1
|
Jarnes JR, Pillai NR, Ahmed A, Shrestha S, Stark M, Whitley CB. Dose-intensive therapy (DIT) for infantile Pompe disease: A pilot study. Mol Genet Metab Rep 2025; 42:101179. [PMID: 39802096 PMCID: PMC11720876 DOI: 10.1016/j.ymgmr.2024.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Background The current standard of care for infantile-onset Pompe disease (IOPD), a severe form of acid α-glucosidase enzyme activity deficiency is: (1) detection by newborn screening, (2) early initiation of intravenous enzyme replacement therapy (ERT) using recombinant human acid alpha-glucosidase (rhGAA), with higher doses of rhGAA increasingly used to improve clinical outcomes, and (3) immune tolerization induction (ITI) using to prevent anti-rhGAA antibody formation, with methotrexate (MTX), rituximab, and IVIG used for patients who are cross-reactive immunologic material negative (CRIM-) and monotherapy with MTX used in patients who are cross-reactive immunologic material positive (CRIM+). Objectives/methods A pilot study evaluates a dose-intensive therapy (DIT) using high-dose ERT (40 mg/kg/week) and more frequent exposure to ERT (i.e., 3 times weekly administration) to mitigate anti-rhGAA antibody formation, as an alternative to the standard therapeutic approach for IOPD. Results In the first patient, DIT resulted in rapid normalization of the following: (1) bi-ventricular hypertrophy, (2) urine HEX-4, (3) CK, (4) liver transaminases. At 7 years of age, the patient continues the DIT regimen. To date, all pediatric developmental milestones have been met on time, anti-rhGAA antibodies have been negative and the patient is able to attend school and maintain normal activities of daily living. Conclusions Over a 7-year period, DIT for CRIM-positive IOPD was well tolerated in the first patient treated. Excellent clinical outcomes were achieved, and anti-rhGAA antibodies levels were consistently undetectable. Assessments of more patients, that includes patients with CRIM-, as well as CRIM+ IOPD, will determine if this approach consistently achieves improved clinical outcomes and immune tolerization.
Collapse
Affiliation(s)
- Jeanine R. Jarnes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Advanced Therapies Program, University of Minnesota, Fairview, Minneapolis, MN, USA
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Nishitha R. Pillai
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Advanced Therapies Program, University of Minnesota, Fairview, Minneapolis, MN, USA
| | - Alia Ahmed
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Advanced Therapies Program, University of Minnesota, Fairview, Minneapolis, MN, USA
| | - Sofia Shrestha
- Advanced Therapies Program, University of Minnesota, Fairview, Minneapolis, MN, USA
- M Health Fairview Masonic Children's Hospital, Minneapolis, MN, USA
| | - Molly Stark
- M Health Fairview Masonic Children's Hospital, Minneapolis, MN, USA
| | - Chester B. Whitley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Advanced Therapies Program, University of Minnesota, Fairview, Minneapolis, MN, USA
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Borges B, Canepa E, Chang IJ, Herzeg A, Lianoglou B, Kishnani PS, Harmatz P, MacKenzie TC, Cohen JL. Prenatal Delivery of Enzyme Replacement Therapy to Fetuses Affected by Early-Onset Lysosomal Storage Diseases. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2025:e32132. [PMID: 39891377 DOI: 10.1002/ajmg.c.32132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The expansion of prenatal genetic screening and diagnosis warrants the evaluation of approved postnatal therapies that may be safely and feasibly translated to prenatal administration to a fetus affected by monogenic disease. For lysosomal storage diseases (LSDs), enzyme replacement therapy (ERT) often represents the main therapeutic approach. In utero enzyme replacement therapy (IUERT) has several potential benefits compared to postnatal therapy, such as: (1) delivering enzyme before the onset of irreversible organ damage; (2) developing tolerance toward the recombinant enzyme; and (3) targeting the central nervous system through a more permeable blood-brain barrier. In this review, we examine the general and disease-specific rationale for IUERT, and provide an overview of the main elements of our current clinical trial for the prenatal treatment of early-onset lysosomal storage diseases. Trial Registration: IUERT clinical trial: NCT04532047; Alpha thalassemia clinical trial: NCT02986698.
Collapse
Affiliation(s)
- Beltran Borges
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Emma Canepa
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Irene J Chang
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
- Department of Pediatrics, Division of Medical Genetics, University of California San Francisco, San Francisco, California, USA
| | - Akos Herzeg
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Billie Lianoglou
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Paul Harmatz
- Department of Pediatrics, Division of Gastroenterology, University of California San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, California, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Lastoria DAA, Keynes S, Hughes D. Current and Emerging Therapies for Lysosomal Storage Disorders. Drugs 2025:10.1007/s40265-025-02145-5. [PMID: 39826077 DOI: 10.1007/s40265-025-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Lysosomal storage disorders (LSDs) are rare inherited metabolic disorders characterized by defects in the function of specific enzymes responsible for breaking down substrates within cellular organelles (lysosomes) essential for the processing of macromolecules. Undigested substrate accumulates within lysosomes, leading to cellular dysfunction, tissue damage, and clinical manifestations. Clinical features vary depending on the degree and type of enzyme deficiency, the type and extent of substrate accumulated, and the tissues affected. The heterogeneous nature of LSDs results in a variety of treatment approaches, which must be tailored to patient presentation and characteristics. The treatment landscape for LSDs is rapidly evolving. An up-to-date discussion of current evidence is required to provide clinicians with an appropriate overview of treatment options. Therefore, we aimed to review current and ongoing trials pertaining to the treatment of common LSDs.
Collapse
Affiliation(s)
| | - Sophie Keynes
- Institute for Medical and Biomedical Education, St George's, University of London, London, SW17 0RE, UK
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust, University College London, London, NW3 2QG, UK.
| |
Collapse
|
4
|
Parenti G, Fecarotta S, Alagia M, Attaianese F, Verde A, Tarallo A, Gragnaniello V, Ziagaki A, Guimaraes MJ, Aguiar P, Hahn A, Azevedo O, Donati MA, Kiec-Wilk B, Scarpa M, van der Beek NAME, Del Toro Riera M, Germain DP, Huidekoper H, van den Hout JMP, van der Ploeg AT. The European reference network for metabolic diseases (MetabERN) clinical pathway recommendations for Pompe disease (acid maltase deficiency, glycogen storage disease type II). Orphanet J Rare Dis 2024; 19:408. [PMID: 39482698 PMCID: PMC11529438 DOI: 10.1186/s13023-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Clinical pathway recommendations (CPR) are based on existing guidelines and deliver a short overview on how to deal with a specific diagnosis, resulting therapy and follow-up. In this paper we propose a methodology for developing CPRs for Pompe disease, a metabolic myopathy caused by deficiency of lysosomal acid alpha-glucosidase. The CPR document was developed within the activities of the MetabERN, a non-profit European Reference Network for Metabolic Diseases established by the European Union. A working group was selected among members of the MetabERN lysosomal storage disease subnetwork, with specific expertise in the care of Pompe disease, and patient support group representatives. The working strategy was based on a systematic literature search to develop a database, followed by quality assessment of the studies selected from the literature, and by the development of the CPR document according to a matrix provided by MetabERN. Quality assessment of the literature and collection of citations was conducted according to the AGREE II criteria and Grading of Recommendations, Assessment, Development and Evaluation methodology. General aspects were addressed in the document, including pathophysiology, genetics, frequency, classification, manifestations and clinical approach, laboratory diagnosis and multidisciplinary evaluation, therapy and supportive measures, follow-up, monitoring, and pregnancy. The CPR document that was developed was intended to be a concise and easy-to-use tool for standardization of care for patients among the healthcare providers that are members of the network or are involved in the care for Pompe disease patients.
Collapse
Affiliation(s)
- Giancarlo Parenti
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy.
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy.
| | - Simona Fecarotta
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Marianna Alagia
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Federica Attaianese
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Alessandra Verde
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Antonietta Tarallo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Vincenza Gragnaniello
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Athanasia Ziagaki
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Endocrinology and Metabolism, Center of Excellence for Rare Metabolic Diseases in Adults, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Jose' Guimaraes
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Pneumology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Patricio Aguiar
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Clinica Universitaria de Medicina I, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Hahn
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Child Neurology, Justus-Liebig University, Giessen, Germany
| | - Olga Azevedo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Alice Donati
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Beata Kiec-Wilk
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Unit of Rare Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- The John Paul II Specjalist Hospital in Kraków, Kraków, Poland
| | - Maurizio Scarpa
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Nadine A M E van der Beek
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mireja Del Toro Riera
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic Unit, Department of Pediatric Neurology, Hospital Universitario Vall d'Hebron Barcelona, Barcelona, Spain
| | - Dominique P Germain
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Division of Medical Genetics, University of Versailles, Montigny, France
| | - Hidde Huidekoper
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
5
|
Fiori L, Tagi VM, Montanari C, Gambino M, Carlevatti V, Zizzo C, D'Auria E, Dilillo D, Verduci E, Zuccotti G. Desensitization of olipudase alfa-induced anaphylaxis in a child with chronic neurovisceral acid sphingomyelinase deficiency. Mol Genet Metab Rep 2024; 40:101120. [PMID: 39081552 PMCID: PMC11286986 DOI: 10.1016/j.ymgmr.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Olipudase alfa is indicated for the non-central nervous system manifestations of Acid sphingomyelinase deficiency (ASMD). Anaphylaxis is a very rare and life-threatening adverse reaction described for this drug. Here, we report the case of a 2-year-old boy affected by chronic neurovisceral ASMD who experienced signs of hypersensitivity reactions to olipudase alfa since the administered dose of 1 mg/kg during dose escalation and a proper anaphylactic reaction during the second administration of the target therapeutic dose of 3 mg/kg. The treatment was stopped for 15 weeks and then a 7-step desensitization protocol with the infused dose of 0.03 mg/kg was applied. Subsequent gradual dose escalation was resumed, successfully reaching the dose of 0.3 mg/kg. Moreover, biochemical, and radiological disease indexes, which were increased during treatment discontinuation, have gradually improved since the restart of treatment. However, at the second administration of the dose of 0.6 mg/kg, the patient experienced another adverse drug reaction with facial urticarial rash and bronchospasm, requiring the administration of adrenaline, methylprednisolone, and inhaled salbutamol. This case report highlights the need to customize the olipudase alfa desensitization protocol according to individual tolerance and raises the issue of achieving the established therapeutic target in the most sensitive children. Synopsis We report a case of anaphylaxis to olipudase alfa in a child affected by chronic neurovisceral Acid sphingomyelinase deficiency (ASMD) and describe a 7-step desensitization procedure. This procedure, with the total administered dose of 0.03 mg/kg, followed by gradual dose escalation, allowed to reach the dose of 0.3 mg/kg without adverse reactions; however, at the second administration of the dose of 0.6 mg/kg our patient presented another adverse reaction suggesting the need of a different desensitization strategy.
Collapse
Affiliation(s)
- Laura Fiori
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Veronica Maria Tagi
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Chiara Montanari
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Mirko Gambino
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Veronica Carlevatti
- Hospital Pharmacy Department, ASST Fatebenefratelli-Sacco, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB) National Research Council (CNR), Palermo, Italy
| | - Enza D'Auria
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Dario Dilillo
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
6
|
İnci A, Ezgü FS, Tümer L. Advances in Immune Tolerance Induction in Enzyme Replacement Therapy. Paediatr Drugs 2024; 26:287-308. [PMID: 38664313 PMCID: PMC11074017 DOI: 10.1007/s40272-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/07/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that occur due to the either deficiency of an enzyme involved in a metabolic/biochemical pathway or other disturbances in the metabolic pathway including transport protein or activator protein deficiencies, cofactor deficiencies, organelle biogenesis, maturation or trafficking problems. These disorders are collectively significant due to their substantial impact on both the well-being and survival of affected individuals. In the quest for effective treatments, enzyme replacement therapy (ERT) has emerged as a viable strategy for patients with many of the lysosomal storage disorders (LSD) and enzyme substitution therapy in the rare form of the other inborn errors of metabolism including phenylketonuria and hypophosphatasia. However, a major challenge associated with enzyme infusion in patients with these disorders, mainly LSD, is the development of high antibody titres. Strategies focusing on immunomodulation have shown promise in inducing immune tolerance to ERT, leading to improved overall survival rates. The implementation of immunomodulation concurrent with ERT administration has also resulted in a decreased occurrence of IgG antibody development compared with cases treated solely with ERT. By incorporating the knowledge gained from current approaches and analysing the outcomes of immune tolerance induction (ITI) modalities from clinical and preclinical trials have demonstrated significant improvement in the efficacy of ERT. In this comprehensive review, the progress in ITI modalities is assessed, drawing insights from both clinical and preclinical trials. The focus is on evaluating the advancements in ITI within the context of IEM, specifically addressing LSDs managed through ERT.
Collapse
Affiliation(s)
- Aslı İnci
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey.
| | - Fatih Süheyl Ezgü
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
- Department of Paediatric Genetic, Gazi University School of Medicine, Ankara, Turkey
| | - Leyla Tümer
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
| |
Collapse
|
7
|
Alyazidi AS, Muthaffar OY, Baaishrah LS, Shawli MK, Jambi AT, Aljezani MA, Almaghrabi MA. Current Concepts in the Management of Sanfilippo Syndrome (MPS III): A Narrative Review. Cureus 2024; 16:e58023. [PMID: 38738088 PMCID: PMC11087936 DOI: 10.7759/cureus.58023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Sanfilippo syndrome is a childhood-onset (1-4 years) autosomal recessive lysosomal storage disease that presents as a neurodegenerative disease by targeting the brain and spinal cord. It is also known as mucopolysaccharidosis III. Mucopolysaccharidosis III is divided into four subtypes (A, B, C, or D). It can cause delayed speech, behavior problems, and features of autism spectrum disorder. Sanfilippo syndrome is of a higher prevalence within consanguineous families that carry its gene alteration. If both parents have a nonfunctional copy of a gene linked to this condition, their children will have a 25% (1 in 4) chance of developing the disease. In Saudi Arabia, the incidence rate is estimated at 2 per 100,000 live births. Recent research focused on promising treatment approaches, such as gene therapy, modified enzyme replacement therapy, and stem cells. These approaches work by exogenous administration of the proper version of the mutant enzyme (enzyme replacement therapy), cleaning the defective enzyme in individuals with glycolipid storage disorders (substrate reduction therapy), or using a pharmacological chaperone to target improperly folded proteins. However, there is currently no approved curative medication for Sanfilippo syndrome that can effectively halt or reverse the disorder.
Collapse
Affiliation(s)
- Anas S Alyazidi
- Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Osama Y Muthaffar
- Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Layan S Baaishrah
- Faculty of Pharmacy, King Abdulaziz University Hospital, Jeddah, SAU
| | - Mohammed K Shawli
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Abdulaziz T Jambi
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Maram A Aljezani
- Pediatric Neurology, King Abdulaziz University Hospital, Jeddah, SAU
| | | |
Collapse
|
8
|
Herzeg A, Borges B, Lianoglou BR, Gonzalez-Velez J, Canepa E, Munar D, Young SP, Bali D, Gelb MH, Chakraborty P, Kishnani PS, Harmatz P, Cohen JL, MacKenzie TC. Intrauterine enzyme replacement therapies for lysosomal storage disorders: Current developments and promising future prospects. Prenat Diagn 2023; 43:1638-1649. [PMID: 37955580 PMCID: PMC11155627 DOI: 10.1002/pd.6460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.
Collapse
Affiliation(s)
- Akos Herzeg
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Beltran Borges
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Billie R. Lianoglou
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Juan Gonzalez-Velez
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Emma Canepa
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - Dane Munar
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
| | - Sarah P. Young
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Deeksha Bali
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Michel H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Pranesh Chakraborty
- Department of Pediatrics, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Priya S. Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Paul Harmatz
- Benioff Children’s Hospital, University of California, San Francisco, California, USA
| | - Jennifer L. Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Tippi C. MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Benioff Children’s Hospital, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Flanagan M, Gan Q, Sheth S, Schafer R, Ruesing S, Winter LE, Toth K, Zustiak SP, Montaño AM. Hydrogel Delivery Device for the In Vitro and In Vivo Sustained Release of Active rhGALNS Enzyme. Pharmaceuticals (Basel) 2023; 16:931. [PMID: 37513843 PMCID: PMC10384033 DOI: 10.3390/ph16070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Morquio A disease is a genetic disorder resulting in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, and patients are currently treated with enzyme replacement therapy via weekly intravenous enzyme infusions. A means of sustained enzyme delivery could improve patient quality of life by reducing the administration time, frequency of hospital visits, and treatment cost. In this study, we investigated poly(ethylene-glycol) (PEG) hydrogels as a tunable, hydrolytically degradable drug delivery system for the encapsulation and sustained release of recombinant human GALNS (rhGALNS). We evaluated hydrogel formulations that optimized hydrogel gelation and degradation time while retaining rhGALNS activity and sustaining rhGALNS release. We observed the release of active rhGALNS for up to 28 days in vitro from the optimized formulation. rhGALNS activity was preserved in the hydrogel relative to buffer over the release window, and encapsulation was found to have no impact on the rhGALNS structure when measured by intrinsic fluorescence, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vivo, we monitored the retention of fluorescently labeled rhGALNS in C57BL/6 albino mice when administered via subcutaneous injection and observed rhGALNS present for up to 20 days when delivered in a hydrogel versus 7 days in the buffer control. These results indicate that PEG hydrogels are suitable for the encapsulation, preservation, and sustained release of recombinant enzymes and may present an alternative method of delivering enzyme replacement therapies that improve patient quality of life.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Saahil Sheth
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Rachel Schafer
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Samuel Ruesing
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Linda E Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Microbiology and Molecular Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
10
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Bugiani M, Abbink TEM, Edridge AWD, van der Hoek L, Hillen AEJ, van Til NP, Hu‐A‐Ng GV, Breur M, Aiach K, Drevot P, Hocquemiller M, Laufer R, Wijburg FA, van der Knaap MS. Focal lesions following intracerebral gene therapy for mucopolysaccharidosis IIIA. Ann Clin Transl Neurol 2023; 10:904-917. [PMID: 37165777 PMCID: PMC10270249 DOI: 10.1002/acn3.51772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVE Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of PathologyAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Truus E. M. Abbink
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Centre for Global Child HealthAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Anne E. J. Hillen
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Niek P. van Til
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Gino V. Hu‐A‐Ng
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | | | | | | | | | - Frits A. Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center “Sphinx”Amsterdam University Medical Centers, Academic Medical CenterAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
| |
Collapse
|
12
|
Hallows WC, Skvorak K, Agard N, Kruse N, Zhang X, Zhu Y, Botham RC, Chng C, Shukla C, Lao J, Miller M, Sero A, Viduya J, Ismaili MHA, McCluskie K, Schiffmann R, Silverman AP, Shen JS, Huisman GW. Optimizing human α-galactosidase for treatment of Fabry disease. Sci Rep 2023; 13:4748. [PMID: 36959353 PMCID: PMC10036536 DOI: 10.1038/s41598-023-31777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA-/- podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
| | - Kristen Skvorak
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Nick Agard
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Nikki Kruse
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Xiyun Zhang
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Fornia BioSolutions Inc US, Hayward, CA, 94545, USA
| | - Yu Zhu
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Rachel C Botham
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Chinping Chng
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Charu Shukla
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Jessica Lao
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Octant, Emeryville, CA, 94608, USA
| | - Mathew Miller
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Antoinette Sero
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Judy Viduya
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Moulay Hicham Alaoui Ismaili
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Glycomine, San Mateo, CA, 94070, USA
| | - Kerryn McCluskie
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Glycomine, San Mateo, CA, 94070, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, 75246, USA
- 4D Molecular Therapeutics, Emeryville, CA, 94608, USA
| | - Adam P Silverman
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Jin-Song Shen
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, 75246, USA
- 4D Molecular Therapeutics, Emeryville, CA, 94608, USA
| | - Gjalt W Huisman
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| |
Collapse
|
13
|
Akgun A, Gokcay G, Mungan NO, Sivri HS, Tezer H, Zeybek CA, Ezgu F. Expert-opinion-based guidance for the care of children with lysosomal storage diseases during the COVID-19 pandemic: An experience-based Turkey perspective. Front Public Health 2023; 11:1092895. [PMID: 36794069 PMCID: PMC9922761 DOI: 10.3389/fpubh.2023.1092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
This expert-opinion-based document was prepared by a group of specialists in pediatric inherited metabolic diseases and infectious diseases including administrative board members of Turkish Society for Pediatric Nutrition and Metabolism to provide guidance for the care of children with lysosomal storage disorders (LSDs) during the COVID-19 pandemic in Turkey. The experts reached consensus on key areas of focus regarding COVID-19-based risk status in relation to intersecting immune-inflammatory mechanisms and disease patterns in children with LSDs, diagnostic virus testing, particularly preventive measures and priorities during the pandemic, routine screening and diagnostic interventions for LSDs, psychological and socioeconomic impact of confinement measures and quarantines and optimal practice patterns in managing LSDs and/or COVID-19. The participating experts agreed on the intersecting characteristics of immune-inflammatory mechanisms, end-organ damage and prognostic biomarkers in LSD and COVID-19 populations, emphasizing the likelihood of enhanced clinical care when their interaction is clarified via further studies addressing certain aspects related to immunity, lysosomal dysfunction and disease pathogenesis. In the context of the current global COVID-19 pandemic, this expert-opinion-based document provides guidance for the care of children with LSDs during the COVID-19 pandemic based on the recent experience in Turkey.
Collapse
Affiliation(s)
- Abdurrahman Akgun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gulden Gokcay
- Division of Nutrition and Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Neslihan Onenli Mungan
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Tezer
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cigdem Aktuglu Zeybek
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fatih Ezgu
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Hegeman CV, de Jong OG, Lorenowicz MJ. A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:393-421. [PMID: 39697359 PMCID: PMC11651879 DOI: 10.20517/evcna.2022.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
Collapse
Affiliation(s)
- Charlotte V. Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Authors contributed equally
| | - Magdalena J. Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Biomedical Primate Research Centre, Lange Kleinweg 161, Rijswijk 2288 GJ, The Netherlands
- Authors contributed equally
| |
Collapse
|
15
|
Cohen JL, Chakraborty P, Fung-Kee-Fung K, Schwab ME, Bali D, Young SP, Gelb MH, Khaledi H, DiBattista A, Smallshaw S, Moretti F, Wong D, Lacroix C, El Demellawy D, Strickland KC, Lougheed J, Moon-Grady A, Lianoglou BR, Harmatz P, Kishnani PS, MacKenzie TC. In Utero Enzyme-Replacement Therapy for Infantile-Onset Pompe's Disease. N Engl J Med 2022; 387:2150-2158. [PMID: 36351280 PMCID: PMC10794051 DOI: 10.1056/nejmoa2200587] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Patients with early-onset lysosomal storage diseases are ideal candidates for prenatal therapy because organ damage starts in utero. We report the safety and efficacy results of in utero enzyme-replacement therapy (ERT) in a fetus with CRIM (cross-reactive immunologic material)-negative infantile-onset Pompe's disease. The family history was positive for infantile-onset Pompe's disease with cardiomyopathy in two previously affected deceased siblings. After receiving in utero ERT and standard postnatal therapy, the current patient had normal cardiac and age-appropriate motor function postnatally, was meeting developmental milestones, had normal biomarker levels, and was feeding and growing well at 13 months of age.
Collapse
Affiliation(s)
- Jennifer L Cohen
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Pranesh Chakraborty
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Karen Fung-Kee-Fung
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Marisa E Schwab
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Deeksha Bali
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Sarah P Young
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Michael H Gelb
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Hamid Khaledi
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Alicia DiBattista
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Stacey Smallshaw
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Felipe Moretti
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Derek Wong
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Catherine Lacroix
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Dina El Demellawy
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Kyle C Strickland
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Jane Lougheed
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Anita Moon-Grady
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Billie R Lianoglou
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Paul Harmatz
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Priya S Kishnani
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| | - Tippi C MacKenzie
- From the Department of Pediatrics, Division of Medical Genetics (J.L.C., D.B., S.P.Y., P.S.K.), and the Department of Pathology (K.C.S.), Duke University, Durham, NC; the Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa (P.C., S.S., D.W., C.L., D.E.D., J.L.), the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ottawa Hospital, University of Ottawa (K.F.-K.-F., F.M.), and Children's Hospital of Eastern Ontario Research Institute (P.C., A.D.) - all in Ottawa; the University of California, San Francisco (UCSF) Benioff Children's Hospital and the UCSF Center for Maternal-Fetal Precision Medicine, San Francisco (M.E.S., A.M.-G., B.R.L., P.H., T.C.M.); and the Department of Chemistry, University of Washington, Seattle (M.H.G., H.K.)
| |
Collapse
|
16
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Mucopolysaccharidoses and the blood-brain barrier. Fluids Barriers CNS 2022; 19:76. [PMID: 36117162 PMCID: PMC9484072 DOI: 10.1186/s12987-022-00373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Mucopolysaccharidoses comprise a set of genetic diseases marked by an enzymatic dysfunction in the degradation of glycosaminoglycans in lysosomes. There are eight clinically distinct types of mucopolysaccharidosis, some with various subtypes, based on which lysosomal enzyme is deficient and symptom severity. Patients with mucopolysaccharidosis can present with a variety of symptoms, including cognitive dysfunction, hepatosplenomegaly, skeletal abnormalities, and cardiopulmonary issues. Additionally, the onset and severity of symptoms can vary depending on the specific disorder, with symptoms typically arising during early childhood. While there is currently no cure for mucopolysaccharidosis, there are clinically approved therapies for the management of clinical symptoms, such as enzyme replacement therapy. Enzyme replacement therapy is typically administered intravenously, which allows for the systemic delivery of the deficient enzymes to peripheral organ sites. However, crossing the blood-brain barrier (BBB) to ameliorate the neurological symptoms of mucopolysaccharidosis continues to remain a challenge for these large macromolecules. In this review, we discuss the transport mechanisms for the delivery of lysosomal enzymes across the BBB. Additionally, we discuss the several therapeutic approaches, both preclinical and clinical, for the treatment of mucopolysaccharidoses.
Collapse
|
18
|
Picache JA, Zheng W, Chen CZ. Therapeutic Strategies For Tay-Sachs Disease. Front Pharmacol 2022; 13:906647. [PMID: 35865957 PMCID: PMC9294361 DOI: 10.3389/fphar.2022.906647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive disease that features progressive neurodegenerative presentations. It affects one in 100,000 live births. Currently, there is no approved therapy or cure. This review summarizes multiple drug development strategies for TSD, including enzyme replacement therapy, pharmaceutical chaperone therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell replacement therapy. In vitro and in vivo systems are described to assess the efficacy of the aforementioned therapeutic strategies. Furthermore, we discuss using MALDI mass spectrometry to perform a high throughput screen of compound libraries. This enables discovery of compounds that reduce GM2 and can lead to further development of a TSD therapy.
Collapse
|
19
|
Treatment of Neuronopathic Mucopolysaccharidoses with Blood-Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics 2022; 14:pharmaceutics14061240. [PMID: 35745811 PMCID: PMC9229961 DOI: 10.3390/pharmaceutics14061240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Enzyme replacement therapy (ERT) has paved the way for treating the somatic symptoms of lysosomal storage diseases (LSDs), but the inability of intravenously administered enzymes to cross the blood-brain barrier (BBB) has left the central nervous system (CNS)-related symptoms of LSDs largely impervious to the therapeutic benefits of ERT, although ERT via intrathecal and intracerebroventricular routes can be used for some neuronopathic LSDs (in particular, mucopolysaccharidoses). However, the considerable practical issues involved make these routes unsuitable for long-term treatment. Efforts have been made to modify enzymes (e.g., by fusing them with antibodies against innate receptors on the cerebrovascular endothelium) so that they can cross the BBB via receptor-mediated transcytosis (RMT) and address neuronopathy in the CNS. This review summarizes the various scientific and technological challenges of applying RMT to the development of safe and effective enzyme therapeutics for neuronopathic mucopolysaccharidoses; it then discusses the translational and methodological issues surrounding preclinical and clinical evaluation to establish RMT-applied ERT.
Collapse
|
20
|
Weinreb NJ, Goker-Alpan O, Kishnani PS, Longo N, Burrow TA, Bernat JA, Gupta P, Henderson N, Pedro H, Prada CE, Vats D, Pathak RR, Wright E, Ficicioglu C. The diagnosis and management of Gaucher disease in pediatric patients: Where do we go from here? Mol Genet Metab 2022; 136:4-21. [PMID: 35367141 DOI: 10.1016/j.ymgme.2022.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is an autosomal recessive inherited lysosomal storage disease that often presents in early childhood and is associated with damage to multiple organ systems. Many challenges associated with GD diagnosis and management arise from the considerable heterogeneity of disease presentations and natural history. Phenotypic classification has traditionally been based on the absence (in type 1 GD) or presence (in types 2 and 3 GD) of neurological involvement of varying severity. However, patient management and prediction of prognosis may be best served by a dynamic, evolving definition of individual phenotype rather than by a rigid system of classification. Patients may experience considerable delays in diagnosis, which can potentially be reduced by effective screening programs; however, program implementation can involve ethical and practical challenges. Variation in the clinical course of GD and an uncertain prognosis also complicate decisions concerning treatment initiation, with differing stakeholder perspectives around efficacy and acceptable cost/benefit ratio. We review the challenges faced by physicians in the diagnosis and management of GD in pediatric patients. We also consider future directions and goals, including acceleration of accurate diagnosis, improvements in the understanding of disease heterogeneity (natural history, response to treatment, and prognosis), the need for new treatments to address unmet needs for all forms of GD, and refinement of the tools for monitoring disease progression and treatment efficacy, such as specific biomarkers.
Collapse
Affiliation(s)
- Neal J Weinreb
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, USA.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA.
| | - T Andrew Burrow
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA.
| | - John A Bernat
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Punita Gupta
- St Joseph's University Hospital, Paterson, NJ, USA.
| | - Nadene Henderson
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Helio Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA.
| | - Carlos E Prada
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital and Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA.
| | - Ravi R Pathak
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, USA.
| | | | - Can Ficicioglu
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, PA, USA.
| |
Collapse
|
21
|
Gragnaniello V, Deodato F, Gasperini S, Donati MA, Canessa C, Fecarotta S, Pascarella A, Spadaro G, Concolino D, Burlina A, Parenti G, Strisciuglio P, Fiumara A, Casa RD. Immune responses to alglucosidase in infantile Pompe disease: recommendations from an Italian pediatric expert panel. Ital J Pediatr 2022; 48:41. [PMID: 35248118 PMCID: PMC8898438 DOI: 10.1186/s13052-022-01219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Classic infantile onset of Pompe disease (c-IOPD) leads to hypotonia and hypertrophic cardiomyopathy within the first days to weeks of life and, without treatment, patients die of cardiorespiratory failure in their first 1–2 years of life. Enzymatic replacement therapy (ERT) with alglucosidase alfa is the only available treatment, but adverse immune reactions can reduce ERT’s effectiveness and safety. It is therefore very important to identify strategies to prevent and manage these complications. Several articles have been written on this disease over the last 10 years, but no univocal indications have been established. Methods Our study presents a review of the current literature on management of immune responses to ERT in c-IOPD as considered by an Italian study group of pediatric metabolists and immunologists in light of our shared patient experience. Results We summarize the protocols for the management of adverse reactions to ERT, analyzing their advantages and disadvantages, and provide expert recommendations for their optimal management, to the best of current knowledge. However, further studies are needed to improve actual management protocols, which still have several limitations.
Collapse
|
22
|
Lenders M, Brand E. Mechanisms of Neutralizing Anti-drug Antibody Formation and Clinical Relevance on Therapeutic Efficacy of Enzyme Replacement Therapies in Fabry Disease. Drugs 2021; 81:1969-1981. [PMID: 34748189 PMCID: PMC8602155 DOI: 10.1007/s40265-021-01621-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A (AGAL/GLA) gene. The lysosomal accumulation of the substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) results in progressive renal failure, cardiomyopathy associated with cardiac arrhythmia, and recurrent strokes, significantly limiting life expectancy in affected patients. Current treatment options for FD include recombinant enzyme-replacement therapies (ERTs) with intravenous agalsidase-α (0.2 mg/kg body weight) or agalsidase-β (1 mg/kg body weight) every 2 weeks, facilitating cellular Gb3 clearance and an overall improvement of disease burden. However, ERT can lead to infusion-associated reactions, as well as the formation of neutralizing anti-drug antibodies (ADAs) in ERT-treated males, leading to an attenuation of therapy efficacy and thus disease progression. In this narrative review, we provide a brief overview of the clinical picture of FD and diagnostic confirmation. The focus is on the biochemical and clinical significance of neutralizing ADAs as a humoral response to ERT. In addition, we provide an overview of different methods for ADA measurement and characterization, as well as potential therapeutic approaches to prevent or eliminate ADAs in affected patients, which is representative for other ERT-treated lysosomal storage diseases.
Collapse
Affiliation(s)
- Malte Lenders
- Department of Internal Medicine D, Nephrology, Hypertension and Rheumatology, Interdisciplinary Fabry Center Münster (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| | - Eva Brand
- Department of Internal Medicine D, Nephrology, Hypertension and Rheumatology, Interdisciplinary Fabry Center Münster (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| |
Collapse
|
23
|
Tsurumi M, Suzuki S, Hokugo J, Ueda K. Long-term safety and efficacy of agalsidase beta in Japanese patients with Fabry disease: aggregate data from two post-authorization safety studies. Expert Opin Drug Saf 2021; 20:589-601. [PMID: 33599146 DOI: 10.1080/14740338.2021.1891221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Enzyme replacement therapy in Fabry disease has been available in Japan since 2004. Two post-authorization safety studies were conducted to evaluate agalsidase beta in Japanese patients with Fabry disease in real-world practice. RESEARCH DESIGN AND METHODS The Special Drug Use Investigation monitored the long-term safety and efficacy of agalsidase beta, and the Drug Use Investigation monitored safety in patients not participating in the Special Drug Use Investigation. Safety and efficacy evaluations included adverse drug reactions (ADRs), infusion-associated reactions and hypersensitivity reactions, and change in blood GL-3 level over time. RESULTS Of 396 patients in the aggregated data set, safety and efficacy analysis sets comprised 307 and 196 patients, respectively. ADRs occurred in 93 (30.3%) patients and serious ADRs occurred in 25 (8.1%) patients, with general disorders and administration site conditions (n=55, 17.9%), nervous system disorders (n=30, 9.8%) and skin and subcutaneous tissue disorders (n=23, 7.5%) the most common. Reductions in blood GL-3 levels occurred over the study, irrespective of age or disease phenotype. CONCLUSIONS Agalsidase beta demonstrated acceptable safety and tolerability, with sustained reductions in blood GL-3 levelsin Japanese patients with Fabry disease in real-world clinical practice. CLINICAL TRIAL REGISTRATION NCT00233870/AGAL03004 (Special Drug Use Investigation of Agalsidase beta).
Collapse
Affiliation(s)
- Mina Tsurumi
- Rare Disease Medical, Sanofi Genzyme Medical, Sanofi K.K., Tokyo, Japan
| | - Shinya Suzuki
- Rare Disease Medical, Sanofi Genzyme Medical, Sanofi K.K., Tokyo, Japan
| | - Jiro Hokugo
- Post-Authorization Regulatory Studies, Medical Affairs, Sanofi K.K., Tokyo, Japan
| | - Kazuo Ueda
- Rare Disease Medical, Sanofi Genzyme Medical, Sanofi K.K., Tokyo, Japan
| |
Collapse
|
24
|
Sosa AC, Kariuki B, Gan Q, Knutsen AP, Bellone CJ, Guzmán MA, Barrera LA, Tomatsu S, Chauhan AK, Armbrecht E, Montaño AM. Oral immunotherapy tolerizes mice to enzyme replacement therapy for Morquio A syndrome. J Clin Invest 2020; 130:1288-1300. [PMID: 31743109 DOI: 10.1172/jci125607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of mucopolysaccharidoses, including Morquio A syndrome caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives, which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS for 10 days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete GALNS enzyme to orally induce tolerance to GALNS prior to ERT resulted in several improvements to ERT in mice: (a) decreased splenocyte proliferation after in vitro GALNS stimulation, (b) modulation of the cytokine secretion profile, (c) decrease in GALNS-specific IgG or IgE in plasma, (d) decreased GAG storage in liver, and (e) fewer circulating immune complexes in plasma. This model could be extrapolated to other lysosomal storage disorders in which immune response hinders ERT.
Collapse
Affiliation(s)
- Angela C Sosa
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.,Instituto de Errores Innatos del Metabolismo, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Barbara Kariuki
- Department of Pediatrics, Division of Allergy and Immunology
| | - Qi Gan
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Alan P Knutsen
- Department of Pediatrics, Division of Allergy and Immunology
| | | | - Miguel A Guzmán
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Luis A Barrera
- Instituto de Errores Innatos del Metabolismo, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Rheumatology, School of Medicine
| | | | - Adriana M Montaño
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Benetó N, Vilageliu L, Grinberg D, Canals I. Sanfilippo Syndrome: Molecular Basis, Disease Models and Therapeutic Approaches. Int J Mol Sci 2020; 21:E7819. [PMID: 33105639 PMCID: PMC7659972 DOI: 10.3390/ijms21217819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.
Collapse
Affiliation(s)
- Noelia Benetó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Department of Clinical Sciences, Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
26
|
Desai AK, Baloh CH, Sleasman JW, Rosenberg AS, Kishnani PS. Benefits of Prophylactic Short-Course Immune Tolerance Induction in Patients With Infantile Pompe Disease: Demonstration of Long-Term Safety and Efficacy in an Expanded Cohort. Front Immunol 2020; 11:1727. [PMID: 32849613 PMCID: PMC7424004 DOI: 10.3389/fimmu.2020.01727] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Immune tolerance induction (ITI) with a short-course of rituximab, methotrexate, and/or IVIG in the enzyme replacement therapy (ERT)-naïve setting has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD) lacking endogenous acid-alpha glucosidase (GAA), known as cross-reactive immunologic material (CRIM)-negative. In the context of cancer therapy, rituximab administration results in sustained B-cell depletion in 83% of patients for up to 26–39 weeks with B-cell reconstitution beginning at approximately 26 weeks post-treatment. The impact of rituximab on serum immunoglobulin levels is not well studied, available data suggest that rituximab can cause persistently low immunoglobulin levels and adversely impact vaccine responses. Data on a cohort of IPD patients who received a short-course of ITI with rituximab, methotrexate, and IVIG in the ERT-naïve setting and had ≥6 months of follow-up were retrospectively studied. B-cell quantitation, ANC, AST, ALT, immunization history, and vaccine titers after B-cell reconstitution were reviewed. Data were collected for 34 IPD patients (25 CRIM-negative and 9 CRIM-positive) with a median age at ERT initiation of 3.5 months (0.1–11.0 months). B-cell reconstitution, as measured by normalization of CD19%, was seen in all patients (n = 33) at a median time of 17 weeks range (11–55 weeks) post-rituximab. All maintained normal CD19% with the longest follow-up being 248 weeks post-rituximab. 30/34 (88%) maintained negative/low anti-rhGAA antibody titers, even with complete B-cell reconstitution. Infections during immunosuppression were reported in five CRIM-negative IPD patients, all resolved satisfactorily on antibiotics. There were no serious sequelae or deaths. Of the 31 evaluable patients, 27 were up to date on age-appropriate immunizations. Vaccine titers were available for 12 patients after B-cell reconstitution and adequate humoral response was observed in all except an inadequate response to the Pneumococcal vaccine (n = 2). These data show the benefits of short-course prophylactic ITI in IPD both in terms of safety and efficacy. Data presented here are from the youngest cohort of patients treated with rituximab and expands the evidence of its safety in the pediatric population.
Collapse
Affiliation(s)
- Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - Carolyn H Baloh
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - John W Sleasman
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - Amy S Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, United States
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| |
Collapse
|
27
|
Turgay Yagmur I, Unal Uzun O, Kucukcongar Yavas A, Kulhas Celik I, Toyran M, Gunduz M, Civelek E, Dibek Misirlioglu E. Management of hypersensitivity reactions to enzyme replacement therapy in children with lysosomal storage diseases. Ann Allergy Asthma Immunol 2020; 125:460-467. [PMID: 32687987 DOI: 10.1016/j.anai.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intravenous recombinant enzyme replacement therapy (ERT) is currently available for 8 lysosomal diseases. Hypersensitivity reactions (HSRs) may be observed during this long-term treatment. OBJECTIVE To evaluate the frequency and clinical treatment features of ERT HSRs and the management of desensitizations in children. METHODS Medical records were reviewed retrospectively for patients who received ERT. Those who had experienced HSRs to ERT were included in the study. The demographic characteristics of the patients, culprit enzyme, signs and symptoms, diagnostic tests, management of the reaction, and the protocol employed for the maintenance of ERT were recorded. RESULTS During the study period, 54 patients received ERT in our institution. A total of 11 patients (20.4%) experienced HSR to ERT. All reactions were of immediate type. The most common symptoms were cutaneous manifestations. A total of 9 patients experienced urticaria, and 2 had anaphylaxis as initial reaction. Patients who had isolated cutaneous symptoms continued their treatments with antihistamines, corticosteroid premedication, slower infusion rate or both. Patients who had recurrent urticaria with these modalities or those who had anaphylaxis continued their ERT with desensitization (n = 8). A total of 3 patients required revisions in desensitization protocols because of recurrent anaphylaxis. CONCLUSION The reactions that develop during this long-term treatment may be treated by premedication-prolonged infusion, but in some patients, desensitization protocols are necessary for the continuation of therapy. Revisions in desensitization protocols may be required.
Collapse
Affiliation(s)
- Irem Turgay Yagmur
- Department of Pediatric Allergy and Immunology, Ankara City Hospital, Ankara, Turkey.
| | - Ozlem Unal Uzun
- Department of Pediatric Metabolic Disorders, Ankara City Hospital, Ankara, Turkey
| | | | - Ilknur Kulhas Celik
- Department of Pediatric Allergy and Immunology, Ankara City Hospital, Ankara, Turkey
| | - Muge Toyran
- Department of Pediatric Allergy and Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Mehmet Gunduz
- Department of Pediatric Metabolic Disorders, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Ersoy Civelek
- Department of Pediatric Allergy and Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Emine Dibek Misirlioglu
- Department of Pediatric Allergy and Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
28
|
Ou L, Przybilla MJ, Ahlat O, Kim S, Overn P, Jarnes J, O'Sullivan MG, Whitley CB. A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Mol Ther 2020; 28:1442-1454. [PMID: 32278382 PMCID: PMC7264433 DOI: 10.1016/j.ymthe.2020.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/06/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study delivered zinc finger nucleases to treat mice with mucopolysaccharidosis type I (MPS I), resulting in a phase I/II clinical trial (ClinicalTrials.gov: NCT02702115). However, in the clinical trial, the efficacy needs to be improved due to the low transgene expression level. To this end, we designed a proprietary system (PS) gene editing approach with CRISPR to insert a promoterless α-l-iduronidase (IDUA) cDNA sequence into the albumin locus of hepatocytes. In this study, adeno-associated virus 8 (AAV8) vectors delivering the PS gene editing system were injected into neonatal and adult MPS I mice. IDUA enzyme activity in the brain significantly increased, while storage levels were normalized. Neurobehavioral tests showed that treated mice had better memory and learning ability. Also, histological analysis showed efficacy reflected by the absence of foam cells in the liver and vacuolation in neuronal cells. No vector-associated toxicity or increased tumorigenesis risk was observed. Moreover, no off-target effects were detected through the unbiased genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) analysis. In summary, these results showed the safety and efficacy of the PS in treating MPS I and paved the way for clinical studies. Additionally, as a therapeutic platform, the PS has the potential to treat other lysosomal diseases.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael J Przybilla
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ozan Ahlat
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Sarah Kim
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paula Overn
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Jeanine Jarnes
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Julien DC, Woolgar K, Pollard L, Miller H, Desai A, Lindstrom K, Kishnani PS. Immune Modulation for Enzyme Replacement Therapy in A Female Patient With Hunter Syndrome. Front Immunol 2020; 11:1000. [PMID: 32508845 PMCID: PMC7253587 DOI: 10.3389/fimmu.2020.01000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
A 3.5 year old Hispanic female presented with signs and symptoms concerning for MPS II (Hunter Syndrome). The diagnosis of MPS II was confirmed by enzyme and molecular testing. Genetic evaluation revealed undetectable plasma iduronate-2-sulfatase enzyme activity and an inversion between intron 7 of the IDS gene and a region near exon 3 of IDS-2. This inversion is the molecular cause for ~8% of cases of MPS II and often results in a severe phenotype. X-inactivation studies revealed an inactivation ratio of 100:0. Given the patient's undetectable enzyme level, in combination with a severe IDS gene mutation, classic features at time of presentation, and the significantly skewed X inactivation, there was concern that she was at high risk of developing high and sustained antibody titers to idursulfase which would limit her benefit from enzyme replacement therapy (ERT). Anti-drug neutralizing antibodies to idursulfase have been associated with reduced systemic exposure to idursulfase and poorer clinical outcomes. Therefore, the decision was made to concurrently treat the patient with immune tolerance induction therapy during the first month of treatment with idursulfase in order to decrease the risk of developing high sustained antibody titers. The immune tolerance induction protocol consisted of rituximab weekly for 4 weeks, methotrexate three times a week for 3 weeks and monthly IVIG through B-cell and immunoglobulin recovery. Immune tolerance induction was initiated concurrently with the start of ERT. The patient had no significant adverse effects related to undergoing immune tolerance induction therapy and two and half years later is doing well with significantly reduced urine glycosaminoglycans and very low anti-drug antibody titers. This immune tolerance induction protocol could be considered for other patients with MPS II as well as patients with other lysosomal storage disorders who are starting on enzyme replacement therapy and are at high risk of developing neutralizing anti-drug antibodies.
Collapse
Affiliation(s)
- Daniel C Julien
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Kara Woolgar
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Laura Pollard
- Division of Medical Genetics, Greenwood, SC, United States
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Ankit Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
30
|
Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI-Evidence from in vitro and in vivo models. PLoS One 2020; 15:e0233032. [PMID: 32413051 PMCID: PMC7228089 DOI: 10.1371/journal.pone.0233032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy–ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the β-D-xyloside derivative odiparcil as an oral GAG clearance therapy for Maroteaux–Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). In vitro, in bovine aortic endothelial cells, odiparcil stimulated the secretion of sulphated GAG into culture media, mainly of chondroitin sulphate (CS) /dermatan sulphate (DS) type. Efficacy of odiparcil in reducing intracellular GAG content was investigated in skin fibroblasts from MPS VI patients where odiparcil was shown to reduce efficiently the accumulation of intracellular CS with an EC50 in the range of 1 μM. In vivo, in wild type rats, after oral administrations, odiparcil was well distributed, achieving μM concentrations in MPS VI disease-relevant tissues and organs (bone, cartilage, heart and cornea). In MPS VI Arylsulphatase B deficient mice (Arsb-), after chronic oral administration, odiparcil consistently stimulated the urinary excretion of sulphated GAG throughout the treatment period and significantly reduced tissue GAG accumulation in liver and kidney. Furthermore, odiparcil diminished the pathological cartilage thickening observed in trachea and femoral growth plates of MPS VI mice. The therapeutic efficacy of odiparcil was similar in models of early (treatment starting in juvenile, 4 weeks old mice) or established disease (treatment starting in adult, 3 months old mice). Our data demonstrate that odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species and this effect can be used for reducing cellular and tissue GAG accumulation in MPS VI models. Therefore, our data reveal the potential of odiparcil as an oral GAG clearance therapy for MPS VI patients.
Collapse
|
31
|
Solano M, Fainboim A, Politei J, Porras-Hurtado GL, Martins AM, Souza CFM, Koch FM, Amartino H, Satizábal JM, Horovitz DDG, Medeiros PFV, Honjo RS, Lourenço CM. Enzyme replacement therapy interruption in patients with Mucopolysaccharidoses: Recommendations for distinct scenarios in Latin America. Mol Genet Metab Rep 2020; 23:100572. [PMID: 32140416 PMCID: PMC7047015 DOI: 10.1016/j.ymgmr.2020.100572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, leading to the progressive accumulation of glycosaminoglycans (GAGs) and the subsequent compromising of tissues and organ malfunction. Although incurable, most types of MPS can be treated with enzyme replacement therapy (ERT), an approach that has had positive effects on the natural clinical evolution and which impact has been extensively investigated. Unfortunately, to date, there is relatively little data regarding the effects of ERT interruption, especially in Latin America, where such interruption may be frequent due to a variety of issues (for instance, difficulties involving logistics, reimbursement and/or payment withdrawal). Method A group of medical professionals from Latin America with experience in Genetics, Pediatrics and Neurology held an Advisory Board Meeting in the city of São Paulo, in October 2018, to discuss the issue of ERT interruptions in the region and recommendations health care professionals on how to deal with these interruptions and better assess the therapeutic effects of ERT. Conclusion Recommendations provided by the experts may support physicians in dealing with the most common reasons for ERT interruptions in Latin America. Most importantly, recommendations for data collection at specific timepoints (at baseline, throughout the treatment and during the interruption period of ERT and after its resumption) can significantly improve the collection of real world evidence on the effects of ERT and its interruptions, supporting health care professionals and policy makers in the decision making regarding the provision of these therapies for MPS patients. Positive impact of ERT is reported in MPS patients, but the effects of its interruption is overlooked. In Latin America, ERT interruption is not infrequent. A systematic evaluation the worsening of MPS progression is vital. The proposed structured data collection would help to evaluate patients and generate real word data. We encourage studies and experts discussions for a better understand the value of ERT for MPS patients in Latin America.
Collapse
Affiliation(s)
| | - Alejandro Fainboim
- Polivalent Day Hospital, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Juan Politei
- Laboratorio de Neuroquímica Dr. N. A. Chamoles, Fundación para el Estudio de Enfermedades Neurometabólicas (FESEN), Buenos Aires, Argentina
| | | | - Ana Maria Martins
- Reference Center of Metabolic Inborn Errors, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Hernan Amartino
- Servicio de Neurología Infantil y Clinica de Mucopolisacaridosis y transtornos relacionados, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Jose Maria Satizábal
- Department of Physiological Sciences, School of Basic Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Dafne D G Horovitz
- Medical Genetics Department, National Institute of Women, Children and Adolescents Health Fernandes Figueira/Fiocruz, Rio de Janeiro, Brazil
| | - Paula F V Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Brazil
| | - Rachel S Honjo
- Genetics Unit, Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
32
|
Pritchard AB, Strong A, Ficicioglu C. Persistent dyslipidemia in treatment of lysosomal acid lipase deficiency. Orphanet J Rare Dis 2020; 15:58. [PMID: 32093730 PMCID: PMC7041253 DOI: 10.1186/s13023-020-1328-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LALD) is an autosomal recessive inborn error of lipid metabolism characterized by impaired lysosomal hydrolysis and consequent accumulation of cholesteryl esters and triglycerides. The phenotypic spectrum is diverse, ranging from severe, neonatal onset failure to thrive, hepatomegaly, hepatic fibrosis, malabsorption and adrenal insufficiency to childhood-onset hyperlipidemia, hepatomegaly, and hepatic fibrosis. Sebelipase alfa enzyme replacement has been approved by the Food and Drug Administration for use in LALD after demonstrating dramatic improvement in transaminitis and dyslipidemia with initiation of enzyme replacement therapy. METHODS A chart review was performed on 2 patients with childhood-onset, symptomatic LALD with persistent dyslipidemia despite appropriate enzyme replacement therapy to identify biological pathways and risk factors for incomplete response to therapy. RESULTS Two patients with attenuated, symptomatic LALD had resolution of transaminitis on enzyme replacement therapy without concomitant effect on dyslipidemia despite dose escalation and no evidence of antibody response to enzyme. CONCLUSION Enzyme replacement therapy does not universally resolve all complications of LALD. Persistent dyslipidemia remains a clinically significant issue, likely related to the complex metabolic pathways implicated in LALD pathogenesis. We discuss the possible mechanistic basis for this unexpected finding and the implications for curative LALD therapy.
Collapse
Affiliation(s)
- Amanda Barone Pritchard
- Present address: C.S. Mott Children's Hospital, Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Alanna Strong
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Can Ficicioglu
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Maeda M, Seto T, Kadono C, Morimoto H, Kida S, Suga M, Nakamura M, Kataoka Y, Hamazaki T, Shintaku H. Autophagy in the Central Nervous System and Effects of Chloroquine in Mucopolysaccharidosis Type II Mice. Int J Mol Sci 2019; 20:ijms20235829. [PMID: 31757021 PMCID: PMC6928680 DOI: 10.3390/ijms20235829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is a rare lysosomal storage disease (LSD) involving a genetic error in iduronic acid-2-sulfatase (IDS) metabolism that leads to accumulation of glycosaminoglycans within intracellular lysosomes. The primary treatment for MPS II, enzyme replacement therapy, is not effective for central nervous system (CNS) symptoms, such as intellectual disability, because the drugs do not cross the blood-brain barrier. Recently, autophagy has been associated with LSDs. In this study, we examined the morphologic relationship between neuronal damage and autophagy in IDS knockout mice using antibodies against subunit c of mitochondrial adenosine triphosphate (ATP) synthetase and p62. Immunohistological changes suggesting autophagy, such as vacuolation, were observed in neurons, microglia, and pericytes throughout the CNS, and the numbers increased over postnatal development. Oral administration of chloroquine, which inhibits autophagy, did not suppress damage to microglia and pericytes, but greatly reduced neuronal vacuolation and eliminated neuronal cells with abnormal inclusions. Thus, decreasing autophagy appears to prevent neuronal degeneration. These results suggest that an autophagy modulator could be used in addition to conventional enzyme replacement therapy to preserve the CNS in patients with MPS II.
Collapse
Affiliation(s)
- Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
- Correspondence: (T.S.); (M.M.); Tel.: +81-66-645-3816 (T.S.); +81-78-304-7160 (M.M.)
| | - Toshiyuki Seto
- Department of Medical Genetics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
- Correspondence: (T.S.); (M.M.); Tel.: +81-66-645-3816 (T.S.); +81-78-304-7160 (M.M.)
| | - Chiho Kadono
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
| | - Hideto Morimoto
- JCR Pharmaceuticals Co., Ltd., Hyogo 659-0021, Japan; (H.M.); (S.K.)
| | - Sachiho Kida
- JCR Pharmaceuticals Co., Ltd., Hyogo 659-0021, Japan; (H.M.); (S.K.)
| | - Mitsuo Suga
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Japan Electron Optics Laboratory (JEOL) Ltd., Tokyo 196-8558, Japan
| | - Motohiro Nakamura
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Japan Electron Optics Laboratory (JEOL) Ltd., Tokyo 196-8558, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Hyogo 650-0047, Japan; (M.S.); (M.N.); (Y.K.)
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (C.K.); (T.H.); (H.S.)
| |
Collapse
|
34
|
Safary A, Akbarzadeh Khiavi M, Omidi Y, Rafi MA. Targeted enzyme delivery systems in lysosomal disorders: an innovative form of therapy for mucopolysaccharidosis. Cell Mol Life Sci 2019; 76:3363-3381. [PMID: 31101939 PMCID: PMC11105648 DOI: 10.1007/s00018-019-03135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidoses (MPSs), which are inherited lysosomal storage disorders caused by the accumulation of undegraded glycosaminoglycans, can affect the central nervous system (CNS) and elicit cognitive and behavioral issues. Currently used enzyme replacement therapy methodologies often fail to adequately treat the manifestations of the disease in the CNS and other organs such as bone, cartilage, cornea, and heart. Targeted enzyme delivery systems (EDSs) can efficiently cross biological barriers such as blood-brain barrier and provide maximal therapeutic effects with minimal side effects, and hence, offer great clinical benefits over the currently used conventional enzyme replacement therapies. In this review, we provide comprehensive insights into MPSs and explore the clinical impacts of multimodal targeted EDSs.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mostafa Akbarzadeh Khiavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
35
|
Ghosh A, Liao A, O’Leary C, Mercer J, Tylee K, Goenka A, Holley R, Jones SA, Bigger BW. Strategies for the Induction of Immune Tolerance to Enzyme Replacement Therapy in Mucopolysaccharidosis Type I. Mol Ther Methods Clin Dev 2019; 13:321-333. [PMID: 30976609 PMCID: PMC6441787 DOI: 10.1016/j.omtm.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/24/2019] [Indexed: 01/16/2023]
Abstract
Enzyme replacement therapy with laronidase is an established treatment for Mucopolysaccharidosis type I (MPS I), but its efficacy may be limited by the development of anti-drug antibodies, which inhibit cellular uptake of the enzyme. In a related disorder, infantile Pompe disease, immune tolerance induction with low-dose, short-course methotrexate appears to reduce antibody formation. We investigated a similar regimen using oral methotrexate in three MPS I patients. All patients developed anti-laronidase immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies, and they had clinically relevant levels of cellular uptake inhibition. We then explored several immune tolerance induction strategies in MPS I mice: (1) methotrexate, (2) combination of non-depleting anti-CD4 and anti-CD8 monoclonal antibodies, (3) methotrexate with anti-CD4 and anti-CD8 monoclonals, (4) anti-CD4 monoclonal, and (5) anti-CD8 monoclonal. Treated mice received 10 weekly laronidase injections, and laronidase was delivered with adjuvant on day 49 to further challenge the immune system. Most regimens were only partially effective at reducing antibody responses, but two courses of non-depleting anti-CD4 monoclonal antibody (mAb) ablated immune responses to laronidase in seven of eight MPS I mice (87.5%), even after adjuvant stimulation. Immune tolerance induction with methotrexate does not appear to be effective in MPS I patients, but use of non-depleting anti-CD4 monoclonal is a promising strategy.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Aiyin Liao
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Claire O’Leary
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Jean Mercer
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Rebecca Holley
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Simon A. Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester, UK
| | - Brian W. Bigger
- Stem Cell and Neurotherapies, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Desai AK, Kazi ZB, Bali DS, Kishnani PS. Characterization of immune response in Cross-Reactive Immunological Material (CRIM)-positive infantile Pompe disease patients treated with enzyme replacement therapy. Mol Genet Metab Rep 2019; 20:100475. [PMID: 31193175 PMCID: PMC6518314 DOI: 10.1016/j.ymgmr.2019.100475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 10/27/2022] Open
Abstract
Enzyme replacement therapy (ERT) with rhGAA has improved clinical outcomes in infantile Pompe disease (IPD). A subset of CRIM-positive IPD patients develop high and sustained antibody titers (HSAT; ≥51,200) and/or sustained intermediate titer (SIT; ≥12,800 and <51,200), similar to CRIM-negative patients. To date there has been no systematic study to analyze the extent of IgG antibody response in CRIM-positive IPD. Such data would be critical and could serve as a comparator group for potential immune modulation approaches. A retrospective analysis of the dataset from the original rhGAA clinical trials final reports was conducted. CRIM-positive patients who received ERT monotherapy and had >6 months of antibody titer data available, were included in the study. Patients were classified based on their longitudinal antibody titers into HSAT, SIT, and low titer (LT; <12,800) groups. Of the 37 patients that met inclusion criteria, five (13%), seven (19%), and 25 (68%) developed HSAT, SIT, and LT, respectively. Median peak titers were 204,800 (51,200-409,600), 25,600 (12,800-51,200), and 800 (200-12,800) for HSAT, SIT, and LT groups, respectively. Median last titers were 102,400 (51,200-409,600), 1600 (200-25,600), and 400 (0-12,800) at median time since ERT initiation of 94 weeks (64-155 weeks), 104 weeks (86-144 weeks), and 130 weeks (38-182 weeks) for HSAT, SIT, and LT groups, respectively. 32% (12/37) of CRIM-positive IPD patients developed HSAT/SIT which may lead to limited ERT response and clinical decline. Further Studies are needed to identify CRIM-positive IPD patients at risk of developing HSAT/SIT, especially with the addition of Pompe disease to the newborn screening.
Collapse
Key Words
- AIMS, Alberta infant motor scale
- Anti-rhGAA Ig antibodies
- Antidrug antibodies
- CI-MPR, Cation-independent mannose 6-phosphate receptor
- CRIM, Cross-reactive immunological material
- EOW, Every other week
- ERT, Enzyme replacement therapy
- Enzyme replacement therapy
- GAA, Acid α-glucosidase
- GAA, Gene encoding acid α-glucosidase
- Glc4, Glucose tetrasaccharide
- Glycogen storage disease type II
- HLA, Human leukocyte antigen
- HSAT, High and sustained antibody titers
- IPD, Infantile Pompe disease
- IgG, Immunoglobulin G
- LT, Low titers
- LVMI, Left ventricular mass index
- MHC, Major histocompatibility complex
- Neuromuscular disease
- Pompe disease
- RUSP, Recommended universal screening panel
- SIT, Sustained intermediate titers
- iTEM, Individualized T-cell epitope measure
- rhGAA, Recombinant human acid α-glucosidase
Collapse
Affiliation(s)
- Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Zoheb B Kazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
37
|
Squeri G, Passerini L, Ferro F, Laudisa C, Tomasoni D, Deodato F, Donati MA, Gasperini S, Aiuti A, Bernardo ME, Gentner B, Naldini L, Annoni A, Biffi A, Gregori S. Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Mol Ther 2019; 27:1215-1227. [PMID: 31060789 PMCID: PMC6612662 DOI: 10.1016/j.ymthe.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS-I) is a severe genetic disease caused by a deficiency of the alpha-L-iduronidase (IDUA) enzyme. Ex vivo hematopoietic stem cell (HSC) gene therapy is a promising therapeutic approach for MPS-I, as demonstrated by preclinical studies performed in naive MPS-I mice. However, after enzyme replacement therapy (ERT), several MPS-I patients develop anti-IDUA immunity that may jeopardize ex vivo gene therapy efficacy. Here we treat MPS-I mice with an artificial immunization protocol to mimic the ERT effect in patients, and we demonstrate that IDUA-corrected HSC engraftment is impaired in pre-immunized animals by IDUA-specific CD8+ T cells spared by pre-transplant irradiation. Conversely, humoral anti-IDUA immunity does not impact on IDUA-corrected HSC engraftment. The inclusion of lympho-depleting agents in pre-transplant conditioning of pre-immunized hosts allowes rescue of IDUA-corrected HSC engraftment, which is proportional to CD8+ T cell eradication. Overall, these data demonstrate the relevance of pre-existing anti-transgene T cell immunity on ex vivo HSC gene therapy, and they suggest the application of tailored immune-depleting treatments, as well as a deeper immunological characterization of patients, to safeguard the therapeutic effects of ex vivo HSC gene therapy in immunocompetent hosts.
Collapse
Affiliation(s)
- Giorgia Squeri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; International PhD Program in Molecular Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cecilia Laudisa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Tomasoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital IRCSS, 00165 Rome, Italy
| | - Maria Alice Donati
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, 50139 Florence, Italy
| | - Serena Gasperini
- Pediatric Department, Fondazione MBBM San Gerardo Hospital, 20900 Monza, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Program for Gene Therapy in Rare Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
38
|
Levene M, Pacitti D, Gasson C, Hall J, Sellos-Moura M, Bax BE. Validation of an Immunoassay for Anti-thymidine Phosphorylase Antibodies in Patients with MNGIE Treated with Enzyme Replacement Therapy. Mol Ther Methods Clin Dev 2018; 11:1-8. [PMID: 30294618 PMCID: PMC6170929 DOI: 10.1016/j.omtm.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Erythrocyte encapsulated thymidine phosphorylase is recombinant Escherichia coli thymidine phosphorylase encapsulated within human autologous erythrocytes and is under development as an enzyme replacement therapy for the ultra-rare inherited metabolic disorder mitochondrial neurogastrointestinal encephalomyopathy. This study describes the method validation of a two-step bridging electrochemiluminescence immunoassay for the detection of anti-thymidine phosphorylase antibodies in human serum according to current industry practice and regulatory guidelines. The analytical method was assessed for screening cut point, specificity, selectivity, precision, prozone effect, drug tolerance, and stability. Key findings were a correction factor of 129 relative light units for the cut-point determination; a specificity cut point of 93% inhibition; confirmed intra-assay and inter-assay precision; assay sensitivity of 356 ng/mL; no matrix or prozone effects up to 25,900 ng/mL; a drug tolerance of 156 ng/mL; and stability at room temperature for 24 hr and up to five freeze-thaws. Immunogenicity evaluations of serum from three patients who received erythrocyte encapsulated thymidine phosphorylase under a compassionate treatment program showed specific anti-thymidine phosphorylase antibodies in one patient. To conclude, a sensitive, specific, and selective immunoassay has been validated for the measurement of anti-thymidine phosphorylase antibodies; this will be utilized in a phase II pivotal clinical trial of erythrocyte encapsulated thymidine phosphorylase.
Collapse
Affiliation(s)
- Michelle Levene
- Molecular & Clinical Sciences Research Institute, St. George’s, University of London, London, UK
| | - Dario Pacitti
- Molecular & Clinical Sciences Research Institute, St. George’s, University of London, London, UK
| | - Charlotte Gasson
- Biomarker, Bioanalysis and Clinical Sciences, Envigo CRS, Cambridgeshire, UK
| | - Jamie Hall
- Biomarker, Bioanalysis and Clinical Sciences, Envigo CRS, Cambridgeshire, UK
| | | | - Bridget E. Bax
- Molecular & Clinical Sciences Research Institute, St. George’s, University of London, London, UK
- Corresponding author: Bridget E. Bax, Molecular & Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK.
| |
Collapse
|
39
|
Owens P, Wong M, Bhattacharya K, Ellaway C. Infantile-onset Pompe disease: A case series highlighting early clinical features, spectrum of disease severity and treatment response. J Paediatr Child Health 2018; 54:1255-1261. [PMID: 29889338 DOI: 10.1111/jpc.14070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/26/2018] [Accepted: 05/02/2018] [Indexed: 02/03/2023]
Abstract
AIM Pompe disease is a rare, autosomal, recessive disorder. Alterations in the gene encoding lysosomal acid alpha-glucosidase cause impaired glycogen degradation and resultant lysosomal glycogen accumulation. Classic infantile-onset Pompe disease (IPD) manifests soon after birth, severe cases have complete/near complete enzyme deficiency. IPD is associated with a broad spectrum of non-specific clinical features, and diagnostic delays are common. Without treatment, death typically occurs within the first 2 years of life. We present case experiences to help expand paediatricians' understanding of factors contributing to diagnostic delay, clinical decline and to highlight the need for timely therapy. METHODS Data were extracted from IPD cases managed at our hospital. Key aspects of clinical presentation, diagnosis, genetic variations, management and overall outcomes were collated then compared with what is already known in the literature. RESULTS We report four IPD cases (three female). Two patients were cross-reactive immunological material negative. Age at symptom onset was 3-9 months, presenting clinical features were varied, and confirmatory diagnosis was significantly delayed in one patient. In concert with the literature, cardiomegaly, ventricular hypertrophy and delayed developmental milestones were seen in all four cases. Our cases demonstrate a range of disease severity, response to enzyme replacement therapy and antibody development. Significant immune responses were seen in two cases (one cross-reactive immunological material positive); despite immunomodulation therapy, both were associated with fatal outcomes. CONCLUSION Timely diagnosis and initiation of enzyme replacement therapy is critical to patient outcomes as IPD progresses rapidly and irreversible changes in clinical status may occur during the delay.
Collapse
Affiliation(s)
- Penny Owens
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Melanie Wong
- Department of Immunology, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Kazi ZB, Desai AK, Troxler RB, Kronn D, Packman S, Sabbadini M, Rizzo WB, Scherer K, Abdul-Rahman O, Tanpaiboon P, Nampoothiri S, Gupta N, Feigenbaum A, Niyazov DM, Sherry L, Segel R, McVie-Wylie A, Sung C, Joseph AM, Richards S, Kishnani PS. An immune tolerance approach using transient low-dose methotrexate in the ERT-naïve setting of patients treated with a therapeutic protein: experience in infantile-onset Pompe disease. Genet Med 2018; 21:887-895. [PMID: 30214072 PMCID: PMC6417984 DOI: 10.1038/s41436-018-0270-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate immune tolerance induction with transient low-dose methotrexate (TLD-MTX) initiated with recombinant human acid α-glucosidase (rhGAA), in treatment-naïve cross-reactive immunologic material (CRIM)-positive infantile-onset Pompe disease (IOPD) patients. METHODS Newly diagnosed IOPD patients received subcutaneous or oral 0.4 mg/kg TLD-MTX for 3 cycles (3 doses/cycle) with the first 3 rhGAA infusions. Anti-rhGAA IgG titers, classified as high-sustained (HSAT; ≥51,200, ≥2 times after 6 months), sustained intermediate (SIT; ≥12,800 and <51,200 within 12 months), or low (LT; ≤6400 within 12 months), were compared with those of 37 CRIM-positive IOPD historic comparators receiving rhGAA alone. RESULTS Fourteen IOPD TLD-MTX recipients at the median age of 3.8 months (range, 0.7-13.5 months) had a median last titer of 150 (range, 0-51,200) at median rhGAA duration ~83 weeks (range, 36-122 weeks). One IOPD patient (7.1%) developed titers in the SIT range and one patient (7.1%) developed titers in the HSAT range. Twelve of the 14 patients (85.7%) that received TLD-MTX remained LT, versus 5/37 HSAT (peak 51,200-409,600), 7/37 SIT (12,800-51,000), and 23/37 LT (200-12,800) among comparators. CONCLUSION Results of TLD-MTX coinitiated with rhGAA are encouraging and merit a larger longitudinal study.
Collapse
Affiliation(s)
- Zoheb B Kazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - R Bradley Troxler
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Kronn
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Seymour Packman
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Marta Sabbadini
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - William B Rizzo
- Department of Pediatrics, University of Nebraska Medical Center, Nebraska Medical Center Omaha, Omaha, NE, USA
| | - Katalin Scherer
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Omar Abdul-Rahman
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranoot Tanpaiboon
- Quest Diagnostics and Children's National Health System, Washington, DC, USA
| | - Sheela Nampoothiri
- Amrita Institute of Medical Sciences & Research Centre, Kochi, Kerala, India
| | - Neerja Gupta
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Dmitriy M Niyazov
- Department of Pediatrics, Ochsner Health System, New Orleans, LA, USA
| | - Langston Sherry
- Department of Pediatrics, Ochsner Health System, New Orleans, LA, USA
| | - Reeval Segel
- Medical Genetics Institute, Shaare Zedek Medical Center and the Hebrew University School of Medicine, Jerusalem, Israel
| | | | | | | | | | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA.
| |
Collapse
|
41
|
Immune modulation in a patient with Morquio syndrome treated with enzyme replacement therapy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1749-1751. [DOI: 10.1016/j.jaip.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/30/2017] [Accepted: 12/14/2017] [Indexed: 11/21/2022]
|
42
|
Mauhin W, Lidove O, Amelin D, Lamari F, Caillaud C, Mingozzi F, Dzangué-Tchoupou G, Arouche-Delaperche L, Douillard C, Dussol B, Leguy-Seguin V, D’Halluin P, Noel E, Zenone T, Matignon M, Maillot F, Ly KH, Besson G, Willems M, Labombarda F, Masseau A, Lavigne C, Froissart R, Lacombe D, Ziza JM, Hachulla E, Benveniste O. Deep characterization of the anti-drug antibodies developed in Fabry disease patients, a prospective analysis from the French multicenter cohort FFABRY. Orphanet J Rare Dis 2018; 13:127. [PMID: 30064518 PMCID: PMC6069887 DOI: 10.1186/s13023-018-0877-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Fabry disease (OMIM #301500) is an X-linked disorder caused by alpha-galactosidase A deficiency with two major clinical phenotypes: classic and non-classic of different prognosis. From 2001, enzyme replacement therapies (ERT) have been available. We aimed to determine the epidemiology and the functional characteristics of anti-drug antibodies. Patients from the French multicenter cohort FFABRY (n = 103 patients, 53 males) were prospectively screened for total anti-agalsidase IgG and IgG subclasses with a home-made enzyme-linked immunosorbent assay (ELISA), enzyme-inhibition assessed with neutralization assays and lysoGb3 plasma levels, and compared for clinical outcomes. RESULTS Among the patients exposed to agalsidase, 40% of men (n = 18/45) and 8% of women (n = 2/25) had antibodies with a complete cross-reactivity towards both ERTs. Antibodies developed preferentially in men with non-missense GLA mutations (relative risk 2.88, p = 0.006) and classic phenotype (58.6% (17/29) vs 6.7% (1/16), p = 0.0005). Specific anti-agalsidase IgG1 were the most frequently observed (16/18 men), but the highest concentrations were observed for IgG4 (median 1.89 μg/ml, interquartile range (IQR) [0.41-12.24]). In the men exposed to agalsidase, inhibition was correlated with the total IgG titer (r = 0.67, p < 0.0001), especially IgG4 (r = 0.75, p = 0.0005) and IgG2 (r = 0.72, p = 0.001). Inhibition was confirmed intracellularly in Fabry patient leucocytes cultured with IgG-positive versus negative serum (median: 42.0 vs 75.6%, p = 0.04), which was correlated with IgG2 (r = 0.67, p = 0.017, n = 12) and IgG4 levels (r = 0.59, p = 0.041, n = 12). Plasma LysoGb3 levels were correlated with total IgG (r = 0.66, p = 0.001), IgG2 (r = 0.72, p = 0.004), IgG4 (r = 0.58, p = 0.03) and IgG1 (r = 0.55, p = 0.04) titers. Within the classic group, no clinical difference was observed but lysoGb3 levels were higher in antibody-positive patients (median 33.2 ng/ml [IQR 20.6-55.6] vs 12.5 [10.1-24.0], p = 0.005). CONCLUSION Anti-agalsidase antibodies preferentially develop in the severe classic Fabry phenotype. They are frequently associated with enzyme inhibition and higher lysoGb3 levels. As such, they could be considered as a hallmark of severity associated with the classic phenotype. The distinction of the clinical phenotypes should now be mandatory in studies dealing with Fabry disease and its current and future therapies.
Collapse
Affiliation(s)
- Wladimir Mauhin
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Olivier Lidove
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Internal Medicine and Rheumatology Department, Diaconesses-Croix Saint Simon Hospital Group, Paris, France
| | - Damien Amelin
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Foudil Lamari
- Metabolic Biochemistry Department, Pitié Salpêtrière University Hospital, AP-HP, Paris, France
- GRC13-Neurometabolisme- Sorbonne Universités UPMC, Paris 06, Paris, France
| | - Catherine Caillaud
- Biochemistry, Metabolomic and Proteomic Department, Necker Enfants Malades University Hospital, AP-HP, Paris, France
- INSERM U1151, Institute Necker Enfants Malades, Paris Descartes University, Paris, France
| | - Federico Mingozzi
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Gaëlle Dzangué-Tchoupou
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Louiza Arouche-Delaperche
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Claire Douillard
- Reference Center for Inborn Metabolic diseases, Jeanne de Flandres Hospital, Lille, France
| | - Bertrand Dussol
- Nephrology Department, Aix Marseille Université et Centre d’Investigation Clinique 1409, INSERM/AMU/AP-HM, Marseille, France
| | - Vanessa Leguy-Seguin
- Internal Medicine and Clinical Immunology Department, Francois Mitterrand Hospital, Dijon, France
| | - Pauline D’Halluin
- Nephrology and Clinical Immunology Department, Tours University Hospital, François Rabelais University, Tours, France
| | - Esther Noel
- Internal Medicine Department, Strasbourg University Hospital, Strasbourg, France
| | - Thierry Zenone
- Internal Medicine Department, Valence Hospital, Valence, France
| | - Marie Matignon
- Nephrology and Renal Transplantation Department, Institut Francilien de Recherche en Néphrologie et Transplantation (IFRNT), Henri-Mondor/Albert-Chenevier University Hospital, APHP, Créteil, France
- University of Paris-Est-Créteil (UPEC), DHU (Département Hospitalo-Universitaire) VIC (Virus-Immunité-Cancer), IMRB (Institut Mondor de Recherche Biomédicale), Team 21, INSERM U 955, Créteil, France
| | - François Maillot
- Internal Medicine Department, Tours University Hospital, University of Tours, UMR INSERM 1253, Tours, France
| | - Kim-Heang Ly
- Internal Medicine Department, Dupuytren University Hospital, Limoges, France
| | - Gérard Besson
- Neurology Department, Grenoble University Hospital, Grenoble, France
| | - Marjolaine Willems
- Medical Genetics and Rare Diseases Department, Montpellier University Hospital, Montpellier, France
| | | | - Agathe Masseau
- Internal Medicine Department, Hôtel-Dieu University Hospital, Nantes, France
| | - Christian Lavigne
- Internal Medicine and Vascular Diseases Department, Angers University Hospital, Angers, France
| | - Roseline Froissart
- Laboratory for Inborn Errors of Metabolism, East Hospital, Hospices Civils de Lyon, Bron, France
| | - Didier Lacombe
- Medical Genetics Department, CHU Bordeaux, INSERM U1211, Bordeaux University, Bordeaux, France
| | - Jean Marc Ziza
- Internal Medicine and Rheumatology Department, Diaconesses-Croix Saint Simon Hospital Group, Paris, France
| | - Eric Hachulla
- Internal Medicine Department, Huriez Hospital, University of Lille, 59037 Lille, France
| | - Olivier Benveniste
- Sorbonne Université, INSERM, UMR 974, Centre of Research in Myology, Association Institut de Myologie, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Internal Medicine and Clinical Immunology Department, Pitié-Salpêtrière University Hospital, DHU I2B, AP-HP, Paris, France
| |
Collapse
|
43
|
Corti M, Liberati C, Smith BK, Lawson LA, Tuna IS, Conlon TJ, Coleman KE, Islam S, Herzog RW, Fuller DD, Collins SW, Byrne BJ. Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV-hGAA) Gene Therapy in Children Affected by Pompe Disease. HUM GENE THER CL DEV 2018; 28:208-218. [PMID: 29160099 DOI: 10.1089/humc.2017.146] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A first-in-human trial of diaphragmatic gene therapy (AAV1-CMV-GAA) to treat respiratory and neural dysfunction in early-onset Pompe disease was conducted. The primary objective of this study was to assess the safety of rAAV1-CMV-hGAA vector delivered to the diaphragm muscle of Pompe disease subjects with ventilatory insufficiency. Safety was assessed by measurement of change in serum chemistries and hematology, urinalysis, and immune response to GAA and AAV, as well as change in level of health. The data demonstrate that the AAV treatment was safe and there were no adverse events related to the study agent. Adverse events related to the study procedure were observed in subjects with lower baseline neuromuscular function. All adverse events were resolved before the end of the study, except for one severe adverse event determined not to be related to either the study agent or the study procedure. In addition, an anti-capsid and anti-transgene antibody response was observed in all subjects who received rAAV1-CMV-hGAA, except for subjects who received concomitant immunomodulation to manage reaction to enzyme replacement therapy, as per their standard of care. This observation is significant for future gene therapy studies and serves to establish a clinically relevant approach to blocking immune responses to both the AAV capsid protein and transgene product.
Collapse
Affiliation(s)
- Manuela Corti
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Cristina Liberati
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Barbara K Smith
- 2 Department of Physical Therapy, College of Public Health and Health Profession, University of Florida , Gainesville, Florida
| | - Lee Ann Lawson
- 3 Department of Endocrinology, College of Medicine, University of Florida , Gainesville, Florida
| | - Ibrahim S Tuna
- 4 Department of Radiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Thomas J Conlon
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Kirsten E Coleman
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Saleem Islam
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Roland W Herzog
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - David D Fuller
- 2 Department of Physical Therapy, College of Public Health and Health Profession, University of Florida , Gainesville, Florida
| | - Shelley W Collins
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Barry J Byrne
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
44
|
Safary A, Akbarzadeh Khiavi M, Mousavi R, Barar J, Rafi MA. Enzyme replacement therapies: what is the best option? ACTA ACUST UNITED AC 2018; 8:153-157. [PMID: 30211074 PMCID: PMC6128977 DOI: 10.15171/bi.2018.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
Abstract
Despite many beneficial outcomes of the conventional enzyme replacement therapy (ERT), several limitations such as the high-cost of the treatment and various inadvertent side effects including the occurrence of an immunological response against the infused enzyme and development of resistance to enzymes persist. These issues may limit the desired therapeutic outcomes of a majority of the lysosomal storage diseases (LSDs). Furthermore, the biodistribution of the recombinant enzymes into the target cells within the central nervous system (CNS), bone, cartilage, cornea, and heart still remain unresolved. All these shortcomings necessitate the development of more effective diagnosis and treatment modalities against LSDs. Taken all, maximizing the therapeutic response with minimal undesired side effects might be attainable by the development of targeted enzyme delivery systems (EDSs) as a promising alternative to the LSDs treatments, including different types of mucopolysaccharidoses ( MPSs ) as well as Fabry, Krabbe, Gaucher and Pompe diseases.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahimeh Mousavi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian 19107, USA
| |
Collapse
|
45
|
Nguyen NX, Armache JP, Lee C, Yang Y, Zeng W, Mootha VK, Cheng Y, Bai XC, Jiang Y. Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature 2018; 559:570-574. [PMID: 29995855 PMCID: PMC6063787 DOI: 10.1038/s41586-018-0333-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022]
Abstract
The mitochondrial calcium uniporter (MCU) is a highly selective calcium channel localized to the inner mitochondrial membrane. Here, we describe the structure of an MCU orthologue from the fungus Neosartorya fischeri (NfMCU) determined to 3.8 Å resolution by phase-plate cryo-electron microscopy. The channel is a homotetramer with two-fold symmetry in its amino-terminal domain (NTD) that adopts a similar structure to that of human MCU. The NTD assembles as a dimer of dimers to form a tetrameric ring that connects to the transmembrane domain through an elongated coiled-coil domain. The ion-conducting pore domain maintains four-fold symmetry, with the selectivity filter positioned at the start of the pore-forming TM2 helix. The aspartate and glutamate sidechains of the conserved DIME motif are oriented towards the central axis and separated by one helical turn. The structure of NfMCU offers insights into channel assembly, selective calcium permeation, and inhibitor binding.
Collapse
Affiliation(s)
- Nam X Nguyen
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jean-Paul Armache
- Howard Hughes Medical Institute and Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Changkeun Lee
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Amgen Discovery Research, Cambridge, MA, USA
| | - Yi Yang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Broad Institute, Cambridge, MA, USA
| | - Yifan Cheng
- Howard Hughes Medical Institute and Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
46
|
Schulz A, Ajayi T, Specchio N, de Los Reyes E, Gissen P, Ballon D, Dyke JP, Cahan H, Slasor P, Jacoby D, Kohlschütter A. Study of Intraventricular Cerliponase Alfa for CLN2 Disease. N Engl J Med 2018; 378:1898-1907. [PMID: 29688815 DOI: 10.1056/nejmoa1712649] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recombinant human tripeptidyl peptidase 1 (cerliponase alfa) is an enzyme-replacement therapy that has been developed to treat neuronal ceroid lipofuscinosis type 2 (CLN2) disease, a rare lysosomal disorder that causes progressive dementia in children. METHODS In a multicenter, open-label study, we evaluated the effect of intraventricular infusion of cerliponase alfa every 2 weeks in children with CLN2 disease who were between the ages of 3 and 16 years. Treatment was initiated at a dose of 30 mg, 100 mg, or 300 mg; all the patients then received the 300-mg dose for at least 96 weeks. The primary outcome was the time until a 2-point decline in the score on the motor and language domains of the CLN2 Clinical Rating Scale (which ranges from 0 to 6, with 0 representing no function and 3 representing normal function in each of the two domains), which was compared with the time until a 2-point decline in 42 historical controls. We also compared the rate of decline in the motor-language score between the two groups, using data from baseline to the last assessment with a score of more than 0, divided by the length of follow-up (in units of 48 weeks). RESULTS Twenty-four patients were enrolled, 23 of whom constituted the efficacy population. The median time until a 2-point decline in the motor-language score was not reached for treated patients and was 345 days for historical controls. The mean (±SD) unadjusted rate of decline in the motor-language score per 48-week period was 0.27±0.35 points in treated patients and 2.12±0.98 points in 42 historical controls (mean difference, 1.85; P<0.001). Common adverse events included convulsions, pyrexia, vomiting, hypersensitivity reactions, and failure of the intraventricular device. In 2 patients, infections developed in the intraventricular device that was used to administer the infusion, which required antibiotic treatment and device replacement. CONCLUSIONS Intraventricular infusion of cerliponase alfa in patients with CLN2 disease resulted in less decline in motor and language function than that in historical controls. Serious adverse events included failure of the intraventricular device and device-related infections. (Funded by BioMarin Pharmaceutical and others; CLN2 ClinicalTrials.gov numbers, NCT01907087 and NCT02485899 .).
Collapse
Affiliation(s)
- Angela Schulz
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Temitayo Ajayi
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Nicola Specchio
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Emily de Los Reyes
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Paul Gissen
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Douglas Ballon
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Jonathan P Dyke
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Heather Cahan
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Peter Slasor
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - David Jacoby
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| | - Alfried Kohlschütter
- From the Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome (N.S.); Nationwide Children's Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell Medical College, New York (D.B., J.P.D.)
| |
Collapse
|
47
|
Le SQ, Kan SH, Clarke D, Sanghez V, Egeland M, Vondrak KN, Doherty TM, Vera MU, Iacovino M, Cooper JD, Sands MS, Dickson PI. A Humoral Immune Response Alters the Distribution of Enzyme Replacement Therapy in Murine Mucopolysaccharidosis Type I. Mol Ther Methods Clin Dev 2018; 8:42-51. [PMID: 29159202 PMCID: PMC5684429 DOI: 10.1016/j.omtm.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/30/2017] [Indexed: 11/28/2022]
Abstract
Antibodies against recombinant proteins can significantly reduce their effectiveness in unanticipated ways. We evaluated the humoral response of mice with the lysosomal storage disease mucopolysaccharidosis type I treated with weekly intravenous recombinant human alpha-l-iduronidase (rhIDU). Unlike patients, the majority of whom develop antibodies to recombinant human alpha-l-iduronidase, only approximately half of the treated mice developed antibodies against recombinant human alpha-l-iduronidase and levels were low. Serum from antibody-positive mice inhibited uptake of recombinant human alpha-l-iduronidase into human fibroblasts by partial inhibition compared to control serum. Tissue and cellular distributions of rhIDU were altered in antibody-positive mice compared to either antibody-negative or naive mice, with significantly less recombinant human alpha-l-iduronidase activity in the heart and kidney in antibody-positive mice. In the liver, recombinant human alpha-l-iduronidase was preferentially found in sinusoidal cells rather than in hepatocytes in antibody-positive mice. Antibodies against recombinant human alpha-l-iduronidase enhanced uptake of recombinant human alpha-l-iduronidase into macrophages obtained from MPS I mice. Collectively, these results imply that a humoral immune response against a therapeutic protein can shift its distribution preferentially into macrophage-lineage cells, causing decreased availability of the protein to the cells that are its therapeutic targets.
Collapse
Affiliation(s)
- Steven Q. Le
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Shih-hsin Kan
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Don Clarke
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Valentina Sanghez
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Martin Egeland
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kristen N. Vondrak
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Terence M. Doherty
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Moin U. Vera
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michelina Iacovino
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jonathan D. Cooper
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mark S. Sands
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Patricia I. Dickson
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
48
|
Okada J, Hossain MA, Wu C, Miyajima T, Yanagisawa H, Akiyama K, Eto Y. Ten-year-long enzyme replacement therapy shows a poor effect in alleviating giant leg ulcers in a male with Fabry disease. Mol Genet Metab Rep 2017; 14:68-72. [PMID: 29326878 PMCID: PMC5758919 DOI: 10.1016/j.ymgmr.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A (α-gal A), leading to the progressive accumulation of glycosphingolipids. Classical hemizygous males usually present symptoms, including pain and paresthesia in the extremities, angiokeratoma, hypo- or anhidrosis, abdominal pain, cornea verticillata, early stroke, tinnitus, and/or hearing loss, during early childhood or adolescence. Moreover, proteinuria, renal impairment, and cardiac hypertrophy can appear with age. Enzyme replacement is the most common therapy for Fabry disease at present which has been approved in Japan since 2004. We report a case involving a 27-year-old male with extreme terminal pain, anhidrosis, abdominal pain, tinnitus, hearing impairment, cornea verticillata, and recurrent huge ulcers in the lower extremities. At the age of 16 years, he was diagnosed with Fabry disease with a positive family history and very low α-gal A activity. He then received enzyme replacement therapy (ERT) with recombinant human agalsidase beta at 1 mg/kg every 2 weeks for 10 years. Throughout the course of ERT, his leg ulcers recurred, and massive excretion of urinary globotriaosylceramide and plasma globotriaosylsphingosine was observed. Electron microscopy of the venous tissue in the regions of the ulcer showed massive typical zebra bodies in the vascular wall smooth muscle cells. A classical hemizygous male with Fabry disease presented with massive intractable leg ulcer. 10 years' enzyme replacement therapy showed huge excretion of urinary Gb3 and plasma lyso-Gb3. Excessive zebra bodies in vascular wall smooth muscle cells caused venous reflux and varices on saphenous veins.
Collapse
Affiliation(s)
- Jun Okada
- Asakadai Central General Hospital, Asaka City, Japan
| | - Mohammad Arif Hossain
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan.,Department of Gene Therapy, Institute for DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chen Wu
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Takashi Miyajima
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Hiroko Yanagisawa
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Keiko Akiyama
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan.,Department of Gene Therapy, Institute for DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol 2017; 34:78-102. [PMID: 29032891 PMCID: PMC5774666 DOI: 10.1016/j.smim.2017.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ana Olivera
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
50
|
Rup B, Alon S, Amit-Cohen BC, Brill Almon E, Chertkoff R, Tekoah Y, Rudd PM. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems-The taliglucerase alfa story. PLoS One 2017; 12:e0186211. [PMID: 29088235 PMCID: PMC5663370 DOI: 10.1371/journal.pone.0186211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Plants are a promising alternative for the production of biotherapeutics. Manufacturing in-planta adds plant specific glycans. To understand immunogenic potential of these glycans, we developed a validated method to detect plant specific glycan antibodies in human serum. Using this assay, low prevalence of pre-existing anti-plant glycan antibodies was found in healthy humans (13.5%) and in glucocerebrosidase-deficient Gaucher disease (GD) patients (5%). A low incidence (9% in naïve patient and none in treatment experienced patients) of induced anti-plant glycan antibodies was observed in GD patients after up to 30 months replacement therapy treatment with taliglucerase alfa, a version of human glucocerebrosidase produced in plant cells. Detailed evaluation of clinical safety and efficacy endpoints indicated that anti-plant glycan antibodies did not affect the safety or efficacy of taliglucerase alfa in patients. This study shows the benefit of using large scale human trials to evaluate the immunogenicity risk of plant derived glycans, and indicates no apparent risk related to anti-plant glycan antibodies.
Collapse
Affiliation(s)
- Bonita Rup
- Bonnie Rup Consulting, LLC, Reading, Massachusetts, United States of America
| | - Sari Alon
- Product Development, Protalix LTD, Carmiel, Israel
| | | | | | | | - Yoram Tekoah
- Research and Development, Protalix LTD, Carmiel, Israel
- * E-mail:
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
- Bioprocessing Technology Institute, AStar, Singapore
| |
Collapse
|