1
|
Theofanous A, Deligiannakis Y, Louloudi M. Hybrids of Gallic Acid@SiO 2 and {Hyaluronic-Acid Counterpats}@SiO 2 against Hydroxyl ( ●OH) Radicals Studied by EPR: A Comparative Study vs Their Antioxidant Hydrogen Atom Transfer Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26412-26424. [PMID: 39644266 DOI: 10.1021/acs.langmuir.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Hydrogen atom transfer (HAT) and single electron transfer (SET) are two fundamental pathways for antiradical/antioxidant processes; however, a systematic in-tandem operational evaluation of the same system is lacking. Herein, we present a comparative study of the HAT and SET processes applied to a library of well-characterized hybrid materials SiO2@GA, SiO2@GLA, SiO2@GLAM, and the doubly hybrid material {GLA@SiO2@GLAM}. Hydroxyl radicals (•OH), produced by a Fenton system, react via the single electron transfer (SET) pathway and hydrogen atom transfer, through oxygen- and carbon-atoms, respectively, while the stable-radical DPPH via the HAT pathway through oxygen-atoms. Electron paramagnetic resonance spectroscopy (EPR), eminently suited for in situ detection and quantification of free radicals, was used as a state-of-the-art tool to monitor •OH using the spin-trapping-EPR method. We found that the SiO2@GA hybrid exhibited the highest SET •OH-scavenging activity i.e., [2.7 mol of •OH per mol of grafted GA]. Then, SiO2@GLA, SiO2@GLAM, and GLA@SiO2@GLAM can scavenge 1.2, 1.3, and 0.57 mol of •OH per mol of anchored organic, respectively. The HAT efficiency for SiO2@GA was [2.0 mol of DPPH per mol of grafted GA], while SiO2@GLA, SiO2@GLAM, and GLA@SiO2@GLAM exhibited a HAT efficiency of 1.1 DPPH moles per mol of anchored organic. The data are analyzed based on the molecular structure of the organics and their -R-OH moieties. Accordingly, based on the present data we suggest that for hydroxyl (•OH) radicals, the mechanisms involved are SET from an oxygen atom and HAT from a carbon atom. In contrast, for DPPH radicals, the HAT mechanism is exclusively operating and involves hydrogen atom abstraction from OH groups.
Collapse
Affiliation(s)
- Annita Theofanous
- Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, Panepistimioupoli, Ioannina GR-45110, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials and Environment, Department of Physics, University of Ioannina, Panepistimioupoli, Ioannina GR-45110, Greece
| | - Maria Louloudi
- Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, Panepistimioupoli, Ioannina GR-45110, Greece
| |
Collapse
|
2
|
Bešić E, Rajić Z, Šakić D. Advancements in electron paramagnetic resonance (EPR) spectroscopy: A comprehensive tool for pharmaceutical research. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024:acph-2024-0037. [PMID: 39686630 DOI: 10.2478/acph-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research. We detail how EPR spectroscopy can be employed to assess free radical scavenging properties in pharmaceutical compounds, elucidate drug mechanisms of action, and explore pharmacokinetics. Additionally, we investigate the role of free radicals in drug-induced toxicity and drug-membrane interactions, while also covering the application of EPR spectroscopy in drug delivery research, advanced studies of metallodrugs, and monitoring of oxygen levels in biological systems through EPR oximetry. The recent advancements in the miniaturization of EPR spectro meters have paved the way for their application in on-site and in-line mo nitoring during the manufacturing process and quality control of pharmaceutical substances and final drug formulations due to being the only direct and non-invasive detection technique for radical detection. Through these discussions, we highlight the substantial contributions of EPR spectroscopy to the advancement of pharmaceutical sciences.
Collapse
Affiliation(s)
- Erim Bešić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Davor Šakić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Awere CO, Sneha A, Rakkammal K, Muthui MM, Kumari R A, Govindan S, Batur Çolak A, Bayrak M, Muthuramalingam P, Anadebe VC, Archana P, Sekar C, Ramesh M. Carbon dot unravels accumulation of triterpenoid in Evolvulus alsinoides hairy roots culture by stimulating growth, redox reactions and ANN machine learning model prediction of metabolic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109142. [PMID: 39357200 DOI: 10.1016/j.plaphy.2024.109142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Evolvulus alsinoides, a therapeutically valuable shrub can provide consistent supply of secondary metabolites (SM) with pharmaceutical significance. Nonetheless, because of its short life cycle, fresh plant material for research and medicinal diagnostics is severely scarce throughout the year. The effects of exogenous carbon quantum dot (CD) application on metabolic profiles, machine learning (ML) prediction of metabolic stress response, and SM yields in hairy root cultures of E. alsinoides were investigated and quantified. The range of the particle size distribution of the CDs was between 3 and 7 nm. The CDs EPR signal and spin trapping experiments demonstrated the formation of O2-•spin-adducts at (g = 2.0023). Carbon dot treatment increased the levels of hydrogen peroxide and malondialdehyde concentrations as well as increased antioxidant enzyme activity. CD treatments (6 μg mL-1) significantly enhanced the accumulation of squalene and stigmasterol (7 and 5-fold respectively). The multilayer perceptron (MLP) algorithm demonstrated remarkable prediction accuracy (MSE value = 1.99E-03 and R2 = 0.99939) in both the training and testing sets for modelling. Based on the prediction, the maximum oxidative stress index and enzymatic activities were highest in the medium supplemented with 10 μg mL-1 CDs. The outcome of this study indicated that, for the first time, using CD could serve as a novel elicitor for the production of valuable SM. MLP may also be used as a forward-thinking tool to optimize and predict SM with high pharmaceutical significance. This study would be a touchstone for understanding the use of ML and luminescent nanomaterials in the production and commercialization of important SM.
Collapse
Affiliation(s)
- Collince Omondi Awere
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Anbalagan Sneha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Martin Mwaura Muthui
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Anitha Kumari R
- N Rama Varier Ayurveda Foundation, AVN Ayurveda Formulation Private Limited, Madurai, India
| | - Suresh Govindan
- N Rama Varier Ayurveda Foundation, AVN Ayurveda Formulation Private Limited, Madurai, India
| | - Andaç Batur Çolak
- Information Technologies Application and Research Center, Istanbul Ticaret University, İstanbul 34445, Turkiye
| | - Mustafa Bayrak
- Mechanical Engineering Department, Niğde Ömer Halisdemir University, Niğde 51240, Turkiye
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, South Korea
| | - Valentine Chikaodili Anadebe
- Department of Chemical Engineering, Alex Ekwueme Federal University Ndufu Alike PMB 1010 Abakailiki, Ebonyi State, Nigeria
| | - Pandi Archana
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India.
| |
Collapse
|
4
|
Zeng Y, He D, Sun J, Zhang A, Luo H, Pan X. Non-radical oxidation driven by iron-based materials without energy assistance in wastewater treatment. WATER RESEARCH 2024; 264:122255. [PMID: 39153313 DOI: 10.1016/j.watres.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Chemical oxidation is extensively utilized to mitigate the impact of organic pollutants in wastewater. The non-radical oxidation driven by iron-based materials is noted for its environmental friendliness and resistance to wastewater matrix, and it is a promising approach for practical wastewater treatment. However, the complexity of heterogeneous systems and the diversity of evolutionary pathways make the mechanisms of non-radical oxidation driven by iron-based materials elusive. This work provides a systematic review of various non-radical oxidation systems driven by iron-based materials, including singlet oxygen (1O2), reactive iron species (RFeS), and interfacial electron transfer. The unique mechanisms by which iron-based materials activate different oxidants (ozone, hydrogen peroxide, persulfate, periodate, and peracetic acid) to produce non-radical oxidation are described. The roles of active sites and the unique structures of iron-based materials in facilitating non-radical oxidation are discussed. Commonly employed identification methods in wastewater treatment are compared, such as quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing. According to the process of iron-based materials driving non-radical oxidation to remove organic pollutants, the driving factors at different stages are summarized. Finally, challenges and countermeasures are proposed in terms of mechanism exploration, detection methods and practical applications of non-radical oxidation driven by iron-based materials. This work provides valuable insights for understanding and developing non-radical oxidation systems.
Collapse
Affiliation(s)
- Yifeng Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Eisermann J, Liang Y, Wright JJ, Clifford E, Wilton-Ely JDET, Kuimova MK, Roessler MM. The Effect of Reactive Oxygen Species on Respiratory Complex I Activity in Liposomes. Chemistry 2024; 30:e202402035. [PMID: 39058376 DOI: 10.1002/chem.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Respiratory complex I (R-CI) is an essential enzyme in the mitochondrial electron transport chain but also a major source of reactive oxygen species (ROS), which are implicated in neurodegenerative diseases and ageing. While the mechanism of ROS production by R-CI is well-established, the feedback of ROS on R-CI activity is poorly understood. Here, we perform EPR spectroscopy on R-CI incorporated in artificial membrane vesicles to reveal that ROS (particularly hydroxyl radicals) reduce R-CI activity by making the membrane more polar and by increasing its hydrogen bonding capability. Moreover, the mechanism that we have uncovered reveals that the feedback of ROS on R-CI activity via the membrane is transient and not permanent; lipid peroxidation is negligible for the levels of ROS generated under these conditions. Our successful use of modular proteoliposome systems in conjunction with EPR spectroscopy and other biophysical techniques is a powerful approach for investigating ROS effects on other membrane proteins.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
- Department of Chemistry, University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yuxin Liang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Eleanor Clifford
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
6
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
7
|
Williams PJH, Ho HE, Unsworth WP, Rickard AR, Chechik V. Photochemical Initiation and Reactions of Thiyl Radicals Studied with S H2' Radical Traps. Chemistry 2024; 30:e202401500. [PMID: 38954146 DOI: 10.1002/chem.202401500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
A radical trapping method based on an SH2' homolytic substitution reaction was applied to study the mechanism of a photochemical spirocyclisation of indole-ynones in the presence of thiols. Starting material, products and a range of trapped radical intermediates were simultaneously detected in reaction mixtures by mass spectrometry (MS). The trapped intermediates included both initiating and main chain propagating radicals. These data made it possible to propose a self-initiation mechanism consistent with the originally postulated photoexcitation of an intramolecular electron donor-acceptor complex of the substrate. The effect of thiol structure on the MS peak intensity of the reaction components was rationalised in terms of the relative stability of the radical intermediates. The results were compared to a simpler related reaction, a photochemical thiol-ene addition where reagents, products and trapped intermediate radicals were also detected by MS. Relative MS peak intensities were again explained by a combination of electronic and steric effects on the stability of intermediate radicals. Overall, SH2' radical trapping was demonstrated to be a powerful experimental technique for providing mechanistic evidence on photochemical and other organic radical reactions.
Collapse
Affiliation(s)
| | - Hon Eong Ho
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Andrew R Rickard
- Department of Chemistry, University of York, York, YO10 5DD, UK
- National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
| | - Victor Chechik
- Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
8
|
Kozmelj TR, Voinov MA, Grilc M, Smirnov AI, Jasiukaitytė-Grojzdek E, Lucia L, Likozar B. Lignin Structural Characterization and Its Antioxidant Potential: A Comparative Evaluation by EPR, UV-Vis Spectroscopy, and DPPH Assays. Int J Mol Sci 2024; 25:9044. [PMID: 39201730 PMCID: PMC11355014 DOI: 10.3390/ijms25169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The natural aromatic polymer lignin and its lignin-like oligomeric fragments have attracted attention for their antioxidant capacity and free radical scavenging activities. In this study, a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was employed to assess the antioxidant capacity of fractionated and partially depolymerized organosolv lignin by electron paramagnetic resonance (EPR) and UV-Vis spectroscopy. The results show significant antioxidant activity for both the lignin and oligomeric fragments, with the EPR measurements demonstrating their efficiency in quenching the free radicals. The EPR data were analyzed to derive the kinetic rate constants. The radical scavenging activity (RSA) of lignins was then determined by UV-Vis spectroscopy and the results were compared with the EPR method. This two-method approach improves the reliability and understanding of the antioxidant potential of lignin and its derivatives and provides valuable insights for their potential applications in various industries, including pharmaceuticals, food preservation, and cosmetics.
Collapse
Affiliation(s)
- Tina Ročnik Kozmelj
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Maxim A. Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA; (M.A.V.); (A.I.S.); (L.L.)
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Alex I. Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA; (M.A.V.); (A.I.S.); (L.L.)
| | - Edita Jasiukaitytė-Grojzdek
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Lucian Lucia
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA; (M.A.V.); (A.I.S.); (L.L.)
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Drive, Raleigh, NC 27695-8005, USA
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
9
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
10
|
Kruse SJ, Rajapaksha H, LaVerne JA, Mason SE, Forbes TZ. Radiation-Induced Defects in Uranyl Trinitrate Solids. Chemistry 2024; 30:e202400956. [PMID: 38619503 DOI: 10.1002/chem.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Actinides are inherently radioactive; thus, ionizing radiation is emitted by these elements can have profound effects on its surrounding chemical environment through the formation of free radical species. While previous work has noted that the presence of free radicals in the system impacts the redox state of the actinides, there is little atomistic understanding of how these metal cations interact with free radicals. Herein, we explore the effects of radiation (UV and γ) on three U(VI) trinitrate complexes, M[UO2(NO3)3] (where M=K+, Rb+, Cs+), and their respective nitrate salts in the solid state via electron paramagnetic resonance (EPR) and Raman spectroscopy paired with Density Functional Theory (DFT) methods. We find that the alkali salts form nitrate radicals under UV and γ irradiation, but also note the presence of additional degradation products. M[UO2(NO3)3] solids also form nitrate radicals and additional DFT calculations indicate the species corresponds to a change from the bidentate bound nitrate anion into a monodentate NO3 • radical. Computational studies also highlight the need to include the second sphere coordination environment around the [UO2(NO3)3]0,1 species to gain agreement between the experimental and predicted EPR signatures.
Collapse
Affiliation(s)
- Samantha J Kruse
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
| | - Harindu Rajapaksha
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, USA, 46556
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, USA, 46556
| | - Sara E Mason
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA, 11973
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
| |
Collapse
|
11
|
Moncada-Basualto M, Saavedra-Olavarría J, Rivero-Jerez PS, Rojas C, Maya JD, Liempi A, Zúñiga-Bustos M, Olea-Azar C, Lapier M, Pérez EG, Pozo-Martínez J. Assessment of the Activity of Nitroisoxazole Derivatives against Trypanosoma cruzi. Molecules 2024; 29:2762. [PMID: 38930828 PMCID: PMC11207111 DOI: 10.3390/molecules29122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.
Collapse
Affiliation(s)
- Mauricio Moncada-Basualto
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile; (M.M.-B.); (C.R.); (M.Z.-B.)
| | - Jorge Saavedra-Olavarría
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquin 7820436, Chile; (J.S.-O.); (P.S.R.-J.)
| | - Paula S. Rivero-Jerez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquin 7820436, Chile; (J.S.-O.); (P.S.R.-J.)
| | - Cristian Rojas
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile; (M.M.-B.); (C.R.); (M.Z.-B.)
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Science, Universidad de Chile, Olivos 1007, Independencia 8380544, Chile;
| | - Juan D. Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Chile;
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Chile;
| | - Matías Zúñiga-Bustos
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile; (M.M.-B.); (C.R.); (M.Z.-B.)
| | - Claudio Olea-Azar
- Laboratory of Free Radicals and Antioxidants, Faculty of Chemical and Pharmaceutical Science, Universidad de Chile, Olivos 1007, Independencia 8380544, Chile;
| | - Michel Lapier
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos (CinBio), Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaiso 2360102, Chile;
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, San Joaquin 7820436, Chile; (J.S.-O.); (P.S.R.-J.)
| | - Josué Pozo-Martínez
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Chile;
- Laboratorio de Química—Médica, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 777, Cuenca 010204, Ecuador
| |
Collapse
|
12
|
Wang J, Chai Z, Su H, Du E, Guan X, Guo H. Unraveling the Role of Humic Acid in the Oxidation of Phenolic Contaminants by Soluble Manganese Oxo-Anions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8576-8586. [PMID: 38696240 DOI: 10.1021/acs.est.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhizhuo Chai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haizheng Su
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaohong Guan
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Chen C, Cheng J, Xiao Y, Kong T, Tang H, Xie Q, Chen C. Carbon nanotube-interconnected ruthenium phthalocyanine nanoparticles used for real-time monitoring of nitric oxide released from vascular endothelial barrier model. Biosens Bioelectron 2024; 250:116048. [PMID: 38266618 DOI: 10.1016/j.bios.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Real-time monitoring of nitric oxide (NO) is of great importance in diagnosing the physiological functions of neurotransmission, cardiovascular, and immune systems. This study reports the carbon nanotube-interconnected ruthenium phthalocyanine nanoparticle nanocomposite and its applicability in construction of an electrochemical platform, which could real-time detect NO released from the vascular endothelial barrier (VEB) model in cell culture medium. The nanocomposite exhibits regular morphology, uniform particle size, and excellent electro-catalytic activity to electrochemical oxidation of NO. Under optimal conditions, the electrochemical device has high sensitivity (0.871 μA μM-1) and can selectively detect NO down to the concentration of 6 × 10-10 M. The human brain microvascular endothelial cells were cultured onto the Transwell support to construct the VEB model. Upon stimulated by L-arginine, NO produced by the VEB diffuses into the bottom chamber of the Transwell, and is real-time monitored by the electrochemical device. Moreover, evaluation of the NO inhibition by drug is realized using the electrochemical device-Transwell platform. This simple and sensitive platform would be of great interesting for evaluating the endothelial function or its pathological states, and screening the related drugs or chemicals.
Collapse
Affiliation(s)
- Chenpu Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jun Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yawen Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tong Kong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Hao Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
14
|
Liu F, Zou Y, Liang H, Hu J, Li Y, Lin L, Li X, Li B. Trace Co(II) triggers peracetic acid activation in phosphate buffer: New insights into the oxidative species responsible for ciprofloxacin removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133638. [PMID: 38354441 DOI: 10.1016/j.jhazmat.2024.133638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Peracetic acid (PAA) emerges as a promising disinfectant and oxidant applied worldwide, and its application has been broadened for advanced oxidation processes (AOPs) in wastewater treatment. Current studies on transition metal-activated AOPs utilized relatively high concentrations of catalysts, leading to potential secondary pollution concerns. This study boosts the understanding of reaction mechanism in PAA activation system under a low-level concentration. Herein, trace levels of Co(II) (1 μM) and practical dosages of PAA (50-250 μM) were employed, achieving noticeable ciprofloxacin (CIP) degradation efficiencies (75.8-99.0%) within 20 min. Two orders of magnitude of the CIP's antibacterial activity significantly decreased after Co(II)/PAA AOP treatment, which suggested the effective ecological risk control capability of the reaction system. The degradation performed well in various water matrices and the primary reactive species is proposed to be CoHPO4-OO(O)CCH3 complexes with scavenging tests and electron paramagnetic resonance tests. The degradation pathway of fluoroquinolones including piperazine ring-opening (dealkylation and oxidation), defluorination, and decarboxylation, were systematically elucidated. This study boosts a comprehensive and novel understanding of PAA-based AOP for CIP degradation.
Collapse
Affiliation(s)
- Feifei Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yubin Zou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Hebin Liang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
15
|
Liu H, Liu J, Sun B, Zhang Z, Jiao C, Sun D, Zhang L, Zhang Y. Ca 2LaTaO 6:Bi 3+/Mn 4+ Phosphors with High Brightness Far-Red Emitting and Luminescence Enhancement for Plant Growth LED Lights and Temperature Sensor. Inorg Chem 2024; 63:5365-5377. [PMID: 38466201 DOI: 10.1021/acs.inorgchem.3c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Herein, Bi3+/Mn4+ doped Ca2LaTaO6 phosphors with a double-perovskite structure were successfully synthesized with solid-state reaction at high temperature. The photoluminescence (PL) performances were investigated in detail. The blue radiation (∼465 nm) from the Bi3+ ion and the red radiation (∼686 nm) originating from the Mn4+ ion were obtained under 313 nm excitation. Especially, the pathway of energy transfer (Bi3+ → Mn4+) contributes to enhance the red emission intensity (Mn4+: ∼686 nm) in Ca2LaTaO6:Bi3+/Mn4+ system. The PL mechanism of Ca2LaTaO6:Bi3+/Mn4+ was analyzed through luminescence lifetimes and PL spectra. Moreover, the emitting bands of Ca2LaTaO6:Bi3+/Mn4+ were primarily matched with the absorbing bands of carotenoids and phytochrome PFR on behalf of plant growth, so the phosphors were suitable for the design of a plant growth light under near-ultraviolet to blue excitation. At last, the optical temperature dependent performances of the Ca2LaTaO6:Bi3+/Mn4+ were analyzed with luminescence intensity ratio technology. The sample has presented excellent temperature measuring relative sensitivity (SR = 2.106% K-1). The results illustrated that the Ca2LaTaO6:Bi3+/Mn4+ phosphor also can be used to develop an optical temperature sensor.
Collapse
Affiliation(s)
- Hang Liu
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jian Liu
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Bo Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Ziyi Zhang
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Chongshan Jiao
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - LiXin Zhang
- School of Physics, Nankai University, Tianjin 300071, China
| | - Yuhong Zhang
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
16
|
Muranov KO. Fenton Reaction in vivo and in vitro. Possibilities and Limitations. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S112-S126. [PMID: 38621747 DOI: 10.1134/s0006297924140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 04/17/2024]
Abstract
The review considers the problem of hydrogen peroxide decomposition and hydroxyl radical formation in the presence of iron in vivo and in vitro. Analysis of the literature data allows us to conclude that, under physiological conditions, transport of iron, carried out with the help of carrier proteins, minimizes the possibility of appearance of free iron ions in cytoplasm of the cell. Under pathological conditions, when the process of transferring an iron ion from a donor protein to an acceptor protein can be disrupted due to modifications of the carrier proteins, iron ions can enter cytosol. However, at pH values close to neutral, which is typical for cytosol, iron ions are converted into water-insoluble hydroxides. This makes it impossible to decompose hydrogen peroxide according to the mechanism of the classical Fenton reaction. A similar situation is observed in vitro, since buffers with pH close to neutral are used to simulate free radical oxidation. At the same time, iron hydroxides are able to catalyze decomposition of hydrogen peroxide with formation of a hydroxyl radical. Decomposition of hydrogen peroxide with iron hydroxides is called Fenton-like reaction. Studying the features of Fenton-like reaction in biological systems is the subject of future research.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
17
|
Cao L, Wang Z, Cheng Y, Chen Y, Liu Z, Yue S, Ma J, Xie P. Reinvestigation on the Mechanism for Algae Inactivation by the Ultraviolet/Peracetic Acid Process: Role of Reactive Species and Performance in Natural Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17629-17639. [PMID: 37906720 DOI: 10.1021/acs.est.3c05694] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.
Collapse
Affiliation(s)
- Lisan Cao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Siyang Yue
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Anghinoni JM, Birmann PT, da Rocha MJ, Gomes CS, Davies MJ, Brüning CA, Savegnago L, Lenardão EJ. Recent Advances in the Synthesis and Antioxidant Activity of Low Molecular Mass Organoselenium Molecules. Molecules 2023; 28:7349. [PMID: 37959771 PMCID: PMC10649092 DOI: 10.3390/molecules28217349] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.
Collapse
Affiliation(s)
- João M. Anghinoni
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Paloma T. Birmann
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Marcia J. da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Caroline S. Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Building 12.6, Blegdamsvej 3, 2200 Copenhagen, Denmark;
| | - César A. Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Eder J. Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| |
Collapse
|
19
|
Fang Q, Yang H, Ye S, Zhang P, Dai M, Hu X, Gu Y, Tan X. Generation and identification of 1O 2 in catalysts/peroxymonosulfate systems for water purification. WATER RESEARCH 2023; 245:120614. [PMID: 37717327 DOI: 10.1016/j.watres.2023.120614] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Catalysts for peroxymonosulfate (PMS) activation are appealing in the purification of organic wastewater. Singlet oxygen (1O2) is widely recognized as a crucial reactive species for degrading organic contaminants in catalysts/PMS systems due to its adamant resistance to inorganic anions, high selectivity, and broad pH applicability. With the rapid growth of studies on 1O2 in catalysts/PMS systems, it becomes necessary to provide a comprehensive review of its current state. This review highlights recent advancements concerning 1O2 in catalysts/PMS systems, with a primary focus on generation pathways and identification methods. The generation pathways of 1O2 are summarized based on whether (distinguished by the geometric structures of metal species) or not (distinguished by the active sites) the metal element is included in the catalysts. Furthermore, this review thoroughly discusses the influence of metal valence states and metal species with different geometric structures on 1O2 generation. Various potential strategies are explored to regulate the generation of 1O2 from the perspective of catalyst design. Identification methods of 1O2 primarily include electron paramagnetic resonance (EPR), quenching experiments, reaction in D2O solution, and chemical probe tests in catalysts/PMS systems. The principles and applications of these methods are presented comprehensively along with their applicability, possible disagreements, and corresponding solutions. Besides, an identifying procedure on the combination of main identification methods is provided to evaluate the role of 1O2 in catalysts/PMS systems. Lastly, several perspectives for further studies are proposed to facilitate developments of 1O2 in catalysts/PMS systems.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Mingyang Dai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China.
| |
Collapse
|
20
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
21
|
Jin X, Du X, Liu G, Jin B, Cao K, Chen F, Huang Q. Efficient destruction of basic organo-nitrogenous compounds in liquid hydrocarbon fuel using ascorbic acid/H 2O 2 system under ambient condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132242. [PMID: 37562355 DOI: 10.1016/j.jhazmat.2023.132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Due to the limitations of the conventional refinery methods, development of a new method such as oxidative denitrogenation (ODN) is highly desirable. This study described a novel ODN to remove organo-nitrogenous compounds (ONCs) in liquid fuel by ascorbic acid (AscH2) and H2O2 redox system under ambient conditions. Seven ONCs including pyridine, quinoline, acridine, 7,8-benzoquinoline, indole, N-methylpyrrolidone (NMP), and N,N-dimethylformamide (DMF) were chosen to assess the fuel-denitrified ability of the AscH2/H2O2 system. The results showed that the basic group of ONCs (pyridine, quinoline, and acridine) can be effectively removed (removal ratio > 95 %) while the removal efficiency of water-soluble compounds (7,8-benzoquinoline, NMP, and DMF) was moderate (61-68 %) under a mild temperature (30 °C) and atmospheric pressure. Free radical quenching and electron paramagnetic resonance experiments confirmed that hydroxyl and AscH2 radicals played a major role in the degradation of ONCs. The degraded products of quinoline were analyzed by gas chromatography-mass spectroscopy and ion chromatography. Based on the identified intermediate products, a putative reaction pathway majorly involving three steps of N-onium formation, transfer hydrogenation, and free radical oxidative ring-opening was suggested for the quinoline degradation. The presented approach can be performed at a normal temperature and pressure and will live up to expectations in the pre-denitrogenation and selective removal of basic ONCs in fuel oils.
Collapse
Affiliation(s)
- Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Xiaohu Du
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Bangheng Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Kaihong Cao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Fangyue Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
22
|
Sojka A, Price BD, Sherwin MS. Order-of-magnitude SNR improvement for high-field EPR spectrometers via 3D printed quasi-optical sample holders. SCIENCE ADVANCES 2023; 9:eadi7412. [PMID: 37729398 PMCID: PMC10511183 DOI: 10.1126/sciadv.adi7412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Here, we present a rapidly prototyped, cost-efficient, and 3D printed quasi-optical sample holder for improving the signal-to-noise ratio (SNR) in modern, resonator-free, and high-field electron paramagnetic resonance (HFEPR) spectrometers. Such spectrometers typically operate in induction mode: The detected EPR ("cross-polar") signal is polarized orthogonal to the incident ("co-polar") radiation. The sample holder makes use of an adjustable sample positioner that allows for optimizing the sample position to maximize the 240-gigahertz magnetic field B1 and a rooftop mirror that allows for small rotations of the microwave polarization to maximize the cross-polar signal and minimize the co-polar background. When optimally tuned, the sample holder was able to improve co-polar isolation by ≳20 decibels, which is proven beneficial for maximizing the SNR in rapid-scan, pulsed, and continuous-wave EPR experiments. In rapid-scan mode, the improved SNR enabled the recording of entire EPR spectra of a narrow-line radical in millisecond time scales, which, in turn, enabled real-time monitoring of a sample's evolving line shape.
Collapse
Affiliation(s)
- Antonín Sojka
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brad D. Price
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mark S. Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
23
|
Hou Y, Feng J, Tian R, Lu C, Duan X. Regulating Degradation Pathways of Polymers by Radical-Triggered Luminescence. Angew Chem Int Ed Engl 2023; 62:e202307573. [PMID: 37489697 DOI: 10.1002/anie.202307573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Understanding the radical behaviours during polymer degradation is beneficial to unveil and regulate the degradation pathways of polymers to achieve a sustainable polymer development. However, it is a long-standing challenge to study radical behaviours owing to the ultra-short lifetime of the transient radicals generated during the polymer degradation. In this contribution, we have proposed the radical-triggered luminescence to monitor the radical behaviours during polymer degradation without/with the addition of inorganic additives. It was disclosed that the pure polymers showed a single sigmoidal dynamic curve from peroxy radicals (ROO⋅) emissions, leading to the exponential proliferation for the degradation evolution. Alternatively, the degradation pathways with the addition of additives, layered double hydroxides (LDHs) with positively charged Al centers, could be modulated into a double sigmoidal dynamics, involving the main product of alkoxy radicals (RO⋅) with the activation energy of 40.2 kJ/mol and a small amount of ROO⋅ with 76.3 kJ/mol, respectively. Accordingly, the polymers with the additive-regulated pathways could exhibit prominently anti-degradation behaviours. This work is beneficial for the deep understanding of the radical mechanisms during polymer degradation, and for the rational design of anti-degradation polymers.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
25
|
Lottes B, Carter KP. Capture and Stabilization of the Hydroxyl Radical in a Uranyl Peroxide Cluster. Chemistry 2023; 29:e202300749. [PMID: 37249248 DOI: 10.1002/chem.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 05/31/2023]
Abstract
Here we describe the synthesis and characterization of a new uranyl peroxide cluster (UPC), U60 Ox30 *, which captures and stabilizes oxygen-based free radicals for more than one week. These radical species were first detected with a nitroblue tetrazolium colorimetric assay and U60 Ox30 * was characterized by single crystal X-ray diffraction as well as infrared (IR), Raman, UV-Vis-NIR, and electron paramagnetic resonance (EPR) spectroscopies. Identification of the free radicals present in U60 Ox30 * was done via room temperature solid and solution state X-band EPR studies using spin trapping methods. The spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was definitive for identifying the free radicals in U60 Ox30 *, which are hydroxyl radicals (⋅OH) that are stable for up to ten days that also persist upon addition of the metalloenzymes catalase and superoxide dismutase. Addition of the spin trapping agent α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN) further confirmed the radicals were oxygen based, and deuteration experiments showed that the origin of the free radicals was from the decomposition of H2 O2 in water. These results demonstrate that highly oxidizing species such as the ⋅OH radical can be stabilized in UPCs, which alters our understanding of the role of free radicals present in spent nuclear fuel.
Collapse
Affiliation(s)
- Brett Lottes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Korey P Carter
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Aboelezz E, Pogue BW. Review of nanomaterial advances for ionizing radiation dosimetry. APPLIED PHYSICS REVIEWS 2023; 10:021312. [PMID: 37304732 PMCID: PMC10249220 DOI: 10.1063/5.0134982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
There are a wide range of applications with ionizing radiation and a common theme throughout these is that accurate dosimetry is usually required, although many newer demands are provided by improved features in higher range, multi-spectral and particle type detected. Today, the array of dosimeters includes both offline and online tools, such as gel dosimeters, thermoluminescence (TL), scintillators, optically stimulated luminescence (OSL), radiochromic polymeric films, gels, ionization chambers, colorimetry, and electron spin resonance (ESR) measurement systems. Several future nanocomposite features and interpretation of their substantial behaviors are discussed that can lead to improvements in specific features, such as (1) lower sensitivity range, (2) less saturation at high range, (3) overall increased dynamic range, (4) superior linearity, (5) linear energy transfer and energy independence, (6) lower cost, (7) higher ease of use, and (8) improved tissue equivalence. Nanophase versions of TL and ESR dosimeters and scintillators each have potential for higher range of linearity, sometimes due to superior charge transfer to the trapping center. Both OSL and ESR detection of nanomaterials can have increased dose sensitivity because of their higher readout sensitivity with nanoscale sensing. New nanocrystalline scintillators, such as perovskite, have fundamentally important advantages in sensitivity and purposeful design for key new applications. Nanoparticle plasmon coupled sensors doped within a lower Zeff material have been an effective way to achieve enhanced sensitivity of many dosimetry systems while still achieving tissue equivalency. These nanomaterial processing techniques and unique combinations of them are key steps that lead to the advanced features. Each must be realized through industrial production and quality control with packaging into dosimetry systems that maximize stability and reproducibility. Ultimately, recommendations for future work in this field of radiation dosimetry were summarized throughout the review.
Collapse
Affiliation(s)
- Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards, Giza, Egypt
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison 53705, USA
| |
Collapse
|
27
|
Li Z, Zhang L, Wang L, Yu W, Zhang S, Li X, Zhai S. Engineering the electronic structure of two-dimensional MoS2 by Ni dopants for pollutant degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
28
|
Zhang F, Zhang R, He S, Guan J, Feng Z, Wu Z. Formation of free radicals in Chi-aroma Baijiu during aging process with fat pork. Free Radic Res 2023; 57:271-281. [PMID: 37401820 DOI: 10.1080/10715762.2023.2232095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Soaking aged fat pork is a special aging process in the production of Chi-aroma Baijiu considered to involve the formation of free radicals. This study aimed to investigate the free radicals' formation pathway in Chi-aroma Baijiu during aged fat pork soaking by using electron paramagnetic resonance (EPR) and spin trapping with 5,5-dimethyl-1-pyrrolin-n-oxide (DMPO). The alkyl radical adducts (DMPO-R) and hydroxyl radical adducts (DMPO-OH) were detected in Baijiu after soaking the fat pork for aging. During the preparation process of aged fat pork, alkoxy radicals adduct (DMPO-RO) were mainly detected since lipid oxidation. Oleic acid and linoleic acid, the two main unsaturated fatty acids in fat pork, produced alkoxy radicals in the oxidation process. The total amounts of spins in linoleic acid and oleic acid after 4-month oxidation treatment increased by 248.07 ± 26.65% and 34.17 ± 0.72% than 0-month. It indicated that the free radicals in aged Chi-aroma Baijiu were mainly derived from the two main unsaturated fatty acids in aged fat pork and linoleic acid had a stronger ability to produce free radicals than oleic acid. Alkoxy radicals (RO·) from fat pork reacted with ethanol in Baijiu to form alkyl radicals (R·). The peroxide bond of hydroperoxides from the oxidation of unsaturated fatty acid was cleaved to form hydroxyl radicals (·OH) that were transferred to Baijiu. The results provide theoretical guidance for the subsequent work of free radicals scavenging.
Collapse
Affiliation(s)
- Fengjiao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Renjie Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, P.R. China
| | - Songgui He
- Guangdong Jiujiang Distillery Co., Ltd, Foshan, P.R. China
| | - Jingyi Guan
- Guangdong Jiujiang Distillery Co., Ltd, Foshan, P.R. China
| | - Zhaoxing Feng
- Guangdong Jiujiang Distillery Co., Ltd, Foshan, P.R. China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Reed EC, Case AJ. Defining the nuanced nature of redox biology in post-traumatic stress disorder. Front Physiol 2023; 14:1130861. [PMID: 37007993 PMCID: PMC10060537 DOI: 10.3389/fphys.2023.1130861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health disorder that arises after experiencing or witnessing a traumatic event. Despite affecting around 7% of the population, there are currently no definitive biological signatures or biomarkers used in the diagnosis of PTSD. Thus, the search for clinically relevant and reproducible biomarkers has been a major focus of the field. With significant advances of large-scale multi-omic studies that include genomic, proteomic, and metabolomic data, promising findings have been made, but the field still has fallen short. Amongst the possible biomarkers examined, one area is often overlooked, understudied, or inappropriately investigated: the field of redox biology. Redox molecules are free radical and/or reactive species that are generated as a consequence of the necessity of electron movement for life. These reactive molecules, too, are essential for life, but in excess are denoted as "oxidative stress" and often associated with many diseases. The few studies that have examined redox biology parameters have often utilized outdated and nonspecific methods, as well as have reported confounding results, which has made it difficult to conclude the role for redox in PTSD. Herein, we provide a foundation of how redox biology may underlie diseases like PTSD, critically examine redox studies of PTSD, and provide future directions the field can implement to enhance standardization, reproducibility, and accuracy of redox assessments for the use of diagnosis, prognosis, and therapy of this debilitating mental health disorder.
Collapse
Affiliation(s)
- Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
30
|
Wang W, Song Y, Tian Y, Chen B, Liang Y, Liang Y, Li C, Li Y. TCPP/MgO-loaded PLGA microspheres combining photodynamic antibacterial therapy with PBM-assisted fibroblast activation to treat periodontitis. Biomater Sci 2023; 11:2828-2844. [PMID: 36857622 DOI: 10.1039/d2bm01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Bacteria eradication and subsequent periodontal tissue reconstruction is the primary task for periodontitis treatment. Commonly used antibiotic therapy suffers from antibiotic resistance. Meanwhile, promoting fibroblast activity is crucial for re-establishing a damaged periodontal structure. In addition to the fibroblast activation property of Mg2+, photobiomodulation (PBM) has recently attracted increasing attention in wound healing. Using the same 635 nm laser resource, PBM could simultaneously work with antibacterial photodynamic therapy (aPDT) to achieve antibacterial function and fibroblast activation effect. Herein, multifunctional microspheres were designed by employing poly (lactic-co-glycolic acid) (PLGA) microspheres to load tetrakis (4-carboxyphenyl) porphyrin (TCPP) and magnesium oxide (MgO) nanoparticles, named as PMT, with sustained Mg2+ release for 20 days. PMT achieved excellent antibacterial photodynamic effect for periodontal pathogens F. nucleatum and P. gingivalis by generating reactive oxygen species, which increases cell membrane permeability and destroys bacteria integrity to cause bacteria death. Meanwhile, PMT itself exhibited improved fibroblast viability and adhesion, with the PMT + light group revealing further activation of fibroblast cells, suggesting the coordinated action of Mg2+ and PBM effects. The underlying molecular mechanism might be the elevated gene expressions of Fibronectin 1, Col1a1, and Vinculin. In addition, the in vivo rat periodontitis model proved the superior therapeutic effects of PMT with laser illumination using micro-computed tomography analysis and histological staining, which presented decreased inflammatory cells, increased collagen production, and higher alveolar bone level in the PMT group. Our study sheds light on a promising strategy to fight periodontitis using versatile microspheres, which combine aPDT and PBM-assisted fibroblast activation functions.
Collapse
Affiliation(s)
- Wanmeng Wang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yuan Tian
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
31
|
Poliansky NB, Motyakin MV, Kasparov VV, Novikov IA, Muranov KO. Oxidative damage to β L-crystallin in vitro by iron compounds formed in physiological buffers. Biophys Chem 2023; 294:106963. [PMID: 36716683 DOI: 10.1016/j.bpc.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
βL-crystallin aggregation due to oxidative damage in the presence of H2O2 and ferric chloride was studied in-vitro under conditions close to physiological. It was shown that the protein aggregation characterized by the nucleation time and the aggregation rate significantly depended on the composition of the isoosmotic buffers used, and decreased in the series HEPES buffer > Tris buffer > PBS. Ferric chloride at neutral pH was converted into water-insoluble iron hydroxide III (≡FeIIIOH). According to the data of scanning electron microscopy the ≡FeIIIOH particles formed in HEPES buffer, Tris buffer, and PBS practically did not differ in structure. However, the sizes of ≡FeIIIOH floating particles measured by dynamic light scattering differed significantly and were 44 ± 28 nm, 93 ± 66 nm, 433 ± 316 nm (Zaver ± SD) for HEPES buffer, Tris buffer, and PBS, respectively. It was found by the spin trap method that the ability of ≡FeIIIOH to decompose H2O2 with the formation of a •OH decreases in the series HEPES buffer, Tris buffer, and PBS. The authors suggest that the ability to generate •OH during the decomposition of H2O2 is determined by the total surface area of ≡FeIIIOH particles, which significantly depends on the composition of the buffer in which these particles are formed.
Collapse
Affiliation(s)
| | - Mikhail V Motyakin
- Emanuel Institute of Biochemical Physics of RAS, Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics of RAS, 119991, Kosygin Street 4, Moscow, Russia
| | | | | | | |
Collapse
|
32
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
33
|
Nguyen TA, Lim HM, Kinashi K, Sakai W, Tsutsumi N, Okubayashi S, Hosoda S, Sato T. Spin Trapping Analysis of Radical Intermediates on the Thermo-Oxidative Degradation of Polypropylene. Polymers (Basel) 2022; 15:200. [PMID: 36616549 PMCID: PMC9824095 DOI: 10.3390/polym15010200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study is to investigate the thermo-oxidative degradation behavior of polypropylene (PP) by comparing three types of pristine PP granules (consisting of homopolymer, random copolymer, and block copolymer) with their corresponding oxidized analogues. These analogues were intensely oxidized under oxygen at 90 °C for 1000 h by using the electron spin resonance (ESR) spin trapping method that can detect short-lived radical intermediates during the degradation. The degrees of oxidation could be evaluated by chemiluminescence (CL) intensity, which was related to the concentration of hydroperoxide groups generated in the PP chain. In the pristine PP samples, a small amount of hydroperoxides were found to be formed unintentionally, and their homolysis produces alkoxy radicals, RO•, which then undergo β-scission to yield chain-end aldehydes or chain-end ketones. These oxidation products continue to take part in homolysis to produce their respective carbonyl and carbon radicals. On the other hand, in the oxidized PP granules, because of their much higher hydroperoxide concentration, the two-stage cage reaction and the bimolecular decomposition of hydroperoxides are energetically favorable. Carbonyl compounds are formed in both reactions, which are then homolyzed to form the carbonyl radical species, •C(O)-. PP homopolymer produced the largest amount of carbonyl radical spin adduct; thus, it was found that the homopolymer is most sensitive to oxygen attack, and the presence of ethylene units in copolymers enhances the oxidation resistance of PP copolymers.
Collapse
Affiliation(s)
- Thu Anh Nguyen
- Doctor's Program of Materials Chemistry, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Sakyo, Kyoto 606-8585, Japan
| | - Hui Ming Lim
- Undergraduate School of Applied Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kenji Kinashi
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Wataru Sakai
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Naoto Tsutsumi
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Satoko Okubayashi
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Satoru Hosoda
- Graduate School of Science & Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tetsu Sato
- Tohoku Electronic Industrial Co., Ltd., Mukaiyama 2-14-1, Sendai, Miyagi 982-0841, Japan
| |
Collapse
|
34
|
Hipper E, Lehmann F, Kaiser W, Hübner G, Buske J, Blech M, Hinderberger D, Garidel P. Protein photodegradation in the visible range? Insights into protein photooxidation with respect to protein concentration. Int J Pharm X 2022; 5:100155. [PMID: 36798831 PMCID: PMC9926095 DOI: 10.1016/j.ijpx.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Visible light (400-800 nm) can lead to photooxidation of protein formulations, which might impair protein integrity. However, the relevant mechanism of photooxidation upon visible light exposure is still unclear for therapeutic proteins, since proteinogenic structures do not absorb light in the visible range. Here, we show that exposure of monoclonal antibody formulations to visible light, lead to the formation of reactive oxygen species (ROS), which subsequently induce specific protein degradations. The formation of ROS and singlet oxygen upon visible light exposure is investigated using electron paramagnetic resonance (EPR) spectroscopy. We describe the initial formation of ROS, most likely after direct reaction of molecular oxygen with a triplet state photosensitizer, generated from intersystem crossing of the excited singlet state. Since these radicals affect the oxygen content in the headspace of the vial, we monitored photooxidation of these mAb formulations. With increasing protein concentrations, we found (i) a decreasing headspace oxygen content in the sample, (ii) a higher relative number of radicals in solution and (iii) a higher protein degradation. Thus, the protein concentration dependence indicates the presence of higher concentration of a currently unknown photosensitizer.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Florian Lehmann
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Göran Hübner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, ADB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany,Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany,Corresponding author at: Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
35
|
Bychkova AV, Yakunina MN, Lopukhova MV, Degtyarev YN, Motyakin MV, Pokrovsky VS, Kovarski AL, Gorobets MG, Retivov VM, Khachatryan DS. Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and Long-Term In Situ Imaging. Pharmaceutics 2022; 14:2771. [PMID: 36559265 PMCID: PMC9782891 DOI: 10.3390/pharmaceutics14122771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 μg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.
Collapse
Affiliation(s)
- Anna V. Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Marina N. Yakunina
- N.N. Blokhin National Medical Research Center of Oncology, 24, Kashirskoye Sh., Moscow 115478, Russia
| | - Mariia V. Lopukhova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Yevgeniy N. Degtyarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4, Kosygina Str., Moscow 119991, Russia
| | - Mikhail V. Motyakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4, Kosygina Str., Moscow 119991, Russia
| | - Vadim S. Pokrovsky
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 24, Kashirskoye Sh., Moscow 115478, Russia
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, RUDN University, 6, Miklukho-Maklaya Str., Moscow 117198, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1, Olympic Pr., Federal Territory Sirius, Krasnodarsky Kray, Sochi 354340, Russia
| | - Alexander L. Kovarski
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Maria G. Gorobets
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Vasily M. Retivov
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Center “Kurchatov Institute”, 3, Bogorodsky Val, Moscow 107076, Russia
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182, Russia
| | - Derenik S. Khachatryan
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Center “Kurchatov Institute”, 3, Bogorodsky Val, Moscow 107076, Russia
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182, Russia
| |
Collapse
|
36
|
Tang L, Wang C, Tian S, Zhang Z, Yu Y, Song D, Zhang Z. Label-Free and Ultrasensitive Detection of Butyrylcholinesterase and Organophosphorus Pesticides by Mn(II)-Based Electron Spin Resonance Spectroscopy with a Zero Background Signal. Anal Chem 2022; 94:16189-16195. [DOI: 10.1021/acs.analchem.2c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Li Tang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Sizhu Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yong Yu
- College of Instrumentation and Electrical Engineering, Jilin University, West Minzhu Street 938, Changchun 130061, PR China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| |
Collapse
|
37
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Abhyankar N, Agrawal A, Campbell J, Maly T, Shrestha P, Szalai V. Recent advances in microresonators and supporting instrumentation for electron paramagnetic resonance spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:101101. [PMID: 36319314 PMCID: PMC9632321 DOI: 10.1063/5.0097853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy characterizes the magnetic properties of paramagnetic materials at the atomic and molecular levels. Resonators are an enabling technology of EPR spectroscopy. Microresonators, which are miniaturized versions of resonators, have advanced inductive-detection EPR spectroscopy of mass-limited samples. Here, we provide our perspective of the benefits and challenges associated with microresonator use for EPR spectroscopy. To begin, we classify the application space for microresonators and present the conceptual foundation for analysis of resonator sensitivity. We summarize previous work and provide insight into the design and fabrication of microresonators as well as detail the requirements and challenges that arise in incorporating microresonators into EPR spectrometer systems. Finally, we provide our perspective on current challenges and prospective fruitful directions.
Collapse
Affiliation(s)
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jason Campbell
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Thorsten Maly
- Bridge12 Technologies, Inc., Natick, Massachusetts 01760, USA
| | | | - Veronika Szalai
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
39
|
ATAYEVA V, ASLANOV R. EPR-based study to monitor Free Radicals in Treated Silk Fibroin with Anthocyanins. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bioactive materials of natural origin have great demand in industry and medicine due to their versatility and useful properties. The main purpose of this work is to prepare biocomposites for the dual purpose of modified silk fibroin (Bombyx mori L.), which protects against the destructive effects of bioactive, antioxidant and ultraviolet rays. For this purpose, an aqueous extract of autumn leaves of the anthocyanin-rich smoke tree plant (Cotinus coggygria L.) was applied. 2% thiourea solution was used to increase the durability of the modified SF to external influences and for use in textiles. The intensity of free radicals in silk fibroin-anthocyanin (SFA) and silk fibroin-anthocyanin-thiourea (SFAT) biocomposites modified by the Electron Paramagnetic Resonance (EPR) method was studied. Maximum adsorption time was determined 20 minutes and the intensity of free radicals in SFA bio-composite was 80-85% and in SFAT biocomposite 50-55% in relation to silk fibroin untreated. For biomedical use of SFA, the radical scavenger activity kinetics were studied on a UV-2700 spectrophotometer and radical capture activity was calculated: RSA% (bioextract) = 73.52 ± 0.5, RSA% (SF) = 6.42 ± 0.4, RSA% (SFA) = 45.23 ± 0.8
Collapse
Affiliation(s)
| | - Rasim ASLANOV
- Institute of Biophysics, Azerbaijan National Academy of Sciences
| |
Collapse
|
40
|
Surface plasmon resonance and oxygen vacancy on Bi/BiO1−y ClxBr1−x synergistically boost high-efficiently photodegradation acetaminophen in waste water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Williams PJH, Boustead GA, Heard DE, Seakins PW, Rickard AR, Chechik V. New Approach to the Detection of Short-Lived Radical Intermediates. J Am Chem Soc 2022; 144:15969-15976. [PMID: 36001076 PMCID: PMC9460783 DOI: 10.1021/jacs.2c03618] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report a new general method for trapping short-lived
radicals,
based on a homolytic substitution reaction SH2′.
This departure from conventional radical trapping by addition or radical–radical
cross-coupling results in high sensitivity, detailed structural information,
and general applicability of the new approach. The radical traps in
this method are terminal alkenes possessing a nitroxide leaving group
(e.g., allyl-TEMPO derivatives). The trapping process
thus yields stable products which can be stored and subsequently analyzed
by mass spectrometry (MS) supported by well-established techniques
such as isotope exchange, tandem MS, and high-performance liquid chromatography-MS.
The new method was applied to a range of model radical reactions in
both liquid and gas phases including a photoredox-catalyzed thiol–ene
reaction and alkene ozonolysis. An unprecedented range of radical
intermediates was observed in complex reaction mixtures, offering
new mechanistic insights. Gas-phase radicals can be detected at concentrations
relevant to atmospheric chemistry.
Collapse
Affiliation(s)
- Peter J H Williams
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | | | - Dwayne E Heard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Paul W Seakins
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Andrew R Rickard
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.,National Centre for Atmospheric Science, University of York, Heslington, York YO10 5DD, U.K
| | - Victor Chechik
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
42
|
Chen L, Duan J, Du P, Sun W, Lai B, Liu W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. WATER RESEARCH 2022; 221:118747. [PMID: 35728498 DOI: 10.1016/j.watres.2022.118747] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Accurate identification of radicals in advanced oxidation processes (AOPs) is important to study the mechanisms on radical production and subsequent oxidation-reduction reaction. The commonly applied radical quenching experiments cannot provide direct evidences on generation and evolution of radicals in AOPs, while electron paramagnetic resonance (EPR) is a cutting-edge technology to identify radicals based on spectral characteristics. However, the complexity of EPR spectrum brings uncertainty and inconsistency to radical identification and mechanism clarification. This work presented a comprehensive study on identification of radicals by in-situ EPR analysis in four typical UV-based homogenous AOPs, including UV/H2O2, UV/peroxodisulfate (and peroxymonosulfate), UV/peracetic acid and UV/IO4- systems. Radical formation mechanism was also clarified based on EPR results. A reliable EPR method using organic solvents was proposed to identify alkoxy and alkyl radicals (CH3C(=O)OO·, CH3C(=O)O· and ·CH3) in UV/PAA system. Two activation pathways for radical production were proposed in UV/IO4- system, in which the produced IO3·, IO4·, ·OH and hydrated electron were precisely detected. It is interesting that addition of specific organic solvents can effectively identify oxygen-center and carbon-center radicals. A key parameter in EPR spectrum for 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin adduct, AH, is ranked as: ·CH3 (23 G) >·OH (15 G) >IO3· (12.9 G) >O2·- (11 G) ≥·OOH (9-11 G) ≥IO4· (9-10 G) ≥SO4·- (9-10 G) >CH3C(=O)OO· (8.5 G) > CH3C(=O)O· (7.5 G). This study will give a systematic method on identification of radicals in AOPs, and shed light on the insightful understanding of radical production mechanism.
Collapse
Affiliation(s)
- Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jun Duan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiliang Sun
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge 70803, LA, USA
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
43
|
Investigating radical pair reaction dynamics of B 12 coenzymes 2: Time-resolved electron paramagnetic resonance spectroscopy. Methods Enzymol 2022; 669:283-301. [PMID: 35644175 DOI: 10.1016/bs.mie.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemistry of B12 coenzymes is highly sensitive to the nature of their upper axial ligand and can be further tuned by their environment. Methylcobalamin, for example, generates RPs photochemically but undergoes non-radical biochemistry when bound to its dependent enzymes. Owing to the transient nature of the reaction intermediates, it remains a challenge to investigate how their environment controls reactivity. Here, we describe how to use time-resolved electron paramagnetic spectroscopy to directly monitor the generation and evolution of transient radicals that result from the photolysis of a B12 coenzyme. This method produces evolving, spin-polarized spectra that are rich in mechanistic detail.
Collapse
|
44
|
Makarova K, Zawada K, Wiweger M. Benchtop X-band electron paramagnetic resonance detection of melanin and Nitroxyl spin probe in zebrafish. Free Radic Biol Med 2022; 183:69-74. [PMID: 35314357 DOI: 10.1016/j.freeradbiomed.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
EPR spectroscopy is a technique that provides direct information about free radicals in biological systems. So far, X-band EPR was seldomly used for in vivo studies as the small resonator size and high power used to detect EPR signals were unsuitable for living organisms. Here, we report new solutions which lift some limitations and make X-band EPR suitable for an in vivo detection of free radicals in zebrafish - a small laboratory animal that is often used as a model for various studies related to free radicals. We designed specially-shaped glass and quartz capillaries to ensure the zebrafish's safety during the experiments. The optimal EPR spectrometer parameters, safe for zebrafish embryos and sufficient to obtain EPR spectrum, were 4 scans by 20s, 100G sweep, and 0.8 mW power. Combining the specially-shaped capillary with a multi-harmonic analyzer for the EPR spectrometer allowed increasing the time up to 16 scans by 11s and lowering the power to 0.25 mW. As a proof of principle, we demonstrate the detection of melanin radicals and the 5-DSA spin probe in zebrafish larvae. As fish survive the EPR scans, the possibility of performing multiple measurements of free radicals in living zebrafish offers new tools for studies aiming to understand redox biology and membrane-dependent functions in both health and disease.
Collapse
Affiliation(s)
- Katerina Makarova
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland.
| | - Katarzyna Zawada
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland
| | - Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str, 02-109, Warsaw, Poland
| |
Collapse
|
45
|
Rane V. Harnessing Electron Spin Hyperpolarization in Chromophore-Radical Spin Probes for Subcellular Resolution in Electron Paramagnetic Resonance Imaging: Concept and Feasibility. J Phys Chem B 2022; 126:2715-2728. [PMID: 35353514 DOI: 10.1021/acs.jpcb.1c10920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a subcellular resolution for biological samples doped with stable radicals at room temperature (RT) is a long-sought goal in electron paramagnetic resonance imaging (EPRI). The spatial resolution in current EPRI methods is constrained either because of low electron spin polarization at RT or the experimental limitations associated with the field gradients and the radical linewidth. Inspired by the recent demonstration of a large electron spin hyperpolarization in chromophore-nitroxyl spin probe molecules, the present work proposes a novel optically hyperpolarized EPR imaging (OH-EPRI) method, which combines the optical method of two-photon confocal microscopy for hyperpolarization generation and the rapid scan (RS) EPR method for signal detection. An important aspect of OH-EPRI is that it is not limited by the abovementioned restrictions of conventional EPRI since the large hyperpolarization in the spin probes overcomes the poor thermal spin polarization at RT, and the use of two-photon optical excitation of the chromophore naturally generates the required spatial resolution, without the need for any magnetic field gradient. Simulations based on time-dependent Bloch equations, which took into account both the RS field modulation and the hyperpolarization generation by optical means, were performed to examine the feasibility of OH-EPRI. The simulation results revealed that a spatial resolution of up to 2 fL can be achieved in OH-EPRI at RT under in vitro conditions. Notably, the majority of the requirements for an OH-EPRI experiment can be fulfilled by the currently available technologies, thereby paving the way for its easy implementation. Thus, the proposed method could potentially bridge the sensitivity gap between the optical and magnetic imaging techniques.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
46
|
Inhibitory Effect of Tamarix ramosissima Extract on the Formation of Heterocyclic Amines in Roast Lamb Patties by Retarding the Consumption of Precursors and Preventing Free Radicals. Foods 2022; 11:foods11071000. [PMID: 35407089 PMCID: PMC8998052 DOI: 10.3390/foods11071000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Tamarix ramosissima has been widely used as barbecue skewers for the good taste and unique flavor it gives to the meat, but the effects of T. ramosissima on heterocyclic amine (HA) formation in roast lamb are unknown. The influence of T. ramosissima extract (TRE) on HA formation, precursors’ consumption, and free radicals’ generation in roast lamb patties were elucidated by UPLC-MS, HPLC, and electron spin resonance (ESR) analysis, respectively. Six HAs were identified and compared with the control group; the total and polar HAs decreased by 30.51% and 56.92% with TRE addition at 0.30 g/kg. The highest inhibitory effect was found against 2-amino-1-methyl-6-phenylimidazo[4,5-f]pyridine (PhIP) formation (70.83%) at 0.45 g/kg. The addition of TRE retarded the consumption of HA precursors, resulting in fewer HAs formed. The typical signal intensity of free radicals in roast lamb patties significantly decreased with TRE addition versus the control group (p < 0.05), and the higher the levels of the TRE, the greater the decrease in signal intensity. We propose that the inhibitory effects of TRE on HA formation, especially on polar HAs, were probably achieved by retarding the consumption of precursors and preventing free radicals from being generated in roast lamb patties. These findings provide valuable information concerning TRE’s effectiveness in preventing HA formation through both the precursor consumption and free radical scavenging mechanisms.
Collapse
|
47
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
48
|
Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041192. [PMID: 35208984 PMCID: PMC8879555 DOI: 10.3390/molecules27041192] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Despite significant advances in early diagnosis and treatment, cancer is one of the leading causes of death. Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells. PDT is a promising approach for eliminating various cancers but is not yet as widely applied in therapy as conventional chemotherapy. Currently, natural compounds with photosensitizing properties are being discovered and identified. A reduced toxicity to healthy tissues and a lower incidence of side effects inspires scientists to seek natural PS for PDT. In this review, several groups of compounds with photoactive properties are presented. The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. This review focused on the anticancer activity of furanocoumarins, polyacetylenes, thiophenes, tolyporphins, curcumins, alkaloid and anthraquinones in relation to the light-absorbing properties. Attention will be paid to their phototoxic and anti-cancer effects on various types of cancer.
Collapse
|
49
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
50
|
Park S, Keum Y, Park J. Ti-Based porous materials for reactive oxygen species-mediated photocatalytic reactions. Chem Commun (Camb) 2022; 58:607-618. [PMID: 34950943 DOI: 10.1039/d1cc04858a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive oxidants that are typically generated by the irradiation of semiconducting materials with visible or UV light and are widely used for the photocatalytic degradation of toxic substances, photodynamic therapy, and selective organic transformations. In this context, TiO2 is considered to be among the most promising photocatalysts due to its high redox activity, structural stability, and natural abundance. In view of the extensive development of highly active photocatalysts, we herein briefly introduce TiO2 and the mechanisms of TiO2-mediated ROS generation, subsequently focusing on key advances in the design and synthesis of Ti-containing porous materials, such as porous TiO2, Ti-based metal-organic frameworks, and Ti-based metal-organic aerogels. In particular, this review highlights the significance of porosity and the structure-function relationship for the development of Ti-based photocatalysts. The structures, porosities, and ROS generation mechanisms of these materials as well as the related efficiencies of ROS-mediated photocatalytic organic transformations are discussed in detail to provide a useful reference for future researchers and to inspire the exploration of high-performance photocatalysts.
Collapse
Affiliation(s)
- Seonghun Park
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| | - Yesub Keum
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| | - Jinhee Park
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| |
Collapse
|