1
|
Raaijmakers RHL, Ausems CRM, Willemse M, Cumming SA, van Engelen BGM, Monckton DG, van Bokhoven H, Wansink DG. Ameliorated cellular hallmarks of myotonic dystrophy in hybrid myotubes from patient and unaffected donor cells. Stem Cell Res Ther 2024; 15:302. [PMID: 39278936 PMCID: PMC11403792 DOI: 10.1186/s13287-024-03913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/01/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Cell-based strategies are being explored as a therapeutic option for muscular dystrophies, using a variety of cell types from different origin and with different characteristics. Primary pericytes are multifunctional cells found in the capillary bed that exhibit stem cell-like and myogenic regenerative properties. This unique combination allows them to be applied systemically, presenting a promising opportunity for body-wide muscle regeneration. We previously reported the successful isolation of ALP+ pericytes from skeletal muscle of patients with myotonic dystrophy type 1 (DM1). These pericytes maintained normal growth parameters and myogenic characteristics in vitro despite the presence of nuclear (CUG)n RNA foci, the cellular hallmark of DM1. Here, we examined the behaviour of DM1 pericytes during myogenic differentiation. METHODS DMPK (CTG)n repeat lengths in patient pericytes were assessed using small pool PCR, to be able to relate variation in myogenic properties and disease hallmarks to repeat expansion. Pericytes from unaffected controls and DM1 patients were cultured under differentiating conditions in vitro. In addition, the pericytes were grown in co-cultures with myoblasts to examine their regenerative capacity by forming hybrid myotubes. Finally, the effect of pericyte fusion on DM1 disease hallmarks was investigated. RESULTS Small pool PCR analysis revealed the presence of somatic mosaicism in pericyte cell pools. Upon differentiation to myotubes, DMPK expression was upregulated, leading to an increase in nuclear foci sequestering MBNL1 protein. Remarkably, despite the manifestation of these disease biomarkers, patient-derived pericytes demonstrated myogenic potential in co-culture experiments comparable to unaffected pericytes and myoblasts. However, only the unaffected pericytes improved the disease hallmarks in hybrid myotubes. From 20% onwards, the fraction of unaffected nuclei in myotubes positively correlated with a reduction of the number of RNA foci and an increase in the amount of free MBNL1. CONCLUSIONS Fusion of only a limited number of unaffected myogenic precursors to DM1 myotubes already ameliorates cellular disease hallmarks, offering promise for the development of cell transplantation strategies to lower disease burden.
Collapse
Affiliation(s)
- Renée H L Raaijmakers
- Donders lnstitute for Brain Cognition and Behaviour, Department of Human Genetics, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Donders lnstitute for Brain Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands
| | - C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behaviour, Department of Human Genetics, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Donders lnstitute for Brain Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands
| | - Marieke Willemse
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behaviour, Department of Human Genetics, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands.
| | - Derick G Wansink
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
2
|
Handal T, Juster S, Abu Diab M, Yanovsky-Dagan S, Zahdeh F, Aviel U, Sarel-Gallily R, Michael S, Bnaya E, Sebban S, Buganim Y, Drier Y, Mouly V, Kubicek S, van den Broek WJAA, Wansink DG, Epsztejn-Litman S, Eiges R. Differentiation shifts from a reversible to an irreversible heterochromatin state at the DM1 locus. Nat Commun 2024; 15:3270. [PMID: 38627364 PMCID: PMC11021500 DOI: 10.1038/s41467-024-47217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.
Collapse
Affiliation(s)
- Tayma Handal
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Sarah Juster
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Manar Abu Diab
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Shira Yanovsky-Dagan
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Fouad Zahdeh
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Uria Aviel
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, 91904, Israel
| | - Shir Michael
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Ester Bnaya
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Walther J A A van den Broek
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel.
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024:AD.2024.0131-1. [PMID: 38377026 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ikenoshita S, Matsuo K, Yabuki Y, Kawakubo K, Asamitsu S, Hori K, Usuki S, Hirose Y, Bando T, Araki K, Ueda M, Sugiyama H, Shioda N. A cyclic pyrrole-imidazole polyamide reduces pathogenic RNA in CAG/CTG triplet repeat neurological disease models. J Clin Invest 2023; 133:e164792. [PMID: 37707954 PMCID: PMC10645379 DOI: 10.1172/jci164792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.
Collapse
Affiliation(s)
- Susumu Ikenoshita
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Department of Neurology, Graduate School of Medical Sciences
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| | - Kosuke Kawakubo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis and
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Kyoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
5
|
Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IRANIAN BIOMEDICAL JOURNAL 2023; 27:219-46. [PMID: 37873636 PMCID: PMC10707817 DOI: 10.61186/ibj.27.5.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 12/17/2023]
Abstract
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.
Collapse
Affiliation(s)
- Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Khosravi
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Lutz M, Levanti M, Karns R, Gourdon G, Lindquist D, Timchenko NA, Timchenko L. Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy. Int J Mol Sci 2023; 24:10650. [PMID: 37445828 PMCID: PMC10342152 DOI: 10.3390/ijms241310650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3β-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3β-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3β-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.
Collapse
Affiliation(s)
- Maggie Lutz
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Miranda Levanti
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Rebekah Karns
- Departments of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France;
| | - Diana Lindquist
- Imagine Research Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Nikolai A. Timchenko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
- Department of Surgery, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| |
Collapse
|
7
|
El Boujnouni N, van der Bent ML, Willemse M, ’t Hoen PA, Brock R, Wansink DG. Block or degrade? Balancing on- and off-target effects of antisense strategies against transcripts with expanded triplet repeats in DM1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:622-636. [PMID: 37200862 PMCID: PMC10185704 DOI: 10.1016/j.omtn.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Antisense oligonucleotide (ASO) therapies for myotonic dystrophy type 1 (DM1) are based on elimination of transcripts containing an expanded repeat or inhibition of sequestration of RNA-binding proteins. This activity is achievable by both degradation of expanded transcripts and steric hindrance, although it is unknown which approach is superior. We compared blocking ASOs with RNase H-recruiting gapmers of equivalent chemistries. Two DMPK target sequences were selected: the triplet repeat and a unique sequence upstream thereof. We assessed ASO effects on transcript levels, ribonucleoprotein foci and disease-associated missplicing, and performed RNA sequencing to investigate on- and off-target effects. Both gapmers and the repeat blocker led to significant DMPK knockdown and a reduction in (CUG)exp foci. However, the repeat blocker was more effective in MBNL1 protein displacement and had superior efficiency in splicing correction at the tested dose of 100 nM. By comparison, on a transcriptome level, the blocking ASO had the fewest off-target effects. In particular, the off-target profile of the repeat gapmer asks for cautious consideration in further therapeutic development. Altogether, our study demonstrates the importance of evaluating both on-target and downstream effects of ASOs in a DM1 context, and provides guiding principles for safe and effective targeting of toxic transcripts.
Collapse
Affiliation(s)
- Najoua El Boujnouni
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - M. Leontien van der Bent
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Marieke Willemse
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
- Corresponding author Roland Brock, Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Derick G. Wansink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Corresponding author Derick G. Wansink, Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Ganipineni VDP, Gutlapalli SD, Danda S, Garlapati SKP, Fabian D, Okorie I, Paramsothy J. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Cardiovascular Disease: A Comprehensive Clinical Review on Dilated Cardiomyopathy. Cureus 2023; 15:e35774. [PMID: 37025725 PMCID: PMC10071452 DOI: 10.7759/cureus.35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most important causes of heart failure in developed and developing countries. Currently, most medical interventions in the treatment of DCM are mainly focused on mitigating the progression of the disease and controlling the symptoms. The vast majority of patients who survive till the late stages of the disease require cardiac transplantation; this is exactly why we need novel therapeutic interventions and hopefully treatments that can reverse the clinical cardiac deterioration in patients with DCM. Clustered regularly interspaced short palindromic repeats (CRISPR) technology is a novel therapeutic intervention with such capacity; it can help us edit the genome of patients with genetic etiology for DCM and potentially cure them permanently. This review provides an overview of studies investigating CRISPR-based gene editing in DCM, including the use of CRISPR in DCM disease models, phenotypic screening, and genotype-specific precision therapies. The review discusses the outcomes of these studies and highlights the potential benefits of CRISPR in developing novel genotype-agnostic therapeutic strategies for the genetic causes of DCM. The databases we used to extract relevant literature include PubMed, Google Scholar, and Cochrane Central. We used the Medical Subject Heading (MeSH) strategy for our literature search in PubMed and relevant search keywords for other databases. We screened all the relevant articles from inception till February 22, 2023. We retained 74 research articles after carefully reviewing each of them. We concluded that CRISPR gene editing has shown promise in developing precise and genotype-specific therapeutic strategies for DCM, but there are challenges and limitations, such as delivering CRISPR-Cas9 to human cardiomyocytes and the potential for unintended gene targeting. This study represents a turning point in our understanding of the mechanisms underlying DCM and paves the way for further investigation into the application of genomic editing for identifying novel therapeutic targets. This study can also act as a potential framework for novel therapeutic interventions in other genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Vijaya Durga Pradeep Ganipineni
- Department of Internal Medicine, SRM Medical College Hospital and Research Centre, Chennai, IND
- Department of General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
- Internal Medicine and Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sumanth Danda
- Department of Internal Medicine, Katuri Medical College & Hospital, Guntur, IND
| | | | - Daniel Fabian
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Ikpechukwu Okorie
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jananthan Paramsothy
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
9
|
Kawada R, Jonouchi T, Kagita A, Sato M, Hotta A, Sakurai H. Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs. Sci Rep 2023; 13:94. [PMID: 36631509 PMCID: PMC9834395 DOI: 10.1038/s41598-022-26614-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats (CTGexp) in the dystrophia myotonica protein kinase (DMPK) gene, and the transcription products, expanded CUG repeats, sequester muscleblind like splicing regulator 1 (MBNL1), resulting in the nuclear MBNL1 aggregation in the DM1 cells. Loss of MBNL1 function is the pivotal mechanism underlying the pathogenesis of DM1. To develop therapeutics for DM1, proper human in vitro models based on the pathologic mechanism of DM1 are required. In this study, we established robust in vitro skeletal muscle cell models of DM1 with patient-derived induced pluripotent stem cells (iPSCs) using the MyoD1-induced system and iPSCs-derived muscle stem cell (iMuSC) differentiation system. Our newly established DM1 models enable simple quantitative evaluation of nuclear MBNL1 aggregation and the downstream splicing defects. Quantitative analyses using the MyoD1-induced myotubes showed that CTGexp-deleted DM1 skeletal myotubes exhibited a reversal of MBNL1-related pathologies, and antisense oligonucleotide treatment recovered these disease phenotypes in the DM1-iPSCs-derived myotubes. Furthermore, iMuSC-derived myotubes exhibited higher maturity than the MyoD1-induced myotubes, which enabled us to recapitulate the SERCA1 splicing defect in the DM1-iMuSC-derived myotubes. Our quantitative and reproducible in vitro models for DM1 established using human iPSCs are promising for drug discovery against DM1.
Collapse
Affiliation(s)
- Ryu Kawada
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan ,grid.419836.10000 0001 2162 3360Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530 Japan
| | - Tatsuya Jonouchi
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
| | - Akihiro Kagita
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
| | - Masae Sato
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
| | - Akitsu Hotta
- grid.258799.80000 0004 0372 2033Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
10
|
CRISPR-Based Tools for Fighting Rare Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121968. [PMID: 36556333 PMCID: PMC9787644 DOI: 10.3390/life12121968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Rare diseases affect the life of a tremendous number of people globally. The CRISPR-Cas system emerged as a powerful genome engineering tool and has facilitated the comprehension of the mechanism and development of therapies for rare diseases. This review focuses on current efforts to develop the CRISPR-based toolbox for various rare disease therapy applications and compares the pros and cons of different tools and delivery methods. We further discuss the therapeutic applications of CRISPR-based tools for fighting different rare diseases.
Collapse
|
11
|
Li R, Wang Q, She K, Lu F, Yang Y. CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. MOLECULAR BIOMEDICINE 2022; 3:31. [PMID: 36239875 PMCID: PMC9560888 DOI: 10.1186/s43556-022-00095-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The discovery and development of the CRISPR/Cas system is a milestone in precise medicine. CRISPR/Cas nucleases, base-editing (BE) and prime-editing (PE) are three genome editing technologies derived from CRISPR/Cas. In recent years, CRISPR-based genome editing technologies have created immense therapeutic potential with safe and efficient viral or non-viral delivery systems. Significant progress has been made in applying genome editing strategies to modify T cells and hematopoietic stem cells (HSCs) ex vivo and to treat a wide variety of diseases and disorders in vivo. Nevertheless, the clinical translation of this unique technology still faces many challenges, especially targeting, safety and delivery issues, which require further improvement and optimization. In addition, with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), CRISPR-based molecular diagnosis has attracted extensive attention. Growing from the specific set of molecular biological discoveries to several active clinical trials, CRISPR/Cas systems offer the opportunity to create a cost-effective, portable and point-of-care diagnosis through nucleic acid screening of diseases. In this review, we describe the development, mechanisms and delivery systems of CRISPR-based genome editing and focus on clinical and preclinical studies of therapeutic CRISPR genome editing in disease treatment as well as its application prospects in therapeutics and molecular detection.
Collapse
Affiliation(s)
- Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Kaiqin She
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China.
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Development of Therapeutic Approaches for Myotonic Dystrophies Type 1 and Type 2. Int J Mol Sci 2022; 23:ijms231810491. [PMID: 36142405 PMCID: PMC9499601 DOI: 10.3390/ijms231810491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic Dystrophies type 1 (DM1) and type 2 (DM2) are complex multisystem diseases without disease-based therapies. These disorders are caused by the expansions of unstable CTG (DM1) and CCTG (DM2) repeats outside of the coding regions of the disease genes: DMPK in DM1 and CNBP in DM2. Multiple clinical and molecular studies provided a consensus for DM1 pathogenesis, showing that the molecular pathophysiology of DM1 is associated with the toxicity of RNA CUG repeats, which cause multiple disturbances in RNA metabolism in patients' cells. As a result, splicing, translation, RNA stability and transcription of multiple genes are misregulated in DM1 cells. While mutant CCUG repeats are the main cause of DM2, additional factors might play a role in DM2 pathogenesis. This review describes current progress in the translation of mechanistic knowledge in DM1 and DM2 to clinical trials, with a focus on the development of disease-specific therapies for patients with adult forms of DM1 and congenital DM1 (CDM1).
Collapse
|
13
|
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D. The polyG diseases: a new disease entity. Acta Neuropathol Commun 2022; 10:79. [PMID: 35642014 PMCID: PMC9153130 DOI: 10.1186/s40478-022-01383-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syndrome (FXTAS), abnormal expansion of CGG repeats in the 5' untranslated region has been found in neuronal intranuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngodistal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the common clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide preliminary opinions about future research in polyG diseases.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Lee J, Li K, Zimmerman SC. A Selective Alkylating Agent for CTG Repeats in Myotonic Dystrophy Type 1. ACS Chem Biol 2022; 17:1103-1110. [PMID: 35483041 DOI: 10.1021/acschembio.1c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disease intervention at the DNA level generally has been avoided because of off-target effects. Recent advances in genome editing technologies using CRISPR-Cas9 have opened a new era in DNA-targeted therapeutic approaches. However, delivery of such systems remains a major challenge. Here, we report a selective DNA-modifying small molecule that targets a disease-specific structure and mismatches involved in myotonic dystrophy type 1 (DM1). This ligand alkylates T-T mismatch-containing hairpins formed in the expanded CTG repeats (d(CTG)exp) in DM1. Ligand alkylation of d(CTG)exp inhibits the transcription of d(CAG·CTG)exp, thereby reducing the level of the toxic r(CUG)exp transcript. The bioactivity of the ligand also included a reduction in DM1 pathological features such as disease foci formation and misregulation of pre-mRNA splicing in DM1 model cells. Furthermore, the CTG-alkylating ligand may change the d(CAG·CTG)exp repeat length dynamics in DM1 patient cells. Our strategy of linking an alkylating moiety to a DNA mismatch-selective small molecule may be generally applicable to other repeat expansion diseases such as Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Zhang N, Ashizawa T. Mechanistic and Therapeutic Insights into Ataxic Disorders with Pentanucleotide Expansions. Cells 2022; 11:1567. [PMID: 35563872 PMCID: PMC9099484 DOI: 10.3390/cells11091567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms complex secondary and tertiary structures that can give rise to RNA-mediated toxicity, including protein sequestration, pentapeptide synthesis, and mRNA dysregulation. Since several of these diseases have recently been discovered, our understanding of their pathological mechanisms is limited, and their therapeutic interventions underexplored. This review aims to highlight new in vitro and in vivo insights into these incurable diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| |
Collapse
|
16
|
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Int J Mol Sci 2022; 23:ijms23094622. [PMID: 35563013 PMCID: PMC9101876 DOI: 10.3390/ijms23094622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.
Collapse
|
17
|
McBride D, Deshmukh A, Shore S, Elafros MA, Liang JJ. Cardiac Involvement and Arrhythmias Associated with Myotonic Dystrophy. Rev Cardiovasc Med 2022; 23:126. [PMID: 36177340 PMCID: PMC9518819 DOI: 10.31083/j.rcm2304126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Myotonic dystrophy is an autosomal dominant genetic disease of nucleotide expansion resulting in neuromuscular disease with two distinct subtypes. There are significant systemic manifestations of this condition including progressive muscular decline, neurologic abnormalities, and cardiac disease. Given the higher prevalence of cardiac dysfunction compared to the general population, there is significant interest in early diagnosis and prevention of cardiac morbidity and mortality. Cardiac dysfunction has an origin in abnormal and unstable nucleotide repeats in the DMPK and CNBP genes which have downstream effects leading to an increased propensity for arrhythmias and left ventricular systolic dysfunction. Current screening paradigms involve the use of routine screening electrocardiograms, ambulatory electrocardiographic monitors, and cardiac imaging to stratify risk and suggest further invasive evaluation. The most common cardiac abnormality is atrial arrhythmia, however there is significant mortality in this population from high-degree atrioventricular block and ventricular arrhythmia. In this review, we describe the cardiac manifestations of myotonic dystrophy with an emphasis on arrhythmia which is the second most common cause of death in this population after respiratory failure.
Collapse
Affiliation(s)
- Daniel McBride
- Electrophysiology Section, Division of Cardiology, Ann Arbor, MI 48109, USA
| | - Amrish Deshmukh
- Electrophysiology Section, Division of Cardiology, Ann Arbor, MI 48109, USA
| | - Supriya Shore
- Heart Failure Section, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa A. Elafros
- Neuromuscular Section, Division of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jackson J. Liang
- Electrophysiology Section, Division of Cardiology, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Cardinali B, Provenzano C, Izzo M, Voellenkle C, Battistini J, Strimpakos G, Golini E, Mandillo S, Scavizzi F, Raspa M, Perfetti A, Baci D, Lazarevic D, Garcia-Manteiga JM, Gourdon G, Martelli F, Falcone G. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:184-199. [PMID: 34976437 PMCID: PMC8693309 DOI: 10.1016/j.omtn.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to in vitro and in vivo models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3′ untranslated region of the DMPK gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in DMPK transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes in vitro as well as in skeletal muscle tissue in vivo.
Collapse
Affiliation(s)
- Beatrice Cardinali
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Claudia Provenzano
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Mariapaola Izzo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Jonathan Battistini
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Alessandra Perfetti
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Denisa Baci
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Geneviève Gourdon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
19
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
20
|
Franck S, Couvreu De Deckersberg E, Bubenik JL, Markouli C, Barbé L, Allemeersch J, Hilven P, Duqué G, Swanson MS, Gheldof A, Spits C, Sermon KD. Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the DMPK locus and RNA mis-splicing. Biol Open 2022; 11:273965. [PMID: 35019138 PMCID: PMC8764412 DOI: 10.1242/bio.058978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1. Summary: Early developmental abnormalities in myotonic dystrophy type 1 are reiterated in vitro in myotubes differentiated from human embryonic stem cells that carry the mutation.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Christina Markouli
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, 94107 CA, United States
| | | | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karen D Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
21
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
22
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
23
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
24
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
25
|
Goullée H, Taylor RL, Forrest ARR, Laing NG, Ravenscroft G, Clayton JS. Improved CRISPR/Cas9 gene editing in primary human myoblasts using low confluency cultures on Matrigel. Skelet Muscle 2021; 11:23. [PMID: 34551826 PMCID: PMC8456651 DOI: 10.1186/s13395-021-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background CRISPR/Cas9 is an invaluable tool for studying cell biology and the development of molecular therapies. However, delivery of CRISPR/Cas9 components into some cell types remains a major hurdle. Primary human myoblasts are a valuable cell model for muscle studies, but are notoriously difficult to transfect. There are currently no commercial lipofection protocols tailored for primary myoblasts, and most generic guidelines simply recommend transfecting healthy cells at high confluency. This study aimed to maximize CRISPR/Cas9 transfection and editing in primary human myoblasts. Methods Since increased cell proliferation is associated with increased transfection efficiency, we investigated two factors known to influence myoblast proliferation: cell confluency, and a basement membrane matrix, Matrigel. CRISPR/Cas9 editing was performed by delivering Cas9 ribonucleoprotein complexes via lipofection into primary human myoblasts, cultured in wells with or without a Matrigel coating, at low (~ 40%) or high (~ 80%) confluency. Results Cells transfected at low confluency on Matrigel-coated wells had the highest levels of transfection, and were most effectively edited across three different target loci, achieving a maximum editing efficiency of 93.8%. On average, editing under these conditions was >4-fold higher compared to commercial recommendations (high confluency, uncoated wells). Conclusion This study presents a simple, effective and economical method of maximizing CRISPR/Cas9-mediated gene editing in primary human myoblasts. This protocol could be a valuable tool for improving the genetic manipulation of cultured human skeletal muscle cells, and potentially be adapted for use in other cell types. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00278-1.
Collapse
Affiliation(s)
- Hayley Goullée
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Rhonda L Taylor
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.,School of Biomedical Science, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Alistair R R Forrest
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Joshua S Clayton
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia. .,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
26
|
Amendola M, Bedel A, Buj-Bello A, Carrara M, Concordet JP, Frati G, Gilot D, Giovannangeli C, Gutierrez-Guerrero A, Laurent M, Miccio A, Moreau-Gaudry F, Sourd C, Valton J, Verhoeyen E. Recent Progress in Genome Editing for Gene Therapy Applications: The French Perspective. Hum Gene Ther 2021; 32:1059-1075. [PMID: 34494480 DOI: 10.1089/hum.2021.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in genome editing tools, especially novel developments in the clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases (CRISPR/Cas9)-derived editing machinery, have revolutionized not only basic science but, importantly, also the gene therapy field. Their flexibility and ability to introduce precise modifications in the genome to disrupt or correct genes or insert expression cassettes in safe harbors in the genome underline their potential applications as a medicine of the future to cure many genetic diseases. In this review, we give an overview of the recent progress made by French researchers in the field of therapeutic genome editing, while putting their work in the general context of advances made in the field. We focus on recent hematopoietic stem cell gene editing strategies for blood diseases affecting the red blood cells or blood coagulation as well as lysosomal storage diseases. We report on a genome editing-based therapy for muscular dystrophy and the potency of T cell gene editing to increase anticancer activity of chimeric antigen receptor T cells to combat cancer. We will also discuss technical obstacles and side effects such as unwanted editing activity that need to be surmounted on the way toward a clinical implementation of genome editing. We propose here improvements developed today, including by French researchers to overcome the editing-related genotoxicity and improve editing precision by the use of novel recombinant nuclease-based systems such as nickases, base editors, and prime editors. Finally, a solution is proposed to resolve the cellular toxicity induced by the systems employed for gene editing machinery delivery.
Collapse
Affiliation(s)
- Mario Amendola
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Aurélie Bedel
- Bordeaux University, Bordeaux, France.,INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France.,Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Ana Buj-Bello
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Mathieu Carrara
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Jean-Paul Concordet
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Giacomo Frati
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris, France.,Université de Paris, Paris, France
| | - David Gilot
- Inserm U1242, Université de Rennes, Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Carine Giovannangeli
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Alejandra Gutierrez-Guerrero
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Marine Laurent
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris, France.,Université de Paris, Paris, France
| | - François Moreau-Gaudry
- Bordeaux University, Bordeaux, France.,INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France.,Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Célia Sourd
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | | | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Université Côte d'Azur, INSERM, C3M, Nice, France
| |
Collapse
|
27
|
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22179630. [PMID: 34502539 PMCID: PMC8431796 DOI: 10.3390/ijms22179630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.
Collapse
|
28
|
Xu K, Li Y, Allen EG, Jin P. Therapeutic Development for CGG Repeat Expansion-Associated Neurodegeneration. Front Cell Neurosci 2021; 15:655568. [PMID: 34054431 PMCID: PMC8149615 DOI: 10.3389/fncel.2021.655568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding repeat expansions, such as CGG, GGC, CUG, CCUG, and GGGGCC, have been shown to be involved in many human diseases, particularly neurological disorders. Of the diverse pathogenic mechanisms proposed in these neurodegenerative diseases, dysregulated RNA metabolism has emerged as an important contributor. Expanded repeat RNAs that form particular structures aggregate to form RNA foci, sequestering various RNA binding proteins and consequently altering RNA splicing, transport, and other downstream biological processes. One of these repeat expansion-associated diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), is caused by a CGG repeat expansion in the 5'UTR region of the fragile X mental retardation 1 (FMR1) gene. Moreover, recent studies have revealed abnormal GGC repeat expansion within the 5'UTR region of the NOTCH2NLC gene in both essential tremor (ET) and neuronal intranuclear inclusion disease (NIID). These CGG repeat expansion-associated diseases share genetic, pathological, and clinical features. Identification of the similarities at the molecular level could lead to a better understanding of the disease mechanisms as well as developing novel therapeutic strategies. Here, we highlight our current understanding of the molecular pathogenesis of CGG repeat expansion-associated diseases and discuss potential therapeutic interventions for these neurological disorders.
Collapse
Affiliation(s)
- Keqin Xu
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, Kuca K, Tripathi V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci 2021; 22:3327. [PMID: 33805113 PMCID: PMC8036902 DOI: 10.3390/ijms22073327] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007 Marseille, France;
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India;
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - George Thomas
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India; (J.A.L.); (G.T.)
| |
Collapse
|
30
|
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021; 29:571-586. [PMID: 33238136 PMCID: PMC7854284 DOI: 10.1016/j.ymthe.2020.09.028] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| |
Collapse
|
31
|
Zhang N, Bewick B, Xia G, Furling D, Ashizawa T. A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1. Front Genet 2020; 11:594576. [PMID: 33362853 PMCID: PMC7758406 DOI: 10.3389/fgene.2020.594576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Brittani Bewick
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangbin Xia
- Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Denis Furling
- Institut National de la Sante et de la Recherche Medicale (INSERM), Centre de Recherche en Myologie (CRM), Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
32
|
Marsh S, Hanson B, Wood MJA, Varela MA, Roberts TC. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Mol Ther 2020; 28:2527-2539. [PMID: 33171139 PMCID: PMC7704741 DOI: 10.1016/j.ymthe.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder, caused by expansion of a CTG microsatellite repeat in the 3' untranslated region of the DMPK (dystrophia myotonica protein kinase) gene. To date, novel therapeutic approaches have focused on transient suppression of the mutant, repeat-expanded RNA. However, recent developments in the field of genome editing have raised the exciting possibility of inducing permanent correction of the DM1 genetic defect. Specifically, repurposing of the prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system has enabled programmable, site-specific, and multiplex genome editing. CRISPR-based strategies for the treatment of DM1 can be applied either directly to patients, or indirectly through the ex vivo modification of patient-derived cells, and they include excision of the repeat expansion, insertion of synthetic polyadenylation signals upstream of the repeat, steric interference with RNA polymerase II procession through the repeat leading to transcriptional downregulation of DMPK, and direct RNA targeting of the mutant RNA species. Potential obstacles to such therapies are discussed, including the major challenge of Cas9 and guide RNA transgene/ribonuclear protein delivery, off-target gene editing, vector genome insertion at cut sites, on-target unintended mutagenesis (e.g., repeat inversion), pre-existing immunity to Cas9 or AAV antigens, immunogenicity, and Cas9 persistence.
Collapse
Affiliation(s)
- Seren Marsh
- University of Oxford Medical School, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Britt Hanson
- Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, UK; Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, UK
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, UK.
| |
Collapse
|
33
|
The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng 2020; 5:157-168. [PMID: 32929188 DOI: 10.1038/s41551-020-00607-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.
Collapse
|
34
|
Hagler LD, Luu LM, Tonelli M, Lee J, Hayes SM, Bonson SE, Vergara JI, Butcher SE, Zimmerman SC. Expanded DNA and RNA Trinucleotide Repeats in Myotonic Dystrophy Type 1 Select Their Own Multitarget, Sequence-Selective Inhibitors. Biochemistry 2020; 59:3463-3472. [PMID: 32856901 DOI: 10.1021/acs.biochem.0c00472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are few methods available for the rapid discovery of multitarget drugs. Herein, we describe the template-assisted, target-guided discovery of small molecules that recognize d(CTG) in the expanded d(CTG·CAG) sequence and its r(CUG) transcript that cause myotonic dystrophy type 1. A positive cross-selection was performed using a small library of 30 monomeric alkyne- and azide-containing ligands capable of producing >5000 possible di- and trimeric click products. The monomers were incubated with d(CTG)16 or r(CUG)16 under physiological conditions, and both sequences showed selectivity in the proximity-accelerated azide-alkyne [3+2] cycloaddition click reaction. The limited number of click products formed in both selections and the even smaller number of common products suggests that this method is a useful tool for the discovery of single-target and multitarget lead therapeutic agents.
Collapse
Affiliation(s)
- Lauren D Hagler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Long M Luu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marco Tonelli
- National Magnetics Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samuel M Hayes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah E Bonson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - J Ignacio Vergara
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
CRISPR-Cas9 system: A genome-editing tool with endless possibilities. J Biotechnol 2020; 319:36-53. [DOI: 10.1016/j.jbiotec.2020.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
|
36
|
Leung AW, Broton C, Bogacheva MS, Xiao AZ, Garcia-Castro MI, Lou YR. RNA-based CRISPR-Mediated Loss-of-Function Mutagenesis in Human Pluripotent Stem Cells. J Mol Biol 2020; 432:3956-3964. [PMID: 32339532 DOI: 10.1016/j.jmb.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 01/01/2023]
Abstract
Current approaches for Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-Associated-9 (Cas9)-mediated genome editing in human pluripotent stem (PS) cells mainly employ plasmids or ribonucleoprotein complexes. Here, we devise an improved transfection protocol of in vitro transcribed Cas9 mRNA and crRNA:tracrRNA duplex that can effectively generate indels in four genetic loci (two active and two inactive) and demonstrate utility in four human PS cell lines (one embryonic and three induced PS cell lines). Our improved protocol incorporating a Cas9-linked selection marker and a staggered transfection strategy promotes targeting efficiency up to 85% and biallelic targeting efficiency up to 76.5% of total mutant clones. The superior targeting efficiency and the non-integrative nature of our approach underscore broader applications in high-throughput arrayed CRISPR screening and in generating custom-made or off-the-shelf cell products for human therapy.
Collapse
Affiliation(s)
- Alan W Leung
- Yale Stem Cell Center, Yale University, 214A Amistad Building, New Haven, Connecticut 06519, USA; Department of Genetics, Yale University, 214A Amistad Building, New Haven, Connecticut 06519, USA
| | - Cayla Broton
- Department of Genetics, Yale University, 214A Amistad Building, New Haven, Connecticut 06519, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA
| | - Mariia S Bogacheva
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Andrew Z Xiao
- Yale Stem Cell Center, Yale University, 214A Amistad Building, New Haven, Connecticut 06519, USA; Department of Genetics, Yale University, 214A Amistad Building, New Haven, Connecticut 06519, USA
| | - Martin I Garcia-Castro
- School of Medicine Division of Biomedical Sciences, University of California Riverside, 3401 Watkins Drive, 203 School of Medicine Research Building, Riverside, CA 92521, USA
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland.
| |
Collapse
|
37
|
Chemello F, Bassel-Duby R, Olson EN. Correction of muscular dystrophies by CRISPR gene editing. J Clin Invest 2020; 130:2766-2776. [PMID: 32478678 PMCID: PMC7259998 DOI: 10.1172/jci136873] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Muscular dystrophies are debilitating disorders that result in progressive weakness and degeneration of skeletal muscle. Although the genetic mutations and clinical abnormalities of a variety of neuromuscular diseases are well known, no curative therapies have been developed to date. The advent of genome editing technology provides new opportunities to correct the underlying mutations responsible for many monogenic neuromuscular diseases. For example, Duchenne muscular dystrophy, which is caused by mutations in the dystrophin gene, has been successfully corrected in mice, dogs, and human cells through CRISPR/Cas9 editing. In this Review, we focus on the potential for, and challenges of, correcting muscular dystrophies by editing disease-causing mutations at the genomic level. Ideally, because muscle tissues are extremely long-lived, CRISPR technology could offer a one-time treatment for muscular dystrophies by correcting the culprit genomic mutations and enabling normal expression of the repaired gene.
Collapse
|
38
|
Ikeda M, Taniguchi-Ikeda M, Kato T, Shinkai Y, Tanaka S, Hagiwara H, Sasaki N, Masaki T, Matsumura K, Sonoo M, Kurahashi H, Saito F. Unexpected Mutations by CRISPR-Cas9 CTG Repeat Excision in Myotonic Dystrophy and Use of CRISPR Interference as an Alternative Approach. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:131-144. [PMID: 32637445 PMCID: PMC7321784 DOI: 10.1016/j.omtm.2020.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Myotonic dystrophy type 1 is the most common type of adult-onset muscular dystrophy. This is an autosomal dominant disorder and caused by the expansion of the CTG repeat in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Messenger RNAs containing these expanded repeats form aggregates as nuclear RNA foci. Then, RNA binding proteins, including muscleblind-like 1, are sequestered to the RNA foci, leading to systemic abnormal RNA splicing. In this study, we used CRISPR-Cas9 genome editing to excise this CTG repeat. Dual cleavage at the 5′ and 3′ regions of the repeat using a conventional Cas9 nuclease and a double nicking with Cas9 nickase successfully excised the CTG repeat. Subsequently, the formation of the RNA foci was markedly reduced in patient-derived fibroblasts. However, contrary to expectations, a considerable amount of off-target digestions and on-target genomic rearrangements were observed using high-throughput genome-wide translocation sequencing. Finally, the suppression of DMPK transcripts using CRISPR interference significantly decreased the intensity of RNA foci. Our results indicate that close attention should be paid to the unintended mutations when double-strand breaks are generated by CRISPR-Cas9 for therapeutic purposes. Alternative approaches independent of double-strand breaks, including CRISPR interference, may be considered.
Collapse
Affiliation(s)
- Miki Ikeda
- Department of Neurology, School of Medicine, Teikyo University, Tokyo 1738606, Japan
| | - Mariko Taniguchi-Ikeda
- Department of Clinical Genetics, Fujita Health University Hospital, Aichi 4701192, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 4701192, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 4701192, Japan
| | - Yasuko Shinkai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 4701192, Japan
| | - Sonoko Tanaka
- Department of Neurology, School of Medicine, Teikyo University, Tokyo 1738606, Japan
| | - Hiroki Hagiwara
- Department of Medical Science, Teikyo University of Science, Uenohara Campus, Yamanashi 4090193, Japan
| | - Naomichi Sasaki
- Department of Medical Science, Teikyo University of Science, Senju Campus, Tokyo 1200045, Japan
| | - Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, Senju Campus, Tokyo 1200045, Japan
| | - Kiichiro Matsumura
- Department of Neurology, School of Medicine, Teikyo University, Tokyo 1738606, Japan
| | - Masahiro Sonoo
- Department of Neurology, School of Medicine, Teikyo University, Tokyo 1738606, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 4701192, Japan
| | - Fumiaki Saito
- Department of Neurology, School of Medicine, Teikyo University, Tokyo 1738606, Japan
| |
Collapse
|
39
|
Wansink DG, Gourdon G, van Engelen BGM, Schoser B. 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11-13 October 2019. Neuromuscul Disord 2020; 30:521-531. [PMID: 32417002 DOI: 10.1016/j.nmd.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 974, Sorbonne Université, Centre de Recherche en Myologie, Association Institut de Myologie, 75013 Paris, France
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, 6525 GC Nijmegen, the Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
40
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
41
|
Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, Xu H, Sasakawa N, Naito Y, Nakada S, Yamamoto T, Sano S, Hotta A, Takeda J, Mashimo T. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 2019; 10:5302. [PMID: 31811138 PMCID: PMC6897959 DOI: 10.1038/s41467-019-13226-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although single-component Class 2 CRISPR systems, such as type II Cas9 or type V Cas12a (Cpf1), are widely used for genome editing in eukaryotic cells, the application of multi-component Class 1 CRISPR has been less developed. Here we demonstrate that type I-E CRISPR mediates distinct DNA cleavage activity in human cells. Notably, Cas3, which possesses helicase and nuclease activity, predominantly triggered several thousand base pair deletions upstream of the 5'-ARG protospacer adjacent motif (PAM), without prominent off-target activity. This Cas3-mediated directional and broad DNA degradation can be used to introduce functional gene knockouts and knock-ins. As an example of potential therapeutic applications, we show Cas3-mediated exon-skipping of the Duchenne muscular dystrophy (DMD) gene in patient-induced pluripotent stem cells (iPSCs). These findings broaden our understanding of the Class 1 CRISPR system, which may serve as a unique genome editing tool in eukaryotic cells distinct from the Class 2 CRISPR system.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Kazuto Yoshimi
- Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yuya Okuzaki
- Center for iPS Cell Research and Application (CiRA), Department of Clinical Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Peter Gee
- Center for iPS Cell Research and Application (CiRA), Department of Clinical Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yayoi Kunihiro
- Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Ekasit Sonpho
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Huaigeng Xu
- Center for iPS Cell Research and Application (CiRA), Department of Clinical Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Noriko Sasakawa
- Center for iPS Cell Research and Application (CiRA), Department of Clinical Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Naito
- Database Center for Life Science, Mishima, 411-8540, Japan
- National Institute of Genetics, Mishima, 411-8540, Japan
| | - Shinichiro Nakada
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Department of Clinical Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Tomoji Mashimo
- Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
42
|
Patsali P, Mussolino C, Ladas P, Floga A, Kolnagou A, Christou S, Sitarou M, Antoniou MN, Cathomen T, Lederer CW, Kleanthous M. The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. J Clin Med 2019; 8:jcm8111959. [PMID: 31766235 PMCID: PMC6912506 DOI: 10.3390/jcm8111959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The common IVSI-110 (G>A) β-thalassemia mutation is a paradigm for intronic disease-causing mutations and their functional repair by non-homologous end joining-mediated disruption. Such mutation-specific repair by disruption of aberrant regulatory elements (DARE) is highly efficient, but to date, no systematic analysis has been performed to evaluate disease-causing mutations as therapeutic targets. Here, DARE was performed in highly characterized erythroid IVSI-110(G>A) transgenic cells and the disruption events were compared with published observations in primary CD34+ cells. DARE achieved the functional correction of β-globin expression equally through the removal of causative mutations and through the removal of context sequences, with disruption events and the restriction of indel events close to the cut site closely resembling those seen in primary cells. Correlation of DNA-, RNA-, and protein-level findings then allowed the extrapolation of findings to other mutations by in silico analyses for potential repair based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9, Cas12a, and transcription activator-like effector nuclease (TALEN) platforms. The high efficiency of DARE and unexpected freedom of target design render the approach potentially suitable for 14 known thalassemia mutations besides IVSI-110(G>A) and put it forward for several prominent mutations causing other inherited diseases. The application of DARE, therefore, has a wide scope for sustainable personalized advanced therapy medicinal product development for thalassemia and beyond.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.M.); (T.C.)
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Petros Ladas
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Argyro Floga
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Annita Kolnagou
- Thalassemia Clinic Paphos, Paphos General Hospital, 8100 Paphos, Cyprus;
| | - Soteroula Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, 1474 Nicosia, Cyprus;
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, 6301 Larnaca, Cyprus;
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, King’s College London, London SE1 9RT, UK;
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.M.); (T.C.)
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-392-764
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
43
|
Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat. Int J Mol Sci 2019; 20:ijms20225685. [PMID: 31766224 PMCID: PMC6888582 DOI: 10.3390/ijms20225685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG)n repeat in DMPK and DM1-AS. The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM’s most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).
Collapse
|
44
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Baroni A, Neaga I, Delbosc N, Wells M, Verdy L, Ansseau E, Vanden Eynde JJ, Belayew A, Bodoki E, Oprean R, Hambye S, Blankert B. Bioactive Aliphatic Polycarbonates Carrying Guanidinium Functions: An Innovative Approach for Myotonic Dystrophy Type 1 Therapy. ACS OMEGA 2019; 4:18126-18135. [PMID: 31720515 PMCID: PMC6843715 DOI: 10.1021/acsomega.9b02034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Dystrophia myotonica type 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) n repeat array transcribed from the causal (CTG) n DNA amplification. Several compounds were previously shown to bind the (CUG) n RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis. The apparent association constants (K a) were in the range described for reference compounds such as pentamidine. Further macromolecular engineering could improve association specificity. The polymer presented no toxicity in cell culture at concentrations of 1.6-100.0 μg/mL as evaluated both by MTT and real-time monitoring xCELLigence method. These promising results may lay the foundation for a new branch of potential therapeutic agents for DM1.
Collapse
Affiliation(s)
- Alexandra Baroni
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons. 20 Place du Parc, 7000 Mons, Belgium
| | - Ioan Neaga
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Nicolas Delbosc
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons. 20 Place du Parc, 7000 Mons, Belgium
| | - Mathilde Wells
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Laetitia Verdy
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jean Jacques Vanden Eynde
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Alexandra Belayew
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Ede Bodoki
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Stéphanie Hambye
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Bertrand Blankert
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
46
|
|
47
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
48
|
A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc Natl Acad Sci U S A 2019; 116:20991-21000. [PMID: 31570586 DOI: 10.1073/pnas.1901893116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.
Collapse
|
49
|
Ausems CRM, Raaijmakers RHL, van den Broek WJAA, Willemse M, van Engelen BGM, Wansink DG, van Bokhoven H. Intrinsic Myogenic Potential of Skeletal Muscle-Derived Pericytes from Patients with Myotonic Dystrophy Type 1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:120-132. [PMID: 31649961 PMCID: PMC6804802 DOI: 10.1016/j.omtm.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Pericytes are multipotent, vessel-associated progenitors that exhibit high proliferative capacity, can cross the blood-muscle barrier, and have the ability to home to muscle tissue and contribute to myogenesis. Consequently, pericyte-based therapies hold great promise for muscular dystrophies. A complex multi-system disorder exhibiting muscular dystrophy for which pericytes might be a valuable cell source is myotonic dystrophy type 1 (DM1). DM1 is caused by an unstable (CTG)n repeat in the DMPK gene and characterized by skeletal muscle weakness, muscle wasting, and myotonia. We have successfully isolated alkaline phosphatase-positive pericytes from skeletal muscle of DM1 patients and a transgenic mouse model. Intranuclear (CUG)n RNA foci, a pathogenic DM1 hallmark, were identified in human and mouse pericytes. Notably, pericytes from DM1 patients maintained similar growth parameters and innate myogenic characteristics in vitro compared to cells from unaffected controls. Our in vitro results thus demonstrate the potential of pericytes to ameliorate muscle features in DM1 in a therapeutic setting.
Collapse
Affiliation(s)
- Cornelia Rosanne Maria Ausems
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands.,Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands.,Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Renée Henrica Lamberta Raaijmakers
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands.,Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands.,Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | | | - Marieke Willemse
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Baziel Gerardus Maria van Engelen
- Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands
| | - Derick Gert Wansink
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
50
|
Young CS, Pyle AD, Spencer MJ. CRISPR for Neuromuscular Disorders: Gene Editing and Beyond. Physiology (Bethesda) 2019; 34:341-353. [PMID: 31389773 PMCID: PMC6863376 DOI: 10.1152/physiol.00012.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
This is a review describing advances in CRISPR/Cas-mediated therapies for neuromuscular disorders (NMDs). We explore both CRISPR-mediated editing and dead Cas approaches as potential therapeutic strategies for multiple NMDs. Last, therapeutic considerations, including delivery and off-target effects, are also discussed.
Collapse
Affiliation(s)
- Courtney S Young
- Department of Neurology, University of California, Los Angeles, California
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
| | - April D Pyle
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California
| | - Melissa J Spencer
- Department of Neurology, University of California, Los Angeles, California
- Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, University of California, Los Angeles, California
| |
Collapse
|