1
|
Huang H, Lv Y, Chen Q, Huang X, Qin J, Liu Y, Liao Q, Xing X, Chen L, Liu Q, Li S, Long Z, Wang Q, Chen W, Wei Q, Hou M, Hu Q, Xiao Y. Empirical analysis of lead neurotoxicity mode of action and its application in health risk assessment. ENVIRONMENTAL RESEARCH 2024; 251:118708. [PMID: 38493858 DOI: 10.1016/j.envres.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 μM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 μg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen, 518126, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Borgert CJ. Issue analysis: key characteristics approach for identifying endocrine disruptors. Arch Toxicol 2023; 97:2819-2822. [PMID: 37572129 PMCID: PMC10474976 DOI: 10.1007/s00204-023-03568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
For more than a decade, weight of evidence (WoE) evaluations have been the standard method for determining whether a chemical meets the definition of an endocrine disrupting chemical (EDC). WoE methods consider all data pertinent to satisfying the EDC definition and evaluating those data with respect to relevance, reliability, strength, and coherence with established endocrine physiology and pharmacology. A new approach for identifying EDC hazards has been proposed that organizes and evaluates data according to ten so-called "Key Characteristics (KCs) of EDCs". The approach claims to address the lack of a widely accepted, systematic approach for identifying EDC hazards, but completely ignores the WoE literature for EDCs. In contrast to WoE methods, the KC approach fails to apply the consensus definition of EDC and is not amenable to empirical testing or validation, is fungible and ensures inconsistent and unreliable results, ignores principles of hormone action and characteristics of dose-response in endocrine pharmacology and toxicology, lacks a means of distinguishing endocrine-mediated from non-endocrine mediated mechanisms, lacks a means to reach a negative conclusion about a chemical's EDC properties or to distinguish EDCs from non-EDCs, and provides no means for developing a valid consensus among experts nor provides a means of resolving conflicting interpretations of data. Instead of shortcuts like the KC approach, which are prone to bias, error, and arbitrary conclusions, identifying EDCs should rely on WoE evaluations that supply the critical components and scientific rigor lacking in the proposed KCs for EDCs.
Collapse
|
3
|
Borgert CJ. Hypothesis-driven weight of evidence evaluation indicates styrene lacks endocrine disruption potential. Crit Rev Toxicol 2023:1-16. [PMID: 37216681 DOI: 10.1080/10408444.2022.2112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/24/2023]
Abstract
Styrene is among the U.S. EPA's List 2 chemicals for Tier 1 endocrine screening subject to the agency's two-tiered Endocrine Disruptor Screening Program (EDSP). Both U.S. EPA and OECD guidelines require a Weight of Evidence (WoE) to evaluate a chemical's potential for disrupting the endocrine system. Styrene was evaluated for its potential to disrupt estrogen, androgen, thyroid, and steroidogenic (EATS) pathways using a rigorous WoE methodology that included problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Sufficient data were available to assess the endocrine disruptive potential of styrene based on endpoints that would respond to EATS modes of action in some Tier 1-type and many Tier 2-type reproductive, developmental, and repeat dose toxicity studies. Responses to styrene were inconsistent with patterns of responses expected for chemicals and hormones known to operate via EATS MoAs, and thus, styrene cannot be deemed an endocrine disruptor, a potential endocrine disruptor, or to exhibit endocrine disruptive properties. Because Tier 1 EDSP screening results would trigger Tier 2 studies, like those evaluated here, subjecting styrene to further endocrine screening would produce no additional useful information and would be unjustified from animal welfare perspectives.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology Inc, Gainesville, FL, USA
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| |
Collapse
|
4
|
Gault IG, Sun C, Martin JW. Persistent Cytotoxicity and Endocrine Activity in the First Oil Sands End-Pit Lake. ACS ES&T WATER 2023; 3:366-376. [PMID: 38894704 PMCID: PMC11181316 DOI: 10.1021/acsestwater.2c00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/21/2024]
Abstract
Oil sands process-affected water (OSPW) is a byproduct of bitumen extraction that has persistent toxicity owing to its complex mixture of organics. A prominent remediation strategy that involves aging OSPW in end-pit lakes and Base Mine Lake (BML) is the first full-scale test. Its effectiveness over the first 5 years was investigated here using real-time cell analysis, yeast estrogenic and androgenic screens (YES/YAS), and ultra-high-resolution mass spectrometry. HepG2 cytotoxicity per volume of BML organics extracted decreased with age; however, the toxic potency (i.e., toxicity per mass of extract) was not significantly different between years. This was consistent with mass spectral evidence showing no difference in chemical profiles, yet lower total abundance of organics in field-aged samples, suggestive that dilution explains the declining cytotoxicity in BML. The IC50's of BML extracts for YES/YAS antagonism were at environmental concentrations and were similar despite differences in field-age. Persistent YES/YAS antagonism and cytotoxicity were detected in experimental pond OSPW field-aged >20 years, and while organic acids were depleted here, non-acid chemical classes were enriched compared to BML, suggesting these contribute to persistent toxicity of aged OSPW. To avoid a legacy of contaminated sites, active water treatment may be required to accelerate detoxification of end-pit lakes.
Collapse
Affiliation(s)
- Ian G.
M. Gault
- Division
of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Chenxing Sun
- Division
of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
5
|
Matthews JC. A mechanistic evaluation of the potential for octamethylcyclotetrasiloxane to produce effects via endocrine modes of action. Crit Rev Toxicol 2021; 51:571-590. [PMID: 34877914 DOI: 10.1080/10408444.2021.1994525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review is a hypothesis driven, mechanistic evaluation of the potential for octamethylcyclotetrasiloxane (D4) to produce any effects via endocrine modes of action. D4 is a volatile, lipophilic liquid used in the production of high molecular weight dimethylsiloxane polymers. These are used in a variety of industrial, medical, cleaning, and personal care products, and they may contain low levels of residual D4. Low concentrations of D4 are found in the environment and there is potential for low level human exposure. All of the measured environmental and workplace levels of D4 fall below no observed effect levels (NOEL). Most of the effects of high dose D4 involve the female reproductive system. In the mature intact female rat following chronic high dose exposure, D4 may cause inhibition of mating and ovulation, decreased live litter sizes, small increases in the estrogen to progesterone ratio primarily through decreases in progesterone, and increases in uterine hyperplasia. When endogenous estrogens are very low, high dose D4 causes increases in some uterine parameters. To assess whether these high dose effects can be attributed to an endocrine mode of action, endpoints are ranked for relevance and strength, consistent with published concepts. When sufficient information is available the level of activity of D4 for producing the observed effect is compared with that of potent endocrines. The conclusions reached are that all of the effects of D4 fall well short of any established criteria for D4 to be capable of producing any adverse effect via an endocrine mode of action.
Collapse
Affiliation(s)
- John C Matthews
- Department of Biomolecular Sciences, University of Mississippi School of Pharmacy, University, MS, USA
| |
Collapse
|
6
|
Huisinga M, Bertrand L, Chamanza R, Damiani I, Engelhardt J, Francke S, Freyberger A, Harada T, Harleman J, Kaufmann W, Keane K, Köhrle J, Lenz B, Marty MS, Melching-Kollmuss S, Palazzi X, Pohlmeyer-Esch G, Popp A, Rosol TJ, Strauss V, Van den Brink-Knol H, Wood CE, Yoshida M. Adversity Considerations for Thyroid Follicular Cell Hypertrophy and Hyperplasia in Nonclinical Toxicity Studies: Results From the 6th ESTP International Expert Workshop. Toxicol Pathol 2021; 48:920-938. [PMID: 33334259 DOI: 10.1177/0192623320972009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Society of Toxicologic Pathology organized an expert workshop in May 2018 to address adversity considerations related to thyroid follicular cell hypertrophy and/or hyperplasia (FCHH), which is a common finding in nonclinical toxicity studies that can have important implications for risk assessment of pharmaceuticals, food additives, and environmental chemicals. The broad goal of the workshop was to facilitate better alignment in toxicologic pathology and regulatory sciences on how to determine adversity of FCHH. Key objectives were to describe common mechanisms leading to thyroid FCHH and potential functional consequences; provide working criteria to assess adversity of FCHH in context of associated findings; and describe additional methods and experimental data that may influence adversity determinations. The workshop panel was comprised of representatives from the European Union, Japan, and the United States. Participants shared case examples illustrating issues related to adversity assessments of thyroid changes. Provided here are summary discussions, key case presentations, and panel recommendations. This information should increase consistency in the interpretation of adverse changes in the thyroid based on pathology findings in nonclinical toxicity studies, help integrate new types of biomarker data into the review process, and facilitate a more systematic approach to communicating adversity determinations in toxicology reports.
Collapse
Affiliation(s)
| | - Lise Bertrand
- 57146Charles River Laboratories, Saint-Germain-Nuelles, France
| | - Ronnie Chamanza
- 50148Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | | | - Sabine Francke
- Center for Food Safety and Applied Nutrition (CFSAN), 4137US Food and Drug Administration, College Park, MD, USA
| | | | | | | | | | | | - Josef Köhrle
- 72217Charité University Medicine Berlin, Berlin, Germany
| | - Barbara Lenz
- Roche Pharma Research and Development, Basel, Switzerland
| | - M Sue Marty
- 540144The Dow Chemical Company, Midland, MI, USA
| | | | | | | | | | | | | | | | - Charles E Wood
- 6893Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | |
Collapse
|
7
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
8
|
Levine SL, Webb EG, Saltmiras DA. Review and analysis of the potential for glyphosate to interact with the estrogen, androgen and thyroid pathways. PEST MANAGEMENT SCIENCE 2020; 76:2886-2906. [PMID: 32608552 DOI: 10.1002/ps.5983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate was recently evaluated for its potential to interact with the estrogen, androgen and thyroid (EAT) hormone pathways, including steroidogenesis, under the United States Environmental Protection Agency's (USEPA) Endocrine Disruptor Screening Program (EDSP), then by Germany, the rapporteur Member State who led the European Annex 1 renewal for glyphosate, and then by the European Food Protection Agency (EFSA) also as part of the Annex 1 renewal for glyphosate. Under the EDSP, 11 Tier 1 assays were run following the USEPA's validated 890-series test guidelines and included five in vitro and six in vivo assays to evaluate the EAT pathways. Steroidogenesis was evaluated as part of the estrogen and androgen pathways. An up-to-date critical review has been conducted that considered results from the EDSP Tier 1 battery, guideline regulatory studies and an in-depth analysis of the literature studies that informed an endocrine assessment. A strength of this evaluation was that it included data across multiple levels of biological organization, and mammalian and nonmammalian test systems. There was strong agreement across the in vitro and in vivo Tier 1 battery, guideline studies and relevant literature studies, demonstrating that glyphosate does not interact with EAT pathways including steroidogenesis. Based on an analysis of the comprehensive toxicology database for glyphosate and the literature, this review has concluded that glyphosate does not have endocrine-disrupting properties through estrogen, androgen, thyroid and steroidogenic modes of action. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Steven L Levine
- Global Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | - Elizabeth G Webb
- Global Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | - David A Saltmiras
- Global Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| |
Collapse
|
9
|
Hanson ML, Solomon KR, Van Der Kraak GJ, Brian RA. Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence. Crit Rev Toxicol 2020; 49:670-709. [DOI: 10.1080/10408444.2019.1701985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mark L. Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Keith R. Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
10
|
Mihaich E, Capdevielle M, Urbach-Ross D, Gallagher S, Wolf J. Medaka (Oryzias latipes) Multigeneration Test with Triclosan. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1770-1783. [PMID: 31017693 DOI: 10.1002/etc.4451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/04/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The medaka extended one-generation reproduction test (MEOGRT) is a tier-2 study in the US Environmental Protection Agency's Endocrine Disruptor Screening Program and a level-5 study in the Organisation for Economic Co-operation and Development's conceptual framework. Integrating nonspecific apical and endocrine-specific mechanistic endpoints, results of a MEOGRT can be used, with other data, in a weight-of-evidence evaluation to establish a dose-response relationship for risk assessment and identify potential causal relationships between an endocrine mode of action and adverse effects. The MEOGRT test design was used to evaluate the multigenerational effects of the antimicrobial agent triclosan. Japanese medaka were exposed to nominal concentrations of 1.4, 2.8, 5.6, 11, and 23 μg/L triclosan and a dilution water control starting with adult medaka (F0) through hatch in the second generation (F2). No consistent or concentration-related responses occurred in the 182-d test that suggested an endocrine-mediated effect. There were no impacts on hepatic vitellogenin, secondary sex characteristics, or sex ratio that were linked to an adverse reproductive outcome. Histopathological responses were consistent with a toxic or stress effect, particularly when considered in context with observed reductions in growth. The overall population-relevant no-observed-effect concentration was 11 µg/L based on effects on growth. The results of the present study support a previously conducted weight-of-evidence evaluation concluding that triclosan does not act as an agonist or antagonist within estrogen, androgen, thyroid, or steroidogenic pathways. Environ Toxicol Chem 2019;38:1770-1783. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Ellen Mihaich
- Environmental and Regulatory Resources, Durham, North Carolina, USA
| | | | | | | | - Jeffrey Wolf
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| |
Collapse
|
11
|
Cotterill JV, Palazzolo L, Ridgway C, Price N, Rorije E, Moretto A, Peijnenburg A, Eberini I. Predicting estrogen receptor binding of chemicals using a suite of in silico methods - Complementary approaches of (Q)SAR, molecular docking and molecular dynamics. Toxicol Appl Pharmacol 2019; 378:114630. [PMID: 31220507 DOI: 10.1016/j.taap.2019.114630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
Abstract
With the aim of obtaining reliable estimates of Estrogen Receptor (ER) binding for diverse classes of compounds, a weight of evidence approach using estimates from a suite of in silico models was assessed. The predictivity of a simple Majority Consensus of (Q)SAR models was assessed using a test set of compounds with experimental Relative Binding Affinity (RBA) data. Molecular docking was also carried out and the binding energies of these compounds to the ERα receptor were determined. For a few selected compounds, including a known full agonist and antagonist, the intrinsic activity was determined using low-mode molecular dynamics methods. Individual (Q)SAR model predictivity varied, as expected, with some models showing high sensitivity, others higher specificity. However, the Majority Consensus (Q)SAR prediction showed a high accuracy and reasonably balanced sensitivity and specificity. Molecular docking provided quantitative information on strength of binding to the ERα receptor. For the 50 highest binding affinity compounds with positive RBA experimental values, just 5 of them were predicted to be non-binders by the Majority QSAR Consensus. Furthermore, agonist-specific assay experimental values for these 5 compounds were negative, which indicates that they may be ER antagonists. We also showed different scenarios of combining (Q)SAR results with Molecular docking classification of ER binding based on cut-off values of binding energies, providing a rational combined strategy to maximize terms of toxicological interest.
Collapse
Affiliation(s)
- J V Cotterill
- Fera Science Limited, Sand Hutton, York YO41 1LZ, UK
| | - L Palazzolo
- Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari, Via Balzaretti 9, 20133 Milano, Italy
| | - C Ridgway
- Fera Science Limited, Sand Hutton, York YO41 1LZ, UK
| | - N Price
- Fera Science Limited, Sand Hutton, York YO41 1LZ, UK
| | - E Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - A Moretto
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Ospedale L. Sacco, Padiglione 17, Via G.B. Grassi 74, 20157 Milano, Italy
| | - A Peijnenburg
- Wageningen University & Research, Wageningen, The Netherlands
| | - I Eberini
- Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
12
|
Hypothesis-driven weight-of-evidence analysis for the endocrine disruption potential of benzene. Regul Toxicol Pharmacol 2018; 100:7-15. [DOI: 10.1016/j.yrtph.2018.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/15/2022]
|
13
|
McCarty LS, Borgert CJ, Posthuma L. The regulatory challenge of chemicals in the environment: Toxicity testing, risk assessment, and decision-making models. Regul Toxicol Pharmacol 2018; 99:289-295. [PMID: 30291878 DOI: 10.1016/j.yrtph.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
Environmental assessment for chemicals relies on models of fate, exposure, toxicity, risk, and impacts. Together, these models should provide scientific support for regulatory risk management decision-making, assuming that progress through the data-information-knowledge-wisdom (DIKW) hierarchy is both appropriate and sufficient. Improving existing regulatory processes necessitates continuing enhancement of interpretation and evaluation of key data for use in decision-making schemes, including ecotoxicity testing data, physical-chemical properties, and environmental fate processes. Yet, as environmental objectives also increase in scope and sophistication to encompass a safe chemical economy, testing, risk assessment, and decision-making are subject to additional complexity due to the ongoing interaction between science and policy models. Problems associated with existing design and implementation choices in science and policy have both limited needed development beyond chemo-centric environmental risk assessment modeling and constrained needed improvements in environmental decision-making. Without a thorough understanding of either the scientific foundations or the disparate evaluation processes for validation, quality, and relevance, this results in complex technical and philosophical problems that increase costs and decrease productivity. Both over- and under-management of chemicals are consequences of failure to validate key model assumptions, unjustified standardized views on data selection, and inordinate reification (i.e., abstract concepts are wrongly treated as facts).
Collapse
Affiliation(s)
- L S McCarty
- Scientific Research & Consulting, Newmarket, ON, L3X 3E2, Canada.
| | - C J Borgert
- Applied Pharmacology and Toxicology, Inc., Gainesville, FL, 32605, USA.
| | - L Posthuma
- National Institute of Public Health and the Environment (RIVM), NL-3720, BA, Bilthoven, the Netherlands; Radboud University Nijmegen, Department of Environmental Science, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Gelbke HP, Banton M, Block C, Dawkins G, Leibold E, Pemberton M, Sakoda A, Yasukawa A. Oligomers of styrene are not endocrine disruptors. Crit Rev Toxicol 2018; 48:471-499. [DOI: 10.1080/10408444.2018.1447547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Gordon Dawkins
- INEOS Styrolution Group GmbH, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
15
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
16
|
Abstract
The OECD QSAR Toolbox is a computer software designed to make pragmatic qualitative and quantitative structure-activity relationship methods-based predictions of toxicity, including read-across, available to the user in a comprehensible and transparent manner. The Toolbox, provide information on chemicals in structure-searchable, standardized files that are associated with chemical and toxicity data to ensure that proper structural analogs can be identified. This chapter describes the advantages of the Toolbox, the aims, approach, and workflow of it, as well as reviews its history. Additionally, key functional elements of it use are explained and features new to Version 4.1 are reported. Lastly, the further development of the Toolbox, likely needed to transform it into a more comprehensive Chemical Management System, is considered.
Collapse
|
17
|
Solomon KR, Stephenson GL. Quantitative weight of evidence assessment of higher-tier studies on the toxicity and risks of neonicotinoid insecticides in honeybees 1: Methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:316-329. [PMID: 29157187 DOI: 10.1080/10937404.2017.1388563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A quantitative weight of evidence (QWoE) methodology was developed and used to assess many higher-tier studies on the effects of three neonicotinoid insecticides: clothianidin (CTD), imidacloprid (IMI), and thiamethoxam (TMX) on honeybees. A general problem formulation, a conceptual model for exposures of honeybees, and an analysis plan were developed. A QWoE methodology was used to characterize the quality of the available studies from the literature and unpublished reports of studies conducted by or for the registrants. These higher-tier studies focused on the exposures of honeybees to neonicotinoids via several matrices as measured in the field as well as the effects in experimentally controlled field studies. Reports provided by Bayer Crop Protection and Syngenta Crop Protection and papers from the open literature were assessed in detail, using predefined criteria for quality and relevance to develop scores (on a relative scale of 0-4) to separate the higher-quality from lower-quality studies and those relevant from less-relevant results. The scores from the QWoEs were summarized graphically to illustrate the overall quality of the studies and their relevance. Through mean and standard errors, this method provided graphical and numerical indications of the quality and relevance of the responses observed in the studies and the uncertainty associated with these two metrics. All analyses were conducted transparently and the derivations of the scores were fully documented. The results of these analyses are presented in three companion papers and the QWoE analyses for each insecticide are presented in detailed supplemental information (SI) in these papers.
Collapse
Affiliation(s)
- Keith R Solomon
- a Centre for Toxicology, School of Environmental Sciences , University of Guelph , Guelph , Canada
| | | |
Collapse
|
18
|
Framework for the quantitative weight-of-evidence analysis of 'omics data for regulatory purposes. Regul Toxicol Pharmacol 2017; 91 Suppl 1:S46-S60. [PMID: 29037774 DOI: 10.1016/j.yrtph.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
A framework for the quantitative weight-of-evidence (QWoE) analysis of 'omics data for regulatory purposes is presented. The QWoE framework encompasses seven steps to evaluate 'omics data (also together with non-'omics data): (1) Hypothesis formulation, identification and weighting of lines of evidence (LoEs). LoEs conjoin different (types of) studies that are used to critically test the hypothesis. As an essential component of the QWoE framework, step 1 includes the development of templates for scoring sheets that predefine scoring criteria with scores of 0-4 to enable a quantitative determination of study quality and data relevance; (2) literature searches and categorisation of studies into the pre-defined LoEs; (3) and (4) quantitative assessment of study quality and data relevance using the respective pre-defined scoring sheets for each study; (5) evaluation of LoE-specific strength of evidence based upon the study quality and study relevance scores of the studies conjoined in the respective LoE; (6) integration of the strength of evidence from the individual LoEs to determine the overall strength of evidence; (7) characterisation of uncertainties and conclusion on the QWoE. To put the QWoE framework in practice, case studies are recommended to confirm the relevance of its different steps, or to adapt them as necessary.
Collapse
|
19
|
Mihaich EM, Schäfers C, Dreier DA, Hecker M, Ortego L, Kawashima Y, Dang ZC, Solomon K. Challenges in assigning endocrine-specific modes of action: Recommendations for researchers and regulators. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:280-292. [PMID: 27976826 DOI: 10.1002/ieam.1883] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
As regulatory programs evaluate substances for their endocrine-disrupting properties, careful study design and data interpretation are needed to distinguish between responses that are truly endocrine specific and those that are not. This is particularly important in regulatory environments where criteria are under development to identify endocrine-disrupting properties to enable hazard-based regulation. Irrespective of these processes, most jurisdictions use the World Health Organization/International Programme on Chemical Safety definition of an endocrine disruptor, requiring that a substance is demonstrated to cause a change in endocrine function that consequently leads to an adverse effect in an intact organism. Such a definition is broad, and at its most cautious might capture many general mechanisms that would not specifically denote an endocrine disruptor. In addition, endocrine responses may be adaptive in nature, designed to maintain homeostasis rather than induce an irreversible adverse effect. The likelihood of indirect effects is increased in (eco)toxicological studies that require the use of maximum tolerated concentrations or doses, which must produce some adverse effect. The misidentification of indirect effects as truly endocrine mediated has serious consequences for prompting animal- and resource-intensive testing and regulatory consequences. To minimize the risk for misidentification, an objective and transparent weight-of-evidence procedure based on biological plausibility, essentiality, and empirical evidence of key events in an adverse outcome pathway is recommended to describe the modes of action that may be involved in toxic responses in nontarget organisms. Confounding factors such as systemic toxicity, general stress, and infection can add complexity to such an evaluation and should be considered in the weight of evidence. A recommended set of questions is proffered to help guide researchers and regulators in discerning endocrine and nonendocrine responses. Although many examples provided in this study are based on ecotoxicology, the majority of the concepts and processes are applicable to both environmental and human health assessments. Integr Environ Assess Manag 2017;13:280-292. © 2016 SETAC.
Collapse
Affiliation(s)
- Ellen M Mihaich
- Environmental and Regulatory Resources, Durham, North Carolina, USA
| | | | - David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Markus Hecker
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisa Ortego
- Bayer CropScience, Research Triangle Park, North Carolina, USA
| | | | | | - Keith Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Mihaich E, Capdevielle M, Urbach-Ross D, Slezak B. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan. Crit Rev Toxicol 2017; 47:263-285. [DOI: 10.1080/10408444.2016.1269722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ellen Mihaich
- Environmental and Regulatory Resources, LLC, Durham, NC, USA
| | | | | | | |
Collapse
|
21
|
Bridges J, Solomon KR. Quantitative weight-of-evidence analysis of the persistence, bioaccumulation, toxicity, and potential for long-range transport of the cyclic volatile methyl siloxanes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:345-379. [PMID: 27656778 DOI: 10.1080/10937404.2016.1200505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMSs) are highly volatile and have an unusual combination of physicochemical properties, which are unlike those of halocarbon-based chemicals used to establish criteria for identification of persistent organic pollutants (POPs) that undergo long-range transport (LRT). A transparent quantitative weight of evidence (QWoE) evaluation was conducted to characterize their properties. Measurements of concentrations of cVMSs in the environment are challenging, but currently, concentrations measured in robust studies are all less than thresholds of toxicity. The cVMSs are moderately persistent in air with half-lives ≤11 d (greater than the criterion of 2 d) but these compounds partition into the atmosphere, the final sink. The cVMSs are rapidly degraded in dry soils, partition from wet soils into the atmosphere, and are not classifiable as persistent in soils. Persistence in water and sediment is variable, but the greatest concentrations in the environment are observed in sediments. Based upon the measurements that have been made in the environment, cVMSs should not be classified as persistent. Studies in food webs support a conclusion that the cVMSs do not biomagnify, a conclusion that is consistent with results of toxicokinetic studies. Concentrations in air in remote locations are small and deposition has not been detected. Taken together, evidence indicates that traditional measures of persistence and biomagnification used for legacy POP are not suitable for cVMS. Refined approaches used here suggest that cVMSs are not classifiable as persistent, bioaccumulative, or toxic. Further, these chemicals do not undergo LRT in the sense of legacy POPs.
Collapse
Affiliation(s)
- Jim Bridges
- a Department of Toxicology and Environmental Health , University of Surrey , Guildford , Surrey , United Kingdom
| | - Keith R Solomon
- b Centre for Toxicology, School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
22
|
Porta N, ra Roncaglioni A, Marzo M, Benfenati E. QSAR Methods to Screen Endocrine Disruptors. NUCLEAR RECEPTOR RESEARCH 2016. [DOI: 10.11131/2016/101203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nicola Porta
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| | - Aless ra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| | - Marco Marzo
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| |
Collapse
|
23
|
Fowles JR, Banton MI, Boogaard PJ, Ketelslegers HB, Rohde AM. Assessment of petroleum streams for thyroid toxicity. Toxicol Lett 2016; 254:52-62. [DOI: 10.1016/j.toxlet.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/22/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
24
|
Borgert CJ, Becker RA, Carlton BD, Hanson M, Kwiatkowski PL, Sue Marty M, McCarty LS, Quill TF, Solomon K, Van Der Kraak G, Witorsch RJ, Yi KD. Does GLP enhance the quality of toxicological evidence for regulatory decisions? Toxicol Sci 2016; 151:206-13. [PMID: 27208076 PMCID: PMC4880141 DOI: 10.1093/toxsci/kfw056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is debate over whether the requirements of GLP are appropriate standards for evaluating the quality of toxicological data used to formulate regulations. A group promoting the importance of non-monotonic dose responses for endocrine disruptors contend that scoring systems giving primacy to GLP are biased against non-GLP studies from the literature and are merely record-keeping exercises to prevent fraudulent reporting of data from non-published guideline toxicology studies. They argue that guideline studies often employ insensitive species and outdated methods, and ignore the perspectives of subject-matter experts in endocrine disruption, who should be the sole arbiters of data quality. We believe regulatory agencies should use both non-GLP and GLP studies, that GLP requirements assure fundamental tenets of study integrity not typically addressed by journal peer-review, and that use of standardized test guidelines and GLP promotes consistency, reliability, comparability, and harmonization of various types of studies used by regulatory agencies worldwide. This debate suffers two impediments to progress: a conflation of different phases of study interpretation and levels of data validity, and a misleading characterization of many essential components of GLP and regulatory toxicology. Herein we provide clarifications critical for removing those impediments.
Collapse
Affiliation(s)
- Christopher J Borgert
- Dept. Physiol. Sciences, Univ. FL College of Veterinary Medicine, Applied Pharmacology and Toxicology, Inc, and C.E.H.T, Gainesville, Florida 32605;
| | - Richard A Becker
- American Chemistry Council, Washington, District of Columbia 20002
| | - Betsy D Carlton
- Bluestar Silicones USA Corp 10520 Whitestone Rd., Raleigh, North Carolina 27615
| | - Mark Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Mary Sue Marty
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674
| | - Lynn S McCarty
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674
| | - Terry F Quill
- Quill Law Group, LLC, Washington, District of Columbia 20006
| | - Keith Solomon
- University of Guelph, Centre for Toxicology, School of Environmental Science, Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Raphael J Witorsch
- Department of Physiology & Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551
| | - Kun Don Yi
- Syngenta Crop Protection, Inc, Greensboro, North Carolina 27419-8300
| |
Collapse
|
25
|
McCarty LS, Borgert CJ. Are all current ecotoxicity test results confounded by design and implementation issues? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:397-398. [PMID: 27017841 DOI: 10.1002/ieam.1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Lynn S McCarty
- LS McCarty Scientific Research and Consulting, Newmarket, Ontario, Canada.
- Applied Pharmacology and Toxicology, Gainesville, Florida, USA.
| | | |
Collapse
|
26
|
Gelbke HP, Banton M, Leibold E, Pemberton M, Samson SL. A critical review finds styrene lacks direct endocrine disruptor activity. Crit Rev Toxicol 2015; 45:727-64. [PMID: 26406562 DOI: 10.3109/10408444.2015.1064091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Commission lists styrene (S) as an endocrine disruptor based primarily on reports of increased prolactin (PRL) levels in S-exposed workers. The US Environmental Protection Agency included S in its list of chemicals to be tested for endocrine activity. Therefore, the database of S for potential endocrine activity is assessed. In vitro and in vivo screening studies, as well as non-guideline and guideline investigations in experimental animals indicate that S is not associated with (anti)estrogenic, (anti)androgenic, or thyroid-modulating activity or with an endocrine activity that may be relevant for the environment. Studies in exposed workers have suggested elevated PRL levels that have been further examined in a series of human and animal investigations. While there is only one definitively known physiological function of PRL, namely stimulation of milk production, many normal stress situations may lead to elevations without any chemical exposure. Animal studies on various aspects of dopamine (DA), the PRL-regulating neurotransmitter, in the central nervous system did not give mechanistic explanations on how S may affect PRL levels. Overall, a neuroendocrine disruption of PRL regulation cannot be deduced from a large experimental database. The effects in workers could not consistently be reproduced in experimental animals and the findings in humans represented acute reversible effects clearly below clinical and pathological levels. Therefore, unspecific acute workplace-related stress is proposed as an alternative mode of action for elevated PRL levels in workers.
Collapse
Affiliation(s)
| | - Marcy Banton
- b Lyondell Chemical Company , Houston, Texas , USA
| | | | | | - Susan Leanne Samson
- e Division of Endocrinology, Department of Medicine , Baylor College of Medicine , Houston, Texas , USA
| |
Collapse
|
27
|
Borgert CJ, Wise K, Becker RA. Modernizing problem formulation for risk assessment necessitates articulation of mode of action. Regul Toxicol Pharmacol 2015; 72:538-51. [DOI: 10.1016/j.yrtph.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
28
|
Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 2015; 44 Suppl 5:1-66. [PMID: 25375889 DOI: 10.3109/10408444.2014.967836] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.
Collapse
|
29
|
Marty MS, Papineni S, Coady KK, Rasoulpour RJ, Pottenger LH, Eisenbrandt DL. Pronamide: Weight of evidence for potential estrogen, androgen or thyroid effects. Regul Toxicol Pharmacol 2015; 72:405-22. [DOI: 10.1016/j.yrtph.2015.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/25/2023]
|
30
|
Schapaugh AW, McFadden LG, Zorrilla LM, Geter DR, Stuchal LD, Sunger N, Borgert CJ. Analysis of EPA's endocrine screening battery and recommendations for further review. Regul Toxicol Pharmacol 2015; 72:552-61. [PMID: 26044367 DOI: 10.1016/j.yrtph.2015.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
EPA's Endocrine Disruptor Screening Program Tier 1 battery consists of eleven assays intended to identify the potential of a chemical to interact with the estrogen, androgen, thyroid, or steroidogenesis systems. We have collected control data from a subset of test order recipients from the first round of screening. The analysis undertaken herein demonstrates that the EPA should review all testing methods prior to issuing further test orders. Given the frequency with which certain performance criteria were violated, a primary focus of that review should consider adjustments to these standards to better reflect biological variability. A second focus should be to provide detailed, assay-specific direction on when results should be discarded; no clear guidance exists on the degree to which assays need to be re-run for failing to meet performance criteria. A third focus should be to identify permissible differences in study design and execution that have a large influence on endpoint variance. Experimental guidelines could then be re-defined such that endpoint variances are reduced and performance criteria are violated less frequently. It must be emphasized that because we were restricted to a subset (approximately half) of the control data, our analyses serve only as examples to underscore the importance of a detailed, rigorous, and comprehensive evaluation of the performance of the battery.
Collapse
Affiliation(s)
| | | | | | | | - Leah D Stuchal
- Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Neha Sunger
- Department of Health, West Chester University, PA, USA
| | - Christopher J Borgert
- Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Applied Pharmacology and Toxicology, Inc., Gainesville, FL, USA
| |
Collapse
|
31
|
Lutter R, Abbott L, Becker R, Borgert C, Bradley A, Charnley G, Dudley S, Felsot A, Golden N, Gray G, Juberg D, Mitchell M, Rachman N, Rhomberg L, Solomon K, Sundlof S, Willett K. Improving weight of evidence approaches to chemical evaluations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:186-192. [PMID: 25516407 DOI: 10.1111/risa.12277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Federal and other regulatory agencies often use or claim to use a weight of evidence (WoE) approach in chemical evaluation. Their approaches to the use of WoE, however, differ significantly, rely heavily on subjective professional judgment, and merit improvement. We review uses of WoE approaches in key articles in the peer-reviewed scientific literature, and find significant variations. We find that a hypothesis-based WoE approach, developed by Lorenz Rhomberg et al., can provide a stronger scientific basis for chemical assessment while improving transparency and preserving the appropriate scope of professional judgment. Their approach, while still evolving, relies on the explicit specification of the hypothesized basis for using the information at hand to infer the ability of an agent to cause human health impacts or, more broadly, affect other endpoints of concern. We describe and endorse such a hypothesis-based WoE approach to chemical evaluation.
Collapse
Affiliation(s)
- Randall Lutter
- Batten School of Leadership and Public Policy, University of Virginia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ankley GT, Jensen KM. A novel framework for interpretation of data from the fish short-term reproduction assay (FSTRA) for the detection of endocrine-disrupting chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2529-2540. [PMID: 25098918 DOI: 10.1002/etc.2708] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 06/03/2023]
Abstract
The fish short-term reproduction assay (FSTRA) is a key component of the US Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), which uses a weight-of-evidence analysis based on data from several assays to identify the potential for chemicals to act as agonists or antagonists of the estrogen or androgen receptors (ER and AR), or inhibitors of steroidogenic enzymes. The FSTRA considers a variety of mechanistic and apical responses in 21-d exposures with the fathead minnow (Pimephales promelas), including plasma steroid and vitellogenin (VTG; egg yolk protein) concentrations, secondary sex characteristics, gonad size and histopathology, and egg production. Although the FSTRA initially was described several years ago, recent data generation associated with implementation of the EDSP highlighted the need for more formal guidance regarding evaluation of information from the assay. The authors describe a framework for interpretation of FSTRA data relative to perturbation of endocrine pathways of concern to the EDSP. The framework considers end points individually and as suites of physiologically related responses relative to pathway identification. Sometimes changes in single end points can be highly diagnostic (e.g., induction of VTG in males by ER agonists, production of male secondary sex characteristics in females by AR agonists); in other instances, however, multiple, related end points are needed to reliably assess pathway perturbation (e.g., AR antagonism, steroid synthesis inhibition). In addition to describing an interpretive framework, the authors demonstrate its practical utility using publicly available FSTRA data for a wide range of known and hypothesized endocrine-disrupting chemicals. Environ Toxicol Chem 2014;33:2529-2540. Published 2014 Wiley Periodicals Inc., on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T Ankley
- Mid-Continent Ecology Division, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota
| | | |
Collapse
|
33
|
Giusti A, Lagadic L, Barsi A, Thomé JP, Joaquim-Justo C, Ducrot V. Investigating apical adverse effects of four endocrine active substances in the freshwater gastropod Lymnaea stagnalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:147-55. [PMID: 24950493 DOI: 10.1016/j.scitotenv.2014.05.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 05/14/2023]
Abstract
The hermaphroditic gastropod Lymnaea stagnalis is proposed as a candidate species for the development of OECD guidelines for testing of the reprotoxicity of chemicals, including endocrine active substances (EASs). Up to now, only a few putative EASs have been tested for their reproductive toxicity in this species. In this study, we investigate the effects of four EASs with different affinities to the vertebrate estrogen and androgen receptors (chlordecone as an estrogen; cyproterone acetate, fenitrothion and vinclozolin as anti-androgens) on the reproduction of L. stagnalis in a 21-day semi-static test. Testosterone and 17α-ethinylestradiol (EE2) were used as the reference compounds. The tested EASs had no significant effect on growth and survival at the tested concentration ranges (ng to μg/L). Classical reproduction endpoints (i.e., oviposition and fecundity) were not responsive to the tested chemicals, except for chlordecone and 17α-ethinylestradiol, which hampered reproduction from 19.6 μg/L and 17.6 μg/L, respectively. The frequency of polyembryonic eggs, used as an additional endpoint, demonstrated the effects of all compounds except EE2. The molecular pathways, which are involved in such reproduction impairments, remain unknown. Our results suggest that egg quality is a more sensitive endpoint as compared to other reproductive endpoints commonly assessed in mollusk toxicity tests.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, 15 Allée du 6 août, 4000 Liège, Belgium; INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| | - Laurent Lagadic
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| | - Alpar Barsi
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | - Virginie Ducrot
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France.
| |
Collapse
|
34
|
de Peyster A, Mihaich E. Hypothesis-driven weight of evidence analysis to determine potential endocrine activity of MTBE. Regul Toxicol Pharmacol 2014; 69:348-70. [DOI: 10.1016/j.yrtph.2014.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 12/16/2022]
|
35
|
Rhomberg LR, Goodman JE, Bailey LA, Prueitt RL, Beck NB, Bevan C, Honeycutt M, Kaminski NE, Paoli G, Pottenger LH, Scherer RW, Wise KC, Becker RA. A survey of frameworks for best practices in weight-of-evidence analyses. Crit Rev Toxicol 2014; 43:753-84. [PMID: 24040995 DOI: 10.3109/10408444.2013.832727] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The National Academy of Sciences (NAS) Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde proposed a "roadmap" for reform and improvement of the Agency's risk assessment process. Specifically, it called for development of a transparent and defensible methodology for weight-of-evidence (WoE) assessments. To facilitate development of an improved process, we developed a white paper that reviewed approximately 50 existing WoE frameworks, seeking insights from their variations and nominating best practices for WoE analyses of causation of chemical risks. Four phases of WoE analysis were identified and evaluated in each framework: (1) defining the causal question and developing criteria for study selection, (2) developing and applying criteria for review of individual studies, (3) evaluating and integrating evidence and (4) drawing conclusions based on inferences. We circulated the draft white paper to stakeholders and then held a facilitated, multi-disciplinary invited stakeholder workshop to broaden and deepen the discussion on methods, rationales, utility and limitations among the surveyed WoE frameworks. The workshop developed recommendations for improving the conduct of WoE evaluations. Based on the analysis of the 50 frameworks and discussions at the workshop, best practices in conducting WoE analyses were identified for each of the four phases. Many of these best practices noted from the analysis and workshop could be implemented immediately, while others may require additional refinement as part of the ongoing discussions for improving the scientific basis of chemical risk assessments.
Collapse
|
36
|
Meek MEB, Palermo CM, Bachman AN, North CM, Jeffrey Lewis R. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. J Appl Toxicol 2014; 34:595-606. [PMID: 24777878 PMCID: PMC4321063 DOI: 10.1002/jat.2984] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022]
Abstract
The mode of action human relevance (MOA/HR) framework increases transparency in systematically considering data on MOA for end (adverse) effects and their relevance to humans. This framework continues to evolve as experience increases in its application. Though the MOA/HR framework is not designed to address the question of "how much information is enough" to support a hypothesized MOA in animals or its relevance to humans, its organizing construct has potential value in considering relative weight of evidence (WOE) among different cases and hypothesized MOA(s). This context is explored based on MOA analyses in published assessments to illustrate the relative extent of supporting data and their implications for dose-response analysis and involved comparisons for chemical assessments on trichloropropane, and carbon tetrachloride with several hypothesized MOA(s) for cancer. The WOE for each hypothesized MOA was summarized in narrative tables based on comparison and contrast of the extent and nature of the supporting database versus potentially inconsistent or missing information. The comparison was based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations of MOA taking into account increasing experience in their application internationally. This clarification of considerations for WOE determinations as a basis for comparative analysis is anticipated to contribute to increasing consistency in the application of MOA/HR analysis and potentially, transparency in separating science judgment from public policy considerations in regulatory risk assessment.
Collapse
Affiliation(s)
- M E Bette Meek
- University of Ottawa, One Stewart Street, Suite 309, Ottawa, Ontario, K1N 6N5, Canada
| | | | | | | | | |
Collapse
|
37
|
Relevance Weighting of Tier 1 Endocrine Screening Endpoints by Rank Order. ACTA ACUST UNITED AC 2014; 101:90-113. [DOI: 10.1002/bdrb.21096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
|
38
|
Stump DG, O'Connor JC, Lewis JM, Marty MS. Key lessons from performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 male and female pubertal assays. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2014; 101:43-62. [PMID: 24510766 PMCID: PMC4313686 DOI: 10.1002/bdrb.21097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/02/2014] [Indexed: 11/11/2022]
Abstract
The male and female pubertal assays, which are included in the U.S. Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) Tier 1 battery, can detect endocrine-active compounds operating by various modes of action. This article uses the collective experience of three laboratories to provide information on pubertal assay conduct, interlaboratory reproducibility, endpoint redundancy, and data interpretation. The various criteria used to select the maximum tolerated dose are described. A comparison of historical control data across laboratories confirmed reasonably good interlaboratory reproducibility. With a reliance on apical endpoints, interpretation of pubertal assay effects as specifically endocrine-mediated or secondary to other systemic effects can be problematic and mode of action may be difficult to discern. Across 21-23 data sets, relative liver weight, a nonspecific endocrine endpoint, was the most commonly affected endpoint in male and female assays. For endocrine endpoints, patterns of effects were generally seen; rarely was an endocrine-sensitive endpoint affected in isolation. In males, most frequently missed EPA-established performance criteria included mean weights for kidney and thyroid, and the coefficient of variation for age and body weight at preputial separation, seminal vesicle weight, and final body weight. In females, the frequently missed EPA-established performance criteria included mean adrenal weight and mean age at vaginal opening. To ensure specificity for endocrine effects, the pubertal assays should be interpreted using a weight-of-evidence approach as part of the entire EDSP battery. Based on the frequency with which certain performance criteria were missed, an EPA review of these criteria is warranted.
Collapse
Affiliation(s)
- Donald G Stump
- Developmental and Reproductive Toxicology, WIL Research Laboratories, LLCAshland, Ohio
| | - John C O'Connor
- DuPont Haskell Global Centers for Health and Environmental SciencesNewark, Delaware
| | - Joseph M Lewis
- DuPont Haskell Global Centers for Health and Environmental SciencesNewark, Delaware
| | - M Sue Marty
- Toxicology & Environmental Research and Consulting, The Dow Chemical CompanyMidland, Michigan
| |
Collapse
|
39
|
Melching-Kollmuß S, Fussell KC, Buesen R, Dammann M, Schneider S, Tennekes H, van Ravenzwaay B. Anti-androgenicity can only be evaluated using a weight of evidence approach. Regul Toxicol Pharmacol 2014; 68:175-92. [DOI: 10.1016/j.yrtph.2013.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/06/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022]
|
40
|
Becker RA, Hays SM, Kirman CR, Aylward LL, Wise K. Interpreting Estrogen Screening Assays in the Context of Potency and Human Exposure Relative to Natural Exposures to Phytoestrogens. ACTA ACUST UNITED AC 2014; 101:114-24. [DOI: 10.1002/bdrb.21085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | - Kimberly Wise
- American Chemistry Council Washington District of Columbia
| |
Collapse
|
41
|
Nohynek GJ, Borgert CJ, Dietrich D, Rozman KK. Endocrine disruption: fact or urban legend? Toxicol Lett 2013; 223:295-305. [PMID: 24177261 DOI: 10.1016/j.toxlet.2013.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Endocrine disruptors (EDs) are substances that cause adverse health effects via endocrine-mediated mechanisms in an intact organism or its progeny or (sub) populations. Purported EDCs in personal care products include 4-MBC (UV filter) or parabens that showed oestrogenic activity in screening tests, although regulatory toxicity studies showed no adverse effects on reproductive endpoints. Hormonal potency is the key issue of the safety of EDCs. Oestrogen-based drugs, e.g. the contraceptive pill or the synthetic oestrogen DES, possess potencies up to 7 orders of magnitude higher than those of PCP ingredients; yet, in utero exposure to these drugs did not adversely affect fertility or sexual organ development of offspring unless exposed to extreme doses. Additive effects of EDs are unlikely due to the multitude of mechanisms how substances may produce a hormone-like activity; even after uptake of different substances with a similar mode of action, the possibility of additive effects is reduced by different absorption, metabolism and kinetics. This is supported by a number of studies on mixtures of chemical EDCs. Overall, despite of 20 years of research a human health risk from exposure to low concentrations of exogenous chemical substances with weak hormone-like activities remains an unproven and unlikely hypothesis.
Collapse
|
42
|
Goodman JE, Prueitt RL, Sax SN, Bailey LA, Rhomberg LR. Evaluation of the causal framework used for setting national ambient air quality standards. Crit Rev Toxicol 2013; 43:829-49. [PMID: 24090029 DOI: 10.3109/10408444.2013.837864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract A scientifically sound assessment of the potential hazards associated with a substance requires a systematic, objective and transparent evaluation of the weight of evidence (WoE) for causality of health effects. We critically evaluated the current WoE framework for causal determination used in the United States Environmental Protection Agency's (EPA's) assessments of the scientific data on air pollutants for the National Ambient Air Quality Standards (NAAQS) review process, including its methods for literature searches; study selection, evaluation and integration; and causal judgments. The causal framework used in recent NAAQS evaluations has many valuable features, but it could be more explicit in some cases, and some features are missing that should be included in every WoE evaluation. Because of this, it has not always been applied consistently in evaluations of causality, leading to conclusions that are not always supported by the overall WoE, as we demonstrate using EPA's ozone Integrated Science Assessment as a case study. We propose additions to the NAAQS causal framework based on best practices gleaned from a previously conducted survey of available WoE frameworks. A revision of the NAAQS causal framework so that it more closely aligns with these best practices and the full and consistent application of the framework will improve future assessments of the potential health effects of criteria air pollutants by making the assessments more thorough, transparent, and scientifically sound.
Collapse
|
43
|
Juberg DR, Gehen SC, Coady KK, LeBaron MJ, Kramer VJ, Lu H, Marty MS. Chlorpyrifos: weight of evidence evaluation of potential interaction with the estrogen, androgen, or thyroid pathways. Regul Toxicol Pharmacol 2013; 66:249-63. [PMID: 23524272 DOI: 10.1016/j.yrtph.2013.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Chlorpyrifos was selected for EPA's Endocrine Disruptor Screening Program (EDSP) based on widespread use and potential for human and environmental exposures. The purpose of the program is to screen chemicals for their potential to interact with the estrogen, androgen, or thyroid pathways. A battery of 11 assays was completed for chlorpyrifos in accordance with test guidelines developed for EDSP Tier 1 screening. To determine potential endocrine activity, a weight-of-evidence (WoE) evaluation was completed for chlorpyrifos, which included the integration of EDSP assay results with data from regulatory guideline studies and the published literature. This WoE approach was based on the OECD conceptual framework for testing and assessment of potential endocrine-disrupting chemicals and consisted of a systematic evaluation of data, progressing from simple to complex across multiple levels of biological organization. The conclusion of the WoE evaluation is that chlorpyrifos demonstrates no potential to interact with the estrogen, androgen, or thyroid pathways at doses below the dose levels that inhibit cholinesterase. Therefore, regulatory exposure limits for chlorpyrifos, which are based on cholinesterase inhibition, are sufficient to protect against potential endocrine alterations. Based on the results of this WoE evaluation, there is no scientific justification for pursuing additional endocrine testing for chlorpyrifos.
Collapse
|
44
|
Lutter R, Barrow C, Borgert CJ, Conrad JW, Edwards D, Felsot A. Data disclosure for chemical evaluations. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:145-8. [PMID: 23228957 PMCID: PMC3569678 DOI: 10.1289/ehp.1204942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Public disclosure of scientific data used by the government to make regulatory decisions for chemicals is a practical step that can enhance public confidence in the scientific basis of such decisions. OBJECTIVES We reviewed the U.S. Environmental Protection Agency's (EPA) current practices regarding disclosure of data underlying regulatory and policy decisions involving chemicals, including pesticides. We sought to identify additional opportunities for the U.S. EPA to disclose data and, more generally, to promote broad access to data it uses, regardless of origin. DISCUSSION We recommend that when the U.S. EPA proposes a regulatory determination or other policy decision that relies on scientific research, it should provide sufficient underlying raw data and information about methods to enable reanalysis and attempts to independently reproduce the work, including the sensitivity of results to alternative analyses. This recommendation applies regardless of who conducted the work. If the U.S. EPA is unable to provide such transparency, it should state whether it had full access to all underlying data and methods. A timely version of submitted data cleared of information about confidential business matters and personal privacy should fully meet the standards of transparency described below, including public access sufficient for others to undertake an independent reanalysis. CONCLUSION Reliable chemical evaluation is essential for protecting public health and the environment and for ensuring availability of useful chemicals under appropriate conditions. Permitting qualified researchers to endeavor to independently reproduce the analyses used in regulatory determinations of pesticides and other chemicals would increase confidence in the scientific basis of such determinations.
Collapse
|
45
|
Rhomberg LR, Goodman JE, Foster WG, Borgert CJ, Van Der Kraak G. Response to Kortenkamp et al. Rebuttal. Crit Rev Toxicol 2012. [DOI: 10.3109/10408444.2012.712944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Magnusson U. Environmental Endocrine Disruptors in Farm Animal Reproduction: Research and Reality. Reprod Domest Anim 2012; 47 Suppl 4:333-7. [DOI: 10.1111/j.1439-0531.2012.02095.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
McCarty LS, Borgert CJ, Mihaich EM. Information Quality in Regulatory Decision Making: Peer Review versus Good Laboratory Practice. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:927-34. [PMID: 22343028 PMCID: PMC3404654 DOI: 10.1289/ehp.1104277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/17/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND There is an ongoing discussion on the provenance of toxicity testing data regarding how best to ensure its validity and credibility. A central argument is whether journal peer-review procedures are superior to Good Laboratory Practice (GLP) standards employed for compliance with regulatory mandates. OBJECTIVE We sought to evaluate the rationale for regulatory decision making based on peer-review procedures versus GLP standards. METHOD We examined pertinent published literature regarding how scientific data quality and validity are evaluated for peer review, GLP compliance, and development of regulations. DISCUSSION Some contend that peer review is a coherent, consistent evaluative procedure providing quality control for experimental data generation, analysis, and reporting sufficient to reliably establish relative merit, whereas GLP is seen as merely a tracking process designed to thwart investigator corruption. This view is not supported by published analyses pointing to subjectivity and variability in peer-review processes. Although GLP is not designed to establish relative merit, it is an internationally accepted quality assurance, quality control method for documenting experimental conduct and data. CONCLUSIONS Neither process is completely sufficient for establishing relative scientific soundness. However, changes occurring both in peer-review processes and in regulatory guidance resulting in clearer, more transparent communication of scientific information point to an emerging convergence in ensuring information quality. The solution to determining relative merit lies in developing a well-documented, generally accepted weight-of-evidence scheme to evaluate both peer-reviewed and GLP information used in regulatory decision making where both merit and specific relevance inform the process.
Collapse
Affiliation(s)
- Lynn S McCarty
- L.S. McCarty Scientific Research & Consulting, Newmarket, Ontario, Canada.
| | | | | |
Collapse
|
48
|
Rhomberg LR, Goodman JE, Foster WG, Borgert CJ, Van Der Kraak G. A critique of the European Commission document, "State of the Art Assessment of Endocrine Disrupters". Crit Rev Toxicol 2012; 42:465-73. [PMID: 22630047 PMCID: PMC3408894 DOI: 10.3109/10408444.2012.690367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/05/2023]
Abstract
In this commentary, we critique a recently finalized document titled "State of the Art Assessment of Endocrine Disrupters" (SOA Assessment). The SOA Assessment was commissioned by the European Union Directorate-General for the Environment to provide a basis for developing scientific criteria for identifying endocrine disruptors and reviewing and possibly revising the European Community Strategy on Endocrine Disrupters. In our view, the SOA Assessment takes an anecdotal approach rather than attempting a comprehensive assessment of the state of the art or synthesis of current knowledge. To do the latter, the document would have had to (i) distinguish between apparent associations of outcomes with exposure and the inference of an endocrine-disruption (ED) basis for those outcomes; (ii) constitute a complete and unbiased survey of new literature since 2002 (when the WHO/IPCS document, "Global Assessment of the State-of-the-Science of Endocrine Disruptors" was published); (iii) consider strengths and weaknesses and issues in interpretation of the cited literature; (iv) follow a weight-of-evidence methodology to evaluate evidence of ED; (v) document the evidence for its conclusions or the reasoning behind them; and (vi) present the evidence for or reasoning behind why conclusions that differ from those drawn in the 2002 WHO/IPCS document need to be changed. In its present form, the SOA Assessment fails to provide a balanced and critical assessment or synthesis of literature relevant to ED. We urge further evidence-based evaluations to develop the needed scientific basis to support future policy decisions.
Collapse
|
49
|
Becker RA, Bergfelt DR, Borghoff S, Davis JP, Hamby BT, O'Connor JC, Kaplan AM, Sloan CS, Tyl RW, Wade M, Marty MS. Interlaboratory study comparison of the 15-day intact adult male rat screening assay: evaluation of an antithyroid chemical and a negative control chemical. ACTA ACUST UNITED AC 2011; 95:63-78. [PMID: 22127959 DOI: 10.1002/bdrb.20343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/04/2011] [Indexed: 11/09/2022]
Abstract
Validation of the 15-day intact adult male rat screening assay (IAMRSA), an endocrine activity screen, was extended beyond the 28 substances evaluated to date. Two independent laboratories evaluated specificity using allyl alcohol (AA), a putative negative control, and DE-71 (technical grade pentabromodiphenyl ether) for comparison with previous pubertal assays that demonstrated thyroid effects. Male rats (15/group) were gavaged daily with AA (0, 10, 30, or 40 mg/kg/day) or DE-71 (0, 3, 30, or 60 mg/kg/day) for 15 days. Body and organ weights and serum hormone concentrations were measured, and a limited histopathological assessment was conducted. AA results were considered negative at doses that did not exceed the maximum tolerated dose (MTD); effects reported were dose-related decreases in weight gain, increased liver weights and, although the pattern varied across studies, alterations in some androgen-sensitive endpoints in the high-dose where the maximum tolerated dose was exceeded. In the DE-71 studies, dose-dependent increases in liver weights (consistent with hepatic enzyme induction), decreases in tri-iodothyronine and thyroxine, concomitant thyroid stimulating hormone increases were observed and one laboratory reported histopathological thyroid changes in mid- and high-dose groups, and the other increased thyroid weights. For DE-71, the IAMRSA was comparable in sensitivity to the pubertal assays. Overall, the specificity and sensitivity of the IAMRSA for deployment in an endocrine screening battery are supported. However, differentiating primary endocrine-mediated effects from secondary effects caused by systemic toxicity will be challenging, emphasizing the need to utilize a battery of assays and a weight of evidence approach when evaluating the potential endocrine activity of chemicals.
Collapse
Affiliation(s)
- Richard A Becker
- American Chemistry Council, Washington, District of Columbia 20002, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|