1
|
Snowdon-Farrell A, Attal C, Nikkheslat N, Pariante C, Young AH, Zahn R. How does neurochemistry affect attachment styles in humans? The role of oxytocin and the endogenous opioid system in sociotropy and autonomy - a systematic review. Neurosci Biobehav Rev 2024:105994. [PMID: 39732223 DOI: 10.1016/j.neubiorev.2024.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Oxytocin was hypothesised to play a critical role in forming and maintaining secure attachments, shown to confer resilience against affective disorders. The endogenous opioid system has also emerged as a key player in attachment dynamics. In this pre-registered systematic review, we investigated whether individual differences in the functioning of these neurochemical systems are related to attachment styles, following PRISMA guidelines. As predicted, individuals with higher oxytocin function exhibited more secure attachment styles (p=.006, n=12 studies) and less insecure attachment styles (p=.021, n=16 studies). Contrary to our hypothesis, we found no association of endogenous opioid function with insecure (p=0.549, n=11 studies) or secure attachment styles (p=.065, n=11 studies). The lack of association between endogenous mu-opioid function and attachment styles remains inconclusive due to inconsistencies in the neurochemical measurements and lack of eligible studies. Therefore, further investigations into the role of the endogenous opioid system in attachment styles are needed. Our findings corroborate the hypothesis that individual differences in oxytocin function relate to differences in attachment styles.
Collapse
Affiliation(s)
- Anita Snowdon-Farrell
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK
| | - Chiara Attal
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK
| | - Carmine Pariante
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK; South London and Maudsley NHS Foundation Trust, London, BR3 3BX, United Kingdom
| | - Allan H Young
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK; South London and Maudsley NHS Foundation Trust, London, BR3 3BX, United Kingdom
| | - Roland Zahn
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK; South London and Maudsley NHS Foundation Trust, London, BR3 3BX, United Kingdom.
| |
Collapse
|
2
|
Zhukovsky P, Ironside M, Duda JM, Moser AD, Null KE, Dhaynaut M, Normandin M, Guehl NJ, El Fakhri G, Alexander M, Holsen LM, Misra M, Narendran R, Hoye JM, Morris ED, Esfand SM, Goldstein JM, Pizzagalli DA. Acute Stress Increases Striatal Connectivity With Cortical Regions Enriched for μ and κ Opioid Receptors. Biol Psychiatry 2024; 96:717-726. [PMID: 38395372 PMCID: PMC11339240 DOI: 10.1016/j.biopsych.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Understanding the neurobiological effects of stress is critical for addressing the etiology of major depressive disorder (MDD). Using a dimensional approach involving individuals with differing degree of MDD risk, we investigated 1) the effects of acute stress on cortico-cortical and subcortical-cortical functional connectivity (FC) and 2) how such effects are related to gene expression and receptor maps. METHODS Across 115 participants (37 control, 39 remitted MDD, 39 current MDD), we evaluated the effects of stress on FC during the Montreal Imaging Stress Task. Using partial least squares regression, we investigated genes whose expression in the Allen Human Brain Atlas was associated with anatomical patterns of stress-related FC change. Finally, we correlated stress-related FC change maps with opioid and GABAA (gamma-aminobutyric acid A) receptor distribution maps derived from positron emission tomography. RESULTS Results revealed robust effects of stress on global cortical connectivity, with increased global FC in frontoparietal and attentional networks and decreased global FC in the medial default mode network. Moreover, robust increases emerged in FC of the caudate, putamen, and amygdala with regions from the ventral attention/salience network, frontoparietal network, and motor networks. Such regions showed preferential expression of genes involved in cell-to-cell signaling (OPRM1, OPRK1, SST, GABRA3, GABRA5), similar to previous genetic MDD studies. CONCLUSIONS Acute stress altered global cortical connectivity and increased striatal connectivity with cortical regions that express genes that have previously been associated with imaging abnormalities in MDD and are rich in μ and κ opioid receptors. These findings point to overlapping circuitry underlying stress response, reward, and MDD.
Collapse
MESH Headings
- Humans
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Male
- Female
- Adult
- Depressive Disorder, Major/diagnostic imaging
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Depressive Disorder, Major/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/diagnostic imaging
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Magnetic Resonance Imaging
- Cerebral Cortex/diagnostic imaging
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Corpus Striatum/diagnostic imaging
- Corpus Striatum/metabolism
- Young Adult
- Positron-Emission Tomography
- Neural Pathways/diagnostic imaging
- Neural Pathways/physiopathology
- Connectome
- Nerve Net/diagnostic imaging
- Nerve Net/metabolism
- Nerve Net/physiopathology
Collapse
Affiliation(s)
- Peter Zhukovsky
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria Ironside
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts; Laureate Institute for Brain Research, The University of Tulsa, Tulsa, Oklahoma
| | - Jessica M Duda
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amelia D Moser
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kaylee E Null
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Madeline Alexander
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laura M Holsen
- Division of Women's Health, Brigham and Women's Hospital, Boston, Massachusetts; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts; Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jocelyn M Hoye
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Evan D Morris
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Shiba M Esfand
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jill M Goldstein
- Department of Psychology, Yale University, New Haven, Connecticut; Division of Women's Health, Brigham and Women's Hospital, Boston, Massachusetts; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts; Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Mikati MO, Erdmann-Gilmore P, Connors R, Conway SM, Malone J, Woods J, Sprung RW, Townsend RR, Al-Hasani R. Highly sensitive in vivo detection of dynamic changes in enkephalins following acute stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528745. [PMID: 36824728 PMCID: PMC9948958 DOI: 10.1101/2023.02.15.528745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Enkephalins are opioid peptides that modulate analgesia, reward, and stress. In vivo detection of enkephalins remains difficult due to transient and low endogenous concentrations and inherent sequence similarity. To begin to address this we previously developed a system combining in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents (Al-Hasani, 2018, eLife). Here we show improved detection resolution and stabilization of enkephalin detection, which allowed us to investigate enkephalin release during acute stress. We present an analytical method for real-time, simultaneous detection of Met- and Leu-Enkephalin (Met-Enk & Leu-Enk) in the mouse Nucleus Accumbens shell (NAcSh) after acute stress. We confirm that acute stress activates enkephalinergic neurons in the NAcSh using fiber photometry and that this leads to the release of Met- and Leu-Enk. We also demonstrate the dynamics of Met- and Leu-Enk release as well as how they correlate to one another in the ventral NAc shell, which was previously difficult due to the use of approaches that relied on mRNA transcript levels rather than post-translational products. This approach increases spatiotemporal resolution, optimizes the detection of Met-Enkephalin through methionine oxidation, and provides novel insight into the relationship between Met- and Leu-Enkephalin following stress.
Collapse
|
4
|
Løseth G, Trøstheim M, Leknes S. Endogenous mu-opioid modulation of social connection in humans: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:379. [PMID: 39289345 PMCID: PMC11408506 DOI: 10.1038/s41398-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Social bonding, essential for health and survival in all social species, depends on mu-opioid signalling in non-human mammals. A growing neuroimaging and psychopharmacology literature also implicates mu-opioids in human social connectedness. To determine the role of mu-opioids for social connectedness in healthy humans, we conducted a preregistered ( https://osf.io/x5wmq ) multilevel random-effects meta-analysis of randomised double-blind placebo-controlled opioid antagonist studies. We included data from 8 publications and 2 unpublished projects, totalling 17 outcomes (N = 455) sourced from a final literature search in Web of Science, Scopus, PubMed and EMBASE on October 12, 2023, and through community contributions. All studies used naltrexone (25-100 mg) to block the mu-opioid system and measured social connectedness by self-report. Opioid antagonism slightly reduced feelings of social connectedness (Hedges' g [95% CI) = -0.20] [-0.32, -0.07]. Results were highly consistent within and between studies (I2 = 23%). However, there was some indication of bias in favour of larger effects among smaller studies (Egger's test: B = -2.16, SE = 0.93, z = -2.33, p = 0.02), and publication bias analysis indicated that the effect of naltrexone might be overestimated. The results clearly demonstrate that intact mu-opioid signalling is not essential for experiencing social connectedness, as robust feelings of connectedness are evident even during full pharmacological mu-opioid blockade. Nevertheless, antagonism reduced measures of social connection, consistent with a modulatory role of mu-opioids for human social connectedness. The modest effect size relative to findings in non-human animals, could be related to differences in measurement (subjective human responses versus behavioural/motivation indices in animals), species specific neural mechanisms, or naltrexone effects on other opioid receptor subtypes. In sum, these results help explain how mu-opioid dysregulation and social disconnection can contribute to disability, and conversely-how social connection can buffer risk of ill health.
Collapse
Affiliation(s)
- Guro Løseth
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Martin Trøstheim
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
7
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
8
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Hancock J, Sirbu C, Kerr PL. Depression, Cancer, Inflammation, and Endogenous Opioids: Pathogenic Relationships and Therapeutic Options. ADVANCES IN NEUROBIOLOGY 2024; 35:435-451. [PMID: 38874735 DOI: 10.1007/978-3-031-45493-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Endogenous opioids and their associated receptors form a system that maintains survival by positively reinforcing behaviors that are vital to life. Cancer and cancer treatment side effects capitalize on this system pathogenically, leading to maladaptive biological responses (e.g., inflammation), as well as cognitive and emotional consequences, most notably depression. Psychologists who treat people with cancer frequently find depression to be a primary target for intervention. However, in people with cancer, the etiology of depression is unique and complex. This complexity necessitates that psycho-oncologists have a fundamental working knowledge of the biological substrates that underlie depression/cancer comorbidity. Building on other chapters in this volume pertaining to cancer and endogenous opioids, this chapter focuses on the clinical applications of basic scientific findings.
Collapse
Affiliation(s)
- Jennifer Hancock
- Center for Cancer Research, Charleston Area Medical Center, Charleston, WV, USA.
| | - Cristian Sirbu
- Center for Cancer Research, Charleston Area Medical Center, Charleston, WV, USA
| | - Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA
| |
Collapse
|
10
|
Gool JK, van Heese EM, Schinkelshoek MS, Remmerswaal A, Lammers GJ, van Dijk KD, Fronczek R. The therapeutic potential of opioids in narcolepsy type 1: A systematic literature review and questionnaire study. Sleep Med 2023; 109:118-127. [PMID: 37437491 DOI: 10.1016/j.sleep.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Narcolepsy type 1 is a primary sleep disorder caused by deficient hypocretin transmission leading to excessive daytime sleepiness and cataplexy. Opioids have been suggested to increase the number of hypocretin-producing neurons. We aimed to assess opioid use and its self-reported effect on narcolepsy type 1 symptom severity through a literature review and questionnaire study. METHODS We systematically reviewed literature on opioid use in narcolepsy. We also recruited 100 people with narcolepsy type 1 who completed an online questionnaire on opioid use in the previous three years. The main questionnaire topics were the indication for use, and the possible effects on narcolepsy symptom severity. Structured follow-up interviews were conducted when opioid use was reported. RESULTS The systematic literature review mainly showed improvements in narcolepsy symptom severity. Recent opioid use was reported by 16/100 questionnaire respondents, who had used 20 opioids (codeine: 7/20, tramadol: 6/20, oxycodone: 6/20, fentanyl: 1/20). Narcolepsy symptom changes were reported in 11/20. Positive effects on disturbed nocturnal sleep (9/20), excessive daytime sleepiness (4/20), hypnagogic hallucinations (3/17), cataplexy (2/18), and sleep paralysis (1/13) were most pronounced for oxycodone (4/6) and codeine (4/7). CONCLUSIONS Opioids were relatively frequently used compared to a similarly young general Dutch sample. Oxycodone and, to a lesser extent, codeine were associated with self-reported narcolepsy symptom severity improvements. Positive changes in disturbed nocturnal sleep and daytime sleepiness were most frequently reported, while cataplexy effects were less pronounced. Randomised controlled trials are now needed to verify the potential of opioids as therapeutic agents for narcolepsy.
Collapse
Affiliation(s)
- Jari K Gool
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; Anatomy&Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, Netherlands.
| | - Eva M van Heese
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Anatomy&Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Mink S Schinkelshoek
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Aniek Remmerswaal
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Gert Jan Lammers
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin D van Dijk
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rolf Fronczek
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
11
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
12
|
DaSilva AF, Kim DJ, Lim M, Nascimento TD, Scott PJH, Smith YR, Koeppe RA, Zubieta JK, Kaciroti N. Effect of High-Definition Transcranial Direct Current Stimulation on Headache Severity and Central µ-Opioid Receptor Availability in Episodic Migraine. J Pain Res 2023; 16:2509-2523. [PMID: 37497372 PMCID: PMC10368121 DOI: 10.2147/jpr.s407738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The current understanding of utilizing HD-tDCS as a targeted approach to improve headache attacks and modulate endogenous opioid systems in episodic migraine is relatively limited. This study aimed to determine whether high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) can improve clinical outcomes and endogenous µ-opioid receptor (µOR) availability for episodic migraineurs. Methods In a randomized, double-blind, and sham-controlled trial, 25 patients completed 10-daily 20-min M1 HD-tDCS, repeated Positron Emission Tomography (PET) scans with a selective agonist for µOR. Twelve age- and sex-matched healthy controls participated in the baseline PET/MRI scan without neuromodulation. The primary endpoints were moderate-to-severe (M/S) headache days and responder rate (≥50% reduction on M/S headache days from baseline), and secondary endpoints included the presence of M/S headache intensity and the use of rescue medication over 1-month after treatment. Results In a one-month follow-up, at initial analysis, both the active and sham groups exhibited no significant differences in their primary outcomes (M/S headache days and responder rates). Similarly, secondary outcomes (M/S headache intensity and the usage of rescue medication) also revealed no significant differences between the two groups. However, subsequent analyses showed that active M1 HD-tDCS, compared to sham, resulted in a more beneficial response predominantly in higher-frequency individuals (>3 attacks/month), as demonstrated by the interaction between treatment indicator and baseline frequency of migraine attacks on the primary outcomes. These favorable outcomes were also confirmed for the secondary endpoints in higher-frequency patients. Active treatment also resulted in increased µOR concentration compared to sham in the limbic and descending pain modulatory pathway. Our exploratory mediation analysis suggests that the observed clinical efficacy of HD-tDCS in patients with higher-frequency conditions might be potentially mediated through an increase in µOR availability. Conclusion The 10-daily M1 HD-tDCS can improve clinical outcomes in episodic migraineurs with a higher baseline frequency of migraine attacks (>3 attacks/month). This improvement may be, in part, facilitated by the increase in the endogenous µOR availability. Clinical Trial Registration www.ClinicalTrials.gov, identifier - NCT02964741.
Collapse
Affiliation(s)
- Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, MA, USA
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Spagnolo PA, Johnson K, Hodgkinson C, Goldman D, Hallett M. Methylome changes associated with functional movement/conversion disorder: Influence of biological sex and childhood abuse exposure. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110756. [PMID: 36958667 PMCID: PMC10205664 DOI: 10.1016/j.pnpbp.2023.110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Epigenetic changes, such as DNA methylation (DNAm), may represent an important mechanism implicated in the etiopathogenesis of functional movement/conversion disorder (FMD). Here, we aimed to identify methylomic variations in a case-control cohort of FMD and to uncover specific epigenetic signatures associated with female sex and childhood abuse, two key risk factors for FMD and other functional neurological disorders. Genome-wide DNAm analysis was performed from peripheral blood in 57 patients with FMD and 47 healthy controls with and without childhood abuse. Using principal component analysis, we examined the association of principal components with FMD status in abused and non-abused individuals, in the entire study sample and in female subjects only. Next, we used enrichment pathway analysis to investigate the biological significance of DNAm changes and explored differences in methylation levels of genes annotated to the top enriched biological pathways shared across comparisons. We found that FMD was associated with DNAm variation across the genome and identified a common epigenetic 'signature' enriched for biological pathways implicated in chronic stress and chronic pain. However, methylation levels of genes included in the top two shared pathways hardly overlapped, suggesting that transcriptional profiles may differ as a function of childhood abuse exposure and sex among subjects with FMD. This study is unique in providing genome-wide evidence of DNAm changes in FMD and in indicating a potential mechanism linking childhood abuse exposure and female sex to differences in FMD pathophysiology. Future studies are needed to replicate our findings in independent cohorts.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Mary Horrigan Connors Center for Women's Health and Gender Biology, USA; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Kory Johnson
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Freeman-Striegel L, Hamilton J, Kannappan R, Bell T, Robison L, Thanos PK. Chronic Δ9-tetrahydrocannabinol treatment has dose-dependent effects on open field exploratory behavior and [ 3H] SR141716A receptor binding in the rat brain. Life Sci 2023:121825. [PMID: 37270168 DOI: 10.1016/j.lfs.2023.121825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
AIMS Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33 % increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.
Collapse
Affiliation(s)
- Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Renuka Kannappan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Tyler Bell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Lisa Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America.
| |
Collapse
|
15
|
Ang SP, Sidharthan S, Lai W, Hussain N, Patel KV, Gulati A, Henry O, Kaye AD, Orhurhu V. Cannabinoids as a Potential Alternative to Opioids in the Management of Various Pain Subtypes: Benefits, Limitations, and Risks. Pain Ther 2023; 12:355-375. [PMID: 36639601 PMCID: PMC10036719 DOI: 10.1007/s40122-022-00465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Pain is a global phenomenon encompassing many subtypes that include neuropathic, musculoskeletal, acute postoperative, cancer, and geriatric pain. Traditionally, opioids have been a mainstay pharmacological agent for managing many types of pain. However, opioids have been a subject of controversy with increased addiction, fatality rates, and cost burden on the US healthcare system. Cannabinoids have emerged as a potentially favorable alternative or adjunctive treatment for various types of acute and chronic pain. This narrative review seeks to describe the efficacy, risks, and benefits of cannabinoids as an adjunct or even potential replacement for opioids in the treatment of various subtypes of pain. METHODS In June of 2022, we performed a comprehensive search across multiple databases for English-language studies related to the use of cannabinoids in the treatment of various types pain: neuropathic pain, musculoskeletal pain, acute postoperative pain, cancer pain, and geriatric pain. Data from meta-analyses, systematic reviews, and randomized control trials (RCTs) were prioritized for reporting. We sought to focus our reported analysis on more recent literature as well as include older relevant studies with particularly notable findings. RESULTS There is conflicting evidence for the use of cannabinoids in the management of pain. While cannabinoids have shown efficacy in treating specific chronic pain subtypes such as neuropathic pain, fibromyalgia pain, and geriatric pain, they do not show as clear benefit in acute postoperative and the majority of musculoskeletal pain syndromes. Data trends towards cannabinoids having a positive effect in treating cancer pain, but results are not as conclusive. To date, there is a paucity of data comparing cannabinoids directly to opioids for pain relief. Overall, the side effects of cannabinoids appear to be relatively mild. However, there is still potential for addiction, altered brain development, psychiatric comorbidities, and drug-drug interactions. CONCLUSION Cannabinoids may be effective in specific subtypes of pain, but current evidence and guidelines do not yet support its use as the first-line treatment for any type of acute or chronic pain. Rather, it may be considered a good adjunct or alternative for patients who have failed more typical or conservative measures. Additional studies are needed with standardized forms of cannabinoids, route of delivery, and dosing for greater-powered analysis. Providers must weigh the individualized patient risks, benefits, and concurrent medication list in order to determine whether cannabinoids are appropriate for a patient's pain treatment plan.
Collapse
Affiliation(s)
- Samuel P Ang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Shawn Sidharthan
- Department of Neurology, Northwell Health-Donald and Barbara Zucker School of Medicine at Hofstra, Hempstead, NY, USA
| | - Wilson Lai
- Department of Anesthesiology and Pain Medicine, Northwell Health-Donald and Barbara Zucker School of Medicine at Hofstra, Hempstead, NY, USA
| | - Nasir Hussain
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kiran V Patel
- Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
- Department of Anesthesiology and Pain Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Amitabh Gulati
- Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Onyeaka Henry
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan D Kaye
- Anesthesiology and Pharmacology, Toxicology, and Neurosciences, LSU School of Medicine, Shreveport, LA, USA
- Anesthesiology and Pharmacology, LSU School of Medicine, New Orleans, LA, USA
- Anesthesiology and Pharmacology, Tulane School of Medicine, New Orleans, LA, USA
| | - Vwaire Orhurhu
- University of Pittsburgh Medical Center, Susquehanna, Williamsport, PA, USA.
- MVM Health, East Stroudsburg, PA, USA.
| |
Collapse
|
16
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
17
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
18
|
Locus Coeruleus-Noradrenergic Neurons Regulate Stress Coping During Subchronic Exposure to Social Threats: A Characteristic Feature in Postpartum Female Mice. Cell Mol Neurobiol 2022:10.1007/s10571-022-01314-4. [PMID: 36577871 DOI: 10.1007/s10571-022-01314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Stress-coping strategies have been implicated in depression. The control of stress coping may improve the symptom and higher prevalence of depression during the postpartum period in women. However, the neuronal mechanisms underlying stress coping remain to be fully elucidated in postpartum women. In this study, we examined how locus coeruleus-noradrenergic (LC-NA) neurons, which have been associated with both stress coping and depression, regulate changes in coping style induced by subchronic exposure to unfamiliar male mice as a social threat in postpartum female mice. In contrast to virgin females, dams exposed to unfamiliar males daily for four consecutive days showed reduced immobility duration in the forced swim test, indicating that exposure to unfamiliar males decreased passive stress coping in dams. Exposure to unfamiliar males also decreased sucrose palatability in the sucrose preference test and suppressed the crouching behavior in the maternal care test but did not affect anxiety-like behavior in the hole-board test in dams. In fiber photometry analyses, LC-NA neurons showed differential activity between dams and virgin females in response to unfamiliar males. Chemogenetic inhibition of LC-NA neurons during exposure to unfamiliar males prevented the social threat-induced decrease in immobility duration in the forced swim test in dams. Furthermore, inhibition or activation of LC-NA neurons exacerbated crouching behavior in dams. These results indicate that LC-NA neurons regulate the social threat-induced decrease in passive stress coping and relieve social threat-induced inhibition of maternal care in postpartum female mice.
Collapse
|
19
|
Lowes DC, Harris AZ. Stressed and wired: The effects of stress on the VTA circuits underlying motivated behavior. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100388. [PMID: 36406203 PMCID: PMC9674332 DOI: 10.1016/j.coemr.2022.100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Stress affects many brain regions, including the ventral tegmental area (VTA), which is critically involved in reward processing. Excessive stress can reduce reward-seeking behaviors but also exacerbate substance use disorders, two seemingly contradictory outcomes. Recent research has revealed that the VTA is a heterogenous structure with diverse populations of efferents and afferents serving different functions. Stress has correspondingly diverse effects on VTA neuron activity, tending to decrease lateral VTA dopamine (DA) neuron activity, while increasing medial VTA DA and GABA neuron activity. Here we review the differential effects of stress on the activity of these distinct VTA neuron populations and how they contribute to decreases in reward-seeking behavior or increases in drug self-administration.
Collapse
Affiliation(s)
- Daniel C. Lowes
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Alexander Z. Harris
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
20
|
Zhang H, Cui M, Cao JL, Han MH. The Role of Beta-Adrenergic Receptors in Depression and Resilience. Biomedicines 2022; 10:2378. [PMID: 36289638 PMCID: PMC9598882 DOI: 10.3390/biomedicines10102378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 09/29/2023] Open
Abstract
Norepinephrine is a catecholamine neurotransmitter that has been extensively implicated in the neurobiology of major depressive disorder (MDD). An accumulating body of evidence indicates that investigations into the action of norepinephrine at the synaptic/receptor level hold high potential for a better understanding of MDD neuropathology and introduce possibilities for developing novel treatments for depression. In this review article, we discuss recent advances in depression neuropathology and the effects of antidepressant medications based on preclinical and clinical studies related to beta-adrenergic receptor subtypes. We also highlight a beta-3 adrenergic receptor-involved mechanism that promotes stress resilience, through which antidepressant efficacy is achieved in both rodent models for depression and patients with major depression-an alternative therapeutic strategy that is conceptually different from the typical therapeutic approach in which treatment efficacy is achieved by reversing pathological alterations rather than by enhancing a good mechanism such as natural resilience. Altogether, in this review, we systematically describe the role of beta-adrenergic receptors in depression and stress resilience and provide a new avenue for developing a conceptually innovative treatment for depression.
Collapse
Affiliation(s)
- Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Institute of Brain Cognition and Brain Disease, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Delta Opioid Receptors and Enkephalinergic Signaling within Locus Coeruleus Promote Stress Resilience. Brain Sci 2022; 12:brainsci12070860. [PMID: 35884666 PMCID: PMC9320195 DOI: 10.3390/brainsci12070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The noradrenergic nucleus locus coeruleus is a key component of the stress circuitry of the brain. During stress, the neuropeptide corticotropin-releasing factor (CRF) is secreted onto LC, increasing LC output and norepinephrine concentration in the brain, which is thought to promote anxiety-like behavior. LC is also innervated by several structures that synthesize and release the endogenous opioid peptide enkephalin onto LC upon stressor termination. While the role of CRF neurotransmission within LC in mediating anxiety-like behavior and the behavioral response to stress has been well characterized, the role of enkephalinergic signaling at LC-expressed δ-opioid receptors has been comparatively understudied. We have previously shown that acute stressor exposure increases LC activity and anxiety-like behavior for at least one week. Here, we extend these findings by showing that these effects may be mediated at least in part through stress-induced downregulation of DORs within LC. Furthermore, overexpression of DORs in LC blocks the effects of stress on both LC firing properties and anxiety-like behavior. In addition, intra-LC infusions of enkephalin blocked stress-induced freezing behavior and promoted conditioned place preference. These findings indicate that enkephalinergic neurotransmission at DORs within LC is an important component of the behavioral response to stress and may drive reward-related behavior as well.
Collapse
|
22
|
Ballantyne JC, Sullivan MD. Is Chronic Pain a Disease? THE JOURNAL OF PAIN 2022; 23:1651-1665. [PMID: 35577236 DOI: 10.1016/j.jpain.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
It was not until the twentieth century that pain was considered a disease. Before that it was managed medically as a symptom. The motivations for declaring chronic pain a disease, whether of the body or of the brain, include increasing its legitimacy as clinical problem and research focus worthy of attention from healthcare and research organizations alike. But 1 problem with disease concepts is that having a disease favors medical solutions and tends to reduce patient participation. We argue that chronic pain, particularly chronic primary pain (recently designated a first tier pain diagnosis in International Diagnostic Codes 11), is a learned state that is not intransigent even if it has biological correlates. Chronic pain is sometimes a symptom, and may sometimes be its own disease. But here we question the value of a disease focus for much of chronic pain for which patient involvement is essential, and which may need a much broader societal approach than is suggested by the disease designation. PERSPECTIVE: This article examines whether designating chronic pain a disease of the body or brain is helpful or harmful to patients. Can the disease designation help advance treatment, and is it needed to achieve future therapeutic breakthrough? Or does it make patients over-reliant on medical intervention and reduce their engagement in the process of recovery?
Collapse
Affiliation(s)
- Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
23
|
Sullivan MD. Long-term opioid therapy unsettles us both coming and going. Pain 2022; 163:807-808. [PMID: 34407030 DOI: 10.1097/j.pain.0000000000002453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Mark D Sullivan
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
26
|
Vartiainen P, Roine RP, Kalso E, Heiskanen T. Worse health‐related quality of life, impaired functioning and psychiatric comorbidities are associated with excess mortality in patients with severe chronic pain. Eur J Pain 2022; 26:1135-1146. [PMID: 35278251 PMCID: PMC9310830 DOI: 10.1002/ejp.1938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/08/2022]
Abstract
Background Severe chronic pain that interferes with daily activities is associated with an increased risk of mortality. We assessed the overall mortality of tertiary chronic pain patients in comparison with the general population, with a special aim to analyse the association of health‐related quality of life (HRQoL) and its dimensions with the risk of death. Methods In this prospective observational follow‐up study, patients with non‐cancer chronic pain attended an outpatient multidisciplinary pain management (MPM) episode in a tertiary pain clinic in 2004–2012 and were followed until May 2019. Mortality between the patients and the general population was compared with standardized mortality ratios (SMR) in different age groups. Causes of death and comorbidities were compared among the deceased. Association of mortality and HRQoL and its dimensions, measured with the 15D instrument, was studied with Cox proportional hazards model. Results During a mean of 10.4‐year follow‐up of 1498 patients, 296 died. The SMR in the youngest age group (18–49 years) was significantly higher than that of the general population: 2.6 for males and 2.9 for females. Even elderly females (60–69 years) had elevated mortality (SMR 2.3). Low baseline HRQoL at the time of MPM, as well as poor ratings in the psychosocial dimensions of HRQoL, was associated with an increased risk of death. Conclusions Our results support the role of HRQoL measurement by a validated instrument such as the 15D in capturing both the physical and the psychological symptom burden, and consequently, an elevated risk of death, in patients with chronic pain. Significance Severe chronic pain is associated with elevated mortality. In patients in chronic pain under 50 years old, the mortality was 2.5–3 times higher than in the general population. Psychological distress appears to contribute to the increased mortality. Regular follow‐up by health‐related quality of life (HRQoL) measurement could be useful in identifying patients in chronic pain who are in need of intensive symptom management and to prevent early death.
Collapse
Affiliation(s)
- P Vartiainen
- Division of Pain Medicine Department of Anaesthesiology, Intensive Care, and Pain Medicine Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - R P Roine
- Division of Pain Medicine Department of Anaesthesiology, Intensive Care, and Pain Medicine Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - E Kalso
- Division of Pain Medicine Department of Anaesthesiology, Intensive Care, and Pain Medicine Helsinki University Hospital and Department of Pharmacology and SleepWell Research Programme, Faculty of Medicine, University of Helsinki Helsinki Finland
| | - T Heiskanen
- Division of Pain Medicine Department of Anaesthesiology, Intensive Care, and Pain Medicine Helsinki University Hospital and University of Helsinki Helsinki Finland
| |
Collapse
|
27
|
Kapfhammer HP. [Comorbidity of posttraumatic stress disorder and addiction from a biopsychosocial perspective]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2022; 36:1-18. [PMID: 33439473 PMCID: PMC8916999 DOI: 10.1007/s40211-020-00384-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder and substance use disorder often co-occur within the health care system. Their comorbidity is associated with more serious acute clinical symptomatology, more frequent hospital admissions in state of emergency and significantly lower chances of improvement by psychological and pharmacological treatment. Their comorbidity contributes to dramatically unfavourable courses of illness as regards all biopsychosocial levels. The survey presented will discuss empirical findings from various perspectives: general epidemiology, substance use disorder as risk factor of trauma and PTSD, trauma and PTSD as risk factor of SUD, neurobiological effects of SUD converging towards neurobiology of PTSD, shared common factors of genetics/epigenetics, personality traits, and early developmental stress and trauma. The main focus of analysis will be put on processes that are intrinsically linked to the development and course of both disorders.
Collapse
Affiliation(s)
- Hans-Peter Kapfhammer
- Universitätsklinik für Psychiatrie und Psychotherapeutische Medizin, Medizinische Universität Graz, Auenbruggerplatz 31, 8036, Graz, Österreich.
| |
Collapse
|
28
|
Loneliness: An Immunometabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212162. [PMID: 34831917 PMCID: PMC8618012 DOI: 10.3390/ijerph182212162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Loneliness has been defined as an agonizing encounter, experienced when the need for human intimacy is not met adequately, or when a person’s social network does not match their preference, either in number or attributes. This definition helps us realize that the cause of loneliness is not merely being alone, but rather not being in the company we desire. With loneliness being introduced as a measurable, distinct psychological experience, it has been found to be associated with poor health behaviors, heightened stress response, and inadequate physiological repairing activity. With these three major pathways of pathogenesis, loneliness can do much harm; as it impacts both immune and metabolic regulation, altering the levels of inflammatory cytokines, growth factors, acute-phase reactants, chemokines, immunoglobulins, antibody response against viruses and vaccines, and immune cell activity; and affecting stress circuitry, glycemic control, lipid metabolism, body composition, metabolic syndrome, cardiovascular function, cognitive function and mental health, respectively. Taken together, there are too many immunologic and metabolic manifestations associated with the construct of loneliness, and with previous literature showcasing loneliness as a distinct psychological experience and a health determinant, we propose that loneliness, in and of itself, is not just a psychosocial phenomenon. It is also an all-encompassing complex of systemic alterations that occur with it, expanding it into a syndrome of events, linked through a shared network of immunometabolic pathology. This review aims to portray a detailed picture of loneliness as an “immunometabolic syndrome”, with its multifaceted pathology.
Collapse
|
29
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
The Structural and Electrophysiological Properties of Progesterone Receptor-Expressing Neurons Vary along the Anterior-Posterior Axis of the Ventromedial Hypothalamus and Undergo Local Changes across the Reproductive Cycle. eNeuro 2021; 8:ENEURO.0049-21.2021. [PMID: 33879568 PMCID: PMC8184219 DOI: 10.1523/eneuro.0049-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Sex hormone levels continuously fluctuate across the reproductive cycle, changing the activity of neuronal circuits to coordinate female behavior and reproductive capacity. The ventrolateral division of the ventromedial hypothalamus (VMHvl) contains neurons expressing receptors for sex hormones and its function is intimately linked to female sexual receptivity. However, recent findings suggest that the VMHvl is functionally heterogeneous. Here, we used whole recordings and intracellular labeling to characterize the electrophysiological and morphologic properties of individual VMHvl neurons in naturally cycling females and report the existence of multiple electrophysiological phenotypes within the VMHvl. We found that the properties of progesterone receptor expressing (PR+) neurons, but not PR– neurons, depended systematically on the neuron’s location along the anterior-posterior (AP) axis of the VMHvl and the phase within the reproductive cycle. Prominent among this, the resting membrane potential of anterior PR+ neurons decreased during the receptive phase, while the excitability of medial PR+ neurons increased during the non-receptive phase. During the receptive phase of the cycle, posterior PR+ neurons simultaneously showed an increase in dendritic complexity and a decrease in spine density. These findings reveal an extensive diversity of local rules driving structural and physiological changes in response to fluctuating levels of sex hormones, supporting the anatomic and functional subdivision of the VMHvl and its possible role in the orchestration of different aspects of female socio-sexual behavior.
Collapse
|
31
|
Pfabigan DM, Rütgen M, Kroll SL, Riečanský I, Lamm C. The administration of the opioid buprenorphine decreases motivational error signals. Psychoneuroendocrinology 2021; 128:105199. [PMID: 33933894 DOI: 10.1016/j.psyneuen.2021.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
While opioid addiction has reached pandemic proportions, we still lack a good understanding of how the administration of opioids interacts with cognitive functions. Error processing - the ability to detect erroneous actions and correct one's behaviour afterwards - is one such cognitive function that might be susceptible to opioidergic influences. Errors are hypothesised to induce aversive negative arousal, while opioids have been suggested to reduce aversive arousal induced by unpleasant and stressful stimuli. Thus, this study investigated whether the acute administration of an opioid would affect error processing. In a double-blind between-subject study, 42 male volunteers were recruited and received either 0.2 mg buprenorphine (a partial µ-opioid receptor agonist and κ-opioid receptor antagonist) or a placebo pill before they performed a stimulus-response task provoking errors. Electroencephalograms (EEG) were recorded while participants performed the task. We observed no group differences in terms of reaction times, error rates, and affective state ratings during the task between buprenorphine and control participants. Additional measures of adaptive control, however, showed interfering effects of buprenorphine administration. On the neural level, decreased Pe (Error Positivity) amplitudes were found in buprenorphine compared to control participants following error commission. Further, frontal delta oscillations were decreased in the buprenorphine group after all responses. Our neural results jointly demonstrate a general reduction in error processing in those participants who received an opioid before task completion, thereby suggesting that opioids might have indeed the potential to dampen motivational error signals. Importantly, the effects of the opioid were evident in more elaborate error processing stages, thereby impacting on processes of conscious error appraisal and evidence accumulation.
Collapse
Affiliation(s)
- D M Pfabigan
- Department of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway; Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - M Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - S L Kroll
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Psychiatry Building, Entrance 27, Floor 9, 581 85 Linköping, Sweden.
| | - I Riečanský
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava 81371, Slovakia.
| | - C Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| |
Collapse
|
32
|
van Steenbergen H, de Bruijn ERA, van Duijvenvoorde ACK, van Harmelen AL. How positive affect buffers stress responses. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state. Pain 2021; 162:405-420. [PMID: 32826755 DOI: 10.1097/j.pain.0000000000002039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is often comorbid with anxiety and depression, altering the level of perceived pain, which negatively affects therapeutic outcomes. The role of the endogenous mu-opioid receptor (MOP) system in pain-negative affect interactions and the influence of genetic background thereon are poorly understood. The inbred Wistar-Kyoto (WKY) rat, which mimics aspects of anxiety and depression, displays increased sensitivity (hyperalgesia) to noxious stimuli, compared with Sprague-Dawley (SD) rats. Here, we report that WKY rats are hyporesponsive to the antinociceptive effects of systemically administered MOP agonist morphine in the hot plate and formalin tests, compared with SD counterparts. Equivalent plasma morphine levels in the 2 rat strains suggested that these differences in morphine sensitivity were unlikely to be due to strain-related differences in morphine pharmacokinetics. Although MOP expression in the ventrolateral periaqueductal gray (vlPAG) did not differ between WKY and SD rats, the vlPAG was identified as a key locus for the hyporesponsivity to MOP agonism in WKY rats in the formalin test. Moreover, morphine-induced effects on c-Fos (a marker of neuronal activity) in regions downstream of the vlPAG, namely, the rostral ventromedial medulla and lumbar spinal dorsal horn, were blunted in the WKY rats. Together, these findings suggest that a deficit in the MOP-induced recruitment of the descending inhibitory pain pathway may underlie hyperalgesia to noxious inflammatory pain in the WKY rat strain genetically predisposed to negative affect.
Collapse
|
34
|
Aberrant Early in Life Stimulation of the Stress-Response System Affects Emotional Contagion and Oxytocin Regulation in Adult Male Mice. Int J Mol Sci 2021; 22:ijms22095039. [PMID: 34068684 PMCID: PMC8126076 DOI: 10.3390/ijms22095039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.
Collapse
|
35
|
Oswald LM, Dunn KE, Seminowicz DA, Storr CL. Early Life Stress and Risks for Opioid Misuse: Review of Data Supporting Neurobiological Underpinnings. J Pers Med 2021; 11:315. [PMID: 33921642 PMCID: PMC8072718 DOI: 10.3390/jpm11040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
A robust body of research has shown that traumatic experiences occurring during critical developmental periods of childhood when neuronal plasticity is high increase risks for a spectrum of physical and mental health problems in adulthood, including substance use disorders. However, until recently, relatively few studies had specifically examined the relationships between early life stress (ELS) and opioid use disorder (OUD). Associations with opioid use initiation, injection drug use, overdose, and poor treatment outcome have now been demonstrated. In rodents, ELS has also been shown to increase the euphoric and decrease antinociceptive effects of opioids, but little is known about these processes in humans or about the neurobiological mechanisms that may underlie these relationships. This review aims to establish a theoretical model that highlights the mechanisms by which ELS may alter opioid sensitivity, thereby contributing to future risks for OUD. Alterations induced by ELS in mesocorticolimbic brain circuits, and endogenous opioid and dopamine neurotransmitter systems are described. The limited but provocative evidence linking these alterations with opioid sensitivity and risks for OUD is presented. Overall, the findings suggest that better understanding of these mechanisms holds promise for reducing vulnerability, improving prevention strategies, and prescribing guidelines for high-risk individuals.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - Kelly E. Dunn
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21230, USA;
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Carla L. Storr
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| |
Collapse
|
36
|
Meier IM, Eikemo M, Leknes S. The Role of Mu-Opioids for Reward and Threat Processing in Humans: Bridging the Gap from Preclinical to Clinical Opioid Drug Studies. CURRENT ADDICTION REPORTS 2021; 8:306-318. [PMID: 34722114 PMCID: PMC8550464 DOI: 10.1007/s40429-021-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Opioid receptors are widely expressed in the human brain. A number of features commonly associated with drug use disorder, such as difficulties in emotional learning, emotion regulation and anhedonia, have been linked to endogenous opioid signalling. Whereas chronic substance use and misuse are thought to alter the function of the mu-opioid system, the specific mechanisms are not well understood. We argue that understanding exogenous and endogenous opioid effects in the healthy human brain is an essential foundation for bridging preclinical and clinical findings related to opioid misuse. Here, we will examine psychopharmacological evidence to outline the role of the mu-opioid receptor (MOR) system in the processing of threat and reward, and discuss how disruption of these processes by chronic opioid use might alter emotional learning and reward responsiveness. RECENT FINDINGS In healthy people, studies using opioid antagonist drugs indicate that the brain's endogenous opioids downregulate fear reactivity and upregulate learning from safety. At the same time, endogenous opioids increase the liking of and motivation to engage with high reward value cues. Studies of acute opioid agonist effects indicate that with non-sedative doses, drugs such as morphine and buprenorphine can mimic endogenous opioid effects on liking and wanting. Disruption of endogenous opioid signalling due to prolonged opioid exposure is associated with some degree of anhedonia to non-drug rewards; however, new results leave open the possibility that this is not directly opioid-mediated. SUMMARY The available human psychopharmacological evidence indicates that the healthy mu-opioid system contributes to the regulation of reward and threat processing. Overall, endogenous opioids can subtly increase liking and wanting responses to a wide variety of rewards, from sweet tastes to feelings of being connected to close others. For threat-related processing, human evidence suggests that endogenous opioids inhibit fear conditioning and reduce the sensitivity to aversive stimuli, although inconsistencies remain. The size of effects reported in healthy humans are however modest, clearly indicating that MORs play out their role in close concert with other neurotransmitter systems. Relevant candidate systems for future research include dopamine, serotonin and endocannabinoid signalling. Nevertheless, it is possible that endogenous opioid fine-tuning of reward and threat processing, when unbalanced by e.g. opioid misuse, could over time develop into symptoms associated with opioid use disorder, such as anhedonia and depression/anxiety.
Collapse
Affiliation(s)
- Isabell M. Meier
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| | - Siri Leknes
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| |
Collapse
|
37
|
Nocheva H, Sabit Z, Bakalov D, Grigorov E. Interactions between the cannabinoid and the serotonergic systems in modulation of pain perception. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e49219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of our study was to evaluate the effects of cannabinoids and serotonergic system on nociception in intact rats and after heat stress. Cannabinoid receptor type 1 (CB1) and 5-hydroxytryptamine receptor (5НТ1А) agonists and antagonists have been administered according to different experimental designs (alone and in combinations) in intact male Wistar rats, as well in animals subjected to one hour of heat stress. Pain perception has been evaluated by Paw pressure test. Our results pointed out that cannabinoids and the serotonergic system interact in nociception in intact animals as well as after heat stress. Cannabinoids seemed to have less prominent role in such interaction in intact animals than after heat stress. The interplay between the two systems probably involves different mechanisms in intact animals and after heat stress with time-dependent effects. The interaction between the cannabinoid and the serotonergic systems exerts a modulating rather than mediating effect on h-SIA.
Collapse
|
38
|
Sullivan MD, Ballantyne JC. When Physical and Social Pain Coexist: Insights Into Opioid Therapy. Ann Fam Med 2021; 19:79-82. [PMID: 33355099 PMCID: PMC7800754 DOI: 10.1370/afm.2591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
The US opioid epidemic challenges us to rethink our understanding of the function of opioids and the nature of chronic pain. We have neatly separated opioid use and abuse as well as physical and social pain in ways that may not be consistent with the most recent neuroscientific and epidemiological research. Physical injury and social rejection activate similar brain centers. Many of the patients who use opioid medications long term for the treatment of chronic pain have both physical and social pain, but these medications may produce a state of persistent opioid dependence that suppresses the endogenous opioid system that is essential for human socialization and reward processing. Recognition of the social aspects of chronic pain and opioid action can improve our treatment of chronic pain and our use of opioid medications.
Collapse
Affiliation(s)
- Mark D Sullivan
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Jane C Ballantyne
- Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
39
|
A mu-opioid feedback model of human social behavior. Neurosci Biobehav Rev 2020; 121:250-258. [PMID: 33359094 DOI: 10.1016/j.neubiorev.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Since the discovery of pain relieving and rewarding properties of opiates such as morphine or heroin, the human mu-opioid system has been a target for medical research on pain processing and addiction. Indeed, pain and pleasure act mutually inhibitory on each other and the mu-opioid system has been suggested as an underlying common neurobiological mechanism. Recently, research interest extended the role of the endogenous mu-opioid system beyond the hedonic value of pain and pleasure towards human social-emotional behavior. Here we propose a mu-opioid feedback model of social behavior. This model is based upon recent findings of opioid modulation of human social learning, bonding and empathy in relation to affiliative and protective tendencies. Fundamental to the model is that the mu-opioid system reinforces socially affiliative or protective behavior in response to positive and negative social experiences with long-term consequences for social behavior and health. The functional implications for stress, anxiety, depression and attachment behaviors are discussed.
Collapse
|
40
|
Case AA, Walter M, Pailler M, Stevens L, Hansen E. A Practical Approach to Nonmedical Opioid Use in Palliative Care Patients With Cancer: Using the PARTNERS Framework. J Pain Symptom Manage 2020; 60:1253-1259. [PMID: 32882356 DOI: 10.1016/j.jpainsymman.2020.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Amy A Case
- Department of Supportive and Palliative Care, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Geriatrics and Palliative Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.
| | - Michelle Walter
- Department of Supportive and Palliative Care, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Geriatrics and Palliative Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Megan Pailler
- Department of Supportive and Palliative Care, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - LuAnn Stevens
- Department of Supportive and Palliative Care, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eric Hansen
- Department of Supportive and Palliative Care, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Geriatrics and Palliative Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| |
Collapse
|
41
|
Nakamoto K, Taniguchi A, Tokuyama S. Changes in opioid receptors, opioid peptides and morphine antinociception in mice subjected to early life stress. Eur J Pharmacol 2020; 881:173173. [PMID: 32511976 DOI: 10.1016/j.ejphar.2020.173173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/09/2023]
Abstract
Recent studies have shown that the endogenous opioid system is considerably affected by early life stress such as child abuse. Here, we investigated whether early life stress changes the endogenous opioid receptors and their peptides, and if such stress impacts morphine antinociception. We used mice affected by maternal separation and social isolation (MSSI) as an early life stress model. In the tail-flick test, 10-week-old MSSI mice showed a significant decrease in morphine antinociception compared to age-matched control mice. The number of c-Fos-positive cells increased in the periaqueductal gray (PAG), nucleus accumbens, and thalamus of control mice after the morphine injections, whereas hardly any positive cells were detected in the same areas of MSSI mice. The expression of μ- and κ-opioid receptor (MOR and KOR, respectively) messenger RNA (mRNA) was significantly decreased in the PAG of MSSI mice, whereas KOR expression was significantly increased in the amygdala of MSSI mice. The expression of δ-opioid receptor (DOR) mRNA was significantly reduced in the PAG and rostral ventromedial medulla of MSSI mice compared to control mice. Moreover, the lack of morphine antinociception was observed in 18-week-old MSSI mice. Our findings suggest that the supraspinal opioid system may be affected by early life stress exposure, and that this exposure may impact morphine antinociception.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Ayaka Taniguchi
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
42
|
Park JY, Cheong MC, Cho JY, Koo HS, Paik YK. A novel functional cross-interaction between opioid and pheromone signaling may be involved in stress avoidance in Caenorhabditis elegans. Sci Rep 2020; 10:7524. [PMID: 32371913 PMCID: PMC7200713 DOI: 10.1038/s41598-020-64567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Upon sensing starvation stress, Caenorhabditis elegans larvae (L2d) elicit two seemingly opposing behaviors to escape from the stressful condition: food-seeking roaming mediated by the opioid peptide NLP-24 and dauer formation mediated by pheromones. Because opioid and pheromone signals both originate in ASI chemosensory neurons, we hypothesized that they might act sequentially or competitively to avoid starvation stress. Our data shows that NPR-17 opioid receptor signaling suppressed pheromone biosynthesis and the overexpression of opioid genes disturbed dauer formation. Likewise, DAF-37 pheromone receptor signaling negatively modulated nlp-24 expression in the ASI neurons. Under short-term starvation (STS, 3 h), both pheromone and opioid signaling were downregulated in gpa-3 mutants. Surprisingly, the gpa-3;nlp-24 double mutants exhibited much higher dauer formation than seen in either of the single mutants. Under long-term starvation (LTS, >24 h), the stress-activated SKN-1a downregulated opioid signaling and then enhanced dauer formation. Both insulin and serotonin stimulated opioid signaling, whereas NHR-69 suppressed opioid signaling. Thus, GPA-3 and SKN-1a are proposed to regulate cross-antagonistic interaction between opioids and pheromones in a cell-specific manner. These regulatory functions are suggested to be exerted via the selective interaction of GPA-3 with NPR-17 and site-specific SKN-1 binding to the promoter of nlp-24 to facilitate stress avoidance.
Collapse
Affiliation(s)
- Jun Young Park
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Mi Cheong Cheong
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young-Ki Paik
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
43
|
Hansen E, Nadagoundla C, Wang C, Miller A, Case AA. Buprenorphine for Cancer Pain in Patients With Nonmedical Opioid Use: A Retrospective Study at a Comprehensive Cancer Center. Am J Hosp Palliat Care 2020; 37:350-353. [DOI: 10.1177/1049909119884358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Outpatients with cancer commonly have nonmedical opioid use (NMOU) behaviors and use opioids to dull emotional and existential suffering. Buprenorphine is often used for cancer pain due to less reported euphoria when compared to other opioids. Methods: A retrospective review was done in patients who were prescribed buprenorphine for cancer pain. Pain scores were reported on a Likert pain scale of 1 to 10. Nonmedical opioid use was defined as patients taking opioids for emotional pain at or above the maximum prescribed amount. Results: For 16 patients, the mean pain score prior to buprenorphine (pain pre) was 8.3 (Standard deviation (Std) 1.6), and the mean pain score on follow-up post-buprenorphine (pain post) was 6.1 (Std 2.3) with a reduction in mean pain score (pain change) of −2.0 (Std 2.9, P = .059). Those patients without NMOU had a pain prescore of 9.5 (Std 1.0) and pain post of 4.3 (Std 2.5) with a mean pain change of −5.0 (Std 1.7, P = .20). The mean pain change in those with chemical coping (−1.3/Std 2.7), illicit drug use (−2.8/Std 1.0), or psychiatric comorbidity (−2.4/Std 2.7) were reduced after buprenorphine, however, not statistically significant. Outpatient rotation to buprenorphine was well tolerated. Conclusions: The pain score in those patients without NMOU was significantly lower after rotation to buprenorphine than those with NMOU. We deduce that in those with NMOU, it is more challenging to achieve pain relief with buprenorphine. Overall, for all patients, rotation to buprenorphine resulted in a marginally significantly reduced pain score.
Collapse
Affiliation(s)
- Eric Hansen
- Department of Supportive and Palliative Care. Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Division of Geriatrics and Palliative Medicine. State University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14263, USA
| | - Chitra Nadagoundla
- Department of Supportive and Palliative Care. Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Division of Geriatrics and Palliative Medicine. State University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14263, USA
| | - Chong Wang
- Department of Supportive and Palliative Care. Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Austin Miller
- Department of Supportive and Palliative Care. Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Division of Geriatrics and Palliative Medicine. State University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14263, USA
| | - Amy Allen Case
- Department of Supportive and Palliative Care. Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Division of Geriatrics and Palliative Medicine. State University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14263, USA
| |
Collapse
|
44
|
Riblet NB, Gottlieb DJ, Shiner B, Cornelius SL, Watts BV. Associations between Medication Assisted Therapy Services Delivery and Mortality in a National Cohort of Veterans with Posttraumatic Stress Disorder and Opioid Use Disorder. J Dual Diagn 2020; 16:228-238. [PMID: 31852392 PMCID: PMC7192001 DOI: 10.1080/15504263.2019.1701218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Opioid use disorder (OUD) is a notable concern in the United States (US) and strongly associated with mortality. There is a high prevalence of OUD in patients with posttraumatic stress disorder (PTSD) and the mortality associated with OUD may be exacerbated in patients with PTSD. Medication-assisted treatment (MAT) for OUD has become standard of care for OUD and has been shown to reduce mortality. However, there has been little study of MAT and mortality in patients with PTSD and OUD. Methods: We conducted a retrospective cohort study in U.S. veterans who had newly engaged in PTSD treatment, were diagnosed with OUD and were provided MAT for at least one day between 2004 and 2013. We assessed mortality for one year following the index diagnosis date. We calculated all-cause mortality as well as death by external cause, overdose plus suicide, overdose, and suicide rates per 100,000. We used hazard ratios (HR) and 95% confidence intervals (CI) to compare death rates between patients with high versus low adherence to MAT. We evaluated the impact of high versus low exposure to general substance abuse care. We considered a confidence interval that did not cross one to be significant. Results: A total of 5,901 patients met inclusion criteria. Most patients were men and the average age was 43.3 years (SD = 13.8). The all-cause mortality rate was 1,370 per 100,000 patients. High adherence to MAT resulted in a non-significant, decreased risk for death due to all-cause (HR = 0.73, 95% CI [0.47, 1.13]), external cause (HR = 0.71, 95% CI [0.38, 1.35]), and overdose or suicide (HR = 0.66, 95% CI [0.33, 1.35]). Patients with high exposure (≥ 60 days) to general substance abuse care were significantly less likely to die due to external cause (HR = 0.39, 95% CI [0.18, 0.85]) and overdose or suicide (HR = 0.31, 95% CI [0.12, 0.77]). Conclusions: In patients with PTSD and OUD, improved adherence to MAT and greater exposure to general substance abuse care may result in lower mortality. Studies with longer follow-up and larger sample sizes to assess the impact of MAT on suicide are needed to confirm our findings.
Collapse
Affiliation(s)
- Natalie B Riblet
- Department of Mental Health, Veterans Affairs Medical Center, White River Junction, VT, USA.,Department of Mental Health, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.,Department of Mental Health, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Daniel J Gottlieb
- Department of Mental Health, Veterans Affairs Medical Center, White River Junction, VT, USA.,Department of Mental Health, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Brian Shiner
- Department of Mental Health, Veterans Affairs Medical Center, White River Junction, VT, USA.,Department of Mental Health, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA.,Department of Mental Health, National Center for PTSD, White River Junction, VT, USA
| | - Sarah L Cornelius
- Department of Mental Health, Veterans Affairs Medical Center, White River Junction, VT, USA
| | - Bradley V Watts
- Department of Mental Health, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.,Department of Systems Redesign and Improvement, VA Office of Systems Redesign and Improvement, White River Junction, VT, USA
| |
Collapse
|
45
|
Hippocampal µ-opioid receptors on GABAergic neurons mediate stress-induced impairment of memory retrieval. Mol Psychiatry 2020; 25:977-992. [PMID: 31142818 PMCID: PMC7192851 DOI: 10.1038/s41380-019-0435-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
Abstract
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAA receptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Collapse
|
46
|
Prokofieva V, Kostromina S, Polevaia S, Fenouillet F. Understanding Emotion-Related Processes in Classroom Activities Through Functional Measurements. Front Psychol 2019; 10:2263. [PMID: 31708826 PMCID: PMC6819428 DOI: 10.3389/fpsyg.2019.02263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/23/2019] [Indexed: 12/01/2022] Open
Abstract
To improve educational research focusing on such complex phenomenon as the interaction of emotion-related processes (affects) and students’ learning classroom activities, the collaboration between educational studies and neurosciences appears particularly relevant. Stress or “stress response” being an emotion-related psychological process (Gross, 2015) and having a neurobiological origin (Selye, 1956) is mostly studied in neurophysiological research using laboratory controlled objective measurements. One of such methods, heart rate variability (HRV) is considered as a reliable neurobiological correlate of stress response as the heart and the brain are directly and indirectly connected, which is advanced by the neurovisceral integration model (Thayer and Lane, 2000, 2009). This article presents an empirical research that uses a neurophysiological HRV method of wireless measurement of stress response in students of 11–12 years old (N = 12) during real-life classroom (oral and written) assessment activities and in five different lessons. The stress data were confronted to the analysis of the students’ behavior and the nature of classroom events through a video-based classroom observation. The results indicate that cardiovascular correlates of parasympathetic activity are instantaneous markers of stress response and correspond to real contextual elements of classroom assessment activities, among which the most stressful are writing a short test, an oral reply to the question of the teacher, putting up hand to reply, etc. The stressful factors were highlighted, grouped and ranked. The longest stress duration was registered for oral reply at the blackboard. The total stress duration covered 38.8% of time spent in the classroom. This finding suggests that classroom assessment activities are stressful in young students as possibly representing social evaluation.
Collapse
Affiliation(s)
- Victoria Prokofieva
- Department of Psychology, Laboratory of Human and Artificial Cognitions, University Paris Nanterre, Paris, France
| | - Svetlana Kostromina
- Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sofia Polevaia
- Department of Neurophysiology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Fabien Fenouillet
- Department of Psychology, Laboratory of Human and Artificial Cognitions, University Paris Nanterre, Paris, France
| |
Collapse
|
47
|
Hormozi A, Zarifkar A, Rostami B, Naghibalhossaini F. An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:397-405. [PMID: 31582864 PMCID: PMC6754534 DOI: 10.30476/ijms.2019.44958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Intense stress can change pain perception and induce hyperalgesia; a phenomenon called stress-induced hyperalgesia (SIH). However, the neurobiological mechanism of this effect remains unclear. The present study aimed to investigate the effect of the spinal cord µ-opioid receptors (MOR) and α2-adrenergic receptors (α2-AR) on pain sensation in rats with SIH.
Methods: Eighteen Sprague-Dawley male rats, weighing 200-250 g, were randomly divided into two groups (n=9 per group), namely the control and stress group. The stress group was evoked by random 1-hour daily foot-shock stress (0.8 mA for 10 seconds, 1 minute apart) for 3 weeks using a communication box. The tail-flick and formalin tests were performed in both groups on day 22. The real-time RT-PCR technique was used to observe MOR and α2-AR mRNA levels at the L4-L5 lumbar spinal cord. Statistical analysis was performed using the GraphPad Prism 5 software (San Diego, CA, USA). Student’s t test was applied for comparisons between the groups. P<0.05 was considered statistically significant.
Results: There was a significant (P=0.0014) decrease in tail-flick latency in the stress group compared to the control group. Nociceptive behavioral responses to formalin-induced pain in the stress group were significantly increased in the acute (P=0.007) and chronic (P=0.001) phases of the formalin test compared to the control group. A significant reduction was also observed in MOR mRNA level of the stress group compared to the control group (P=0.003). There was no significant difference in α2-AR mRNA level between the stress and control group.
Conclusion: The results indicate that chronic stress can affect nociception and lead to hyperalgesia. The data suggest that decreased expression of spinal cord MOR causes hyperalgesia.
Collapse
Affiliation(s)
- Asef Hormozi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran.,Autoimmune Research Center, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| |
Collapse
|
48
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
49
|
Assessment of the tDCS Influence on Stress-Induced Disorders in Rats with Low Stress Sustainability and Endurance. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of study is to analyze the tDCS influence on stress-induced disorders in rats with low stress sustainability and endurance. The animals with a low stress sustainability and endurance were divided into 3 groups: the comparison 1, the comparison 2 and the main. The control group consisted of intact rats. The rats of the comparison group 1 were subjected to orthostatic stress 24 hours after the 1st forced swimming test. The rats of the comparison group 2 and the main one were conducted the 2nd forced swimming test on the 7th day of the experiment, and 24 hours later they were subjected to the orthostatic stress. Rats of the main group got tDCS sessions after the 1st forced swimming test. The development of the orthostatic stress is accompanied by an increase in plasma content the following components: adrenaline by 88.9%, ACTH in 10.5 times, corticosterone by 70.1%, IL-1β by 178.2%, IL-6 in 6.7 times, IL-10 by 37.1% in comparison with intact animals. The usage of tDCS in rats with low stress sustainability and endurance increased the swimming duration by 47.7%. During the OS it was also accompanied by a decrease in plasma content: adrenaline in 1.4 times, ACTH in 8.2 times, corticosterone in 1.4 times, IL-1β in 1.5 times, IL-6 in 2.2 times, IL-10 in 1.2 times, relative to the comparison group 2. The obtained data showed the essential effect of tDCS on stress-related changes in the content of cytokines and hormones of blood.
Collapse
|
50
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|