1
|
Wang Y, Wang Y, Hu Y, Wu Q, Gui L, Zeng W, Chen Q, Yu T, Zhang X, Lan K. CYP8B1 Catalyzes 12alpha-Hydroxylation of C 27 Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid. Drug Metab Dispos 2024; 52:1234-1243. [PMID: 39214664 DOI: 10.1124/dmd.124.001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 μM and kcat of 3.2 and 2.6 minutes-1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT: The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.
Collapse
Affiliation(s)
- Yutong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Yixuan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - YiTing Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - QingLiang Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Lanlan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Wushuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Qi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Tingting Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Xinjie Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| |
Collapse
|
2
|
Klouwer FCC, Roosendaal SD, Hollak CEM, Langeveld M, Poll-The BT, Sorge AJV, Wolf NI, Knaap MSVD, Engelen M. Redefining the phenotype of alpha-methylacyl-CoA racemase (AMACR) deficiency. Orphanet J Rare Dis 2024; 19:350. [PMID: 39313810 PMCID: PMC11421175 DOI: 10.1186/s13023-024-03358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Alpha-methylacyl-CoA racemase (AMACR) deficiency is a rare peroxisomal enzyme deficiency caused by biallelic variants in the AMACR gene. This deficiency leads to the accumulation of toxic bile acid intermediates (R)-trihydroxycholestenoic acid (THCA) and (R)-dihydroxycholestenoic acid (DHCA) and pristanic acid. With less than 20 patients described in literature, the phenotype of AMACR deficiency is poorly defined and no data on the natural history are available. RESULTS Here we describe a cohort of 12 patients (9 adults and 3 children) with genetically confirmed AMACR deficiency (median age at diagnosis 56 years, range 3-69), followed for an average of 6 years (between 2015 and 2023). Five novel pathogenic variants are described. In 5/9 adult patients, retinitis pigmentosa was detected at a median age of 45 years (range 30-61). The median delay to diagnosis of AMACR deficiency after the diagnosis of retinitis pigmentosa was 24 years (range 0-33). All adult patients subsequently developed neurological signs and symptoms after the age of 40 years; most frequently neuropathy, ataxia and cognitive decline with prior normal cognitive functioning. One patient presented with a stroke-like episode. All adult patients showed a typical MRI pattern involving the thalami and gray matter structures of the pons and midbrain. One patient had a hepatocellular carcinoma at the time of the AMACR deficiency diagnosis and two patients suffered from gallstones. All three included children had elevated liver transaminases as single presenting sign and showed no brain MRI abnormalities. CONCLUSION AMACR deficiency can be considered as an adult slowly progressive disease with a predominant neurological phenotype. The main signs comprise retinitis pigmentosa, neuropathy, ataxia and cognitive decline; stroke-like episodes may occur. Recognition of typical MRI abnormalities may facilitate prompt diagnosis. In addition, there is a risk of liver fibrosis/cirrhosis and hepatocellular carcinoma in these patients, requiring active monitoring.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Leukodystrophy Center, Amsterdam, The Netherlands.
| | - Stefan D Roosendaal
- Department of Radiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, and Amsterdam Gastroenterology Endocrinology and Metabolism research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, and Amsterdam Gastroenterology Endocrinology and Metabolism research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Leukodystrophy Center, Amsterdam, The Netherlands
| | - Arlette J van Sorge
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Leukodystrophy Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Leukodystrophy Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Leukodystrophy Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Passi G, Lieberman S, Zahdeh F, Murik O, Renbaum P, Beeri R, Linial M, May D, Levy-Lahad E, Schneidman-Duhovny D. Discovering predisposing genes for hereditary breast cancer using deep learning. Brief Bioinform 2024; 25:bbae346. [PMID: 39038933 PMCID: PMC11262808 DOI: 10.1093/bib/bbae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified. Discovering predisposing genes contributing to familial BC is challenging due to their presumed rarity, low penetrance, and complex biological mechanisms. Here, we focused on an analysis of rare missense variants in a cohort of 12 families of Middle Eastern origins characterized by a high incidence of BC cases. We devised a novel, high-throughput, variant analysis pipeline adapted for family studies, which aims to analyze variants at the protein level by employing state-of-the-art machine learning models and three-dimensional protein structural analysis. Using our pipeline, we analyzed 1218 rare missense variants that are shared between affected family members and classified 80 genes as candidate pathogenic. Among these genes, we found significant functional enrichment in peroxisomal and mitochondrial biological pathways which segregated across seven families in the study and covered diverse ethnic groups. We present multiple evidence that peroxisomal and mitochondrial pathways play an important, yet underappreciated, role in both germline BC predisposition and BC survival.
Collapse
Affiliation(s)
- Gal Passi
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sari Lieberman
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem PO Box 12271 Jerusalem 9112102, Israel
| | - Fouad Zahdeh
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
| | - Omer Murik
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
| | - Paul Renbaum
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
| | - Rachel Beeri
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Dalit May
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
- Clalit Health Services, Jerusalem, Israel
| | - Ephrat Levy-Lahad
- The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center 12 Bayit St., Jerusalem 9103101, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, 12 Bayit St., Jerusalem 9103101, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem PO Box 12271 Jerusalem 9112102, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Garrelfs SF, Chornyi S, Te Brinke H, Ruiter J, Groothoff J, Wanders RJA. Glyoxylate reductase: Definitive identification in human liver mitochondria, its importance for the compartment-specific detoxification of glyoxylate. J Inherit Metab Dis 2024; 47:280-288. [PMID: 38200664 DOI: 10.1002/jimd.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.
Collapse
Affiliation(s)
- Sander F Garrelfs
- Departments of Pediatrics, Emma Children's Hospital, Section Pediatric Nephrology & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Serhii Chornyi
- Departments of Pediatrics, Emma Children's Hospital, Section Pediatric Nephrology & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Heleen Te Brinke
- Departments of Pediatrics, Emma Children's Hospital, Section Pediatric Nephrology & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Jos Ruiter
- Departments of Pediatrics, Emma Children's Hospital, Section Pediatric Nephrology & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaap Groothoff
- Departments of Pediatrics, Emma Children's Hospital, Section Pediatric Nephrology & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Departments of Pediatrics, Emma Children's Hospital, Section Pediatric Nephrology & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Li Y, Ruan GX, Chen W, Huang H, Zhang R, Wang J, Ouyang Y, Zhu Z, Meng L, Wang R, Huo J, Xu S, Ou X. The histone H2B ubiquitination regulator Wac is essential for plasma cell differentiation. FEBS Lett 2023; 597:1748-1760. [PMID: 37171241 DOI: 10.1002/1873-3468.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Naïve B cells become activated and differentiate into antibody-secreting plasma cells (PCs) when encountering antigens. Here, we reveal that the WW domain-containing adapter protein with coiled-coil (Wac), which is important for histone H2B ubiquitination (ubH2B), is essential for PC differentiation. We demonstrate that B cell-specific Wac knockout mice have severely compromised T cell-dependent and -independent antibody responses. PC differentiation is drastically compromised despite undisturbed germinal center B cell response in the mutant mice. We also observe a significant reduction in global ubH2B in Wac-deficient B cells, which is correlated with downregulated expression of some genes critical for cell metabolism. Thus, our findings demonstrate an essential role of Wac-mediated ubH2B in PC differentiation and shed light on the epigenetic mechanisms underlying this process.
Collapse
Affiliation(s)
- Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Zhejiang, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Limin Meng
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruisi Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Vaz FM, Jamal Y, Barto R, Gelb MH, DeBarber AE, Wevers RA, Nelen MR, Verrips A, Bootsma AH, Bouva MJ, Kleise N, van der Zee W, He T, Salomons GS, Huidekoper HH. Newborn screening for Cerebrotendinous Xanthomatosis: A retrospective biomarker study using both flow-injection and UPLC-MS/MS analysis in 20,000 newborns. Clin Chim Acta 2023; 539:170-174. [PMID: 36529270 PMCID: PMC10387442 DOI: 10.1016/j.cca.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Cerebrotendinous Xanthomatosis (CTX) is a treatable disorder of bile acid synthesis caused by deficiency of 27-sterol hydroxylase -encoded by CYP27A1- leading to gastrointestinal and progressive neuropsychiatric symptoms. Biochemically, CTX is characterized by accumulation of the bile alcohol cholestanetetrol glucuronide (GlcA-tetrol) and the deficiency of tauro-chenodeoxycholic acid (t-CDCA) and tauro-trihydroxycholestanoic acid (t-THCA). MATERIALS AND METHODS To ascertain the feasibility of CTX newborn screening (NBS) we performed a study with deidentified Dutch dried blood spots using reagents and equipment that is frequently used in NBS laboratories. 20,076 deidentified newborn blood spots were subjected to flow-injection (FIA)-MS/MS and UPLC-MS/MS analysis to determine the concentration of GlcA-tetrol and calculate the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios. RESULTS Using UPLC-MS/MS analysis both GlcA-tetrol concentration and/or metabolite ratios GlcA-tetrol/t-CDCA proved to be informative biomarkers; newborn DBS results did not overlap with those of the CTX patients. For FIA-MS/MS, GlcA-tetrol also was an excellent marker but when using the combination of the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios also did not yield any screen positives. CONCLUSION Newborn screening for CTX using only metabolite ratios following the measurement of three CTX biomarkers is possible using either FIA-MS/MS or UPLC-MS/MS, which paves the way for introduction of CTX NBS.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Amsterdam UMC Location University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands.
| | - Youssra Jamal
- Amsterdam UMC Location University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rob Barto
- Amsterdam UMC Location University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Andrea E DeBarber
- University Shared Resource and Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel R Nelen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Aad Verrips
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Albert H Bootsma
- Amsterdam UMC Location University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marelle J Bouva
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Nick Kleise
- PerkinElmer / Wallac Oy, Mustionkatu 6, 20750 Turku, Finland
| | | | - Tao He
- PerkinElmer / Wallac Oy, Mustionkatu 6, 20750 Turku, Finland
| | - Gajja S Salomons
- Amsterdam UMC Location University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| |
Collapse
|
8
|
Kawai H, Takashima S, Ohba A, Toyoshi K, Kubota K, Ohnishi H, Shimozawa N. Development of a system adapted for the diagnosis and evaluation of peroxisomal disorders by measuring bile acid intermediates. Brain Dev 2023; 45:58-69. [PMID: 36511274 DOI: 10.1016/j.braindev.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Bile acid intermediates, 3α,7α,12α-trihydroxycholestanoic acid (THCA) and 3α,7α-dihydroxycholestanoic acid (DHCA), are metabolized in peroxisomes. Some peroxisomal disorders (PDs), such as Zellweger spectrum disorder (ZSD), show an accumulation of bile acid intermediates. In particular, ABCD3 deficiency and acyl-CoA-oxidase 2 deficiency are characterized by these metabolite abnormalities. In patients with ZSD, levels of bile acid intermediates can be lowered by a primary bile acid supplementation treatment; therefore, measuring their levels could help evaluate treatment effectiveness. Here, we established a method for the quantitative determination of bile acid intermediates (THCA/DHCA) for differentiating PDs and assessing bile acid treatment. METHODS Serum samples, obtained from patients with several forms of ZSD as well as peroxisomal β-oxidation enzyme deficiencies, were deproteinized and analyzed using liquid chromatography-mass spectrometry. RESULTS Levels of the bile acid intermediates increased significantly in patients with Zellweger syndrome (ZS) and slightly in patients with neonatal adrenoleukodystrophy and infantile Refsum disease (IRD), reflecting the severity of these diseases. One patient with ZS treated with primary bile acids for 6 months showed slightly decreased serum DHCA levels but significantly increased serum THCA levels. One patient with IRD who underwent living-donor liver transplantation showed a rapid decrease in serum THCA and DHCA levels, which remained undetected for 6 years. In all controls, THCA and DHCA levels were below the detection limit. CONCLUSION The analytical method developed in this study is useful for diagnosing various PD and validating bile acid treatment. Additionally, it can help predict the prognosis of patients with PD and support treatment strategies.
Collapse
Affiliation(s)
- Hiroki Kawai
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; Kibogaoka Medical and Support Center for Children, Gifu, Japan.
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Akiko Ohba
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Kayoko Toyoshi
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Kazuo Kubota
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
9
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Alonso‐Peña M, Espinosa‐Escudero R, Herraez E, Briz O, Cagigal ML, Gonzalez‐Santiago JM, Ortega‐Alonso A, Fernandez‐Rodriguez C, Bujanda L, Calvo Sanchez M, D´Avola D, Londoño M, Diago M, Fernandez‐Checa JC, Garcia‐Ruiz C, Andrade RJ, Lammert F, Prieto J, Crespo J, Juamperez J, Diaz‐Gonzalez A, Monte MJ, Marin JJG. Beneficial effect of ursodeoxycholic acid in patients with acyl-CoA oxidase 2 (ACOX2) deficiency-associated hypertransaminasemia. Hepatology 2022; 76:1259-1274. [PMID: 35395098 PMCID: PMC9796151 DOI: 10.1002/hep.32517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly 3α,7α,12α-trihydroxy-5β-cholestanoic acid (THCA). We aimed to investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. METHODS AND RESULTS Among 33 patients with unexplained hypertransaminasemia from 11 hospitals and 13 of their relatives, seven individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by high-performance liquid chromatography-mass spectrometry. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in two patients and three family members. Two additional nonrelated patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In patients with ADAH, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized aminotransferase levels. Incubation of HuH-7 hepatoma cells with THCA, which was efficiently taken up, but not through BA transporters, increased reactive oxygen species production (flow cytometry), endoplasmic reticulum stress biomarkers (GRP78, CHOP, and XBP1-S/XBP1-U ratio), and BAXα expression (reverse transcription followed by quantitative polymerase chain reaction and immunoblot), whereas cell viability was decreased (tetrazolium salt-based cell viability test). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. CONCLUSIONS Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a noninvasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.
Collapse
Affiliation(s)
- Marta Alonso‐Peña
- Experimental Hepatology and Drug TargetingInstitute for Biomedical ResearchUniversity of SalamancaSalamancaSpain,Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive DiseasesValdecilla Research Institute (IDIVAL)Marqués de Valdecilla University HospitalSantanderSpain
| | - Ricardo Espinosa‐Escudero
- Experimental Hepatology and Drug TargetingInstitute for Biomedical ResearchUniversity of SalamancaSalamancaSpain
| | - Elisa Herraez
- Experimental Hepatology and Drug TargetingInstitute for Biomedical ResearchUniversity of SalamancaSalamancaSpain,Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain
| | - Oscar Briz
- Experimental Hepatology and Drug TargetingInstitute for Biomedical ResearchUniversity of SalamancaSalamancaSpain,Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain
| | - Maria Luisa Cagigal
- Pathological Anatomy ServiceHospital Universitario Marqués de ValdecillaSantanderSpain
| | - Jesus M. Gonzalez‐Santiago
- Department of Gastroenterology and HepatologyUniversity Hospital of SalamancaInstitute for Biomedical ResearchSalamancaSpain
| | - Aida Ortega‐Alonso
- Liver Unit, Gastroenterology ServiceInstitute of Biomedical Research of MálagaSchool of MedicineUniversity Hospital Virgen de la VictoriaMálagaSpain
| | | | - Luis Bujanda
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain,Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque CountrySan SebastianSpain
| | | | - Delia D´Avola
- Department of MedicineClinica Universidad de Navarra and Center for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Maria‐Carlota Londoño
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain,Liver UnitHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain,Institute of Biomedical Research of Barcelona (IDIBAPS)BarcelonaSpain
| | - Moises Diago
- Valencia University General HospitalValenciaSpain
| | - Jose C. Fernandez‐Checa
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain,Institute of Biomedical Research of Barcelona (IDIBAPS)BarcelonaSpain,Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain,Research Center for Alcoholic Liver and Pancreatic Diseases (ALPD) and CirrhosisKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Carmen Garcia‐Ruiz
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain,Institute of Biomedical Research of Barcelona (IDIBAPS)BarcelonaSpain,Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain,Research Center for Alcoholic Liver and Pancreatic Diseases (ALPD) and CirrhosisKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Raul J. Andrade
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain,Liver Unit, Gastroenterology ServiceInstitute of Biomedical Research of MálagaSchool of MedicineUniversity Hospital Virgen de la VictoriaMálagaSpain
| | - Frank Lammert
- Department of Medicine IISaarland University Medical CenterHomburgGermany,Health SciencesHannover Medical SchoolHannoverGermany
| | - Jesus Prieto
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain,Department of MedicineClinica Universidad de Navarra and Center for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive DiseasesValdecilla Research Institute (IDIVAL)Marqués de Valdecilla University HospitalSantanderSpain
| | - Javier Juamperez
- Pediatric Hepatology and Liver Transplantation UnitVall d’Hebron University HospitalUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Alvaro Diaz‐Gonzalez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive DiseasesValdecilla Research Institute (IDIVAL)Marqués de Valdecilla University HospitalSantanderSpain
| | - Maria J. Monte
- Experimental Hepatology and Drug TargetingInstitute for Biomedical ResearchUniversity of SalamancaSalamancaSpain,Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain
| | - Jose J. G. Marin
- Experimental Hepatology and Drug TargetingInstitute for Biomedical ResearchUniversity of SalamancaSalamancaSpain,Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD)Carlos III National Institute of HealthMadridSpain
| |
Collapse
|
11
|
Anderson JN, Ammous Z, Eroglu Y, Hernandez E, Heubi J, Himes R, Palle S. Cholbam® and Zellweger spectrum disorders: treatment implementation and management. Orphanet J Rare Dis 2021; 16:388. [PMID: 34521419 PMCID: PMC8439061 DOI: 10.1186/s13023-021-01940-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023] Open
Abstract
Background Zellweger spectrum disorders (ZSDs) are a rare, heterogenous group of autosomal recessively inherited disorders characterized by reduced peroxisomes numbers, impaired peroxisomal formation, and/or defective peroxisomal functioning. In the absence of functional peroxisomes, bile acid synthesis is disrupted, and multisystem disease ensues with abnormalities in the brain, liver, kidneys, muscle, eyes, ears, and nervous system. Main body Liver disease may play an important role in morbidity and mortality, with hepatic fibrosis that can develop as early as the postnatal period and often progressing to cirrhosis within the first year of life. Because hepatic dysfunction can have numerous secondary effects on other organ systems, thereby impacting the overall disease severity, the treatment of liver disease in patients with ZSD is an important focus of disease management. Cholbam® (cholic acid), approved by the U.S. Food and Drug Administration in March 2015, is currently the only therapy approved as adjunctive treatment for patients with ZSDs and single enzyme bile acid synthesis disorders. This review will focus on the use of CA therapy in the treatment of liver disease associated with ZSDs, including recommendations for initiating and maintaining CA therapy and the limitations of available clinical data supporting its use in this patient population. Conclusions Cholbam is a safe and well-tolerated treatment for patients with ZSDs that has been shown to improve liver chemistries and reduce toxic bile acid intermediates in the majority of patients with ZSD. Due to the systemic impacts of hepatic damage, Cholbam should be initiated in patients without signs of advanced liver disease.
Collapse
Affiliation(s)
- Janaina Nogueira Anderson
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical University of South Carolina, 135 Rutledge Avenue, MSC 561, Charleston, SC, 29465, USA.
| | | | - Yasemen Eroglu
- Division of Pediatric Gastroenterology, Hepatology, Pancreatology and Nutrition, Stead Family Department of Pediatrics, IU Carver College of Medicine, Iowa City, IA, USA
| | - Erick Hernandez
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology Associates, Nicklaus Children's Hospital, Miami, FL, USA
| | - James Heubi
- Divisions of Pediatric Gastroenterology, Hepatology and Nutrition and Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Ryan Himes
- Division of Pediatric Hepatology, Ochsner Health, New Orleans, LA, USA
| | - Sirish Palle
- Department of Pediatric Gastroenterology, Oklahoma University Medicine, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Open-label Phase 3 Continuation Study of Cholic Acid in Patients With Inborn Errors of Bile Acid Synthesis. J Pediatr Gastroenterol Nutr 2020; 70:423-429. [PMID: 31899729 DOI: 10.1097/mpg.0000000000002618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND In patients with bile acid synthesis disorders (BASD), impairment in the primary bile acid synthetic pathway leads to reduced primary bile acids, upregulated synthesis of cholesterol, and production and accumulation of hepatotoxic atypical bile acids. Primary bile acid therapy downregulates bile acid synthesis, reduces the production of hepatotoxic intermediates, and produces a functional bile acid pool fostering normal liver function. METHODS This phase 3, open-label, single-arm study included patients with BASD who had received cholic acid (10-15 mg · kg · day) as part of a previous study, or were newly diagnosed. Efficacy assessments included urinary atypical bile acids; serum liver chemistries; body weight and height. Efficacy analyses compared baseline with worst postbaseline response (primary) or best postbaseline response (sensitivity). Treatment-emergent adverse events (TEAEs) were summarized. RESULTS Of 53 total patients (single enzyme defects, n = 41; Zellweger spectrum disorders, n = 12), 22 (42%) were treatment-naïve, and 31 (58%) were on cholic acid from a previous study. Mean age at diagnosis was 55 months, and at present study, baseline was 9 years. Using baseline-to-best postbaseline analyses, statistically significant improvements in urinary bile acids (P = 0.003), height (P < 0.001), and body weight (P < 0.001) were observed. Serum alanine aminotransferase and aspartate aminotransferase levels tended to decrease from baseline in treatment-naïve patients following cholic acid treatment and remained stable in previously treated patients. Treatment-naïve patients improved in all baseline-to-best postbaseline analyses. The most common TEAE was upper respiratory tract infection (17%). CONCLUSION Oral cholic acid provides a safe and efficacious short- and long-term therapy for patients with BASD.
Collapse
|
13
|
Berendse K, Koot BGP, Klouwer FCC, Engelen M, Roels F, Lacle MM, Nikkels PGJ, Verheij J, Poll-The BT. Hepatic symptoms and histology in 13 patients with a Zellweger spectrum disorder. J Inherit Metab Dis 2019; 42:955-965. [PMID: 31150129 DOI: 10.1002/jimd.12132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Patients with a Zellweger spectrum disorder (ZSD) have a defect in the assembly or maintenance of peroxisomes, leading to a multisystem disease with variable outcome. Liver disease is an important feature in patients with severe and milder phenotypes and a frequent cause of death. However, the course and histology of liver disease in ZSD patients are ill-defined. We reviewed the hepatic symptoms and histological findings of 13 patients with a ZSD in which one or several liver biopsies have been performed (patient age 0.2-39 years). All patients had at least some histological liver abnormalities, ranging from minor fibrosis to cirrhosis. Five patients demonstrated significant disease progression with liver failure and early death. In others, liver-related symptoms were absent, although some still silently developed cirrhosis. Patients with peroxisomal mosaicism had a better prognosis. In addition, we show that patients are at risk to develop a hepatocellular carcinoma (HCC), as one patient developed a HCC at the age of 36 years and one patient a precancerous lesion at the age of 18 years. Thus, regular examination to detect fibrosis or cirrhosis should be included in the standard care of ZSD patients. In case of advanced fibrosis/cirrhosis expert consultation and HCC screening should be initiated. This study further delineates the spectrum and significance of liver involvement in ZSDs.
Collapse
Affiliation(s)
- Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centre (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Bart G P Koot
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Femke C C Klouwer
- Department of Paediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centre (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centre (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Roels
- Department of Human Anatomy and Embryology, Ghent University, Ghent, Belgium
| | - Miangela M Lacle
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter G J Nikkels
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Berendse K, Boek M, Gijbels M, Van der Wel NN, Klouwer FC, van den Bergh-Weerman MA, Shinde AB, Ofman R, Poll-The BT, Houten SM, Baes M, Wanders RJA, Waterham HR. Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2774-2787. [PMID: 31207289 DOI: 10.1016/j.bbadis.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022]
Abstract
Zellweger spectrum disorders (ZSDs) are autosomal recessive diseases caused by defective peroxisome assembly. They constitute a clinical continuum from severe early lethal to relatively milder presentations in adulthood. Liver disease is a prevalent symptom in ZSD patients. The underlying pathogenesis for the liver disease, however, is not fully understood. We report a hypomorphic ZSD mouse model, which is homozygous for Pex1-c.2531G>A (p.G844D), the equivalent of the most common pathogenic variant found in ZSD, and which predominantly presents with liver disease. After introducing the Pex1-G844D allele by knock-in, we characterized homozygous Pex1-G844D mice for survival, biochemical parameters, including peroxisomal and mitochondrial functions, organ histology, and developmental parameters. The first 20 post-natal days (P20) were critical for survival of homozygous Pex1-G844D mice (~20% survival rate). Lethality was likely due to a combination of cholestatic liver problems, liver dysfunction and caloric deficit, probably as a consequence of defective bile acid biosynthesis. Survival beyond P20 was nearly 100%, but surviving mice showed a marked delay in growth. Surviving mice showed similar hepatic problems as described for mild ZSD patients, including hepatomegaly, bile duct proliferation, liver fibrosis and mitochondrial alterations. Biochemical analyses of various tissues showed the absence of functional peroxisomes accompanied with aberrant levels of peroxisomal metabolites predominantly in the liver, while other tissues were relatively spared. ur findings show that homozygous Pex1-G844D mice have a predominant liver disease phenotype, mimicking the hepatic pathology of ZSD patients, and thus constitute a good model to study pathogenesis and treatment of liver disease in ZSD patients.
Collapse
Affiliation(s)
- Kevin Berendse
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands; Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Paediatric Neurology, the Netherlands
| | - Maxim Boek
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Marion Gijbels
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands
| | | | - Femke C Klouwer
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands; Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Paediatric Neurology, the Netherlands
| | | | - Abhijit Babaji Shinde
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, University of Leuven, Belgium
| | - Rob Ofman
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Bwee Tien Poll-The
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Paediatric Neurology, the Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, University of Leuven, Belgium
| | - Ronald J A Wanders
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Hans R Waterham
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands.
| |
Collapse
|
15
|
Abstract
Bile acids facilitate nutrient absorption and are endogenous ligands for nuclear receptors that regulate lipid and energy metabolism. The brain-gut-liver axis plays an essential role in maintaining overall glucose, bile acid, and immune homeostasis. Fasting and feeding transitions alter nutrient content in the gut, which influences bile acid composition and pool size. In turn, bile acid signaling controls lipid and glucose use and protection against inflammation. Altered bile acid metabolism resulting from gene mutations, high-fat diets, alcohol, or circadian disruption can contribute to cholestatic and inflammatory diseases, diabetes, and obesity. Bile acids and their derivatives are valuable therapeutic agents for treating these inflammatory metabolic diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272;
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272;
| |
Collapse
|
16
|
Klouwer FCC, Koot BGP, Berendse K, Kemper EM, Ferdinandusse S, Koelfat KVK, Lenicek M, Vaz FM, Engelen M, Jansen PLM, Wanders RJA, Waterham HR, Schaap FG, Poll-The BT. The cholic acid extension study in Zellweger spectrum disorders: Results and implications for therapy. J Inherit Metab Dis 2019; 42:303-312. [PMID: 30793331 DOI: 10.1002/jimd.12042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Currently, no therapies are available for Zellweger spectrum disorders (ZSDs), a group of genetic metabolic disorders characterised by a deficiency of functional peroxisomes. In a previous study, we showed that oral cholic acid (CA) treatment can suppress bile acid synthesis in ZSD patients and, thereby, decrease plasma levels of toxic C27 -bile acid intermediates, one of the biochemical abnormalities in these patients. However, no effect on clinically relevant outcome measures could be observed after 9 months of CA treatment. It was noted that, in patients with advanced liver disease, caution is needed because of possible hepatotoxicity. METHODS An extension study of the previously conducted pretest-posttest design study was conducted including 17 patients with a ZSD. All patients received oral CA for an additional period of 12 months, encompassing a total of 21 months of treatment. Multiple clinically relevant parameters and markers for bile acid synthesis were assessed after 15 and 21 months of treatment. RESULTS Bile acid synthesis was still suppressed after 21 months of CA treatment, accompanied with reduced levels of C27 -bile acid intermediates in plasma. These levels significantly increased again after discontinuation of CA. No significant changes were found in liver tests, liver elasticity, coagulation parameters, fat-soluble vitamin levels or body weight. CONCLUSIONS Although CA treatment did lead to reduced levels of toxic C27 -bile acid intermediates in ZSD patients without severe liver fibrosis or cirrhosis, no improvement of clinically relevant parameters was observed after 21 months of treatment. We discuss the implications for CA therapy in ZSD based on these results.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart G P Koot
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kevin Berendse
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elles M Kemper
- Department of Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kiran V K Koelfat
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim Biophys Acta Rev Cancer 2018; 1870:103-121. [PMID: 30012421 DOI: 10.1016/j.bbcan.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.
Collapse
|
18
|
Li H, Qiu JW, Lin GZ, Deng M, Lin WX, Cheng Y, Song YZ. [Clinical and genetic analysis of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018. [PMID: 29658451 DOI: 10.7499/j.issn.1008-8830.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) deficiency is an inborn error of bile acid metabolism caused by mutations of SLC10A1 gene. This paper reports the clinical and genetic features of a patient with this disease. A 3.3-month-old male infant was referred to the hospital with the complaint of jaundiced skin and sclera over 3 months. Physical examination revealed moderate jaundice of the skin and sclera. The liver was palpable 3.5 cm below the right subcostal margin with a medium texture. Serum biochemistry analysis revealed markedly elevated bilirubin (predominantly direct bilirubin) and total bile acids (TBA), as well as decreased 25-OH-VitD level. On pathological analysis of the biopsied liver tissue, hepatocyte ballooning and cholestatic multinucleate giant cells were noted. The lobular architecture was distorted. Infiltration of inflammatory cells, predominantly lymphocytes, was seen in the portal tracts. In response to the anti-inflammatory and liver protective drugs as well as fat-soluble vitamins over 2 months, the bilirubin and transaminases levels were improved markedly while the TBA kept elevated. Because of persisting hypercholanemia on the follow-up, SLC10A1 gene analysis was performed at his age of 17.2 months. The child proved to be a homozygote of the reportedly pathogenic variant c.800C>T (p. Ser267Phe), while the parents were both carriers. NTCP deficiency was thus diagnosed. The infant was followed up until 34.3 months old. He developed well in terms of the anthropometric indices and neurobehavioral milestones. The jaundice disappeared completely. The liver size, texture and function indices all recovered. However, the hypercholanemia persisted, and the long-term outcome needs to be observed.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zeynelabidin S, Klouwer FCC, Meijers JCM, Suijker MH, Engelen M, Poll-The BT, van Ommen CH. Coagulopathy in Zellweger spectrum disorders: a role for vitamin K. J Inherit Metab Dis 2018; 41:249-255. [PMID: 29139025 PMCID: PMC5830475 DOI: 10.1007/s10545-017-0113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Zellweger spectrum disorders (ZSDs) are caused by an impairment of peroxisome biogenesis, resulting in multiple metabolic abnormalities. This leads to a range of symptoms, including hepatic dysfunction and coagulopathy. This study evaluated the incidence and severity of coagulopathy and the effect of vitamin K supplementation orally and IV in ZSD. METHODS Data were retrospectively retrieved from the medical records of 30 ZSD patients to study coagulopathy and the effect of vitamin K orally on proteins induced by vitamin K absence (PIVKA-II) levels. Five patients from the cohort with a prolonged prothrombin time, low factor VII, and elevated PIVKA-II levels received 10 mg of vitamin K IV. Laboratory results, including thrombin generation, at baseline and 72 h after vitamin K administration were examined. RESULTS In the retrospective cohort, four patients (13.3%) experienced intracranial bleedings and 14 (46.7%) reported minor bleeding. No thrombotic events occurred. PIVKA-II levels decreased 38% after start of vitamin K therapy orally. In the five patients with a coagulopathy, despite treatment with oral administration of vitamin K, vitamin K IV caused an additional decrease (23%) of PIVKA-II levels and increased thrombin generation. CONCLUSION Bleeding complications frequently occur in ZSD patients due to liver disease and vitamin K deficiency. Vitamin K deficiency is partly corrected by vitamin K supplementation orally, and vitamin K administered IV additionally improves vitamin K status, as shown by further decrease of PIVKA-II and improved thrombin generation.
Collapse
Affiliation(s)
- Sara Zeynelabidin
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Femke C C Klouwer
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - Monique H Suijker
- Department of Pediatric Hematology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - C Heleen van Ommen
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Shinde AB, Baboota RK, Denis S, Loizides-Mangold U, Peeters A, Espeel M, Malheiro AR, Riezman H, Vinckier S, Vaz FM, Brites P, Ferdinandusse S, Van Veldhoven PP, Baes M. Mitochondrial disruption in peroxisome deficient cells is hepatocyte selective but is not mediated by common hepatic peroxisomal metabolites. Mitochondrion 2018; 39:51-59. [DOI: 10.1016/j.mito.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/25/2017] [Indexed: 01/06/2023]
|
21
|
Monte MJ, Alonso-Peña M, Briz O, Herraez E, Berasain C, Argemi J, Prieto J, Marin JJG. ACOX2 deficiency: An inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia. J Hepatol 2017; 66:581-588. [PMID: 27884763 DOI: 10.1016/j.jhep.2016.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Acyl-CoA oxidase (ACOX2) is involved in the shortening of C27 cholesterol derivatives to generate C24 bile acids. Inborn errors affecting the rest of peroxisomal enzymes involved in bile acid biosynthesis have been described. Here we aimed at investigating the case of an adolescent boy with persistent hypertransaminasemia of unknown origin and suspected dysfunction in bile acid metabolism. METHODS Serum and urine samples were taken from the patient, his sister and parents and underwent HPLC-MS/MS and HPLC-TOF analyses. Coding exons in genes of interest were amplified by high-fidelity PCR and sequenced. Wild-type or mutated (mutACOX2) variants were overexpressed in human hepatoblastoma HepG2 cells to determine ACOX2 enzymatic activity, expression and subcellular location. RESULTS The patient's serum and urine showed negligible amounts of C24 bile acids, but augmented levels of C27 intermediates, mainly tauroconjugated trihydroxycholestanoic acid (THCA). Genetic analysis of enzymes potentially involved revealed a homozygous missense mutation (c.673C>T; R225W) in ACOX2. His only sister was also homozygous for this mutation and exhibited similar alterations in bile acid profiles. Both parents were heterozygous and presented normal C24 and C27 bile acid levels. Immunofluorescence studies showed similar protein size and peroxisomal localization for both normal and mutated variants. THCA biotransformation into cholic acid was enhanced in cells overexpressing ACOX2, but not in those overexpressing mutACOX2. Both cell types showed similar sensitivity to oxidative stress caused by C24 bile acids. In contrast, THCA-induced oxidative stress and cell death were reduced by overexpressing ACOX2, but not mutACOX2. CONCLUSION ACOX2 deficiency, a condition characterized by accumulation of toxic C27 bile acid intermediates, is a novel cause of isolated persistent hypertransaminasemia. LAY SUMMARY Elevation of serum transaminases is a biochemical sign of liver damage due to multiplicity of causes (viruses, toxins, autoimmunity, metabolic disorders). In rare cases the origin of this alteration remains unknown. We have identified by the first time in a young patient and his only sister a familiar genetic defect of an enzyme called ACOX2, which participates in the transformation of cholesterol into bile acids as a cause of increased serum transaminases in the absence of any other symptomatology. This treatable condition should be considered in the diagnosis of those patients where the cause of elevated transaminases remains obscure.
Collapse
Affiliation(s)
- Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Marta Alonso-Peña
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Carmen Berasain
- Department of Medicine, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain
| | - Josepmaria Argemi
- Department of Medicine, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jesus Prieto
- Department of Medicine, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain.
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Spain.
| |
Collapse
|
22
|
Berendse K, Klouwer FCC, Koot BGP, Kemper EM, Ferdinandusse S, Koelfat KVK, Lenicek M, Schaap FG, Waterham HR, Vaz FM, Engelen M, Jansen PLM, Wanders RJA, Poll-The BT. Cholic acid therapy in Zellweger spectrum disorders. J Inherit Metab Dis 2016; 39:859-868. [PMID: 27469511 PMCID: PMC5065608 DOI: 10.1007/s10545-016-9962-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Zellweger spectrum disorders (ZSDs) are characterized by a failure in peroxisome formation, caused by autosomal recessive mutations in different PEX genes. At least some of the progressive and irreversible clinical abnormalities in patients with a ZSD, particularly liver dysfunction, are likely caused by the accumulation of toxic bile acid intermediates. We investigated whether cholic acid supplementation can suppress bile acid synthesis, reduce accumulation of toxic bile acid intermediates and improve liver function in these patients. METHODS An open label, pretest-posttest design study was conducted including 19 patients with a ZSD. Participants were followed longitudinally during a period of 2.5 years prior to the start of the intervention. Subsequently, all patients received oral cholic acid and were followed during 9 months of treatment. Bile acids, peroxisomal metabolites, liver function and liver stiffness were measured at baseline and 4, 12 and 36 weeks after start of cholic acid treatment. RESULTS During cholic acid treatment, bile acid synthesis decreased in the majority of patients. Reduced levels of bile acid intermediates were found in plasma and excretion of bile acid intermediates in urine was diminished. In patients with advanced liver disease (n = 4), cholic acid treatment resulted in increased levels of plasma transaminases, bilirubin and cholic acid with only a minor reduction in bile acid intermediates. CONCLUSIONS Oral cholic acid therapy can be used in the majority of patients with a ZSD, leading to at least partial suppression of bile acid synthesis. However, caution is needed in patients with advanced liver disease due to possible hepatotoxic effects.
Collapse
Affiliation(s)
- Kevin Berendse
- Department of Pediatric Neurology, Emma Children's Hospital/Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Femke C C Klouwer
- Department of Pediatric Neurology, Emma Children's Hospital/Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart G P Koot
- Department of Pediatric Gastroenterology, Emma Children's hospital/ Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elles M Kemper
- Department of Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kiran V K Koelfat
- Department of Surgery, Maastricht University, Amsterdam, The Netherlands
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Frank G Schaap
- Department of Surgery, Maastricht University, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital/Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital/Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proc Natl Acad Sci U S A 2016; 113:11289-11293. [PMID: 27647924 DOI: 10.1073/pnas.1613228113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acyl CoA Oxidase 2 (ACOX2) encodes branched-chain acyl-CoA oxidase, a peroxisomal enzyme believed to be involved in the metabolism of branched-chain fatty acids and bile acid intermediates. Deficiency of this enzyme has not been described previously. We report an 8-y-old male with intermittently elevated transaminase levels, liver fibrosis, mild ataxia, and cognitive impairment. Exome sequencing revealed a previously unidentified homozygous premature termination mutation (p.Y69*) in ACOX2 Immunohistochemistry confirmed the absence of ACOX2 expression in the patient's liver, and biochemical analysis showed marked elevation of intermediate bile acids upstream of ACOX2. These findings define a potentially treatable inborn error of bile acid biosynthesis caused by ACOX2 deficiency.
Collapse
|
24
|
Berendse K, Engelen M, Ferdinandusse S, Majoie CBLM, Waterham HR, Vaz FM, Koelman JHTM, Barth PG, Wanders RJA, Poll-The BT. Zellweger spectrum disorders: clinical manifestations in patients surviving into adulthood. J Inherit Metab Dis 2016; 39:93-106. [PMID: 26287655 PMCID: PMC4710674 DOI: 10.1007/s10545-015-9880-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We describe the natural history of patients with a Zellweger spectrum disorder (ZSD) surviving into adulthood. METHODS Retrospective cohort study in patients with a genetically confirmed ZSD. RESULTS All patients (n = 19; aged 16-35 years) had a follow-up period of 1-24.4 years (mean 16 years). Seven patients had a progressive disease course, while 12 remained clinically stable during follow-up. Disease progression usually manifests in adolescence as a gait disorder, caused by central and/or peripheral nervous system involvement. Nine were capable of living a partly independent life with supported employment. Systematic MRI review revealed T2 hyperintense white matter abnormalities in the hilus of the dentate nucleus and/or peridentate region in nine out of 16 patients. Biochemical analyses in blood showed abnormal peroxisomal biomarkers in all patients in infancy and childhood, whereas in adolescence/adulthood we observed normalization of some metabolites. CONCLUSIONS The patients described here represent a distinct subgroup within the ZSDs who survive into adulthood. Most remain stable over many years. Disease progression may occur and is mainly due to cerebral and cerebellar white matter abnormalities, and peripheral neuropathy.
Collapse
Affiliation(s)
- Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles B L M Majoie
- Department of Radiology, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes H T M Koelman
- Department of Neurology and Clinical Neurophysiology, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter G Barth
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 2015; 10:151. [PMID: 26627182 PMCID: PMC4666198 DOI: 10.1186/s13023-015-0368-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/15/2022] Open
Abstract
Zellweger spectrum disorders (ZSDs) represent the major subgroup within the peroxisomal biogenesis disorders caused by defects in PEX genes. The Zellweger spectrum is a clinical and biochemical continuum which can roughly be divided into three clinical phenotypes. Patients can present in the neonatal period with severe symptoms or later in life during adolescence or adulthood with only minor features. A defect of functional peroxisomes results in several metabolic abnormalities, which in most cases can be detected in blood and urine. There is currently no curative therapy, but supportive care is available. This review focuses on the management of patients with a ZSD and provides recommendations for supportive therapeutic options for all those involved in the care for ZSD patients.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| | - Bwee Tien Poll-The
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Baes M, Van Veldhoven PP. Hepatic dysfunction in peroxisomal disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:956-70. [PMID: 26453805 DOI: 10.1016/j.bbamcr.2015.09.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022]
Abstract
The peroxisomal compartment in hepatocytes hosts several essential metabolic conversions. These are defective in peroxisomal disorders that are either caused by failure to import the enzymes in the organelle or by mutations in the enzymes or in transporters needed to transfer the substrates across the peroxisomal membrane. Hepatic pathology is one of the cardinal features in disorders of peroxisome biogenesis and peroxisomal β-oxidation although it only rarely determines the clinical fate. In mouse models of these diseases liver pathologies also occur, although these are not always concordant with the human phenotype which might be due to differences in diet, expression of enzymes and backup mechanisms. Besides the morphological changes, we overview the impact of peroxisome malfunction on other cellular compartments including mitochondria and the ER. We further focus on the metabolic pathways that are affected such as bile acid formation, and dicarboxylic acid and branched chain fatty acid degradation. It appears that the association between deregulated metabolites and pathological events remains unclear.
Collapse
Affiliation(s)
- Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Paul P Van Veldhoven
- Laboratory for Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
27
|
Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, Ho-Mok K, Bootsma AH, Groen AK, Schaap FG, Oude Elferink RPJ, Waterham HR, Wanders RJA. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015; 61:260-7. [PMID: 24867799 DOI: 10.1002/hep.27240] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED The enterohepatic circulation of bile salts is an important physiological route to recycle bile salts and ensure intestinal absorption of dietary lipids. The Na(+)-taurocholate cotransporting polypeptide SLC10A1 (NTCP) plays a key role in this process as the major transporter of conjugated bile salts from the plasma compartment into the hepatocyte. Here we present the first patient with NTCP deficiency, who was clinically characterized by mild hypotonia, growth retardation, and delayed motor milestones. Total bile salts in plasma were extremely elevated (up to 1,500 μM, ref. <16.3) but there were no clinical signs of cholestatic jaundice, pruritis, or liver dysfunction. Bile salt synthesis and intestinal bile salt signaling were not affected, as evidenced by normal plasma 7α-hydroxy-4-cholesten-3-one (C4) and FGF19 levels. Importantly, the presence of secondary bile salts in the circulation suggested residual enterohepatic cycling of bile salts. Sequencing of the SLC10A1 gene revealed a single homozygous nonsynonymous point mutation in the coding sequence of the gene, resulting in an arginine to histidine substitution at position 252. Functional studies showed that this mutation resulted in a markedly reduced uptake activity of taurocholic acid. Immunofluorescence studies and surface biotinylation experiments demonstrated that the mutant protein is virtually absent from the plasma membrane. CONCLUSION We describe the identification of NTCP deficiency as a new inborn error of metabolism with a relatively mild clinical phenotype. The identification of NTCP deficiency confirms that this transporter is the main import system for conjugated bile salts into the liver but also indicates that auxiliary transporters are able to sustain the enterohepatic cycle in its absence.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Laboratory Genetic Metabolic Disease, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kingma SDK, Wagemans T, IJlst L, Wijburg FA, van Vlies N. Genistein increases glycosaminoglycan levels in mucopolysaccharidosis type I cell models. J Inherit Metab Dis 2014; 37:813-21. [PMID: 24699889 DOI: 10.1007/s10545-014-9703-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by diminished degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate, which results in the accumulation of these GAGs and subsequent cellular dysfunction. Patients present with a variety of symptoms, including severe skeletal disease. Genistein has been shown previously to inhibit GAG synthesis in MPS fibroblasts, presumably through inhibition of tyrosine kinase activity of the epidermal growth factor receptor (EGFR). To determine the potentials of genistein for the treatment of skeletal disease, MPS I fibroblasts were induced into chondrocytes and osteoblasts and treated with genistein. Surprisingly, whereas tyrosine phosphorylation levels (as a measure for tyrosine kinase inhibition) were decreased in all treated cell lines, there was a 1.3 and 1.6 fold increase in GAG levels in MPS I chondrocytes and fibroblast, respectively (p < 0.05). Sulfate incorporation in treated MPS I fibroblasts was 2.6 fold increased (p < 0.05), indicating increased GAG synthesis despite tyrosine kinase inhibition. This suggests that GAG synthesis is not exclusively regulated through the tyrosine kinase activity of the EGFR. We hypothesize that the differences in outcomes between studies on the effect of genistein in MPS are caused by the different effects of genistein on different growth factor signaling pathways, which regulate GAG synthesis. More studies are needed to elucidate the precise signaling pathways which are affected by genistein and alter GAG metabolism in order to evaluate the therapeutic potential of genistein for MPS patients.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Department of Pediatrics and Amsterdam Lysosome Centre "Sphinx", Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | | | | | | | | |
Collapse
|
29
|
Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O, Demirkol M, Waterham HR, Gökcay G, Wanders RJ, Valle D. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2014; 24:361-70. [DOI: 10.1093/hmg/ddu448] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
30
|
Faust JE, Manisundaram A, Ivanova PT, Milne SB, Summerville JB, Brown HA, Wangler M, Stern M, McNew JA. Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster. PLoS One 2014; 9:e100213. [PMID: 24945818 PMCID: PMC4063865 DOI: 10.1371/journal.pone.0100213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology.
Collapse
Affiliation(s)
- Joseph E. Faust
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Arvind Manisundaram
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Pavlina T. Ivanova
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stephen B. Milne
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James B. Summerville
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - H. Alex Brown
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael Stern
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - James A. McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
31
|
Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice. Biochem J 2014; 461:125-35. [DOI: 10.1042/bj20130915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bile acid analysis of wild-type, Mfe-1−/−, Amacr−/− and Amacr−/−Mfe-1−/− mouse models shows that peroxisomal multifunctional enzyme 1 can participate in bile acid synthesis in both AMACR-dependent and AMACR-independent pathways.
Collapse
|
32
|
Lloyd MD, Yevglevskis M, Lee GL, Wood PJ, Threadgill MD, Woodman TJ. α-Methylacyl-CoA racemase (AMACR): Metabolic enzyme, drug metabolizer and cancer marker P504S. Prog Lipid Res 2013; 52:220-30. [DOI: 10.1016/j.plipres.2013.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
33
|
Gilloteaux J, Ott DW, Oldham-Ott CK. The gallbladder of Uranoscopus scaber L. (teleost perciform fish) is lined by specialized cholecystocytes. Anat Rec (Hoboken) 2011; 294:1890-903. [PMID: 21965085 DOI: 10.1002/ar.21478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/05/2011] [Accepted: 08/02/2011] [Indexed: 11/07/2022]
Abstract
The gallbladder of Uranoscopus exhibits a mucosal surface layer of simple columnar epithelium composed of specialized cholecystocytes. The apices show storage and mucous secretions, typical microvilli, and very apical projections extending deep into the luminal contents. Many organelles and heterogeneous vesicles of diverse size fill the cytoplasm, including neutral mucins, mitochondria, peroxisomes, lysosomal bodies, and lipid-rich deposits with cholesterol inclusions. The fibromuscular layer shows little blood supply and contains scattered lymph-like walls with minute cholesterol inclusions. The remaining muscular, subserosal, and serosal or adventitial layers of this species do not show any histologic differences to those of other vertebrates. It was unexpected to find cholesterol inclusions in the fatty deposits of the cholecystocytes, similar to those noted in human cholesterolosis and in some forms of hypercholesterolemia, in this teleostean. In addition, aggregations of mitochondria and anomalous mitochondrial morphologies were found that resemble oncocytoma-like changes.
Collapse
Affiliation(s)
- J Gilloteaux
- Department of Anatomical Sciences, St George's International School of Medicine, Newcastle-upon-Tyne, United Kingdom.
| | | | | |
Collapse
|
34
|
Sekine S, Ogawa R, Ojima H, Kanai Y. Overexpression of α-methylacyl-CoA racemase is associated with CTNNB1 mutations in hepatocellular carcinomas. Histopathology 2011; 58:712-9. [DOI: 10.1111/j.1365-2559.2011.03798.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Identification of ACOX2 as a shared genetic risk factor for preeclampsia and cardiovascular disease. Eur J Hum Genet 2011; 19:796-800. [PMID: 21343950 DOI: 10.1038/ejhg.2011.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Preeclampsia (PE) is a serious complication of pregnancy, which is highly correlated with later life cardiovascular disease (CVD). Many risk factors are common for both diseases, but the contribution of shared genes remains to be determined. In this study, we used an integrative strategy to assess lipid traits as risk factors for PE and CVD by whole genome transcriptional profiling performed on Norwegian decidua basalis tissues (N = 95) from preeclamptic and normal pregnancies and on blood lymphocytes (N = 1240) from the San Antonio Family Heart Study (SAFHS). Among 222 genes that were differentially expressed (false discovery rate (FDR) P-value <0.05) between the PE, cases and controls, we found one gene, ACOX2 (acyl-coenzyme A oxidase 2, branched chain), that was downregulated in PE whose transcription was also inversely correlated with triglyceride levels (P = 5.6 × 10(-7); FDR P-value = 0.0002) in SAFHS. We further report associations between SNPs in the ACOX2 gene and the transcription level (P-value = 0.0045) of the gene, as well as with triglyceride levels (P-value = 0.0051). ACOX2 is involved in bile acid production, a process that has been associated with both oxidative stress and regulation of triglyceride levels. Oxidative stress and increased triglyceride levels are known risk factors for CVD and both have also been associated with PE. Our results suggest that downregulation of ACOX2 is a shared risk factor for PE and CVD.
Collapse
|
36
|
Bespalova IN, Durner M, Ritter BP, Angelo GW, Rossy-Fullana E, Carrion-Baralt J, Schmeidler J, Silverman JM. Non-synonymous variants in the AMACR gene are associated with schizophrenia. Schizophr Res 2010; 124:208-15. [PMID: 20875727 PMCID: PMC2981684 DOI: 10.1016/j.schres.2010.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/24/2010] [Accepted: 08/31/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND The AMACR gene is located in the schizophrenia susceptibility locus on chromosome 5p13, previously identified in a large Puerto Rican pedigree of Spanish origin. The AMACR-encoded protein is an enzyme involved in the metabolism of branched-chain fatty and bile acids. The enzyme deficiency causes structural and functional brain changes, and disturbances in fatty acid and oxidative phosphorylation pathways observed in individuals with schizophrenia. Therefore, AMACR is both a positional and functional candidate gene for susceptibility to schizophrenia. METHODS The study had a two-step design: we performed mutation analysis of the coding and flanking regions of AMACR in affected members of the pedigree, and tested the detected sequence variants for association with schizophrenia in a Puerto Rican case-control sample (n=383) of Spanish descent. RESULTS AND CONCLUSION We identified three missense variants segregating with the disorder in the family, rs2278008, rs2287939 and rs10941112. Two of them, rs2278008 and rs2287939, demonstrated significant differences in genotype (P = 4 × 10-4, P = 4 × 10-4) and allele (P = 1 × 10-4, P = 9.5 × 10-5) frequencies in unrelated male patients compare to controls, with the odds ratios (OR) 2.24 (95% CI: 1.48-3.40) and 2.25 (95% CI: 1.49-3.38), respectively. The G-C-G haplotype of rs2278008-rs2287939-rs10941112 revealed the most significant association with schizophrenia (P = 4.25 × 10-6, OR = 2.96; 95% CI: 1.85-4.76) in male subjects. There were no statistically significant differences in genotype, allele, and haplotype frequencies between female schizophrenia subjects and controls. Our results suggest that AMACR may play a significant role in susceptibility to schizophrenia in male patients.
Collapse
Affiliation(s)
- Irina N Bespalova
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hagey LR, Lida T, Tamegai H, Ogawa S, Une M, Asahina K, Mushiake K, Goto T, Mano N, Goto J, Krasowski MD, Hofmann AF. Major biliary bile acids of the medaka (Oryzias latipes): 25R- and 25S-epimers of 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid. Zoolog Sci 2010; 27:565-73. [PMID: 20608845 DOI: 10.2108/zsj.27.565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biliary bile salts of the medaka, the Japanese rice fish (Oryzias latipes) were isolated and identified. Only bile acids were present, and all were N-acylamidated with taurine. Three bile acids, constituting 98% of total bile acids, were isolated by chromatography and their structure inferred from their properties compared to those of synthetic standards when analyzed by liquid chromatographytandem mass spectrometry. The dominant bile acid was the 25R-epimer (82%) of 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-27-oic acid. The 25S-epimer was also present (11%), as was cholic acid (5%). Complete (1)H and (13)C NMR signal assignments of the C-25 epimers were made by using a combination of several 1D- and 2D-NMR techniques. The (1)H and (13)C NMR chemical shifts and spectral patterns of the hydrogen and carbon atoms, being close to the asymmetric centered at C-25, provided confirmatory evidence in that they distinguished the two epimeric diastereomers. The medaka is the first fish species identified as having C(27) biliary bile acids as dominant among its major bile salts.
Collapse
Affiliation(s)
- Lee R Hagey
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA, Stahl A. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab 2010; 299:E384-93. [PMID: 20530735 PMCID: PMC2944282 DOI: 10.1152/ajpendo.00226.2010] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fatty acid transport protein (FATP)2, a member of the FATP family of fatty acid uptake mediators, has independently been identified as a hepatic peroxisomal very long-chain acyl-CoA synthetase (VLACS). Here we address whether FATP2 is 1) a peroxisomal enzyme, 2) a plasma membrane-associated long-chain fatty acid (LCFA) transporter, or 3) a multifunctional protein. We found that, in mouse livers, only a minor fraction of FATP2 localizes to peroxisomes, where it contributes to approximately half of the peroxisomal VLACS activity. However, total hepatic (V)LACS activity was not significantly affected by loss of FATP2, while LCFA uptake was reduced by 40%, indicating a more prominent role in hepatic LCFA uptake. This suggests FATP2 as a potential target for a therapeutic intervention of hepatosteatosis. Adeno-associated virus 8-based short hairpin RNA expression vectors were used to achieve liver-specific FATP2 knockdown, which significantly reduced hepatosteatosis in the face of continued high-fat feeding, concomitant with improvements in liver physiology, fasting glucose, and insulin levels. Based on our findings, we propose a model in which FATP2 is a multifunctional protein that shows subcellular localization-dependent activity and is a major contributor to peroxisomal (V)LACS activity and hepatic fatty acid uptake, suggesting FATP2 as a potential novel target for the treatment of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Alaric Falcon
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Islinger M, Cardoso MJR, Schrader M. Be different--the diversity of peroxisomes in the animal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:881-97. [PMID: 20347886 DOI: 10.1016/j.bbamcr.2010.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins.
Collapse
Affiliation(s)
- M Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
40
|
Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:272-80. [DOI: 10.1016/j.bbalip.2010.01.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
|
41
|
Gupta S, Raychaudhury B, Datta SC. Host peroxisomal properties are not restored to normal after treatment of visceral leishmaniasis with sodium antimony gluconate. Exp Parasitol 2009; 123:140-5. [DOI: 10.1016/j.exppara.2009.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/10/2009] [Accepted: 06/16/2009] [Indexed: 01/26/2023]
|
42
|
Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem J 2009; 422:61-71. [DOI: 10.1042/bj20090513] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans excretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, the perception of which enables worms to enter the dauer state for long-term survival in an adverse environment. During the course of elucidation of the daumone biosynthetic pathway in which DHS-28 and DAF-22 are involved in peroxisomal β-oxidation of VLCFAs (very long-chain fatty acids), we sought to investigate the physiological consequences of a deficiency in daumone biosynthesis in C. elegans. Our results revealed that two mutants, dhs-28(tm2581) and daf-22(ok693), lacked daumones and thus were dauer defective; this coincided with massive accumulation of fatty acyl-CoAs (up to 100-fold) inside worm bodies compared with levels in wild-type N2 worms. Furthermore, the deficiency in daumone biosynthesis and the massive accumulation of fatty acids and their acyl-CoAs caused severe developmental defects with reduced life spans (up to 30%), suggesting that daumone biosynthesis is be an essential part of C. elegans homoeostasis, affecting survival and maintenance of optimal physiological conditions by metabolizing some of the toxic non-permissible peroxisomal VLCFAs from the worm body in the form of readily excretable daumones.
Collapse
|
43
|
Thoms S, Grønborg S, Gärtner J. Organelle interplay in peroxisomal disorders. Trends Mol Med 2009; 15:293-302. [DOI: 10.1016/j.molmed.2009.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 11/17/2022]
|
44
|
Bonekamp NA, Völkl A, Fahimi HD, Schrader M. Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 2009; 35:346-55. [PMID: 19459143 DOI: 10.1002/biof.48] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) can surely be considered as multifunctional biofactors within the cell. They are known to participate in regular cell functions, for example, as signal mediators, but overproduction under oxidative stress conditions leads to deleterious cellular effects, cell death and diverse pathological conditions. Peroxisomal function has long been linked to oxygen metabolism due to the high concentration of H(2)O(2)-generating oxidases in peroxisomes and their set of antioxidant enzymes, especially catalase. Still, mitochondria have been very much placed in the centre of ROS metabolism and oxidative stress. This review discusses novel findings concerning the relationship between ROS and peroxisomes, as they revealed to be a key player in the dynamic spin of ROS metabolism and oxidative injury. An overview of ROS generating enzymes as well as their antioxidant counterparts will be given, exemplifying the precise fine-tuning between the opposing systems. Various conditions in which the balance between generation and scavenging of ROS in peroxisomes is perturbed, for example, exogenous manipulation, ageing and peroxisomal disorders, are addressed. Furthermore, peroxisome-derived oxidative stress and its effect on mitochondria (and vice versa) are discussed, highlighting the close interrelationship of both organelles.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
45
|
Ferdinandusse S, Denis S, Faust PL, Wanders RJA. Bile acids: the role of peroxisomes. J Lipid Res 2009; 50:2139-47. [PMID: 19357427 DOI: 10.1194/jlr.r900009-jlr200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is well established that peroxisomes play a crucial role in de novo bile acid synthesis. Studies in patients with a peroxisomal disorder have been indispensable for the elucidation of the precise role of peroxisomes. Several peroxisomal disorders are associated with distinct bile acid abnormalities and each disorder has a characteristic pattern of abnormal bile acids that accumulate, which is often used for diagnostic purposes. The patients have also been important for determining the pathophysiological consequences of defects in bile acid biosynthesis. In this review, we will discuss all the peroxisomal steps involved in bile acid synthesis and the bile acid abnormalities in patients with peroxisomal disorders. We will show the results of bile acid measurements in several tissues from patients, including brain, and we will discuss the toxicity and the pathological effects of the abnormal bile acids.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center at the University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|