolas H. Hart
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- Exercise Medicine Research Institute, Edith Cowan University, Perth 6027, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
15
|
Sridhar KC, Hersch N, Dreissen G, Merkel R, Hoffmann B. Calcium mediated functional interplay between myocardial cells upon laser-induced single-cell injury: an in vitro study of cardiac cell death signaling mechanisms. Cell Commun Signal 2020; 18:191. [PMID: 33371897 PMCID: PMC7771078 DOI: 10.1186/s12964-020-00689-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background The electromechanical function of myocardial tissue depends on the intercellular communication between cardiomyocytes (CMs) as well as their crosstalk with other cell types. Cell injury, and subsequent death trigger inflammation as in myocardial infarction (MI) resulting in myocardial remodeling. Although mechanisms underlying myocardial cell death have been studied so far, the signaling events following single cell death and spontaneous response of connected cells in the myocardial tissue is still barely understood. Methods Here, we investigated the effect of laser-induced single cell death on Calcium (Ca2+) concentrations and transport in myocardial cell clusters in vitro. Spatial and temporal changes in intracellular Ca2+ concentrations [Ca2+]i were studied using a fluorescent calcium indicator, Fluo-4AM. Spontaneous signaling events following cell death were studied in rat embryonic cardiomyocytes and non-myocytes using separate cell culture systems. Results Cell death triggered spontaneous increase in intracellular Ca2+ levels ([Ca2+]i) of surrounding cells. The spread of the observed propagating Ca2+ signal was slow and sustained in myocytes while it was rapid and transient in fibroblasts (Fbs). Further, sustained high Ca2+ levels temporarily impaired the contractility in CMs. The cell-type specific effect of ablation was confirmed using separate cultures of CMs and Fbs. Comparing Ca2+ propagation speed in myocytes and fibroblasts, we argue for a diffusion-driven Ca2+ propagation in myocytes, but not in fibroblasts. Radial and sequential Ca2+ diffusion across the CMs through cell–cell contacts and presence of Cx43-based intercellular junctions indicated a gap junction flow of Ca2+. Conclusions These findings illustrate the spontaneous Ca2+-mediated functional interplay in myocardial cell clusters upon mechanical injury and, further, the difference in Ca2+ signaling in cardiomyocytes and fibroblasts. Video Abstract
Collapse
Affiliation(s)
- Krishna Chander Sridhar
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
16
|
Weisbrod D. Small and Intermediate Calcium Activated Potassium Channels in the Heart: Role and Strategies in the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:590534. [PMID: 33329039 PMCID: PMC7719780 DOI: 10.3389/fphys.2020.590534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium-activated potassium channels are a heterogeneous family of channels that, despite their different biophysical characteristics, structures, and pharmacological signatures, play a role of transducer between the ubiquitous intracellular calcium signaling and the electric variations of the membrane. Although this family of channels was extensively described in various excitable and non-excitable tissues, an increasing amount of evidences shows their functional role in the heart. This review aims to focus on the physiological role and the contribution of the small and intermediate calcium-activated potassium channels in cardiac pathologies.
Collapse
|
17
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
19
|
Grainger N, Freeman RS, Shonnard CC, Drumm BT, Koh SD, Ward SM, Sanders KM. Identification and classification of interstitial cells in the mouse renal pelvis. J Physiol 2020; 598:3283-3307. [PMID: 32415739 DOI: 10.1113/jp278888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Platelet-derived growth factor receptor-α (PDGFRα) is a novel biomarker along with smooth myosin heavy chain for the pacemaker cells (previously termed 'atypical' smooth muscle cells) in the murine and cynomolgus monkey pelvis-kidney junction. PDGFRα+ cells present in adventitial and urothelial layers of murine renal pelvis do not express smooth muscle myosin heavy chain (smMHC) but are in close apposition to nerve fibres. Most c-Kit+ cells in the renal pelvis are mast cells. Mast cells (CD117+ /CD45+ ) are more abundant in the proximal renal pelvis and pelvis-kidney junction regions whereas c-Kit+ interstitial cells (CD117+ /CD45- ) are found predominantly in the distal renal pelvis and ureteropelvic junction. PDGFRα+ cells are distinct from c-Kit+ interstitial cells. A subset of PDGFRα+ cells express the Ca2+ -activated Cl- channel, anoctamin-1, across the entire renal pelvis. Spontaneous Ca2+ transients were observed in c-Kit+ interstitial cells, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using mice expressing genetically encoded Ca2+ sensors. ABSTRACT Rhythmic contractions of the renal pelvis transport urine from the kidneys into the ureter. Specialized pacemaker cells, termed atypical smooth muscle cells (ASMCs), are thought to drive the peristaltic contractions of typical smooth muscle cells (TSMCs) in the renal pelvis. Interstitial cells (ICs) in close proximity to ASMCs and TSMCs have been described, but the role of these cells is poorly understood. The presence and distributions of platelet-derived growth factor receptor-α+ (PDGFRα+ ) ICs in the pelvis-kidney junction (PKJ) and distal renal pelvis were evaluated. We found PDGFRα+ ICs in the adventitial layers of the pelvis, the muscle layer of the PKJ and the adventitia of the distal pelvis. PDGFRα+ ICs were distinct from c-Kit+ ICs in the renal pelvis. c-Kit+ ICs are a minor population of ICs in murine renal pelvis. The majority of c-Kit+ cells were mast cells. PDGFRα+ cells in the PKJ co-expressed smooth muscle myosin heavy chain (smMHC) and several other smooth muscle gene transcripts, indicating these cells are ASMCs, and PDGFRα is a novel biomarker for ASMCs. PDGFRα+ cells also express Ano1, which encodes a Ca2+ -activated Cl- conductance that serves as a primary pacemaker conductance in ICs of the GI tract. Spontaneous Ca2+ transients were observed in c-Kit+ ICs, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using genetically encoded Ca2+ sensors. A reporter strain of mice with enhanced green fluorescent protein driven by the endogenous promotor for Pdgfra was shown to be a powerful new tool for isolating and characterizing the phenotype and functions of these cells in the renal pelvis.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ryan S Freeman
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cameron C Shonnard
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
20
|
Shim S, Eom K, Jeong J, Kim SJ. Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients. MICROMACHINES 2020; 11:E535. [PMID: 32456341 PMCID: PMC7281011 DOI: 10.3390/mi11050535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Retinal prostheses are implantable devices that aim to restore the vision of blind patients suffering from retinal degeneration, mainly by artificially stimulating the remaining retinal neurons. Some retinal prostheses have successfully reached the stage of clinical trials; however, these devices can only restore vision partially and remain insufficient to enable patients to conduct everyday life independently. The visual acuity of the artificial vision is limited by various factors from both engineering and physiological perspectives. To overcome those issues and further enhance the visual resolution of retinal prostheses, a variety of retinal prosthetic approaches have been proposed, based on optimization of the geometries of electrode arrays and stimulation pulse parameters. Other retinal stimulation modalities such as optics, ultrasound, and magnetics have also been utilized to address the limitations in conventional electrical stimulation. Although none of these approaches have been clinically proven to fully restore the function of a degenerated retina, the extensive efforts made in this field have demonstrated a series of encouraging findings for the next generation of retinal prostheses, and these could potentially enhance the visual acuity of retinal prostheses. In this article, a comprehensive and up-to-date overview of retinal prosthetic strategies is provided, with a specific focus on a quantitative assessment of visual acuity results from various retinal stimulation technologies. The aim is to highlight future directions toward high-resolution retinal prostheses.
Collapse
Affiliation(s)
- Shinyong Shim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea;
- Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyungsik Eom
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Joonsoo Jeong
- School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan 50612, Korea
| | - Sung June Kim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea;
- Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Korea
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
21
|
Shi M, Tien NT, de Haan L, Louisse J, Rietjens IMCM, Bouwmeester H. Evaluation of in vitro models of stem cell-derived cardiomyocytes to screen for potential cardiotoxicity of chemicals. Toxicol In Vitro 2020; 67:104891. [PMID: 32446838 DOI: 10.1016/j.tiv.2020.104891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is an important toxicological endpoint for chemical and drug safety assessment. The present study aims to evaluate two stemcell-based in vitro models for cardiotoxicity screening of chemicals. Eleven model compounds were used to evaluate responses of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) using beating arrest as a readout and the analysis of electrophysiological parameters measured with a multi-electrode array (MEA) platform of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Results revealed that the hiPSC-CM MEA assay responded to all compounds. The mESC-CM beating arrest assay was not responsive to potassium channel blockers and showed a lower sensitivity to sodium channel blockers and Na+/K+ ATPase inhibitors compared to the hiPSC-CM MEA assay. Calcium channel blockers and a β-adrenergic receptor agonist showed comparable potencies in both models. The in vitro response concentrations from hiPSC-CMs were highly concordant with human effective serum concentrations of potassium and sodium channel blockers. It is concluded that both in vitro models enable the cardiotoxicity screening with different applicability domains. The mESC-CM beating arrest assay may be used as a first step in a tiered approach while the hiPSC-CM MEA assay may be the best starting point for quantitative in vitro to in vivo extrapolations.
Collapse
Affiliation(s)
- Miaoying Shi
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands.
| | - Nguyen T Tien
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands.
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands.
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands.
| |
Collapse
|
22
|
Chen H, Chen Y, Yang J, Wu P, Wang X, Huang C. Effect of Ginkgo biloba extract on pacemaker channels encoded by HCN gene. Herz 2020; 46:255-261. [PMID: 32435840 DOI: 10.1007/s00059-020-04933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 04/25/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the present study, the electropharmacological activity of traditional Chinese medicine, Ginkgo biloba extract (GBE), on human hyperpolarization-activated nucleotide-gated (HCN) channels and the underlying "funny" currents was investigated. METHODS Standard two-electrode voltage-clamp recordings were employed to examine the properties of cloned HCN subunit currents expressed in Xenopus oocytes under controlled conditions and GBE administration. RESULTS We found that GBE irreversibly inhibited the HCN2 and HCN4 channel currents in a concentration-dependent fashion and that the HCN4 current was more sensitive to GBE compared with HCN2. In addition, GBE inhibition of the current amplitudes of HCN2 and HCN4 currents was accompanied by a decrease in the activation and deactivation kinetics. CONCLUSION The results of this study contribute toward illustrating the antiarrhythmic mechanism of GBE, which might be useful for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Yongjun Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Jing Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Pan Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China.
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China.
| |
Collapse
|
23
|
Ziyatdinova NI, Kuptsova AM, Faskhutdinov LI, Galieva AM, Zefirov AL, Zefirov TL. Effect of If Current Blockade on Newborn Rat Heart Isolated According to Langendorff. Bull Exp Biol Med 2019; 167:424-427. [PMID: 31529169 DOI: 10.1007/s10517-019-04541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 01/09/2023]
Abstract
The study examined the effects of hyperpolarization-activated funny current (If) on HR and coronary flow in Langendorff-isolated hearts from newborn rats. Blockade of If current with ZD7288 changed the examined cardiac parameters. The blocker in a concentration of 10-9 M decreased HR by 26.8% (p≤0.05). In concentrations 10-8, 10-7, 10-6, and 10-5 M ZD7288 produced minor differently directed effects. In a concentration of 10-5 M, ZD7288 reduced coronary flow in the isolated heart (p≤0.01). In other concentrations, the blocker produced no significant effects on coronary flow.
Collapse
Affiliation(s)
- N I Ziyatdinova
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Russia
| | - A M Kuptsova
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Russia
| | - L I Faskhutdinov
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Russia
| | - A M Galieva
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Russia
| | - A L Zefirov
- Department of Normal Physiology, Kazan Federal Medical University, Kazan, the republic of Tatarstan, Russia
| | - T L Zefirov
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Russia.
| |
Collapse
|
24
|
Nader M, Alsolme E, Alotaibi S, Alsomali R, Bakheet D, Dzimiri N. SLMAP-3 is downregulated in human dilated ventricles and its overexpression promotes cardiomyocyte response to adrenergic stimuli by increasing intracellular calcium. Can J Physiol Pharmacol 2019; 97:623-630. [PMID: 30856349 DOI: 10.1139/cjpp-2018-0660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Structural dilation of cardiomyocytes (CMs) imposes a decline in cardiac performance that precipitates cardiac failure and sudden death. Since membrane proteins are implicated in dilated cardiomyopathy and heart failure, we evaluated the expression of the sarcolemmal membrane-associated protein (SLMAP) in dilated cardiomyopathy and its effect on CM contraction. We found that all 3 SLMAP isoforms (SLMAP-1, -2, and -3) are expressed in CMs and are downregulated in human dilated ventricles. Knockdown of SLMAPs in cultured CMs transduced with recombinant adeno-associated viral particles releasing SLMAP-shRNA precipitated reduced spontaneous contractile rate that was not fully recovered in SLMAP-depleted CMs challenged with isoproterenol (ISO), thus phenotypically mimicking heart failure performance. Interestingly, the overexpression of the SLMAP-3 full-length isoform induced a positive chronotropic effect in CMs that was more pronounced in response to ISO insult (vs. ISO-treated naïve CMs). Confocal live imaging showed that H9c2 cardiac myoblasts overexpressing SLMAP-3 exhibit a higher intracellular calcium transient peak when treated with ISO (vs. ISO-treated cells carrying a control adeno-associated viral particle). Proteomics revealed that SLMAP-3 interacts with the regulator of CM contraction, striatin. Collectively, our data demonstrate that SLMAP-3 is a novel regulator of CM contraction rate and their response to adrenergic stimuli. Loss of SLMAPs phenotypically mimics cardiac failure and crystallizes SLMAPs as predictive of dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moni Nader
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Ebtehal Alsolme
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shahd Alotaibi
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Rahmah Alsomali
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Dana Bakheet
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Nduna Dzimiri
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Baruscotti M, Bucchi A, Milanesi R, Paina M, Barbuti A, Gnecchi-Ruscone T, Bianco E, Vitali-Serdoz L, Cappato R, DiFrancesco D. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial Inappropriate Sinus Tachycardia. Eur Heart J 2019; 38:280-288. [PMID: 28182231 DOI: 10.1093/eurheartj/ehv582] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mirko Baruscotti
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Manuel Paina
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | | | - Elisabetta Bianco
- Cardiovascular Department, 'Ospedali Riuniti di Trieste', University Hospital, Trieste, Italy
| | | | | | - Dario DiFrancesco
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
26
|
Affiliation(s)
- Brian Olshansky
- Professor Emeritus, Cardiology, University of Iowa Hospitals, 200 Hawkins Drive, Iowa, IA, USA
- Mercy Hospital-North Iowa, 1000 4th St SW, Mason, IA, USA
| | - Renee M Sullivan
- Medical Director, Clinical development Services, Covance, 2501 McGavock Pike, Nashville, TN, USA
| |
Collapse
|
27
|
Canine and human sinoatrial node: differences and similarities in the structure, function, molecular profiles, and arrhythmia. J Vet Cardiol 2018; 22:2-19. [PMID: 30559056 DOI: 10.1016/j.jvc.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker in canine and human hearts. The SAN in both species has a unique three-dimensional heterogeneous structure characterized by small pacemaker myocytes enmeshed within fibrotic strands, which partially insulate the cells from aberrant atrial activation. The SAN pacemaker tissue expresses a unique signature of proteins and receptors that mediate SAN automaticity, ion channel currents, and cell-to-cell communication, which are predominantly similar in both species. Recent intramural optical mapping, integrated with structural and molecular studies, has revealed the existence of up to five specialized SAN conduction pathways that preferentially conduct electrical activation to atrial tissues. The intrinsic heart rate, intranodal leading pacemaker shifts, and changes in conduction in response to physiological and pathophysiological stimuli are similar. Structural and/or functional impairments due to cardiac diseases including heart failure cause SAN dysfunctions (SNDs) in both species. These dysfunctions are usually manifested as severe bradycardia, tachy-brady arrhythmias, and conduction abnormalities including exit block and SAN reentry, which could lead to atrial tachycardia and fibrillation, cardiac arrest, and heart failure. Pharmaceutical drugs and implantable pacemakers are only partially successful in managing SNDs, emphasizing a critical need to develop targeted mechanism-based therapies to treat SNDs. Because several structural and functional characteristics are similar between the canine and human SAN, research in these species may be mutually beneficial for developing novel treatment approaches. This review describes structural, functional, and molecular similarities and differences between the canine and human SAN, with special emphasis on arrhythmias and unique causal mechanisms of SND in diseased hearts.
Collapse
|
28
|
Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. Eur J Med Chem 2018; 154:253-266. [DOI: 10.1016/j.ejmech.2018.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
|
29
|
|
30
|
Lai YC, Li N, Lawrence W, Wang S, Levine A, Burchhardt DM, Pautler RG, Valderrábano M, Wehrens XH, Anderson AE. Myocardial remodeling and susceptibility to ventricular tachycardia in a model of chronic epilepsy. Epilepsia Open 2018; 3:213-223. [PMID: 29881800 PMCID: PMC5983128 DOI: 10.1002/epi4.12107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Sympathetic predominance and ventricular repolarization abnormalities represent epilepsy‐associated cardiac alterations and may underlie seizure‐induced ventricular arrhythmias. Myocardial ion channel and electrical remodeling have been described early in epilepsy development and may contribute to ventricular repolarization abnormalities and excitability. Using the pilocarpine‐induced acquired epilepsy model we sought to examine whether altered myocardial ion channel levels and electrophysiological changes also occur in animals with long‐standing epilepsy. Methods We examined myocardial adrenergic receptor and ion channel protein levels of epileptic and age‐matched sham rats (9–20 months old) using western blotting. Cardiac electrical properties were examined using optical mapping ex vivo and electrophysiology in vivo. We investigated the propensity for ventricular tachycardia (VT) and the effects of β‐adrenergic blockade on ventricular electrical properties and excitability in vivo. Results In animals with long‐standing epilepsy, we observed decreased myocardial voltage‐gated K+ channels Kv4.2 and Kv4.3, which are known to underlie early ventricular repolarization in rodents. Decreased β1 and increased α1A adrenergic receptor protein levels occurred in the myocardium of chronically epileptic animals consistent with elevated sympathetic tone. These animals exhibited many cardiac electrophysiological abnormalities, represented by longer QRS and corrected QT (QTc) intervals in vivo, slower conduction velocity ex vivo, and stimulation‐induced VT. Administration of a β‐adrenergic antagonist late in epilepsy was beneficial, as the therapy shortened the QTc interval and decreased stimulation‐induced VT. Significance Our findings demonstrate that myocardial ion channel remodeling and sympathetic predominance, risk factors for increased ventricular excitability and arrhythmias, persist in chronic epilepsy. The beneficial effects of β‐adrenergic antagonist treatment late in the course of epilepsy suggest that attenuating elevated sympathetic tone may represent a therapeutic target for ameliorating epilepsy‐associated cardiac morbidity.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Department of Pediatrics Baylor College of Medicine Houston Texas U.S.A
| | - Na Li
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - William Lawrence
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - Sufen Wang
- DeBakey Heart and Vascular Center Methodist Hospital Research Institute Houston Texas U.S.A
| | - Amber Levine
- Department of Neuroscience Baylor College of Medicine Houston Texas U.S.A
| | | | - Robia G Pautler
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - Miguel Valderrábano
- DeBakey Heart and Vascular Center Methodist Hospital Research Institute Houston Texas U.S.A
| | - Xander H Wehrens
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - Anne E Anderson
- Department of Pediatrics Baylor College of Medicine Houston Texas U.S.A.,Department of Neuroscience Baylor College of Medicine Houston Texas U.S.A.,Department of Neurology Baylor College of Medicine Houston Texas U.S.A
| |
Collapse
|
31
|
Yokoyama R, Kinoshita K, Hata Y, Abe M, Matsuoka K, Hirono K, Kano M, Nakazawa M, Ichida F, Nishida N, Tabata T. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessels 2018; 33:802-819. [DOI: 10.1007/s00380-018-1116-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023]
|
32
|
|
33
|
Mengesha HG, Tafesse TB, Bule MH. If Channel as an Emerging Therapeutic Target for Cardiovascular Diseases: A Review of Current Evidence and Controversies. Front Pharmacol 2017; 8:874. [PMID: 29225577 PMCID: PMC5705549 DOI: 10.3389/fphar.2017.00874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
In 2015, non-communicable diseases accounted for 39.5 million (70%) of the total 56.4 million deaths that occurred globally, of which 17.7 million (45%) were due to cardiovascular diseases. An elevated heart rate is considered to be one of the independent predictors and markers of future cardiovascular diseases. A variety of experimental and epidemiological studies have found that atherosclerosis, heart failure, coronary artery disease, stroke, and arrhythmia are linked to elevated heart rate. Although there are established drugs to reduce the heart rate, these drugs have undesirable side effects. Hence, the development of new drugs that selectively inhibit the heart rate is considered necessary. In the search for such drugs, almost four decades ago the If channel, also known as the “funny channel,” emerged as a novel site for the selective inhibition of heart rate. These If channels, with a mixed sodium and potassium inward current, have been identified in the sinoatrial node of the heart, which mediates the slow diastolic depolarization of the pacemaker of the spontaneous rhythmic cells. The hyperpolarization-activated cyclic nucleotide-gated (HCN) subfamily is primarily articulated in the heart and neurons that are encoded by a family of four genes (HCN1-4) and they identify the funny channel. Of these, HCN-4 is the principal protein in the sinoatrial node. Currently, funny channel inhibition is being targeted for the treatment and prevention of cardiovascular diseases such as atherosclerosis and stroke. A selective If channel inhibitor named ivabradine was discovered for clinical use in treating heart failure and coronary artery disease. However, inconsistencies regarding the clinical effects of ivabradine have been reported in the literature, suggesting the need for a rigorous analysis of the available evidence. The objective of this review is therefore to assess the current advances in targeting the If channel associated with ivabradine and related challenges.
Collapse
Affiliation(s)
- Hayelom G Mengesha
- Pharmacology and Toxicology Research Unit, School of Pharmacy, Mekelle University, Mekelle, Ethiopia.,College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Tadesse B Tafesse
- School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Mohammed H Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| |
Collapse
|
34
|
Gouveia PJ, Rosa S, Ricotti L, Abecasis B, Almeida HV, Monteiro L, Nunes J, Carvalho FS, Serra M, Luchkin S, Kholkin AL, Alves PM, Oliveira PJ, Carvalho R, Menciassi A, das Neves RP, Ferreira LS. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials 2017. [PMID: 28622605 DOI: 10.1016/j.biomaterials.2017.05.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of engineered cardiac tissue for high-throughput drug screening/toxicology assessment remains largely unexplored. Here we propose a scaffold that mimics aspects of cardiac extracellular matrix while preserving the contractility of cardiomyocytes. The scaffold is based on a poly(caprolactone) (PCL) nanofilm with magnetic properties (MNF, standing for magnetic nanofilm) coated with a layer of piezoelectric (PIEZO) microfibers of poly(vinylidene fluoride-trifluoroethylene) (MNF+PIEZO). The nanofilm creates a flexible support for cell contraction and the aligned PIEZO microfibers deposited on top of the nanofilm creates conditions for cell alignment and electrical stimulation of the seeded cells. Our results indicate that MNF+PIEZO scaffold promotes rat and human cardiac cell attachment and alignment, maintains the ratio of cell populations overtime, promotes cell-cell communication and metabolic maturation, and preserves cardiomyocyte (CM) contractility for at least 12 days. The engineered cardiac construct showed high toxicity against doxorubicin, a cardiotoxic molecule, and responded to compounds that modulate CM contraction such as epinephrine, propranolol and heptanol.
Collapse
Affiliation(s)
- P José Gouveia
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - S Rosa
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - B Abecasis
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - H V Almeida
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - L Monteiro
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - J Nunes
- Center for Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
| | - F Sofia Carvalho
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - M Serra
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - S Luchkin
- CICECO - Materials Institute of Aveiro & Physics Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A Leonidovitch Kholkin
- CICECO - Materials Institute of Aveiro & Physics Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - P Marques Alves
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - P Jorge Oliveira
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - R Carvalho
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - A Menciassi
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - R Pires das Neves
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - L Silva Ferreira
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
35
|
Barbuti A, Benzoni P, Campostrini G, Dell'Era P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 2016; 245:1145-1158. [DOI: 10.1002/dvdy.24455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Benzoni
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Giulia Campostrini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine; Università degli Studi di Brescia; Brescia Italy
| |
Collapse
|
36
|
Brewster AL, Marzec K, Hairston A, Ho M, Anderson AE, Lai YC. Early cardiac electrographic and molecular remodeling in a model of status epilepticus and acquired epilepsy. Epilepsia 2016; 57:1907-1915. [PMID: 27555091 DOI: 10.1111/epi.13516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES A myriad of acute and chronic cardiac alterations are associated with status epilepticus (SE) including increased sympathetic tone, rhythm and ventricular repolarization disturbances. Despite these observations, the molecular processes underlying SE-associated myocardial remodeling remain to be identified. Here we determined early SE-associated myocardial electrical and molecular alterations using a model of SE and acquired epilepsy. METHODS We performed electrocardiography (ECG) assessments in rats beginning at 2 weeks following kainate-induced SE, and calculated short-term variability (STV) of the corrected QT intervals (QTc) as a marker of ventricular stability. Using western blotting, we quantified myocardial β1-adrenergic receptors (β1-AR) and ventricular gap junction protein connexin 43 (Cx43) levels as makers of increased sympathetic tone. We determined the activation status of three kinases associated with sympathetic stimulation and their downstream ion channel targets: extracellular signal-regulated kinase (ERK), protein kinase A (PKA), Ca2+ /calmodulin-dependent protein kinase II (CamKII), hyperpolarization-activated cyclic nucleotide-gated channel subunit 2 (HCN2), and voltage-gated potassium channels 4.2 (Kv4.2 ). We investigated whether SE was associated with altered Ca2+ homeostasis by determining select Ca2+ -handling protein levels using western blotting. RESULTS Compared with the sham group, SE animals exhibited higher heart rate, longer QTc interval, and higher STV beginning at 2 weeks following SE. Concurrently, the myocardium of SE rats showed lower β1-AR and higher Cx43 protein levels, higher levels of phosphorylated ERK, PKA, and CamKII along with decreased HCN2 and Kv4.2 channel levels. In addition, the SE rats had altered proteins levels of Ca2+ -handling proteins, with decreased Na+ /Ca2+ exchanger-1 and increased calreticulin. SIGNIFICANCE SE triggers early molecular alterations in the myocardium consistent with increased sympathetic tone and altered Ca2+ homeostasis. These changes, coupled with early and persistent ECG abnormalities, suggest that the observed molecular alterations may contribute to SE-associated cardiac remodeling. Additional mechanistic studies are needed to determine potential causal roles.
Collapse
Affiliation(s)
- Amy L Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, U.S.A.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, U.S.A
| | - Kyle Marzec
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - Alexandria Hairston
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - Marvin Ho
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, U.S.A.,Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Yi-Chen Lai
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
37
|
Wilson CM, Roa JN, Cox GK, Tresguerres M, Farrell AP. Introducing a novel mechanism to control heart rate in the ancestral Pacific hagfish. ACTA ACUST UNITED AC 2016; 219:3227-3236. [PMID: 27510962 DOI: 10.1242/jeb.138198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
Although neural modulation of heart rate is well established among chordate animals, the Pacific hagfish (Eptatretus stoutii) lacks any cardiac innervation, yet it can increase its heart rate from the steady, depressed heart rate seen in prolonged anoxia to almost double its normal normoxic heart rate, an almost fourfold overall change during the 1-h recovery from anoxia. The present study sought mechanistic explanations for these regulatory changes in heart rate. We provide evidence for a bicarbonate-activated, soluble adenylyl cyclase (sAC)-dependent mechanism to control heart rate, a mechanism never previously implicated in chordate cardiac control.
Collapse
Affiliation(s)
- Christopher M Wilson
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Georgina K Cox
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.,Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
38
|
Pan X, Zhang Z, Huang YY, Zhao J, Wang L. Electrophysiological Effects of Dexmedetomidine on Sinoatrial Nodes of Rabbits. ACTA CARDIOLOGICA SINICA 2016; 31:543-9. [PMID: 27122920 DOI: 10.6515/acs20150424c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the electrophysiological effects of dexmedetomidine on pacemaker cells in sinoatrial nodes of rabbits. METHODS Healthy rabbits were anesthetized intravenously with sodium pentobarbital, and the hearts were quickly dissected and mounted in a tissue bath. Machine-pulled glass capillary microelectrodes which were connected to a high input impedance amplifier and impaled in dominant pacemaker cells. Thereafter, an intracellular microelectrode technique was used to record action potential. RESULTS The amplitude of action potential, velocity of diastolic (phase 4) depolarization, and rate of pacemaker firing in normal pacemaker cells in sinoatrial node were decreased by use of dexmedetomidine (0.5 ng/ml, 5 ng/ml, 50 ng/ml) in a concentration-dependent manner. Pretreatment with yohimbine (1 μM), did not alter the effects of dexmedetomidine (5 ng/ml) on sinoatrial node pacemaker cells. Pretreatment with CsCl (2 mmol/L), dexmedetomidine (5 ng/ml) decreased the amplitude of action potential, but had no significant effect on other parameters of action potential. CONCLUSIONS Dexmedetomidine exerts inhibitory electrophysiological effects on pacemaker cells in sinoatrial nodes of rabbits in a concentration-dependent manner, which may not be mediated by alpha 2-adrenoreceptor. KEY WORDS Action potential; Cardiology; Dexmedetomidine; Pacemaker activity; Sinoatrial node.
Collapse
Affiliation(s)
- Xia Pan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060
| | - Zhen Zhang
- Department of Anesthesiology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, Hubei Province
| | - Ya-Yi Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060
| | - Jing Zhao
- Department of Anesthesiology, Renmin Hospital of Shanxi Province, Xi'an 710068, Shanxi Province, China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060
| |
Collapse
|
39
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
40
|
Baruscotti M, Bianco E, Bucchi A, DiFrancesco D. Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If "funny" current. J Interv Card Electrophysiol 2016; 46:19-28. [PMID: 26781742 DOI: 10.1007/s10840-015-0097-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Together with the afferent branches of the autonomic nervous system, the sinoatrial node (SAN) forms a functional unit whose function is to fire rhythmic action potentials at a rate optimal for coping with the metabolic needs of the body. Dysfunctional behavior of this complex unit may thus result in SAN rhythm disorders. Among these disorders, there is the inappropriate sinus tachycardia (IST) which occurs when an unjustified fast SAN rate is present. METHODS We here present a critical review of the role of pacemaker f/HCN channels in cardiac rhythm generation and modulation and their involvement in IST. RESULTS Recent evidence demonstrates that a familial form of IST is associated with a gain-of-function mutation in the HCN4 pacemaker channel (R524Q) which confers an increased sensitivity to the second messenger cAMP, a key mediator in sympathetic modulation. CONCLUSIONS This finding is consistent with the general view that hypersympathetic tone is one of the causes of IST and introduces the novel concept of defective funny channel-dependent tachyarrhythmias.
Collapse
Affiliation(s)
- Mirko Baruscotti
- Department of Biosciences, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, via Celoria 26, 20133, Milano, Italy.
| | - Elisabetta Bianco
- Cardiovascular Department, "Ospedali Riuniti di Trieste", University Hospital, Trieste, Italy
| | - Annalisa Bucchi
- Department of Biosciences, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
41
|
Dorn T, Goedel A, Lam JT, Haas J, Tian Q, Herrmann F, Bundschu K, Dobreva G, Schiemann M, Dirschinger R, Guo Y, Kühl SJ, Sinnecker D, Lipp P, Laugwitz KL, Kühl M, Moretti A. Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells 2016; 33:1113-29. [PMID: 25524439 PMCID: PMC6750130 DOI: 10.1002/stem.1923] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
During cardiogenesis, most myocytes arise from cardiac progenitors expressing the transcription factors Isl1 and Nkx2-5. Here, we show that a direct repression of Isl1 by Nkx2-5 is necessary for proper development of the ventricular myocardial lineage. Overexpression of Nkx2-5 in mouse embryonic stem cells (ESCs) delayed specification of cardiac progenitors and inhibited expression of Isl1 and its downstream targets in Isl1(+) precursors. Embryos deficient for Nkx2-5 in the Isl1(+) lineage failed to downregulate Isl1 protein in cardiomyocytes of the heart tube. We demonstrated that Nkx2-5 directly binds to an Isl1 enhancer and represses Isl1 transcriptional activity. Furthermore, we showed that overexpression of Isl1 does not prevent cardiac differentiation of ESCs and in Xenopus laevis embryos. Instead, it leads to enhanced specification of cardiac progenitors, earlier cardiac differentiation, and increased cardiomyocyte number. Functional and molecular characterization of Isl1-overexpressing cardiomyocytes revealed higher beating frequencies in both ESC-derived contracting areas and Xenopus Isl1-gain-of-function hearts, which associated with upregulation of nodal-specific genes and downregulation of transcripts of working myocardium. Immunocytochemistry of cardiomyocyte lineage-specific markers demonstrated a reduction of ventricular cells and an increase of cells expressing the pacemaker channel Hcn4. Finally, optical action potential imaging of single cardiomyocytes combined with pharmacological approaches proved that Isl1 overexpression in ESCs resulted in normally electrophysiologically functional cells, highly enriched in the nodal subtype at the expense of the ventricular lineage. Our findings provide an Isl1/Nkx2-5-mediated mechanism that coordinately regulates the specification of cardiac progenitors toward the different myocardial lineages and ensures proper acquisition of myocyte subtype identity.
Collapse
Affiliation(s)
- Tatjana Dorn
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Heuermann RJ, Jaramillo TC, Ying SW, Suter BA, Lyman KA, Han Y, Lewis AS, Hampton TG, Shepherd GMG, Goldstein PA, Chetkovich DM. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis 2016; 85:81-92. [PMID: 26459112 PMCID: PMC4688217 DOI: 10.1016/j.nbd.2015.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022] Open
Abstract
Absence seizures occur in several types of human epilepsy and result from widespread, synchronous feedback between the cortex and thalamus that produces brief episodes of loss of consciousness. Genetic rodent models have been invaluable for investigating the pathophysiological basis of these seizures. Here, we identify tetratricopeptide-containing Rab8b-interacting protein (TRIP8b) knockout mice as a new model of absence epilepsy, featuring spontaneous spike-wave discharges on electroencephalography (EEG) that are the electrographic hallmark of absence seizures. TRIP8b is an auxiliary subunit of the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which have previously been implicated in the pathogenesis of absence seizures. In contrast to mice lacking the pore-forming HCN channel subunit HCN2, TRIP8b knockout mice exhibited normal cardiac and motor function and a less severe seizure phenotype. Evaluating the circuit that underlies absence seizures, we found that TRIP8b knockout mice had significantly reduced HCN channel expression and function in thalamic-projecting cortical layer 5b neurons and thalamic relay neurons, but preserved function in inhibitory neurons of the reticular thalamic nucleus. Our results expand the known roles of TRIP8b and provide new insight into the region-specific functions of TRIP8b and HCN channels in constraining cortico-thalamo-cortical excitability.
Collapse
Affiliation(s)
- Robert J Heuermann
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Thomas C Jaramillo
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Ave., Room A-1050, New York, New York 10021, USA.
| | - Benjamin A Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Alan S Lewis
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Thomas G Hampton
- Mouse Specifics, Inc., 2 Central Street, Level 1 Suite 1, Framingham, MA 01701, USA.
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Peter A Goldstein
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Ave., Room A-1050, New York, New York 10021, USA.
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
44
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D, Severi S. Cell-specific Dynamic Clamp analysis of the role of funny If current in cardiac pacemaking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:50-66. [PMID: 26718599 DOI: 10.1016/j.pbiomolbio.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
Abstract
We used the Dynamic Clamp technique for i) comparative validation of conflicting computational models of the hyperpolarization-activated funny current, If, and ii) quantification of the role of If in mediating autonomic modulation of heart rate. Experimental protocols based on the injection of a real-time recalculated synthetic If current in sinoatrial rabbit cells were developed. Preliminary results of experiments mimicking the autonomic modulation of If demonstrated the need for a customization procedure to compensate for cellular heterogeneity. For this reason, we used a cell-specific approach, scaling the maximal conductance of the injected current based on the cell's spontaneous firing rate. The pacemaking rate, which was significantly reduced after application of Ivabradine, was restored by the injection of synthetic current based on the Severi-DiFrancesco formulation, while the injection of synthetic current based on the Maltsev-Lakatta formulation did not produce any significant variation. A positive virtual shift of the If activation curve, mimicking the Isoprenaline effects, led to a significant increase in pacemaking rate (+17.3 ± 6.7%, p < 0.01), although of lower magnitude than that induced by real Isoprenaline (+45.0 ± 26.1%). Similarly, a negative virtual shift of the activation curve significantly lowered the pacemaking rate (-11.8 ± 1.9%, p < 0.001), as did the application of real Acetylcholine (-20.5 ± 5.1%). The Dynamic Clamp approach, applied to the If study in cardiomyocytes for the first time and rate-adapted to manage intercellular variability, indicated that: i) the quantitative description of the If current in the Severi-DiFrancesco model accurately reproduces the effects of the real current on rabbit sinoatrial cell pacemaking rate and ii) a significant portion (50-60%) of the physiological autonomic rate modulation is due to the shift of the If activation curve.
Collapse
Affiliation(s)
- E Ravagli
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - A Bucchi
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - C Bartolucci
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - M Paina
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - M Baruscotti
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - D DiFrancesco
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - S Severi
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy.
| |
Collapse
|
46
|
The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction. J Interv Card Electrophysiol 2015; 43:121-34. [PMID: 25863800 PMCID: PMC4486151 DOI: 10.1007/s10840-015-9998-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
The sinoatrial node (SAN) and the atrioventricular node (AVN) are the anatomical and functional regions of the heart which play critical roles in the generation and conduction of the electrical impulse. Their functions are ensured by peculiar structural cytological properties and specific collections of ion channels. Impairment of SAN and AVN activity is generally acquired,but in some cases familial inheritance has been established and therefore a genetic cause is involved. In recent years, combined efforts of clinical practice and experimental basic science studies have identified and characterized several causative gene mutations associated with the nodal syndromes. Channelopathies, i.e., diseases associated with defective ion channels, remain the major cause of genetically determined nodal arrhythmias; however, it is becoming increasingly evident that mutations in other classes of regulatory and structural proteins also have profound pathophysiological roles. In this review, we will present some aspects of the genetic identification of the molecular mechanism underlying both SAN and AVN dysfunctions with a particular focus on mutations of the Na, pacemaker (HCN), and Ca channels. Genetic defects in regulatory proteins and calcium-handling proteins will be also considered. In conclusion, the identification of the genetic defects associated with familial nodal dysfunction is an essential step for implementing an appropriate therapeutic treatment.
Collapse
|
47
|
Barbuti A, Robinson RB. Stem Cell–Derived Nodal-Like Cardiomyocytes as a Novel Pharmacologic Tool: Insights from Sinoatrial Node Development and Function. Pharmacol Rev 2015; 67:368-88. [DOI: 10.1124/pr.114.009597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
48
|
|
49
|
VERRIER RICHARDL, SILVA ANAF, BONATTI RODOLFO, BATATINHA JULIOA, NEARING BRUCED, LIU GONGXIN, RAJAMANI SRIDHARAN, ZENG DEWAN, BELARDINELLI LUIZ. Combined Actions of Ivabradine and Ranolazine Reduce Ventricular Rate During Atrial Fibrillation. J Cardiovasc Electrophysiol 2014; 26:329-35. [DOI: 10.1111/jce.12569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/09/2023]
Affiliation(s)
- RICHARD L. VERRIER
- Department of Medicine; Beth Israel Deaconess Medical Center
- Harvard Medical School; Boston Massachusetts USA
| | - ANA F.G. SILVA
- Department of Medicine; Beth Israel Deaconess Medical Center
- Faculdade de Medicina de Universidade de São Paulo; São Paulo Brazil
| | - RODOLFO BONATTI
- Department of Medicine; Beth Israel Deaconess Medical Center
- Faculdade de Medicina de Universidade de São Paulo; São Paulo Brazil
| | - JULIO A.P. BATATINHA
- Department of Medicine; Beth Israel Deaconess Medical Center
- Faculdade de Medicina de Universidade de São Paulo; São Paulo Brazil
| | - BRUCE D. NEARING
- Department of Medicine; Beth Israel Deaconess Medical Center
- Harvard Medical School; Boston Massachusetts USA
| | - GONGXIN LIU
- Gilead Sciences; Inc; Foster City California USA
| | | | - DEWAN ZENG
- Gilead Sciences; Inc; Foster City California USA
| | | |
Collapse
|
50
|
Verrier RL, Bonatti R, Silva AF, Batatinha JA, Nearing BD, Liu G, Rajamani S, Zeng D, Belardinelli L. If inhibition in the atrioventricular node by ivabradine causes rate-dependent slowing of conduction and reduces ventricular rate during atrial fibrillation. Heart Rhythm 2014; 11:2288-96. [DOI: 10.1016/j.hrthm.2014.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/09/2023]
|