1
|
Xu Q, Zhang X, Hao M, Dang X, Xu Q, Cyganek L, Akin I, Tang D, Liao B, Zhou X, Lan H. Esophageal Cancer-Related Gene-4 Contributes to Lipopolysaccharide-Induced Ion Channel Dysfunction in hiPSC-Derived Cardiomyocytes. J Inflamm Res 2024; 17:10183-10197. [PMID: 39649417 PMCID: PMC11624686 DOI: 10.2147/jir.s470828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024] Open
Abstract
Background and Purpose Esophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition, ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However, the exact mechanism is unknown. This study aimed to test our hypothesis that ECRG4 contributes to inflammation-induced ion channel dysfunctions in cardiomyocytes. Methods Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three donors were treated with lipopolysaccharide (LPS) to establish an endotoxin-induced inflammatory model. Immunostaining, real-time PCR, and patch-clamp techniques were used for the study. Results ECRG4 was detected in hiPSC-CMs at different differentiation time. LPS treatment increased ECRG4 expression in hiPSC-CMs. Knockdown of ECRG4 decreased the expression level of Toll-Like-Receptor 4 (TLR4, a LPS receptor) and its associated genes and inflammatory cytokines. Furthermore, ECRG4 knockdown shortened the action potential duration (APD) and intercepted LPS-induced APD prolongation by enhancing ISK (small conductance calcium-activated K channel current) and attenuating INCX (Na/Ca exchanger current). Overexpression of ECRG4 mimicked LPS effects on ISK and INCX, which could be prevented by NFκB signaling blockers. Conclusion This study demonstrated that LPS effects on cardiac ion channel function were mediated by the upregulation of ECRG4, which affects NFκB signaling. Our findings support the roles of ECRG4 in inflammatory responses and the ion channel dysfunctions induced by LPS challenge.
Collapse
Affiliation(s)
- Qiang Xu
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Xiangjie Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maolin Hao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xitong Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - QianQian Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Dan Tang
- The First People’s Hospital of Longquanyi District, Chengdu/West China Longquan Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Kahnert K, Soattin L, Mills RW, Wilson C, Maurya S, Sorrentino A, Al-Othman S, Tikhomirov R, van de Vegte YJ, Hansen FB, Achter J, Hu W, Zi M, Smith M, van der Harst P, Olesen MS, Boisen Olsen K, Banner J, Jensen THL, Zhang H, Boyett MR, D’Souza A, Lundby A. Proteomics couples electrical remodelling to inflammation in a murine model of heart failure with sinus node dysfunction. Cardiovasc Res 2024; 120:927-942. [PMID: 38661182 PMCID: PMC11218694 DOI: 10.1093/cvr/cvae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/26/2024] Open
Abstract
AIMS In patients with heart failure (HF), concomitant sinus node dysfunction (SND) is an important predictor of mortality, yet its molecular underpinnings are poorly understood. Using proteomics, this study aimed to dissect the protein and phosphorylation remodelling within the sinus node in an animal model of HF with concurrent SND. METHODS AND RESULTS We acquired deep sinus node proteomes and phosphoproteomes in mice with heart failure and SND and report extensive remodelling. Intersecting the measured (phospho)proteome changes with human genomics pharmacovigilance data, highlighted downregulated proteins involved in electrical activity such as the pacemaker ion channel, Hcn4. We confirmed the importance of ion channel downregulation for sinus node physiology using computer modelling. Guided by the proteomics data, we hypothesized that an inflammatory response may drive the electrophysiological remodeling underlying SND in heart failure. In support of this, experimentally induced inflammation downregulated Hcn4 and slowed pacemaking in the isolated sinus node. From the proteomics data we identified proinflammatory cytokine-like protein galectin-3 as a potential target to mitigate the effect. Indeed, in vivo suppression of galectin-3 in the animal model of heart failure prevented SND. CONCLUSION Collectively, we outline the protein and phosphorylation remodeling of SND in heart failure, we highlight a role for inflammation in electrophysiological remodelling of the sinus node, and we present galectin-3 signalling as a target to ameliorate SND in heart failure.
Collapse
Affiliation(s)
- Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Luca Soattin
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Robert W Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Sami Al-Othman
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Roman Tikhomirov
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Finn B Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Jonathan Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Wei Hu
- Department of Physics & Astronomy, Biological Physics Group, University of Manchester, Manchester, UK
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands
| | - Morten S Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Kristine Boisen Olsen
- Department of Forensic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jytte Banner
- Department of Forensic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Henggui Zhang
- Department of Physics & Astronomy, Biological Physics Group, University of Manchester, Manchester, UK
| | - Mark R Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), 72 Du Cane Road, London W12 0NN, UK
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
3
|
Ren H, Wang Z, Li Y, Liu J. Association of lipopolysaccharide with new-onset atrial fibrillation in ST-segment elevation myocardial infarction. Heliyon 2024; 10:e27552. [PMID: 38496897 PMCID: PMC10944234 DOI: 10.1016/j.heliyon.2024.e27552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Background Lipopolysaccharide (LPS) is related to various cardiovascular diseases. However, the relationship between LPS and new-onset atrial fibrillation (NOAF) after ST-segment elevation myocardial infarction (STEMI) has yet to be elucidated. This study aimed to evaluate the impact of LPS on NOAF in STEMI patients. Methods This was a single-center retrospective observational study including 806 patients diagnosed with STEMI. LPS levels were determined using a commercial ELISA kit. NOAF was characterized by postadmission AF with the absence of any prior history of AF. Results A total of 806 participants were enrolled, with 752 individuals in the non-AF group (93.3%) and 54 individuals in the AF group (6.7%). Multivariable analysis showed that LPS (OR = 1.047; 95% CI: 1.029-1.065, P < 0.001) was an independent risk marker for NOAF. The analysis of the ROC demonstrated that LPS had an AUC of 0.717 in predicting NOAF. When LPS was added to the conventional model, the ability of the risk model to discriminate and reclassify NOAF was improved significantly (IDI 0.053, P = 0.001; NRI 0.510, P < 0.001). Conclusion Elevated LPS is associated with an increased risk of NOAF in STEMI patients. The integration of LPS can improve the ability to predict NOAF in STEMI patients.
Collapse
Affiliation(s)
- Honglong Ren
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Zhonghua Wang
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Yong Li
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Jinqi Liu
- Department of Cardiology, Huai'an Second People's Hospital, 223001, Jiangsu, China
| |
Collapse
|
4
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
5
|
Gawali B, Sridharan V, Krager KJ, Boerma M, Pawar SA. TLR4-A Pertinent Player in Radiation-Induced Heart Disease? Genes (Basel) 2023; 14:genes14051002. [PMID: 37239362 DOI: 10.3390/genes14051002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The heart is one of the organs that is sensitive to developing delayed adverse effects of ionizing radiation (IR) exposure. Radiation-induced heart disease (RIHD) occurs in cancer patients and cancer survivors, as a side effect of radiation therapy of the chest, with manifestation several years post-radiotherapy. Moreover, the continued threat of nuclear bombs or terrorist attacks puts deployed military service members at risk of exposure to total or partial body irradiation. Individuals who survive acute injury from IR will experience delayed adverse effects that include fibrosis and chronic dysfunction of organ systems such as the heart within months to years after radiation exposure. Toll-like receptor 4 (TLR4) is an innate immune receptor that is implicated in several cardiovascular diseases. Studies in preclinical models have established the role of TLR4 as a driver of inflammation and associated cardiac fibrosis and dysfunction using transgenic models. This review explores the relevance of the TLR4 signaling pathway in radiation-induced inflammation and oxidative stress in acute as well as late effects on the heart tissue and the potential for the development of TLR4 inhibitors as a therapeutic target to treat or alleviate RIHD.
Collapse
Affiliation(s)
- Basveshwar Gawali
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kimberly J Krager
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Snehalata A Pawar
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Jiang X, Ning P, Yan F, Wang J, Cai W, Yang F. Impact of myeloid differentiation protein 1 on cardiovascular disease. Biomed Pharmacother 2023; 157:114000. [PMID: 36379121 DOI: 10.1016/j.biopha.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of disability and mortality worldwide and a significant global burden. Many lines of evidence suggest complex remodeling responses to cardiovascular disease, such as myocardial ischemia, hypertension and valve disease, which lead to poor clinical outcomes, including heart failure, arrhythmia and sudden cardiac death (SCD). The mechanisms underlying cardiac remodeling are closely related to reactive oxygen species (ROS) and inflammation. Myeloid differentiation protein 1 (MD1) is a secreted glycoprotein known as lymphocyte antigen 86. The complex of MD1 and radioprotective 105 (RP105) is an important regulator of inflammation and is involved in the modulation of vascular remodeling and atherosclerotic plaque development. A recent study suggested that the expression of MD1 in hypertrophic cardiomyopathy (HCM) patients is decreased compared with that in donor hearts. Therefore, MD1 may play an important role in the pathological processes of cardiovascular disease and have potential clinical value. Here, this review aims to discuss the current knowledge regarding the role of MD1 in the regulation of cardiac pathophysiology.
Collapse
Affiliation(s)
- Xiaobo Jiang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Ning
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Fang Yan
- Geriatric Department, Chengdu Fifth People's Hospital, Chengdu 611137, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Jianfeng Wang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Cai
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Yang
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| |
Collapse
|
7
|
Vaez H, Soraya H, Garjani A, Gholikhani T. Toll-Like Receptor 4 (TLR4) and AMPK Relevance in Cardiovascular Disease. Adv Pharm Bull 2023; 13:36-47. [PMID: 36721803 PMCID: PMC9871286 DOI: 10.34172/apb.2023.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.
Collapse
Affiliation(s)
- Haleh Vaez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Author: Haleh Vaez, Tel:+984133344798, Fax:+984133344798,
| | - Hamid Soraya
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Nanora Pharmaceuticals Ltd, Tabriz, Iran
| |
Collapse
|
8
|
Fender AC, Dobrev D. A Gut Feeling: Lipopolysaccharide Links Gut Dysbiosis With Inflammatory Atrial Cardiomyopathy, Obesity, and Atrial Fibrillation. Can J Cardiol 2022; 38:1976-1978. [PMID: 36183911 DOI: 10.1016/j.cjca.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine and Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Bayer AL, Alcaide P. MyD88: At the heart of inflammatory signaling and cardiovascular disease. J Mol Cell Cardiol 2021; 161:75-85. [PMID: 34371036 PMCID: PMC8629847 DOI: 10.1016/j.yjmcc.2021.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide and is associated with systemic inflammation. In depth study of the cell-specific signaling mechanisms mediating the inflammatory response is vital to improving anti-inflammatory therapies that reduce mortality and morbidity. Cellular damage in the cardiovascular system results in the release of damage associated molecular patterns (DAMPs), also known as "alarmins," which activate myeloid cells through the adaptor protein myeloid differentiation primary response 88 (MyD88). MyD88 is broadly expressed in most cell types of the immune and cardiovascular systems, and its role often differs in a cardiovascular disease context and cell specific manner. Herein we review what is known about MyD88 in the setting of a variety of cardiovascular diseases, discussing cell specific functions and the relative contributions of MyD88-dependent vs. independent alarmin triggered inflammatory signaling. The widespread involvement of these pathways in cardiovascular disease, and their largely unexplored complexity, sets the stage for future in depth mechanistic studies that may place MyD88 in both immune and non-immune cell types as an attractive target for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine. 136 Harrison Ave, Boston, MA 02111, United States of America.
| |
Collapse
|
10
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
11
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
12
|
Zayas-Arrabal J, Alquiza A, Tuncay E, Turan B, Gallego M, Casis O. Molecular and Electrophysiological Role of Diabetes-Associated Circulating Inflammatory Factors in Cardiac Arrhythmia Remodeling in a Metabolic-Induced Model of Type 2 Diabetic Rat. Int J Mol Sci 2021; 22:ijms22136827. [PMID: 34202017 PMCID: PMC8268936 DOI: 10.3390/ijms22136827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Diabetic patients have prolonged cardiac repolarization and higher risk of arrhythmia. Besides, diabetes activates the innate immune system, resulting in higher levels of plasmatic cytokines, which are described to prolong ventricular repolarization. Methods: We characterize a metabolic model of type 2 diabetes (T2D) with prolonged cardiac repolarization. Sprague-Dawley rats were fed on a high-fat diet (45% Kcal from fat) for 6 weeks, and a low dose of streptozotozin intraperitoneally injected at week 2. Body weight and fasting blood glucose were measured and electrocardiograms of conscious animals were recorded weekly. Plasmatic lipid profile, insulin, cytokines, and arrhythmia susceptibility were determined at the end of the experimental period. Outward K+ currents and action potentials were recorded in isolated ventricular myocytes by patch-clamp. Results: T2D animals showed insulin resistance, hyperglycemia, and elevated levels of plasma cholesterol, triglycerides, TNFα, and IL-1b. They also developed bradycardia and prolonged QTc-interval duration that resulted in increased susceptibility to severe ventricular tachycardia under cardiac challenge. Action potential duration (APD) was prolonged in control cardiomyocytes incubated 24 h with plasma isolated from diabetic rats. However, adding TNFα and IL-1b receptor blockers to the serum of diabetic animals prevented the increased APD. Conclusions: The elevation of the circulating levels of TNFα and IL-1b are responsible for impaired ventricular repolarization and higher susceptibility to cardiac arrhythmia in our metabolic model of T2D.
Collapse
Affiliation(s)
- Julian Zayas-Arrabal
- Departament of Physiology, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (J.Z.-A.); (A.A.); (M.G.)
| | - Amaia Alquiza
- Departament of Physiology, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (J.Z.-A.); (A.A.); (M.G.)
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, 06100 Ankara, Turkey;
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, 06510 Ankara, Turkey;
| | - Monica Gallego
- Departament of Physiology, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (J.Z.-A.); (A.A.); (M.G.)
| | - Oscar Casis
- Departament of Physiology, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (J.Z.-A.); (A.A.); (M.G.)
- Correspondence: ; Tel.: +34-945013033
| |
Collapse
|
13
|
Yang F, Jiang X, Cao H, Shuai W, Zhang L, Wang G, Quan D, Jiang X. Daphnetin Preconditioning Decreases Cardiac Injury and Susceptibility to Ventricular Arrhythmia following Ischaemia-Reperfusion through the TLR4/MyD88/NF-Κb Signalling Pathway. Pharmacology 2021; 106:369-383. [PMID: 33902056 DOI: 10.1159/000513631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Daphnetin (7,8-dihydroxycoumarin, DAP) exhibits various bioactivities, such as anti-inflammatory and antioxidant activities. However, the role of DAP in myocardial ischaemia/reperfusion (I/R) injury and I/R-related arrhythmia is still uncertain. This study aimed to investigate the mechanisms underlying the effects of DAP on myocardial I/R injury and electrophysiological properties in vivo and in vitro. METHODS Myocardial infarct size was measured by triphenyltetrazolium chloride staining. Cardiac function was assessed by echocardiographic and haemodynamic analyses. The levels of creatine kinase-MB, lactate dehydrogenase, malondialdehyde, superoxide dismutase, interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-α) were detected using commercial kits. Apoptosis was measured by terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labelling staining and flow cytometry. The viability of H9c2 cells was determined by the Cell Counting Kit-8 assay. In vitro, the levels of IL-6 and TNF-α were measured by quantitative PCR. The expression levels of proteins associated with apoptosis, inflammation, and the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signalling pathway were detected by Western blot analysis. The RR, PR, QRS, and QTc intervals were assessed by surface ECG. The 90% action potential duration (APD90), threshold of APD alternans, and ventricular tachycardia inducibility were measured by the Langendorff perfusion technique. RESULTS DAP preconditioning decreased myocardial I/R injury and hypoxia/reoxygenation (H/R) injury in cells. DAP preconditioning improved cardiac function after myocardial I/R injury. DAP preconditioning also suppressed apoptosis, attenuated oxidative stress, and inhibited inflammatory responses in vivo and in vitro. Furthermore, DAP preconditioning decreased the susceptibility to ventricular arrhythmia after myocardial I/R. Finally, DAP preconditioning inhibited the expression of TLR4, MyD88, and phosphorylated NF-κB (p-NF-κB)/P65 in mice subjected to I/R and cells subjected to H/R. CONCLUSIONS DAP preconditioning protected against myocardial I/R injury and decreased susceptibility to ventricular arrhythmia by inhibiting the TLR4/MyD88/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongyi Cao
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lijun Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
14
|
Lin FJ, Li SJ, Lu YY, Wu WS, Chen YC, Chen SA, Chen YJ. Toll-like receptor 4 activation modulates pericardium-myocardium interactions in lipopolysaccharide-induced atrial arrhythmogenesis. Europace 2021; 23:1837-1846. [PMID: 33837408 DOI: 10.1093/europace/euab073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Inflammation plays a role in the pathogenesis of atrial fibrillation (AF). Pericarditis enhanced atrial arrhythmogenesis, but the role of the pericardium remains unclear in AF. Activation of the toll-like receptor 4 (TLR4) by binding to lipopolysaccharide (LPS) promotes cardiac electrical remodelling. In this study, we hypothesized that pericarditis may induce atrial arrhythmogenesis via pericardium-myocardium interactions by TLR4 signalling. METHODS AND RESULTS Pericarditis was induced in rabbits by injecting LPS (1-2 mg/kg) into the pericardium. Conventional microelectrodes were used to record the action potentials of left atrial (LA) posterior walls (LAPWs) and LA appendages (LAAs) with and without attached pericardium in the control or pericarditis-induced rabbits. Cytokine array was used to measure the expression levels of proinflammatory cytokines in control and LPS-treated pericardium. Compared with the controls, the LPS-treated pericardium had higher expressions of IL-1α, IL-8, and MIP-1β. Rapid atrial pacing-induced burst firing in LPS-treated LAPWs and LAAs, and in control LAPWs (but not in LAAs). The incidence of pacing-induced spontaneous activity and burst firing was increased by LPS-treated pericardium but was attenuated by the control pericardium. Moreover, burst firing induced by LPS-treated pericardium was blocked upon administration of the TLR4 inhibitor, TAK-242 (100 ng/mL), ryanodine receptor inhibitor (ryanodine, 3 μM), or calmodulin kinase II inhibitor (KN-93, 1 μM). CONCLUSIONS Healthy and inflamed pericardium differently modulate LPS-induced atrial arrhythmogenesis. Targeting pericardium via TLR4 signalling may be a novel therapeutic strategy for AF.
Collapse
Affiliation(s)
- Fong-Jhih Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University Taipei, Taipei Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Shiann Wu
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yao-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Jakovac H. COVID-19 and hypertension: is the HSP60 culprit for the severe course and worse outcome? Am J Physiol Heart Circ Physiol 2020; 319:H793-H796. [PMID: 32886002 PMCID: PMC7516379 DOI: 10.1152/ajpheart.00506.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 60-kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis ensuring thus sufficient aerobic energy production. In pathological conditions, HSP60 can be translocated from the mitochondria and excreted from the cell. In turn, the extracellular HSP60 has a strong ability to trigger and enhance inflammatory response with marked proinflammatory cytokine induction, which is mainly mediated by Toll-like receptor binding. Previous studies have found increased circulating levels of HSP60 in hypertensive patients, as well as enhanced HSP60 expression and membrane translocation in the hypertrophic myocardium. These observations are of particular interest, since they could provide a possible pathophysiological explanation of the severe course and worse outcome of severe acute respiratory syndrome coronavirus 2 infection in hypertensive patients, repeatedly reported during the recent coronavirus disease 2019 (COVID-19) pandemic and related to hyperinflammatory response and cytokine storm development during the third phase of the disease. In this regard, pharmacological inhibition of HSP60 could attract attention to potentially ameliorate inappropriate inflammatory reaction in severe COVID-19 patients. Among HSP60 antagonizing drugs, mizoribine is the most intriguing, since it is clinically approved and exerts antiviral activity. However, this topic requires to be further scrutinized.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Medical Faculty, Department of Physiology and Immunology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
16
|
Jaén RI, Val-Blasco A, Prieto P, Gil-Fernández M, Smani T, López-Sendón JL, Delgado C, Boscá L, Fernández-Velasco M. Innate Immune Receptors, Key Actors in Cardiovascular Diseases. JACC Basic Transl Sci 2020; 5:735-749. [PMID: 32760860 PMCID: PMC7393405 DOI: 10.1016/j.jacbts.2020.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the industrialized world. Most CVDs are associated with increased inflammation that arises mainly from innate immune system activation related to cardiac damage. Sustained activation of the innate immune system frequently results in maladaptive inflammatory responses that promote cardiovascular dysfunction and remodeling. Much research has focused on determining whether some mediators of the innate immune system are potential targets for CVD therapy. The innate immune system has specific receptors-termed pattern recognition receptors (PRRs)-that not only recognize pathogen-associated molecular patterns, but also sense danger-associated molecular signals. Activation of PRRs triggers the inflammatory response in different physiological systems, including the cardiovascular system. The classic PRRs, toll-like receptors (TLRs), and the more recently discovered nucleotide-binding oligomerization domain-like receptors (NLRs), have been recently proposed as key partners in the progression of several CVDs (e.g., atherosclerosis and heart failure). The present review discusses the key findings related to the involvement of TLRs and NLRs in the progression of several vascular and cardiac diseases, with a focus on whether some NLR subtypes (nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing receptor 3 and nucleotide-binding oligomerization domain-containing protein 1) can be candidates for the development of new therapeutic strategies for several CVDs.
Collapse
Key Words
- AMI, acute myocardial infarction
- CARD, caspase activation and recruitment domain
- CVD, cardiovascular disease
- Ca2+, calcium ion
- DAMPs, danger-associated molecular patterns
- DAP, D-glutamyl-meso-diaminopimelic acid
- ER, endoplasmic reticulum
- HF, heart failure
- I/R, ischemia/reperfusion
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells
- NLR, nucleotide-binding oligomerization domain-like receptors
- NLRP, nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing receptor
- NLRP3
- NOD, Nucleotide-binding oligomerization domain-containing protein
- NOD1
- PAMP, pathogen-associated molecular pattern
- ROS, reactive oxygen species
- SR, sarcoplasmic reticulum
- TLR, toll-like receptor
- cardiovascular disease
- innate immune system
- nucleotide-binding oligomerization domain-like receptors
- toll-like receptors
Collapse
Affiliation(s)
- Rafael I. Jaén
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | - Almudena Val-Blasco
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Patricia Prieto
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Pharmacology, Pharmacognosy and Botany department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Dr. Patricia Prieto, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain. @IIBmCSICUAM
| | - Marta Gil-Fernández
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Tarik Smani
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - José Luis López-Sendón
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Servicio de Cardiología, Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Delgado
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | - Lisardo Boscá
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | - María Fernández-Velasco
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Address for correspondence: Dr. María Fernández-Velasco, Instituto de Investigación Hospital la Paz, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain. @IdipazScience@CIBER_CV@Mfvlorenzo
| |
Collapse
|
17
|
Ferenčić A, Cuculić D, Stemberga V, Šešo B, Arbanas S, Jakovac H. Left ventricular hypertrophy is associated with overexpression of HSP60, TLR2, and TLR4 in the myocardium. Scand J Clin Lab Invest 2020; 80:236-246. [PMID: 32057259 DOI: 10.1080/00365513.2020.1725977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Left ventricular hypertrophy is a common adaptive response to increased cardiac workload. Cardiomyocytes growth and increase in contractile force are conditioned by sufficient energy production, which implies appropriate mitochondrial function. The 60 kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis, but when translocates from mitochondria, it can also act as a potent inflammatory mediator binding to toll-like receptors (TLRs). In this study, we aimed to compare the expression pattern of HSP60, TLR2, and TLR4 in hypertrophic vs non-hypertrophic, normal human myocardium. We further examined whether HSP60 in situ binds to TLRs in hypertrophic myocardial tissue. In addition, expression of activated downstream targets of TLR 2/4 pathways was also evaluated.For this purpose, immunohistochemical expression analyses were performed on myocardial tissue samples obtained during the autopsy of human subjects in which left ventricular hypertrophy was the only cardiopathological finding and had died from sudden cardiac death, as well as from the subjects without any cardiac pathology, that died by unnatural death (accident or suicide). Double immunofluorescence was used to examine HSP60 translocation, while proximity ligation assay (PLA) was performed to assess HSP60 and TLRs interactions.Hypertrophic myocardium showed significantly higher expression of HSP60, TLR2, and TLR4 compared to normal myocardium. Furthermore, in hypertrophic cardiomyocytes, we found membrane translocation of HSP60 and signs of HSP60/TLR interactions.Conclusion: The obtained data point to an important supportive role of HSP60 in adaptive cardiomyocytes growth, while concomitant induction of TLR2 and TLR4 candidates HSP60-TLRs interactions as an early events during pathogenesis of secondary complications consequently to the left ventricular hypertrophy.
Collapse
Affiliation(s)
- Antun Ferenčić
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Dražen Cuculić
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Valter Stemberga
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Bernard Šešo
- Department of Clinical, Health and Organisational Psychology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Silvia Arbanas
- Department of Forensic Medicine and Criminalistics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
18
|
Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 2020; 874:172975. [PMID: 32017939 DOI: 10.1016/j.ejphar.2020.172975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Toll-like receptor 4 (TLR4) is expressed in a wide variety of cells and is the central component of the mammalian innate immune system. Since its discovery in 1997, TLR4 has been assigned an ever-increasing number of functions that extend from pathogen recognition to tissue damage identification and promotion of the intrinsic "damage repair response" in pain, intestinal, respiratory and vascular disorders. Precisely, the finding of conserved sequence homology among species along with the molecular and functional characterisation of the TLR4 gene enabled researchers to envisage a common operating system in the activation of innate immunity and the initiation of plastic changes at the onset of chronic pain. Malfunctioning in other conditions was conceived in parallel. In this respect, "pivot" proteins and pathway redundancy are not just evolutionary leftovers but essential for normal functioning or cell survival. Indeed, at present, TLR4 single nucleotide polymorphisms (SNP) and their association with certain dysfunctions and diseases are being confirmed in different pools of patients. However, despite its ability to trigger pathogen infection or alternatively tissue injury communications to immune system, TLR4 targeting might not be considered a panacea. This review article represents a compilation of what we know about TLR4 from clinics and basic research on the 20th anniversary of its discovery. Understanding how to fine-tune the interaction between TLR4 and its specific ligands may lead in the next decades to the development of promising new treatments, reducing polypharmacy and probably having an impact on drug use in numerous pathologies.
Collapse
Affiliation(s)
- Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - David Pascual
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain.
| |
Collapse
|
19
|
Shuai W, Kong B, Fu H, Jiang X, Huang H. The effect of MD1 on potassium and L-type calcium current of cardiomyocytes from high-fat diet mice. Channels (Austin) 2020; 14:181-189. [PMID: 32491968 PMCID: PMC7515570 DOI: 10.1080/19336950.2020.1772628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Myeloid differentiation protein 1 (MD1) is exerted an anti-arrhythmic effect in obese mice. Therefore, we sought to clarify whether MD1 can alter the electrophysiological remodeling of cardiac myocytes from obese mice by regulating voltage-gated potassium current and calcium current. MD1 knock-out (KO) and wild type (WT) mice were given a high-fat diet (HFD) for 20 weeks, starting at the age of 6 weeks. The potential electrophysiological mechanisms were estimated by whole-cell patch-clamp and molecular analysis. After 20-week HFD feeding, action potential duration (APD) from left ventricular myocytes of MD1-KO mice revealed APD20, APD50, and APD90 were profoundly enlarged. Furthermore, HFD mice showed a decrease in the fast transient outward potassium currents (Ito,f), slowly inactivating potassium current (IK, slow), and inward rectifier potassium current (IK1). Besides, HFD-fed mice showed that the current density of ICaL was significantly lower, and the haft inactivation voltage was markedly shifted right. These HFD induced above adverse effects were further exacerbated in KO mice. The mRNA expression of potassium ion channels (Kv4.2, Kv4.3, Kv2.1, Kv1.5, and Kir2.1) and calcium ion channel (Cav1.2) was markedly decreased in MD1-KO HFD-fed mice. MD1 deletion led to down-regulated potassium currents and slowed inactivation of L-type calcium channel in an obese mice model.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| |
Collapse
|
20
|
Mesquita FCP, Arantes PC, Kasai-Brunswick TH, Araujo DS, Gubert F, Monnerat G, Silva Dos Santos D, Neiman G, Leitão IC, Barbosa RAQ, Coutinho JL, Vaz IM, Dos Santos MN, Borgonovo T, Cruz FES, Miriuka S, Medei EH, Campos de Carvalho AC, Carvalho AB. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep 2019; 9:19203. [PMID: 31844156 PMCID: PMC6915575 DOI: 10.1038/s41598-019-55837-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.
Collapse
Affiliation(s)
- Fernanda C P Mesquita
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo C Arantes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tais H Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Dayana S Araujo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco F, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gustavo Monnerat
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Danúbia Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gabriel Neiman
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Isabela C Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jorge L Coutinho
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Isadora M Vaz
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Marcus N Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tamara Borgonovo
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Fernando E S Cruz
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Santiago Miriuka
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Emiliano H Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
21
|
Baksa B, Kovács A, Bayasgalan T, Szentesi P, Kőszeghy Á, Szücs P, Pál B. Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus. Cell Mol Life Sci 2019; 76:2799-2815. [PMID: 30734834 PMCID: PMC6588655 DOI: 10.1007/s00018-019-03025-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
The pedunculopontine nucleus (PPN) is a part of the reticular activating system which is composed of cholinergic, glutamatergic and GABAergic neurons. Early electrophysiological studies characterized and grouped PPN neurons based on certain functional properties (i.e., the presence or absence of the A-current, spike latency, and low threshold spikes). Although other electrophysiological characteristics of these neurons were also described (as high threshold membrane potential oscillations, great differences in spontaneous firing rate and the presence or absence of the M-current), systematic assessment of these properties and correlation of them with morphological markers are still missing. In this work, we conducted electrophysiological experiments on brain slices of genetically identified cholinergic neurons in the PPN. Electrophysiological properties were compared with rostrocaudal location of the neuronal soma and selected morphometric features obtained with post hoc reconstruction. We found that functional subgroups had different proportions in the rostral and caudal subregions of the nucleus. Neurons with A-current can be divided to early-firing and late-firing neurons, where the latter type was found exclusively in the caudal subregion. Similar to this, different parameters of high threshold membrane potential oscillations also showed characteristic rostrocaudal distribution. Furthermore, based on our data, we propose that high threshold oscillations rather emerge from neuronal somata and not from the proximal dendrites. In summary, we demonstrated the existence and spatial distribution of functional subgroups of genetically identified PPN cholinergic neurons, which are in accordance with differences found in projection and in vivo functional findings of the subregions. Being aware of functional differences of PPN subregions will help the design and analysis of experiments using genetically encoded opto- and chemogenetic markers for in vivo experiments.
Collapse
Affiliation(s)
- B Baksa
- Department of Physiology, University of Debrecen, Faculty of Medicine, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - A Kovács
- Department of Physiology, University of Debrecen, Faculty of Medicine, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - T Bayasgalan
- Department of Physiology, University of Debrecen, Faculty of Medicine, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - P Szentesi
- Department of Physiology, University of Debrecen, Faculty of Medicine, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - Á Kőszeghy
- Department of Physiology, University of Debrecen, Faculty of Medicine, Nagyerdei krt 98, Debrecen, 4012, Hungary
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - P Szücs
- Department of Anatomy, Histology and Embriology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Balázs Pál
- Department of Physiology, University of Debrecen, Faculty of Medicine, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
22
|
Kyo M, Hosokawa K, Ohshimo S, Kida Y, Tanabe Y, Ota K, Shime N. High serum potassium level is associated with successful electrical cardioversion for new-onset atrial fibrillation in the intensive care unit: A retrospective observational study. Anaesth Intensive Care 2019; 47:52-59. [PMID: 30864476 DOI: 10.1177/0310057x18811815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrical cardioversion (ECV) is a potentially life-saving treatment for haemodynamically unstable new-onset atrial fibrillation (AF); however, its efficacy is unsatisfactory. We aimed to elucidate the factors associated with successful ECV and prognosis in patients with AF. This retrospective observational study was conducted in two mixed intensive care units (ICUs) in a university hospital. Patients with new-onset AF who received ECV in the ICU were enrolled. We defined an ECV session as consecutive shocks within 15 minutes. The success of ECV was evaluated five minutes after the session. We analysed the factors associated with successful ECV and ICU mortality. Eighty-five AF patients who received ECV were included. ECV was successful in 41 (48%) patients, and 11 patients (13%) maintained sinus rhythm until ICU discharge. A serum potassium level ≥3.8 mol/L was independently associated with successful ECV in multivariate analysis (odds ratio (OR), 3.13; 95% confidence interval (CI), 1.07-9.11; p = 0.04). Maintenance of sinus rhythm until ICU discharge was significantly associated with ICU survival (OR 9.35; 95% CI 1.02-85.78, p = 0.048). ECV was successful in 48% of patients with new-onset AF developed in the ICU. A serum potassium level ≥3.8 mol/L was independently associated with successful ECV, and sinus rhythm maintained until ICU discharge was independently associated with ICU survival. These results suggested that maintaining a high serum potassium level may be important when considering the effectiveness of ECV for AF in the ICU.
Collapse
Affiliation(s)
- Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Koji Hosokawa
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshiko Kida
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuko Tanabe
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
23
|
Gao X, Gao S, Guan Y, Huang L, Huang J, Lin L, Liu Y, Zhao H, Huang B, Yuan T, Liu Y, Liang D, Zhang Y, Ma X, Li L, Li J, Zhou D, Shi D, Xu L, Chen YH. Toll-like receptor 3 controls QT interval on the electrocardiogram by targeting the degradation of Kv4.2/4.3 channels in the endoplasmic reticulum. FASEB J 2019; 33:6197-6208. [PMID: 30758987 DOI: 10.1096/fj.201801464r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TLRs have been proven to be essential mediators for the early innate immune response. Overactivation of TLR-mediated immune signaling promotes deterioration of cardiovascular diseases; however, the role of TLRs in the heart under physiologic conditions remains neglected. Here, we show that Tlr3 deficiency induced the endoplasmic reticulum (ER) retention of Kv4.2/4.3 proteins and consequent degradation via the ubiquitin-proteasome pathway. Knockout of Tlr3 resulted in a prolonged QT interval (the space between the start of the Q wave and the end of the T wave) in mice with no significant signs of inflammation and tissue abnormality in cardiac muscles. Prolongation of action potential duration resulted from the depression of transient outward potassium channel (Ito) currents in Tlr3-deficient ventricular myocytes mirrored the change in QT interval. Mechanistically, we found that Tlr3 was exclusively localized in the ER of cardiomyocytes where it interacted with Kv4.2/4.3 subunits of Ito channel. Thus, our data indicated that TLR3 directly regulates Ito channel protein dynamics to maintain cardiac repolarization, which may implicate a new molecular surveillance system for cardiac electrophysiological homeostasis.-Gao, X., Gao, S., Guan, Y., Huang, L., Huang, J., Lin, L., Liu, Y., Zhao, H., Huang, B., Yuan, T., Liu, Y., Liang, D., Zhang, Y., Ma, X., Li, L., Li, J., Zhou, D., Shi, D., Xu, L., Chen, Y.-H. Toll-like receptor 3 controls QT interval on the electrocardiogram by targeting the degradation of Kv4.2/4.3 channels in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Xueting Gao
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Siyun Gao
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Guan
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Huang
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Jiale Huang
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Lin
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Liu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Hong Zhao
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bijun Huang
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Tianyou Yuan
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Liu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liang
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yangyang Zhang
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiue Ma
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Jun Li
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Daizhan Zhou
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Shi
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Xu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Han Chen
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Medical Genetics, Tongji University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Jiang X, Kong B, Shuai W, Shen C, Yang F, Fu H, Huang H. Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia. Eur J Pharmacol 2019; 844:79-86. [DOI: 10.1016/j.ejphar.2018.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022]
|
25
|
Zhi H, Gong FH, Cheng WL, Zhu K, Chen L, Yao Y, Ye X, Zhu XY, Li H. Tollip Negatively Regulates Vascular Smooth Muscle Cell-Mediated Neointima Formation by Suppressing Akt-Dependent Signaling. J Am Heart Assoc 2018; 7:e006851. [PMID: 29887521 PMCID: PMC6220530 DOI: 10.1161/jaha.117.006851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tollip, a well-established endogenous modulator of Toll-like receptor signaling, is involved in cardiovascular diseases. The aim of this study was to investigate the role of Tollip in neointima formation and its associated mechanisms. METHODS AND RESULTS In this study, transient increases in Tollip expression were observed in platelet-derived growth factor-BB-treated vascular smooth muscle cells and following vascular injury in mice. We then applied loss-of-function and gain-of-function approaches to elucidate the effects of Tollip on neointima formation. While exaggerated neointima formation was observed in Tollip-deficient murine neointima formation models, Tollip overexpression alleviated vascular injury-induced neointima formation by preventing vascular smooth muscle cell proliferation, dedifferentiation, and migration. Mechanistically, we demonstrated that Tollip overexpression may exert a protective role in the vasculature by suppressing Akt-dependent signaling, which was further confirmed in rescue experiments using the Akt-specific inhibitor (AKTI). CONCLUSIONS Our findings indicate that Tollip protects against neointima formation by negatively regulating vascular smooth muscle cell proliferation, dedifferentiation, and migration in an Akt-dependent manner. Upregulation of Tollip may be a promising strategy for treating vascular remodeling-related diseases.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery, External/enzymology
- Carotid Artery, External/pathology
- Cell Dedifferentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Humans
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Peripheral Arterial Disease/enzymology
- Peripheral Arterial Disease/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Hong Zhi
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Fu-Han Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Kongbo Zhu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Long Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xingzhou Ye
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xue-Yong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Zhang P, Shao L, Ma J. Toll-Like Receptors 2 and 4 Predict New-Onset Atrial Fibrillation in Acute Myocardial Infarction Patients. Int Heart J 2018; 59:64-70. [PMID: 29375116 DOI: 10.1536/ihj.17-084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) can cause new-onset atrial fibrillation (AF) due to cardiac remodeling. As a recent study has shown, inflammatory factors are closely tied to cell death and survival in myocardial ischemia injury. Toll-like receptors (TLRs) have been shown to participate in the process of myocardial infarction as innate immune factors.The subjects were divided into 3 groups: healthy controls (n = 82), MI patients (n = 84), and AFMI (new-onset atrial fibrillation after myocardial infarction) patients (n = 85). Peripheral blood mononuclear cell (PBMC) TLR mRNA expression was detected by rt-PCR. Western blot was used to analyze PBMC TLRs and their downstream signal protein expression. PBMCs were presented as TLR2 expression or TLR4 expression using flow cytometry.From mRNA to protein detection, PBMC TLR2 and TLR4 were significantly higher in the AFMI group than in the control group and MI group. A similar tendency was also observed in the expression of downstream signaling proteins. When further analyzed with TLR2 and TLR4 antibodies by flow cytometry, PBMC levels also appeared to be higher in AFMI patients than those in MI patients and the healthy control group.In our study, PBMC TLRs and their downstream signaling proteins were significantly higher in the acute myocardial infarction patients with new-onset atrial fibrillation compared with healthy people and acute myocardial infarction patients without new-onset atrial fibrillation. They have the potential to be novel biomarkers for new-onset atrial fibrillation after acute myocardial infarction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Geriatrics & Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| | - Liang Shao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| | - Jun Ma
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| |
Collapse
|
27
|
Silva dos Santos D, Brasil GV, Ramos IPR, Mesquita FCP, Kasai-Brunswick TH, Christie MLA, Cahli GM, Barbosa RAQ, da Cunha ST, Pereira JX, Medei E, Campos de Carvalho AC, Carvalho AB, Goldenberg RCDS. Embryonic stem cell-derived cardiomyocytes for the treatment of doxorubicin-induced cardiomyopathy. Stem Cell Res Ther 2018; 9:30. [PMID: 29402309 PMCID: PMC5799903 DOI: 10.1186/s13287-018-0788-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice. METHODS The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence. Cells were transduced with luciferase 2 and submitted to cardiac differentiation. Total conditioned medium (TCM) from the CM-mESCs was collected for proteomic analysis. To establish DIC in CD1 mice, Dox (7.5 mg/kg) was administered once a week for 3 weeks, resulting in a cumulative Dox dose of 22.5 mg/kg. At the fourth week, a group of animals was injected intramyocardially with CM-mESCs (8 × 105 cells). Cells were tracked by a bioluminescence assay, and the body weight, echocardiogram, electrocardiogram and number of apoptotic cardiomyocytes were evaluated. RESULTS mESCs exhibited a normal karyotype and expressed pluripotent markers. Proteomic analysis of TCM showed proteins related to the negative regulation of cell death. CM-mESCs presented ventricular action potential characteristics. Mice that received Dox developed heart failure and showed significant differences in body weight, ejection fraction (EF), end-systolic volume (ESV), stroke volume (SV), heart rate and QT and corrected QT (QTc) intervals when compared to the control group. After cell or placebo injection, the Dox + CM-mESC group showed significant increases in EF and SV when compared to the Dox + placebo group. Reduction in ESV and QT and QTc intervals in Dox + CM-mESC-treated mice was observed at 5 or 30 days after cell treatment. Cells were detected up to 11 days after injection. The Dox + CM-mESC group showed a significant reduction in the percentage of apoptotic cardiomyocytes in the hearts of mice when compared to the Dox + placebo group. CONCLUSIONS CM-mESC transplantation improves cardiac function in mice with DIC.
Collapse
Affiliation(s)
- Danúbia Silva dos Santos
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Guilherme Visconde Brasil
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Isalira Peroba Rezende Ramos
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
- 0000 0001 2294 473Xgrid.8536.8Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco M, Rio de Janeiro, RJ 21941-902 Brazil
| | - Fernanda Cristina Paccola Mesquita
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Tais Hanae Kasai-Brunswick
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
- 0000 0001 2294 473Xgrid.8536.8Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco M, Rio de Janeiro, RJ 21941-902 Brazil
| | - Michelle Lopes Araújo Christie
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Gustavo Monnerat Cahli
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Raiana Andrade Quintanilha Barbosa
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Sandro Torrentes da Cunha
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
| | - Jonathas Xavier Pereira
- 0000 0001 2294 473Xgrid.8536.8Departamento de Patologia—Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universiade Federal do Rio de Janeiro, Av. Rodolpho Paulo Rocco, 255, Sub-solo, SAP, Rio de Janeiro, RJ 21910-590 Brazil
| | - Emiliano Medei
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
- 0000 0001 2294 473Xgrid.8536.8Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco M, Rio de Janeiro, RJ 21941-902 Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho 373, Rio de Janeiro, RJ 21941-902 Brazil
| | - Antonio Carlos Campos de Carvalho
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
- 0000 0001 2294 473Xgrid.8536.8Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco M, Rio de Janeiro, RJ 21941-902 Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho 373, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adriana Bastos Carvalho
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
- 0000 0001 2294 473Xgrid.8536.8Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco M, Rio de Janeiro, RJ 21941-902 Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho 373, Rio de Janeiro, RJ 21941-902 Brazil
| | - Regina Coeli dos Santos Goldenberg
- 0000 0001 2294 473Xgrid.8536.8Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G—Sala G2-053, Rio de Janeiro, RJ 21941-902 Brazil
- 0000 0001 2294 473Xgrid.8536.8Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco M, Rio de Janeiro, RJ 21941-902 Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho 373, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
28
|
Val-Blasco A, Navarro-García JA, Tamayo M, Piedras MJ, Prieto P, Delgado C, Ruiz-Hurtado G, Rozas-Romero L, Gil-Fernández M, Zaragoza C, Boscá L, Fernández-Velasco M. Deficiency of NOD1 Improves the β-Adrenergic Modulation of Ca 2+ Handling in a Mouse Model of Heart Failure. Front Physiol 2018; 9:702. [PMID: 29962957 PMCID: PMC6010671 DOI: 10.3389/fphys.2018.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by cardiac dysfunction, Ca2+ mishandling, and chronic activation of the innate immune system. Reduced cardiac output in HF leads to compensatory mechanisms via activation of the adrenergic nervous system. In turn, chronic adrenergic overstimulation induces pro-arrhythmic events, increasing the rate of sudden death in failing patients. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an innate immune modulator that plays a key role in HF progression. NOD1 deficiency in mice prevents Ca2+ mishandling in HF under basal conditions, but its role during β-adrenergic stimulation remains unknown. Here, we evaluated whether NOD1 regulates the β-adrenergic modulation of Ca2+ signaling in HF. Ca2+ dynamics were examined before and after isoproterenol perfusion in cardiomyocytes isolated from healthy and from post-myocardial infarction (PMI) wild-type (WT) and Nod1-/- mice. Isoproterenol administration induced similar effects on intracellular [Ca2+]i transients, cell contraction, and sarcoplasmic reticulum (SR)-Ca2+ load in healthy WT and Nod1-/- cells. However, compared with WT-PMI cells, isoproterenol exposure induced a significant increase in the [Ca2+]i transients and cell contraction parameters in Nod1-/--PMI cells, which mainly due to an increase in SR-Ca2+ load. NOD1 deficiency also prevented the increase in diastolic Ca2+ leak (Ca2+ waves) induced by isoproterenol in PMI cells. mRNA levels of β1 and β2 adrenergic receptors were significantly higher in Nod1-/--PMI hearts vs WT-PMI hearts. Healthy cardiomyocytes pre-treated with the selective agonist of NOD1, iE-DAP, and perfused with isoproterenol showed diminished [Ca2+]i transients amplitude, cell contraction, and SR-Ca2+ load compared with vehicle-treated cells. iE-DAP-treated cells also presented increased diastolic Ca2+ leak under β-adrenergic stimulation. The selectivity of iE-DAP on Ca2+ handling was validated by pre-treatment with the inactive analog of NOD1, iE-Lys. Overall, our data establish that NOD1 deficiency improves the β-adrenergic modulation of Ca2+ handling in failing hearts.
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Jose A. Navarro-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Maria Tamayo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria J. Piedras
- Department of Anatomy, Faculty of Health Sciences, Francisco de Vitoria University (UFV), Pozuelo de Alarcón, Spain
| | - Patricia Prieto
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Delgado
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Rozas-Romero
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Marta Gil-Fernández
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), CIBERCV, Madrid, Spain
| | - Lisardo Boscá
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Fernández-Velasco
- Innate Immune Response Group, Instituto de Investigación Hospital Universitario La Paz, La Paz University Hospital, Madrid, Spain
- *Correspondence: María Fernández-Velasco, ;
| |
Collapse
|
29
|
José VSDS, Monnerat G, Guerra B, Paredes BD, Kasai-Brunswick TH, de Carvalho ACC, Medei E. Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials. Arq Bras Cardiol 2017; 109:579-589. [PMID: 29364350 PMCID: PMC5783439 DOI: 10.5935/abc.20170176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parameters is still unknown. OBJECTIVES To investigate whether bone-marrow-derived MSC from diabetic rats (MSCd) would contribute to recover metabolic and cardiac electrical properties in other diabetic rats. METHODS Diabetes was induced in Wistar rats with streptozotocin. MSCs were characterized by flow cytometry, morphological analysis, and immunohistochemistry. Cardiac electrical function was analyzed using recordings of ventricular action potential. Differences between variables were considered significant when p < 0.05. RESULTS In vitro properties of MSCc and MSCd were evaluated. Both cell types presented similar morphology, growth kinetics, and mesenchymal profile, and could differentiate into adipogenic and osteogenic lineages. However, in an assay for fibroblast colony-forming units (CFU-F), MSCd formed more colonies than MSCc when cultured in expansion medium with or without hydrocortisone (1 µM). In order to compare the therapeutic potential of the cells, the animals were divided into four experimental groups: nondiabetic (CTRL), diabetic (DM), diabetic treated with MSCc (DM + MSCc), and diabetic treated with MSCd (DM + MSCd). The treated groups received a single injection of MSC 4 weeks after the development of diabetes. MSCc and MSCd controlled hyperglycemia and body weight loss and improved cardiac electrical remodeling in diabetic rats. CONCLUSIONS MSCd and MSCc have similar in vitro properties and therapeutic potential in a rat model of diabetes induced with streptozotocin.
Collapse
Affiliation(s)
| | - Gustavo Monnerat
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
- Mailing Address: Gustavo Monnerat, Av. Carlos Chagas
Filho, CCS, Bloco G sala G2-45. Postal Code 21941-590, 21941-590, Cidade
Universitária, Rio de Janeiro, RJ - Brazil.
,
| | - Barbara Guerra
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| | - Bruno Dias Paredes
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| | | | | | - Emiliano Medei
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ -
Brazil
| |
Collapse
|
30
|
The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases-A Review. Int J Mol Sci 2017; 18:ijms18112252. [PMID: 29077004 PMCID: PMC5713222 DOI: 10.3390/ijms18112252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Therefore, a better understanding of their pathomechanisms and the subsequent implementation of optimal prophylactic and therapeutic strategies are of utmost importance. A growing body of evidence states that low-grade inflammation is a common feature for most of the cardiovascular diseases in which the contributing factors are the activation of toll-like receptors (TLRs) and vitamin D deficiency. In this article, available data concerning the association of cardiovascular diseases with TLRs and vitamin D status are reviewed, followed by a discussion of new possible approaches to cardiovascular disease management.
Collapse
|
31
|
Jiménez MAV, Nascimento JHM, Monnerat G, Maciel L, Paiva CN, Pedrosa RC, Campos de Carvalho AC, Medei E. Autoantibodies with beta-adrenergic activity from chronic chagasic patients induce cardiac arrhythmias and early afterdepolarization in a drug-induced LQT2 rabbit hearts. Int J Cardiol 2017; 240:354-359. [PMID: 28320606 DOI: 10.1016/j.ijcard.2017.02.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cardiac arrhythmias are one of the main causes of death in ChCP and other dilated cardiomyopathies. Previous studies demonstrated that ventricular arrhythmias are associated with the presence of autoantibodies with beta-adrenergic activity, Ab-β. OBJECTIVES The aim of this study was to investigate whether Ab-β, present in chronic chagasic patients (ChCP), induce cardiac arrhythmias in the pharmacological type-2 long QT syndrome model (LQTS-2). METHODS/RESULTS The LQTS2 was established by perfusion of Tyrode saline solution with a potassium channel blocker E-4031 (5μM) in isolated rabbit hearts or in rabbit cardiac strips, in order to record ECG or action potential, respectively. Autoantibodies from ChCP activating (Ab-β) or not (Ab-NR) cardiac beta 1-adrenergic receptors were used. Ab-β, but not Ab-NR, were able to significantly shorten QT, QTc and increase Tpeak-Tend interval in the LQTS-2. A positive correlation between higher QTc and Tpeak-Tend was found after Ab-β perfusion in the same model. In addition, in the LQTS-2 model, in almost 75% (11/15) of the hearts perfused with Ab-β, ventricular and atrio-ventricular electrical disturbances were observed. Atenolol abolished all Ab-β-induced arrhythmias. Ab-β, when perfused in a cellular LQTS-2, drastically reduced the action potential duration and evoked early afterdepolarization (EAD's), while Ab-NR did not modulate the AP properties in the LQTS-2. CONCLUSION The results indicate that Ab-β were able to induce cardiac arrhythmias and EAD's. This phenomenon can explain, at least in part, the cellular mechanism of Ab-β-induced arrhythmias. Furthermore, atenolol is effective for the treatment of Ab-β-induced arrhythmias.
Collapse
Affiliation(s)
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N Paiva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Coury Pedrosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Loss of MD1 exacerbates pressure overload-induced left ventricular structural and electrical remodelling. Sci Rep 2017; 7:5116. [PMID: 28698617 PMCID: PMC5505950 DOI: 10.1038/s41598-017-05379-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Myeloid differentiation protein 1 (MD1) has been implicated in numerous pathophysiological processes, including immune regulation, obesity, insulin resistance, and inflammation. However, the role of MD1 in cardiac remodelling remains incompletely understood. We used MD1-knockout (KO) mice and their wild-type littermates to determine the functional significance of MD1 in the regulation of aortic banding (AB)-induced left ventricular (LV) structural and electrical remodelling and its underlying mechanisms. After 4 weeks of AB, MD1-KO hearts showed substantial aggravation of LV hypertrophy, fibrosis, LV dilation and dysfunction, and electrical remodelling, which resulted in overt heart failure and increased electrophysiological instability. Moreover, MD1-KO-AB cardiomyocytes showed increased diastolic sarcoplasmic reticulum (SR) Ca2+ leak, reduced Ca2+ transient amplitude and SR Ca2+ content, decreased SR Ca2+-ATPase2 expression, and increased phospholamban and Na+/Ca2+-exchanger 1 protein expression. Mechanistically, the adverse effects of MD1 deletion on LV remodelling were related to hyperactivated CaMKII signalling and increased impairment of intracellular Ca2+ homeostasis, whereas the increased electrophysiological instability was partly attributed to exaggerated prolongation of cardiac repolarisation, decreased action potential duration alternans threshold, and increased diastolic SR Ca2+ leak. Therefore, our study on MD1 could provide new therapeutic strategies for preventing/treating heart failure.
Collapse
|
33
|
Hwang HR, Tai BY, Cheng PY, Chen PN, Sung PJ, Wen ZH, Hsu CH. Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes. Mar Drugs 2017; 15:md15020025. [PMID: 28125029 PMCID: PMC5334606 DOI: 10.3390/md15020025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating LPS-induced arrhythmogenesis.
Collapse
Affiliation(s)
- Hwong-Ru Hwang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Division of Cardiology, Department of Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Buh-Yuan Tai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Department of Traditional Medicine, Jianan Mental Hospital, Tainan 717, Taiwan.
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics and Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
| | - Ping-Nan Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 114, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung 804, Taiwan.
| | - Chih-Hsueng Hsu
- Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
34
|
Monnerat G, Alarcón ML, Vasconcellos LR, Hochman-Mendez C, Brasil G, Bassani RA, Casis O, Malan D, Travassos LH, Sepúlveda M, Burgos JI, Vila-Petroff M, Dutra FF, Bozza MT, Paiva CN, Carvalho AB, Bonomo A, Fleischmann BK, de Carvalho ACC, Medei E. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun 2016; 7:13344. [PMID: 27882934 PMCID: PMC5123037 DOI: 10.1038/ncomms13344] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/24/2016] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1β in DM mice. IL-1β causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1β-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1β axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1β as an inflammatory connection between metabolic dysfunction and arrhythmias in DM.
Collapse
MESH Headings
- Action Potentials
- Animals
- Antirheumatic Agents/pharmacology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/immunology
- Arrhythmias, Cardiac/metabolism
- Calcium/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Caspase 1/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Inflammasomes/antagonists & inhibitors
- Interleukin 1 Receptor Antagonist Protein/pharmacology
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Macrophages/immunology
- Mice
- Mice, Transgenic
- Myocardial Contraction
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Potassium/metabolism
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/immunology
- Tachycardia, Ventricular/metabolism
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
Collapse
Affiliation(s)
- Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Micaela L. Alarcón
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luiz R. Vasconcellos
- LIRS-Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Camila Hochman-Mendez
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme Brasil
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rosana A. Bassani
- Center for Biomedical Engineering, University of Campinas, Campinas 13.083-970, Brazil
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria, Spain
| | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn D-53127, Germany
| | - Leonardo H. Travassos
- LIRS-Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marisa Sepúlveda
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Martin Vila-Petroff
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Fabiano F. Dutra
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcelo T. Bozza
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia N. Paiva
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Adriana Bastos Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Adriana Bonomo
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- FIOCANCER/ VPPLR/FIOCRUZ, FIOCRUZ-Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn D-53127, Germany
| | - Antonio Carlos Campos de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging—CENABIO/UFRJ, Rio de Janeiro 21941-902, Brazil
| | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging—CENABIO/UFRJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
35
|
Acampa M, Lazzerini PE, Guideri F, Tassi R, Martini G. Ischemic Stroke after Heart Transplantation. J Stroke 2016; 18:157-68. [PMID: 26915504 PMCID: PMC4901943 DOI: 10.5853/jos.2015.01599] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebrovascular complications after orthotopic heart transplantation (OHT) are more common in comparison with neurological sequelae subsequent to routine cardiac surgery. Ischemic stroke and transient ischemic attack (TIA) are more common (with an incidence of up to 13%) than intracranial hemorrhage (2.5%). Clinically, ischemic stroke is manifested by the appearance of focal neurologic deficits, although sometimes a stroke may be silent or manifests itself by the appearance of encephalopathy, reflecting a diffuse brain disorder. Ischemic stroke subtypes distribution in perioperative and postoperative period after OHT is very different from classical distribution, with different pathogenic mechanisms. Infact, ischemic stroke may be caused by less common and unusual mechanisms, linked to surgical procedures and to postoperative inflammation, peculiar to this group of patients. However, many strokes (40%) occur without a well-defined etiology (cryptogenic strokes). A silent atrial fibrillation (AF) may play a role in pathogenesis of these strokes and P wave dispersion may represent a predictor of AF. In OHT patients, P wave dispersion correlates with homocysteine plasma levels and hyperhomocysteinemia could play a role in the pathogenesis of these strokes with multiple mechanisms increasing the risk of AF. In conclusion, stroke after heart transplantation represents a complication with considerable impact not only on mortality but also on subsequent poor functional outcome.
Collapse
Affiliation(s)
- Maurizio Acampa
- Stroke Unit, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, “Santa Maria alle Scotte” General Hospital, viale Bracci, Siena, Italy
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, viale Bracci, Siena, Italy
| | - Francesca Guideri
- Stroke Unit, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, “Santa Maria alle Scotte” General Hospital, viale Bracci, Siena, Italy
| | - Rossana Tassi
- Stroke Unit, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, “Santa Maria alle Scotte” General Hospital, viale Bracci, Siena, Italy
| | - Giuseppe Martini
- Stroke Unit, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, “Santa Maria alle Scotte” General Hospital, viale Bracci, Siena, Italy
| |
Collapse
|
36
|
Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Vigmond EJ, Dubois R, Hocini M, Haïssaguerre M, Jaïs P, Trayanova NA. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res 2016; 110:443-54. [PMID: 27056895 DOI: 10.1093/cvr/cvw073] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS The mechanisms underlying persistent atrial fibrillation (AF) in patients with atrial fibrosis are poorly understood. The goal of this study was to use patient-derived atrial models to test the hypothesis that AF re-entrant drivers (RDs) persist only in regions with specific fibrosis patterns. METHODS AND RESULTS Twenty patients with persistent AF (PsAF) underwent late gadolinium-enhanced MRI to detect the presence of atrial fibrosis. Segmented images were used to construct personalized 3D models of the fibrotic atria with biophysically realistic atrial electrophysiology. In each model, rapid pacing was applied to induce AF. AF dynamics were analysed and RDs were identified using phase mapping. Fibrosis patterns in RD regions were characterized by computing maps of fibrosis density (FD) and entropy (FE). AF was inducible in 13/20 models and perpetuated by few RDs (2.7 ± 1.5) that were spatially confined (trajectory of phase singularities: 7.6 ± 2.3 mm). Compared with the remaining atrial tissue, regions where RDs persisted had higher FE (IQR: 0.42-0.60 vs. 0.00-0.40, P < 0.05) and FD (IQR: 0.59-0.77 vs. 0.00-0.33, P < 0.05). Machine learning classified RD and non-RD regions based on FD and FE and identified a subset of fibrotic boundary zones present in 13.8 ± 4.9% of atrial tissue where 83.5 ± 2.4% of all RD phase singularities were located. CONCLUSION Patient-derived models demonstrate that AF in fibrotic substrates is perpetuated by RDs persisting in fibrosis boundary zones characterized by specific regional fibrosis metrics (high FE and FD). These results provide new insights into the mechanisms that sustain PsAF and could pave the way for personalized, MRI-based management of PsAF.
Collapse
Affiliation(s)
- Sohail Zahid
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, INSERM U1045, Bordeaux, France Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Patrick M Boyle
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Erica L Schwarz
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kaitlyn N Whyte
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Edward J Vigmond
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, INSERM U1045, Bordeaux, France
| | - Rémi Dubois
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, INSERM U1045, Bordeaux, France
| | - Mélèze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, INSERM U1045, Bordeaux, France Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Michel Haïssaguerre
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, INSERM U1045, Bordeaux, France Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Pierre Jaïs
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, INSERM U1045, Bordeaux, France Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Natalia A Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Mannic T, Satta N, Pagano S, Python M, Virzi J, Montecucco F, Frias MA, James RW, Maturana AD, Rossier MF, Vuilleumier N. CD14 as a Mediator of the Mineralocorticoid Receptor-Dependent Anti-apolipoprotein A-1 IgG Chronotropic Effect on Cardiomyocytes. Endocrinology 2015; 156:4707-19. [PMID: 26393305 DOI: 10.1210/en.2015-1605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro and animal studies point to autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) as possible mediators of cardiovascular (CV) disease involving several mechanisms such as basal heart rate interference mediated by a mineralocorticoid receptor-dependent L-type calcium channel activation, and a direct pro-inflammatory effect through the engagement of the toll-like receptor (TLR) 2/CD14 complex. Nevertheless, the possible implication of these receptors in the pro-arrhythmogenic effect of anti-apoA-1 antibodies remains elusive. We aimed at determining whether CD14 and TLRs could mediate the anti-apoA-1 IgG chronotropic response in neonatal rat ventricular cardiomyocytes (NRVC). Blocking CD14 suppressed anti-apoA-1 IgG binding to NRVC and the related positive chronotropic response. Anti-apoA-1 IgG alone induced the formation of a TLR2/TLR4/CD14 complex, followed by the phosphorylation of Src, whereas aldosterone alone promoted the phosphorylation of Akt by phosphatidylinositol 3-kinase (PI3K), without affecting the chronotropic response. In the presence of both aldosterone and anti-apoA-1 IgG, the localization of TLR2/TLR4/CD14 was increased in membrane lipid rafts, followed by PI3K and Src activation, leading to an L-type calcium channel-dependent positive chronotropic response. Pharmacological inhibition of the Src pathway led to the decrease of L-type calcium channel activity and abrogated the NRVC chronotropic response. Activation of CD14 seems to be a key regulator of the mineralocorticoid receptor-dependent anti-apoA-1 IgG positive chronotropic effect on NRVCs, involving relocation of the CD14/TLR2/TLR4 complex into lipid rafts followed by PI3K and Src-dependent L-type calcium channel activation.
Collapse
Affiliation(s)
- Tiphaine Mannic
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nathalie Satta
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Sabrina Pagano
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Magaly Python
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Julien Virzi
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Fabrizio Montecucco
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Miguel A Frias
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Richard W James
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Andres D Maturana
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Michel F Rossier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nicolas Vuilleumier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| |
Collapse
|
38
|
Alonso H, Fernández-Ruocco J, Gallego M, Malagueta-Vieira LL, Rodríguez-de-Yurre A, Medei E, Casis O. Thyroid stimulating hormone directly modulates cardiac electrical activity. J Mol Cell Cardiol 2015; 89:280-6. [PMID: 26497403 DOI: 10.1016/j.yjmcc.2015.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The electrocardiogram of hypothyroid patients shows a series of abnormalities of cardiac repolarization due to a reduction of some repolarizing K(+) currents and an increase of the L-type calcium current. Experimental and clinical works call into question the unique role of T3 and T4 in these mechanisms and correlate increased serum TSH levels with the repolarization abnormalities in patients with both subclinical and overt hypothyroidism. In this context, the aim of the present study was to investigate the direct effects of TSH upon cardiac electrical properties. METHODS The action potential recording and the ion channel subunits mRNA expression were obtained from left ventricle of adult rats. Additionally, the repolarizing K(+) currents and the L-type Ca(2+) current (ICa-L) were recorded in isolated rat adult ventricular myocytes by the patch-clamp technique. RESULTS 24h exposure to TSH lengthened the action potential and slightly depolarized the resting membrane potential. TSH- receptor activation causes a reduction of the amplitude of Ito and IK1 currents caused by a reduction in channels expression. However, TSH had no effect on ICa-L, IK or IKur. CONCLUSION These results support the idea that some of the electrical disturbances seen in hypothyroid hearts, such as the Ito and IK1 current reduction, could be caused not by low T3 but by the elevation of circulating TSH.
Collapse
Affiliation(s)
- H Alonso
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - J Fernández-Ruocco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - M Gallego
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - L L Malagueta-Vieira
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Brazil
| | - A Rodríguez-de-Yurre
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain
| | - E Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - O Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria, Spain.
| |
Collapse
|
39
|
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Front Cardiovasc Med 2015; 2:26. [PMID: 26798623 PMCID: PMC4712633 DOI: 10.3389/fcvm.2015.00026] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023] Open
Abstract
The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| |
Collapse
|
40
|
Lu XL, Tong YF, Liu Y, Xu YL, Yang H, Zhang GY, Li XH, Zhang HG. Gαq protein carboxyl terminus imitation polypeptide GCIP-27 improves cardiac function in chronic heart failure rats. PLoS One 2015; 10:e0121007. [PMID: 25822412 PMCID: PMC4379177 DOI: 10.1371/journal.pone.0121007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/03/2015] [Indexed: 11/24/2022] Open
Abstract
Background Gαq protein carboxyl terminus imitation polypeptide (GCIP)-27 has been shown to alleviate pathological cardiomyocyte hypertrophy induced by various factors. Pathological cardiac hypertrophy increases the morbidity and mortality of cardiovascular diseases while it compensates for poor heart function. This study was designed to investigate the effects of GCIP-27 on heart function in rats with heart failure induced by doxorubicin. Methods and Results Forty-eight rats were randomly divided into the following six groups receiving vehicle (control), doxorubicin (Dox), losartan (6 mg/kg, i.g.) and three doses of GCIP-27 (10, 30, 90 μg/kg; i.p., bid), respectively. Heart failure was induced by Dox, which was administered at a 20 mg/kg cumulative dose. After 10 weeks of treatment, we observed that GCIP-27 (30, 90 μg/kg) significantly increased ejection fraction, fraction shortening, stroke volume and sarcoplasmic reticulum Ca2+ ATPase activity of Dox-treated hearts. Additionally, GCIP-27 decreased myocardial injury, heart weight index and left ventricular weight index, fibrosis and serum cardiac troponin-I concentration in Dox-treated mice. Immunohistochemistry, western blotting and real-time PCR experiments indicated that GCIP-27 (10–90 μg/kg) could markedly upregulate the protein expression of myocardial α-myosin heavy chain (MHC), Bcl-2, protein kinase C (PKC) ε and phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 as well as the mRNA expression of α-MHC, but downregulated the expression of β-MHC, Bax and PKC βII, and the mRNA expression levels of β-MHC in Dox-treated mice. It was also found that GCIP-27 (30, 90 μg/L) decreased cell size and protein content of cardiomyocytes significantly in vitro by comparison of Dox group. Conclusions GCIP-27 could effectively ameliorate heart failure development induced by Dox. PKC–ERK1/2 signaling might represent the underlying mechanism of the beneficial effects of GCIP-27.
Collapse
Affiliation(s)
- Xiao Lan Lu
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical College, Sichuan Nanchong 637000, China
| | - Yang Fei Tong
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Ya Li Xu
- Department of Ultrasound, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Guo Yuan Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical College, Sichuan Nanchong 637000, China
| | - Xiao-Hui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- * E-mail:
| |
Collapse
|
41
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. However, the development of preventative therapies for AF has been disappointing. The infiltration of immune cells and proteins that mediate the inflammatory response in cardiac tissue and circulatory processes is associated with AF. Furthermore, the presence of inflammation in the heart or systemic circulation can predict the onset of AF and recurrence in the general population, as well as in patients after cardiac surgery, cardioversion, and catheter ablation. Mediators of the inflammatory response can alter atrial electrophysiology and structural substrates, thereby leading to increased vulnerability to AF. Inflammation also modulates calcium homeostasis and connexins, which are associated with triggers of AF and heterogeneous atrial conduction. Myolysis, cardiomyocyte apoptosis, and the activation of fibrotic pathways via fibroblasts, transforming growth factor-β and matrix metalloproteases are also mediated by inflammatory pathways, which can all contribute to structural remodelling of the atria. The development of thromboembolism, a detrimental complication of AF, is also associated with inflammatory activity. Understanding the complex pathophysiological processes and dynamic changes of AF-associated inflammation might help to identify specific anti-inflammatory strategies for the prevention of AF.
Collapse
|