1
|
Banerjee A, Kar S, Roy K, Patlewicz G, Charest N, Benfenati E, Cronin MTD. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Crit Rev Toxicol 2024; 54:659-684. [PMID: 39225123 DOI: 10.1080/10408444.2024.2386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
This article aims to provide a comprehensive critical, yet readable, review of general interest to the chemistry community on molecular similarity as applied to chemical informatics and predictive modeling with a special focus on read-across (RA) and read-across structure-activity relationships (RASAR). Molecular similarity-based computational tools, such as quantitative structure-activity relationships (QSARs) and RA, are routinely used to fill the data gaps for a wide range of properties including toxicity endpoints for regulatory purposes. This review will explore the background of RA starting from how structural information has been used through to how other similarity contexts such as physicochemical, absorption, distribution, metabolism, and elimination (ADME) properties, and biological aspects are being characterized. More recent developments of RA's integration with QSAR have resulted in the emergence of novel models such as ToxRead, generalized read-across (GenRA), and quantitative RASAR (q-RASAR). Conventional QSAR techniques have been excluded from this review except where necessary for context.
Collapse
Affiliation(s)
- Arkaprava Banerjee
- Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics (DTC) Laboratory, Jadavpur University, Kolkata, India
| | - Supratik Kar
- Department of Chemistry and Physics, Chemometrics & Molecular Modeling Laboratory, Kean University, Union, NJ, USA
| | - Kunal Roy
- Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics (DTC) Laboratory, Jadavpur University, Kolkata, India
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nathaniel Charest
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Roe HM, Tsai HHD, Ball N, Wright FA, Chiu WA, Rusyn I. A Systematic Analysis of Read-Across Adaptations in Testing Proposal Evaluations by the European Chemicals Agency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610278. [PMID: 39257792 PMCID: PMC11384022 DOI: 10.1101/2024.08.29.610278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An important element of the European Union's "Registration, Evaluation, Authorisation and Restriction of Chemicals" (REACH) regulation is the evaluation by the European Chemicals Agency (ECHA) of testing proposals submitted by the registrants to address data gaps in standard REACH information requirements. The registrants may propose adaptations, and ECHA evaluates the reasoning and issues a written decision. Read-across is a common adaptation type, yet it is widely assumed that ECHA often does not agree that the justifications are adequate to waive standard testing requirements. From 2008 to August 2023, a total of 2,630 Testing Proposals were submitted to ECHA; of these, 1,538 had published decisions that were systematically evaluated in this study. Each document was manually reviewed, and information extracted for further analyses. Read-across hypotheses were standardized into 17 assessment elements (AEs); each submission was classified as to the AEs relied upon by the registrants and by ECHA. Data was analyzed for patterns and associations. Testing Proposal Evaluations (TPEs) with adaptations comprised 23% (353) of the total; analogue (168) or group (136) read-across adaptations were most common. Of 304 read-across-containing TPEs, 49% were accepted; the odds of acceptance were significantly greater for group read-across submissions. The data was analyzed by Annex (i.e., tonnage), test guideline study, read-across hypothesis AEs, as well as target and source substance types and their structural similarity. While most ECHA decisions with both positive and negative decisions on whether the proposed read-across was adequate were context-specific, a number of significant associations were identified that influence the odds of acceptance. Overall, this analysis provides an unbiased overview of 15 years of experience with testing proposal-specific read-across adaptations by both registrants and ECHA. These data will inform future submissions as they identify most critical AEs to increase the odds of read-across acceptance.
Collapse
Affiliation(s)
- Hannah M. Roe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Han-Hsuan D. Tsai
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Fred A. Wright
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Achar J, Cronin MTD, Firman JW, Öberg G. A problem formulation framework for the application of in silico toxicology methods in chemical risk assessment. Arch Toxicol 2024; 98:1727-1740. [PMID: 38555325 PMCID: PMC11106140 DOI: 10.1007/s00204-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
The first step in the hazard or risk assessment of chemicals should be to formulate the problem through a systematic and iterative process aimed at identifying and defining factors critical to the assessment. However, no general agreement exists on what components an in silico toxicology problem formulation (PF) should include. The present work aims to develop a PF framework relevant to the application of in silico models for chemical toxicity prediction. We modified and applied a PF framework from the general risk assessment literature to peer reviewed papers describing PFs associated with in silico toxicology models. Important gaps between the general risk assessment literature and the analyzed PF literature associated with in silico toxicology methods were identified. While the former emphasizes the need for PFs to address higher-level conceptual questions, the latter does not. There is also little consistency in the latter regarding the PF components addressed, reinforcing the need for a PF framework that enable users of in silico toxicology models to answer the central conceptual questions aimed at defining components critical to the model application. Using the developed framework, we highlight potential areas of uncertainty manifestation in in silico toxicology PF in instances where particular components are missing or implicitly described. The framework represents the next step in standardizing in silico toxicology PF component. The framework can also be used to improve the understanding of how uncertainty is apparent in an in silico toxicology PF, thus facilitating ways to address uncertainty.
Collapse
Affiliation(s)
- Jerry Achar
- Institute for Resources Environment, and Sustainability, The University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Gunilla Öberg
- Institute for Resources Environment, and Sustainability, The University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Takkellapati S, Gonzalez MA. Application of read-across methods as a framework for the estimation of emissions from chemical processes. CLEAN TECHNOLOGIES AND RECYCLING 2023; 3:283-300. [PMID: 38357098 PMCID: PMC10866300 DOI: 10.3934/ctr.2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The read-across method is a popular data gap filling technique with developed application for multiple purposes, including regulatory. Within the US Environmental Protection Agency's (US EPA) New Chemicals Program under Toxic Substances Control Act (TSCA), read-across has been widely used, as well as within technical guidance published by the Organization for Economic Co-operation and Development, the European Chemicals Agency, and the European Center for Ecotoxicology and Toxicology of Chemicals for filling chemical toxicity data gaps. Under the TSCA New Chemicals Review Program, US EPA is tasked with reviewing proposed new chemical applications prior to commencing commercial manufacturing within or importing into the United States. The primary goal of this review is to identify any unreasonable human health and environmental risks, arising from environmental releases/emissions during manufacturing and the resulting exposure from these environmental releases. The authors propose the application of read-across techniques for the development and use of a framework for estimating the emissions arising during the chemical manufacturing process. This methodology is to utilize available emissions data from a structurally similar analogue chemical or a group of structurally similar chemicals in a chemical family taking into consideration their physicochemical properties under specified chemical process unit operations and conditions. This framework is also designed to apply existing knowledge of read-across principles previously utilized in toxicity estimation for an analogue or category of chemicals and introduced and extended with a concurrent case study.
Collapse
Affiliation(s)
- Sudhakar Takkellapati
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Environmental Decision Analytics Branch, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Michael A. Gonzalez
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Environmental Decision Analytics Branch, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
5
|
Felter SP, Ponting DJ, Mudd AM, Thomas R, Oliveira AAF. Maximizing use of existing carcinogenicity data to support acceptable intake levels for mutagenic impurities in pharmaceuticals: Learnings from N-nitrosamine case studies. Regul Toxicol Pharmacol 2023; 143:105459. [PMID: 37474097 DOI: 10.1016/j.yrtph.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The unexpected finding of N-nitrosamine (NA) impurities in many pharmaceutical products raised significant challenges for industry and regulators. In addition to well-studied small molecular weight NAs, many of which are potent rodent carcinogens, novel NAs associated with active pharmaceutical ingredients have been found, many of which have limited or no safety data. A tiered approach to establishing Acceptable Intake (AI) limits for NA impurities has been established using chemical-specific data, read-across, or a class-specific TTC limit. There are ∼140 NAs with some rodent carcinogenicity data, but much of it is older and does not meet current guidelines for what constitutes a 'robust' bioassay. Nevertheless, these data are an important source of information to ensure the best science is used for assessing NA impurities and assuring consumer safety while minimizing impact that can lead to drug shortages. We present several strategies to maximize the use of imperfect data including using a lower confidence limit on a rodent TD50, and leveraging data from multiple NAs. Information on the chemical structure known to impact potency can also support development of an AI or potentially conclude that a particular NA does not fall in the cohort of concern for potent carcinogenicity.
Collapse
Affiliation(s)
- S P Felter
- Procter & Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA.
| | - D J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - A M Mudd
- Procter & Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA
| | - R Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - A A F Oliveira
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| |
Collapse
|
6
|
Wohlleben W, Mehling A, Landsiedel R. Lessons Learned from the Grouping of Chemicals to Assess Risks to Human Health. Angew Chem Int Ed Engl 2023; 62:e202210651. [PMID: 36254879 DOI: 10.1002/anie.202210651] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.
Collapse
Affiliation(s)
- Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Annette Mehling
- Dept. of Advanced Formulation and Performance Technology, BASF Personal Care and Nutrition GmbH, 40589, Duesseldorf, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Free University of Berlin, Biology, Chemistry and Pharmacy-Pharmacology and Toxicology, 14195, Berlin, Germany
| |
Collapse
|
7
|
Wu S, Ellison C, Naciff J, Karb M, Obringer C, Yan G, Shan Y, Smith A, Wang X, Daston GP. Structure-activity relationship read-across and transcriptomics for branched carboxylic acids. Toxicol Sci 2023; 191:343-356. [PMID: 36583546 DOI: 10.1093/toxsci/kfac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to use chemical similarity evaluations, transcriptional profiling, in vitro toxicokinetic data, and physiologically based pharmacokinetic (PBPK) models to support read-across for a series of branched carboxylic acids using valproic acid (VPA), a known developmental toxicant, as a comparator. The chemicals included 2-propylpentanoic acid (VPA), 2-ethylbutanoic acid, 2-ethylhexanoic acid (EHA), 2-methylnonanoic acid, 2-hexyldecanoic acid, 2-propylnonanoic acid (PNA), dipentyl acetic acid or 2-pentylheptanoic acid, octanoic acid (a straight chain alkyl acid), and 2-ethylhexanol. Transcriptomics was evaluated in 4 cell types (A549, HepG2, MCF7, and iCell cardiomyocytes) 6 h after exposure to 3 concentrations of the compounds, using the L1000 platform. The transcriptional profiling data indicate that 2- or 3-carbon alkyl substituents at the alpha position of the carboxylic acid (EHA and PNA) elicit a transcriptional profile similar to the one elicited by VPA. The transcriptional profile is different for the other chemicals tested, which provides support for limiting read-across from VPA to much shorter and longer acids. Molecular docking models for histone deacetylases, the putative target of VPA, provide a possible mechanistic explanation for the activity cliff elucidated by transcriptomics. In vitro toxicokinetic data were utilized in a PBPK model to estimate internal dosimetry. The PBPK modeling data show that as the branched chain increases, predicted plasma Cmax decreases. This work demonstrates how transcriptomics and other mode of action-based methods can improve read-across.
Collapse
Affiliation(s)
- Shengde Wu
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Corie Ellison
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Jorge Naciff
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Michael Karb
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Cindy Obringer
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Gang Yan
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Yuqing Shan
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Alex Smith
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Xiaohong Wang
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - George P Daston
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| |
Collapse
|
8
|
Patlewicz G, Shah I. Towards systematic read-across using Generalised Read-Across (GenRA). COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 25:1-15. [PMID: 37693774 PMCID: PMC10483627 DOI: 10.1016/j.comtox.2022.100258] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Read-across continues to be a popular data gap filling technique within category and analogue approaches. One of the main issues hindering read-across acceptance is the notion of addressing and reducing uncertainties. Frameworks and formats have been created to help facilitate read-across development, evaluation, and residual uncertainties. However, read-across remains an expert-driven approach with each assessment decided on its own merits with no objective means of evaluating performance or quantifying uncertainties. Here, the underlying motivation of creating an algorithmic approach to read-across, namely the Generalised Read-Across (GenRA) approach, is described. The overall objectives of the approach were to quantify performance and uncertainty. Progress made in quantifying the impact of each similarity context commonly relied upon as part of read-across assessment are discussed. The framework underpinning the approach, the software tools developed to date and how GenRA can be used to make and interpret predictions as part of a screening level hazard assessment decision context are illustrated. Future directions and some of the overarching issues still needed in this field and the extent to which GenRA might facilitate those needs are discussed.
Collapse
Affiliation(s)
- Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - Imran Shah
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| |
Collapse
|
9
|
Vreeke S, Faulkner DM, Strongin RM, Rufer E. A First-Tier Framework for Assessing Toxicological Risk from Vaporized Cannabis Concentrates. TOXICS 2022; 10:771. [PMID: 36548603 PMCID: PMC9782653 DOI: 10.3390/toxics10120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Vaporization is an increasingly prevalent means to consume cannabis, but there is little guidance for manufacturers or regulators to evaluate additive safety. This paper presents a first-tier framework for regulators and cannabis manufacturers without significant toxicological expertise to conduct risk assessments and prioritize additives in cannabis concentrates for acceptance, elimination, or further evaluation. Cannabinoids and contaminants (e.g., solvents, pesticides, etc.) are excluded from this framework because of the complexity involved in their assessment; theirs would not be a first-tier toxicological assessment. Further, several U.S. state regulators have provided guidance for major cannabinoids and contaminants. Toxicological risk assessment of cannabis concentrate additives, like other types of risk assessment, includes hazard assessment, dose-response, exposure assessment, and risk characterization steps. Scarce consumption data has made exposure assessment of cannabis concentrates difficult and variable. Previously unpublished consumption data collected from over 54,000 smart vaporization devices show that 50th and 95th percentile users consume 5 and 57 mg per day on average, respectively. Based on these and published data, we propose assuming 100 mg per day cannabis concentrate consumption for first-tier risk assessment purposes. Herein, we provide regulators, cannabis manufacturers, and consumers a preliminary methodology to evaluate the health risks of cannabis concentrate additives.
Collapse
Affiliation(s)
| | | | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | | |
Collapse
|
10
|
Lizarraga LE, Suter GW, Lambert JC, Patlewicz G, Zhao JQ, Dean JL, Kaiser P. Advancing the science of a read-across framework for evaluation of data-poor chemicals incorporating systematic and new approach methods. Regul Toxicol Pharmacol 2022; 137:105293. [PMID: 36414101 DOI: 10.1016/j.yrtph.2022.105293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The assessment of human health hazards posed by chemicals traditionally relies on toxicity studies in experimental animals. However, most chemicals currently in commerce do not meet the minimum data requirements for hazard identification and dose-response analysis in human health risk assessment. Previously, we introduced a read-across framework designed to address data gaps for screening-level assessment of chemicals with insufficient in vivo toxicity information (Wang et al., 2012). It relies on inference by analogy from suitably tested source analogues to a target chemical, based on structural, toxicokinetic, and toxicodynamic similarity. This approach has been used for dose-response assessment of data-poor chemicals relevant to the U.S. EPA's Superfund program. We present herein, case studies of the application of this framework, highlighting specific examples of the use of biological similarity for chemical grouping and quantitative read-across. Based on practical knowledge and technological advances in the fields of read-across and predictive toxicology, we propose a revised framework. It includes important considerations for problem formulation, systematic review, target chemical analysis, analogue identification, analogue evaluation, and incorporation of new approach methods. This work emphasizes the integration of systematic methods and alternative toxicity testing data and tools in chemical risk assessment to inform regulatory decision-making.
Collapse
Affiliation(s)
- Lucina E Lizarraga
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA.
| | - Glenn W Suter
- Office of Research and Development, Emeritus, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA
| | - Jason C Lambert
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Jay Q Zhao
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA
| | - Jeffry L Dean
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA
| | - Phillip Kaiser
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA
| |
Collapse
|
11
|
Lee SH, Kim J, Kim J, Park J, Park S, Kim KB, Lee BM, Kwon S. Current trends in read-across applications for chemical risk assessments and chemical registrations in the Republic of Korea. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:393-404. [PMID: 36250612 DOI: 10.1080/10937404.2022.2133033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Read-across, an alternative approach for hazard assessment, has been widely adopted when in vivo data are unavailable for chemicals of interest. Read-across is enabled via in silico tools such as quantitative structure activity relationship (QSAR) modeling. In this study, the current status of structure activity relationship (SAR)-based read-across applications in the Republic of Korea (ROK) was examined considering both chemical risk assessments and chemical registrations from different sectors, including regulatory agencies, industry, and academia. From the regulatory perspective, the Ministry of Environment (MOE) established the Act on Registration and Evaluation of Chemicals (AREC) in 2019 to enable registrants to submit alternative data such as information from read-across instead of in vivo data to support hazard assessment and determine chemical-specific risks. Further, the Ministry of Food and Drug Safety (MFDS) began to consider read-across approaches for establishing acceptable intake (AI) limits of impurities occurring during pharmaceutical manufacturing processes under the ICH M7 guideline. Although read-across has its advantages, this approach also has limitations including (1) lack of standardized criteria for regulatory acceptance, (2) inconsistencies in the robustness of scientific evidence, and (3) deficiencies in the objective reliability of read-across data. The application and acceptance rate of read-across may vary among regulatory agencies. Therefore, sufficient data need to be prepared to verify the hypothesis that structural similarities might lead to similarities in properties of substances (between source and target chemicals) prior to adopting a read-across approach. In some cases, additional tests may be required during the registration process to clarify long-term effects on human health or the environment for certain substances that are data deficient. To improve the quality of read-across data for regulatory acceptance, cooperative efforts from regulatory agencies, academia, and industry are needed to minimize limitations of read-across applications.
Collapse
Affiliation(s)
- Sang Hee Lee
- Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Inchon, Republic of Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jinyong Kim
- Environment, Safety and Health DepartmentChemical Products and Biocides Safety Center, Korea Environmental Industry and Technology Institute (KEITI), Inchon, Republic of Korea
| | - Jaehyun Park
- Pharmaceutical Standardization Division, Drug Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do, Republic of Korea
| | | | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam 31116, Republic of Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Republic of Korea
| | - Seok Kwon
- Global Product Stewardship, Research & Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operationsr, Singapore
| |
Collapse
|
12
|
Lee BM, Lee SH, Yamada T, Park S, Wang Y, Kim KB, Kwon S. Read-across approaches: current applications and regulatory acceptance in Korea, Japan, and China. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:184-197. [PMID: 34670481 DOI: 10.1080/15287394.2021.1992323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this paper was to investigate the current status of read-across approaches in the Republic of Korea, Japan, and China in terms of applications and regulatory acceptance. In the Republic of Korea, over the last 6 years, approximately 8% of safety data records used for chemical registrations were based upon read-across, and a guideline published on the use of read-across results in 2017. In Japan, read-across is generally accepted for screening hazard classification of toxicological endpoints according to the Chemical Substances Control Law (CSCL). In China, read-across data, along with data from other animal alternatives are accepted as a data source for chemical registrations, but could be only considered when testing is not technically feasible. At present, read-across is not widely used for chemical registrations and regulatory acceptance of read-across may differ among countries in Asia. With consideration of the advantages and limitations of read-across, it is expected that read-across may soon gradually be employed in Asian countries. Thus, regulatory agencies need to prepare for this progression.
Collapse
Affiliation(s)
- Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Gyeonggi-Do, Korea
| | - Sang Hee Lee
- Chemicals Registration & Evaluation Team, Risk Assessment Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Korea
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan
| | | | - Ying Wang
- Procter & Gamble (P&G) Technology (Beijing) Co., Ltd, Beijing, PR China
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Chungnam, Korea
| | - Seok Kwon
- Global Product Stewardship, Research & Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operations, Singapore, Singapore
| |
Collapse
|
13
|
Alexander-White C, Bury D, Cronin M, Dent M, Hack E, Hewitt NJ, Kenna G, Naciff J, Ouedraogo G, Schepky A, Mahony C, Europe C. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul Toxicol Pharmacol 2022; 129:105094. [PMID: 34990780 DOI: 10.1016/j.yrtph.2021.105094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
This paper presents a 10-step read-across (RAX) framework for use in cases where a threshold of toxicological concern (TTC) approach to cosmetics safety assessment is not possible. RAX builds on established approaches that have existed for more than two decades using chemical properties and in silico toxicology predictions, by further substantiating hypotheses on toxicological similarity of substances, and integrating new approach methodologies (NAM) in the biological and kinetic domains. NAM include new types of data on biological observations from, for example, in vitro assays, toxicogenomics, metabolomics, receptor binding screens and uses physiologically-based kinetic (PBK) modelling to inform about systemic exposure. NAM data can help to substantiate a mode/mechanism of action (MoA), and if similar chemicals can be shown to work by a similar MoA, a next generation risk assessment (NGRA) may be performed with acceptable confidence for a data-poor target substance with no or inadequate safety data, based on RAX approaches using data-rich analogue(s), and taking account of potency or kinetic/dynamic differences.
Collapse
Affiliation(s)
- Camilla Alexander-White
- MKTox & Co Ltd, 36 Fairford Crescent, Downhead Park, Milton Keynes, Buckinghamshire, MK15 9AQ, UK.
| | - Dagmar Bury
- L'Oreal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 AF, UK
| | - Matthew Dent
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | - Eric Hack
- ScitoVation, Research Triangle Park, Durham, NC, USA
| | - Nicola J Hewitt
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Gerry Kenna
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Jorge Naciff
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Gladys Ouedraogo
- L'Oreal Research & Innovation, 1 Avenue Eugène Schueller, Aulnay sous bois, France
| | | | | | - Cosmetics Europe
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium.
| |
Collapse
|
14
|
Suter GW, Lizarraga LE. Clearly weighing the evidence in read-across can improve assessments of data-poor chemicals. Regul Toxicol Pharmacol 2021; 129:105111. [PMID: 34973387 DOI: 10.1016/j.yrtph.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
This paper provides a systematic weight-of-evidence method for read-across analyses of data-poor chemicals. The read-across technique extrapolates toxicity from analogous chemicals for which suitable test data are available to a target chemical. To determine that a candidate analogue is the 'best' and is sufficiently similar, the evidence for similarity of each candidate analogue to the target is weighed. We present a systematic weight of evidence method that provides transparency and imposes a consistent and rigorous inferential process. The method assembles relevant information concerning structure, physicochemical attributes, toxicokinetics, and toxicodynamics of the target and analogues. The information is then organized by evidence types and subtypes and weighted in terms of properties: relevance, strength, and reliability into weight levels, expressed as symbols. After evidence types are weighted, the bodies of evidence are weighted for collective properties: number, diversity, and coherence. Finally, the weights for the types and bodies of evidence are weighed for each analogue, and, if the overall weight of evidence is sufficient for one or more analogues, the analogue with the greatest weight is used to estimate the endpoint effect. We illustrate this WoE approach with a read-across analysis for screening the organochlorine contaminant, p,p'-dichlorodiphenyldichloroethane (DDD), for noncancer oral toxicity.
Collapse
Affiliation(s)
- Glenn W Suter
- Office of Research and Development, Emeritus, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA.
| | - Lucina E Lizarraga
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 26 W. Martin L. King Drive, Cincinnati, OH, 45268, USA.
| |
Collapse
|
15
|
Escher SE, Aguayo-Orozco A, Benfenati E, Bitsch A, Braunbeck T, Brotzmann K, Bois F, van der Burg B, Castel J, Exner T, Gadaleta D, Gardner I, Goldmann D, Hatley O, Golbamaki N, Graepel R, Jennings P, Limonciel A, Long A, Maclennan R, Mombelli E, Norinder U, Jain S, Capinha LS, Taboureau OT, Tolosa L, Vrijenhoek NG, van Vugt-Lussenburg BMA, Walker P, van de Water B, Wehr M, White A, Zdrazil B, Fisher C. A read-across case study on chronic toxicity of branched carboxylic acids (1): Integration of mechanistic evidence from new approach methodologies (NAMs) to explore a common mode of action. Toxicol In Vitro 2021; 79:105269. [PMID: 34757180 DOI: 10.1016/j.tiv.2021.105269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 02/04/2023]
Abstract
This read-across case study characterises thirteen, structurally similar carboxylic acids demonstrating the application of in vitro and in silico human-based new approach methods, to determine biological similarity. Based on data from in vivo animal studies, the read-across hypothesis is that all analogues are steatotic and so should be considered hazardous. Transcriptomic analysis to determine differentially expressed genes (DEGs) in hepatocytes served as first tier testing to confirm a common mode-of-action and identify differences in the potency of the analogues. An adverse outcome pathway (AOP) network for hepatic steatosis, informed the design of an in vitro testing battery, targeting AOP relevant MIEs and KEs, and Dempster-Shafer decision theory was used to systematically quantify uncertainty and to define the minimal testing scope. The case study shows that the read-across hypothesis is the critical core to designing a robust, NAM-based testing strategy. By summarising the current mechanistic understanding, an AOP enables the selection of NAMs covering MIEs, early KEs, and late KEs. Experimental coverage of the AOP in this way is vital since MIEs and early KEs alone are not confirmatory of progression to the AO. This strategy exemplifies the workflow previously published by the EUTOXRISK project driving a paradigm shift towards NAM-based NGRA.
Collapse
Affiliation(s)
- Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany.
| | | | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Frederic Bois
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | | | - Jose Castel
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Domenico Gadaleta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Iain Gardner
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | - Daria Goldmann
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | | | - Rabea Graepel
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Paul Jennings
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Sankalp Jain
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | | | | | - Laia Tolosa
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Nanette G Vrijenhoek
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | | | - Bob van de Water
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Matthias Wehr
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Barbara Zdrazil
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | - Ciarán Fisher
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| |
Collapse
|
16
|
Tate T, Wambaugh J, Patlewicz G, Shah I. Repeat-dose toxicity prediction with Generalized Read-Across (GenRA) using targeted transcriptomic data: A proof-of-concept case study. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 19:1-12. [PMID: 37309449 PMCID: PMC10259651 DOI: 10.1016/j.comtox.2021.100171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Read-across is a data gap filling technique utilized to predict the toxicity of a target chemical using data from similar analogues. Recent efforts such as Generalized Read-Across (GenRA) facilitate automated read-across predictions for untested chemicals. GenRA makes predictions of toxicity outcomes based on "neighboring" chemicals characterized by chemical and bioactivity fingerprints. Here we investigated the impact of biological similarities on neighborhood formation and read-across performance in predicting hazard (based on repeat-dose testing outcomes from US EPA ToxRefDB v2.0). We used targeted transcriptomic data on 93 genes for 1060 chemicals in HepaRG™ cells that measure nuclear receptor activation, xenobiotic metabolism, cellular stress, cell cycle progression, and apoptosis. Transcriptomic similarity between chemicals was calculated using binary hit-calls from concentration-response data for each gene. We evaluated GenRA performance in predicting ToxRefDB v2.0 hazard outcomes using the area under the Receiver Operating Characteristic (ROC) curve (AUC) for the baseline approach (chemical fingerprints) versus transcriptomic fingerprints and a combination of both (hybrid). For all endpoints, there were significant but only modest improvements in ROC AUC scores of 0.01 (2.1%) and 0.04 (7.3%) with transcriptomic and hybrid descriptors, respectively. However, for liver-specific toxicity endpoints, ROC AUC scores improved by 10% and 17% for transcriptomic and hybrid descriptors, respectively. Our findings suggest that using hybrid descriptors formed by combining chemical and targeted transcriptomic information can improve in vivo toxicity predictions in the right context.
Collapse
Affiliation(s)
| | | | | | - Imran Shah
- Corresponding author at: U.S. Environmental
Protection Agency, 109 TW Alexander Drive (D130A), Research Triangle Park, NC
27711, USA. (I. Shah)
| |
Collapse
|
17
|
Tcheremenskaia O, Benigni R. Toward regulatory acceptance and improving the prediction confidence of in silico approaches: a case study of genotoxicity. Expert Opin Drug Metab Toxicol 2021; 17:987-1005. [PMID: 34078212 DOI: 10.1080/17425255.2021.1938540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Genotoxicity is an imperative component of the human health safety assessment of chemicals. Its secure forecast is of the utmost importance for all health prevention strategies and regulations.Areas covered: We surveyed several types of alternative, animal-free approaches ((quantitative) structure-activity relationship (Q)SAR, read-across, Adverse Outcome Pathway, Integrated Approaches to Testing and Assessment) for genotoxicity prediction within the needs of regulatory frameworks, putting special emphasis on data quality and uncertainties issues.Expert opinion: (Q)SAR models and read-across approaches for in vitro bacterial mutagenicity have sufficient reliability for use in prioritization processes, and as support in regulatory decisions in combination with other types of evidence. (Q)SARs and read-across methodologies for other genotoxicity endpoints need further improvements and should be applied with caution. It appears that there is still large room for improvement of genotoxicity prediction methods. Availability of well-curated high-quality databases, covering a broader chemical space, is one of the most important needs. Integration of in silico predictions with expert knowledge, weight-of-evidence-based assessment, and mechanistic understanding of genotoxicity pathways are other key points to be addressed for the generation of more accurate and trustable results.
Collapse
Affiliation(s)
- Olga Tcheremenskaia
- Environmental and Health Department, Istituto Superiore Di Sanità (ISS), Rome, Italy, Rome, Italy
| | | |
Collapse
|
18
|
Lester CC, Yan G. A matched molecular pair (MMP) approach for selecting analogs suitable for structure activity relationship (SAR)-based read across. Regul Toxicol Pharmacol 2021; 124:104966. [PMID: 34044089 DOI: 10.1016/j.yrtph.2021.104966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
One of the most challenging aspects of SAR-based read across is the identification of structurally similar compounds suitable for use as data sources to cover the safety of a target chemical. Matched molecular pair analysis (MMPA) provides a systematic method for mining experimental data for chemical substitutions that may be interpreted in terms of changes in properties. Here we use the relationships between structural substitutions linking a target chemical with an analog determined to be suitable using the expert-judgment based P&G framework of Wu et al. (2010). The relationships are established by applying MMPA to a database of compounds with safety assessed using SAR-based read across to suitable analogs possessing toxicological data. The analysis revealed that only five categories of substitutions per chemical class (aromatic or aliphatic) were necessary to link all molecular pairs. These data are summarized in a workflow outlining a strategy for searching toxicological databases for potential analogs. This approach provides structural comparisons that are interpretable and sensitive to small differences in the local structure of two compounds that may be linked to suitability for read across in contrast to the use of quantitative similarity measures which show little correlation with analog suitability.
Collapse
Affiliation(s)
- Cathy C Lester
- The Procter & Gamble Company, 8700 Mason Montgomery Rd. Mason, OH, 45040, USA.
| | - Gang Yan
- The Procter & Gamble Company, 8700 Mason Montgomery Rd. Mason, OH, 45040, USA
| |
Collapse
|
19
|
Drewe WC, Dobo KL, Sobol Z, Bercu JP, Parris P, Nicolette J. Deriving Compound-Specific Exposure Limits for Chemicals Used in Pharmaceutical Synthesis: Challenges in Expert Decision-Making Exemplified Through a Case Study-Based Workshop. Int J Toxicol 2021; 40:285-298. [PMID: 33525949 DOI: 10.1177/1091581820982547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A workshop entitled "Deriving Compound-Specific Exposure Limits for Chemicals Used in Pharmaceutical Synthesis" was held at the 2018 Genetic Toxicology Association annual meeting. The objectives of the workshop were to provide an educational forum and use case studies and live multiple-choice polling to establish the degree of similarity/diversity in approach/opinion of the industry experts and other delegates present for some of the more challenging decision points that need to be considered when developing a compound-specific exposure limit (ie, acceptable intake or permissible or permitted daily exposure). Herein we summarize the relevant background and case study information for each decision point topic presented as well as highlight significant polling responses and discussion points. A common observation throughout was the requirement for expert judgment to be applied at each of the decision points presented which often results in different reasoning being applied by the risk assessor when deriving a compound-specific exposure limit. This supports the value of precompetitive cross-industry collaborations to develop compound-specific limits and harmonize the methodology applied, thus reducing the associated uncertainty inherent in the application of isolated expert judgment in this context. An overview of relevant precompetitive cross-industry collaborations working to achieve this goal is described.
Collapse
Affiliation(s)
| | - Krista L Dobo
- 390190Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Zhanna Sobol
- 390190Pfizer Worldwide Research and Development, Groton, CT, USA
| | | | - Patricia Parris
- Pfizer Worldwide Research and Development, Sandwich, Kent, UK
| | | |
Collapse
|
20
|
Gilmour N, Kern PS, Alépée N, Boislève F, Bury D, Clouet E, Hirota M, Hoffmann S, Kühnl J, Lalko JF, Mewes K, Miyazawa M, Nishida H, Osmani A, Petersohn D, Sekine S, van Vliet E, Klaric M. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 2020; 116:104721. [DOI: 10.1016/j.yrtph.2020.104721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
|
21
|
Hisaki T, Kaneko MAN, Hirota M, Matsuoka M, Kouzuki H. Integration of read-across and artificial neural network-based QSAR models for predicting systemic toxicity: A case study for valproic acid. J Toxicol Sci 2020; 45:95-108. [PMID: 32062621 DOI: 10.2131/jts.45.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present a systematic, comprehensive and reproducible weight-of-evidence approach for predicting the no-observed-adverse-effect level (NOAEL) for systemic toxicity by using read-across and quantitative structure-activity relationship (QSAR) models to fill gaps in rat repeated-dose and developmental toxicity data. As a case study, we chose valproic acid, a developmental toxicant in humans and animals. High-quality in vivo oral rat repeated-dose and developmental toxicity data were available for five and nine analogues, respectively, and showed qualitative consistency, especially for developmental toxicity. Similarity between the target and analogues is readily defined computationally, and data uncertainties associated with the similarities in structural, physico-chemical and toxicological properties, including toxicophores, were low. Uncertainty associated with metabolic similarity is low-to-moderate, largely because the approach was limited to in silico prediction to enable systematic and objective data collection. Uncertainty associated with completeness of read-across was reduced by including in vitro and in silico metabolic data and expanding the experimental animal database. Taking the "worst-case" approach, the smallest NOAEL values among the analogs (i.e., 200 and 100 mg/kg/day for repeated-dose and developmental toxicity, respectively) were read-across to valproic acid. Our previous QSAR models predict repeated-dose NOAEL of 148 (males) and 228 (females) mg/kg/day, and developmental toxicity NOAEL of 390 mg/kg/day for valproic acid. Based on read-across and QSAR, the conservatively predicted NOAEL is 148 mg/kg/day for repeated-dose toxicity, and 100 mg/kg/day for developmental toxicity. Experimental values are 341 mg/kg/day and 100 mg/kg/day, respectively. The present approach appears promising for quantitative and qualitative in silico systemic toxicity prediction of untested chemicals.
Collapse
Affiliation(s)
- Tomoka Hisaki
- Shiseido Global Innovation Center.,Department of Hygiene and Public Health, Tokyo Women's Medical University
| | | | | | - Masato Matsuoka
- Department of Hygiene and Public Health, Tokyo Women's Medical University
| | | |
Collapse
|
22
|
Ball N, Madden J, Paini A, Mathea M, Palmer AD, Sperber S, Hartung T, van Ravenzwaay B. Key read across framework components and biology based improvements. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503172. [DOI: 10.1016/j.mrgentox.2020.503172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
|
23
|
Rogiers V, Benfenati E, Bernauer U, Bodin L, Carmichael P, Chaudhry Q, Coenraads PJ, Cronin MT, Dent M, Dusinska M, Ellison C, Ezendam J, Gaffet E, Galli CL, Goebel C, Granum B, Hollnagel HM, Kern PS, Kosemund-Meynen K, Ouédraogo G, Panteri E, Rousselle C, Stepnik M, Vanhaecke T, von Goetz N, Worth A. The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology 2020; 436:152421. [DOI: 10.1016/j.tox.2020.152421] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
|
24
|
Karmaus AL, Bialk H, Fitzpatrick S, Krishan M. State of the science on alternatives to animal testing and integration of testing strategies for food safety assessments: Workshop proceedings. Regul Toxicol Pharmacol 2020; 110:104515. [DOI: 10.1016/j.yrtph.2019.104515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
|
25
|
Atwood ST, Lunn RM, Garner SC, Jahnke GD. New Perspectives for Cancer Hazard Evaluation by the Report on Carcinogens: A Case Study Using Read-Across Methods in the Evaluation of Haloacetic Acids Found as Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:125003. [PMID: 31854200 PMCID: PMC6957284 DOI: 10.1289/ehp5672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Due to the large number of chemicals not yet tested for carcinogenicity but to which people are exposed, the limited number of human and animal cancer studies conducted each year, and the frequent need for a timely response, mechanistic data are playing an increasingly important role in carcinogen hazard identification. OBJECTIVES To provide a targeted approach to identify relevant mechanistic data in our cancer evaluation of haloacetic acids (HAAs), we used several approaches including systematic review, the 10 key characteristics of carcinogens (KCs), and read-across methods. Our objective in this commentary is to discuss the strengths, limitations, and challenges of these approaches in a cancer hazard assessment. METHODS A cancer hazard assessment for 13 HAAs found as water disinfection by-products was conducted. Literature searches for mechanistic studies focused on the KCs and individual HAAs. Studies were screened for relevance and categorized by KCs and other relevant data, including chemical properties, toxicokinetics, and biological effects other than KCs. Mechanistic data were organized using the KCs, and strength of evidence was evaluated; this information informed potential modes of action (MOAs) and read-across-like approaches. Three read-across options were considered: evaluating HAAs as a class, as subclass(es), or as individual HAAs (analog approach). DISCUSSION Because of data limitations and uncertainties, listing as a class or subclass(es) was ruled out, and an analog approach was used. Two brominated HAAs were identified as target (untested) chemicals based on their metabolism and similarity to source (tested) chemicals. In addition, four HAAs with animal cancer data had sufficient evidence for potential listing in the Report on Carcinogens (RoC). This is the first time that the KCs and other relevant data, in combination with read-across principles, were used to support a recommendation to list chemicals in the RoC that did not have animal cancer data. https://doi.org/10.1289/EHP5672.
Collapse
Affiliation(s)
- Stanley T Atwood
- Contractor in Support of National Institute of Environmental Health Sciences (NIEHS) Report on Carcinogens, Integrated Laboratory Systems, Inc. (ILS), Research Triangle Park, North Carolina, USA
| | - Ruth M Lunn
- Office of the Report on Carcinogens, Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA
| | - Sanford C Garner
- Contractor in Support of National Institute of Environmental Health Sciences (NIEHS) Report on Carcinogens, Integrated Laboratory Systems, Inc. (ILS), Research Triangle Park, North Carolina, USA
| | - Gloria D Jahnke
- Office of the Report on Carcinogens, Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
26
|
Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Arch Toxicol 2019; 93:3643-3667. [DOI: 10.1007/s00204-019-02591-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
|
27
|
Patlewicz G, Lizarraga LE, Rua D, Allen DG, Daniel AB, Fitzpatrick SC, Garcia-Reyero N, Gordon J, Hakkinen P, Howard AS, Karmaus A, Matheson J, Mumtaz M, Richarz AN, Ruiz P, Scarano L, Yamada T, Kleinstreuer N. Exploring current read-across applications and needs among selected U.S. Federal Agencies. Regul Toxicol Pharmacol 2019; 106:197-209. [PMID: 31078681 PMCID: PMC6814248 DOI: 10.1016/j.yrtph.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Read-across is a well-established data gap-filling technique applied for regulatory purposes. In US Environmental Protection Agency's New Chemicals Program under TSCA, read-across has been used extensively for decades, however the extent of application and acceptance of read-across among U.S. federal agencies is less clear. In an effort to build read-across capacity, raise awareness of the state of the science, and work towards a harmonization of read-across approaches across U.S. agencies, a new read-across workgroup was established under the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). This is one of several ad hoc groups ICCVAM has convened to implement the ICCVAM Strategic Roadmap. In this article, we outline the charge and scope of the workgroup and summarize the current applications, tools used, and needs of the agencies represented on the workgroup for read-across. Of the agencies surveyed, the Environmental Protection Agency had the greatest experience in using read-across whereas other agencies indicated that they would benefit from gaining a perspective of the landscape of the tools and available guidance. Two practical case studies are also described to illustrate how the read-across approaches applied by two agencies vary on account of decision context.
Collapse
Affiliation(s)
- Grace Patlewicz
- (a)National Center for Computational Toxicology, U.S. Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| | - Lucina E Lizarraga
- (b)National Center for Environmental Assessment, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA
| | - Diego Rua
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - David G Allen
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Amber B Daniel
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD, 20740, USA
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, U.S. Army Engineer Research and Developmental Center, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA
| | - John Gordon
- U.S. Consumer Product Safety Commission, 5 Research Place, Rockville, MD, 20850, USA
| | - Pertti Hakkinen
- National Library of Medicine, 6707 Democracy Blvd., Bethesda, MD, 20892, USA
| | | | - Agnes Karmaus
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, 5 Research Place, Rockville, MD, 20850, USA
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, 1600 Clifton Rd., Chamblee, GA, 30341, USA
| | | | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, 1600 Clifton Rd., Chamblee, GA, 30341, USA
| | - Louis Scarano
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave. NW, Washington, DC, 20460, USA
| | - Takashi Yamada
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
28
|
Kim HY, Lee JD, Kim JY, Lee JY, Bae ON, Choi YK, Baek E, Kang S, Min C, Seo K, Choi K, Lee BM, Kim KB. Risk assessment of volatile organic compounds (VOCs) detected in sanitary pads. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:678-695. [PMID: 31328663 DOI: 10.1080/15287394.2019.1642607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disposable sanitary pads are a necessity for women's health, but safety concerns regarding the use of these products have created anxiety. The aim of this study was to conduct a risk assessment of 74 volatile organic compounds (VOCs), which were expected to be contained within sanitary pads. Of the 74 VOCs, 50 were found in sanitary pads retailed in Korea at concentrations ranging from 0.025 to 3548.09 µg/pad. In order to undertake a risk assessment of the VOCs, the toxicological database of these compounds in the United States Environmental Protection Agency (USEPA), Agency for Toxic Substances and Disease Registry (ATSDR), National Toxicology Program (NTP) and World Health Organization (WHO) was searched. Ethanol was found to exhibit the highest reference dose (RfD) while 1,2-dibromo-3-chloro-propane displayed the lowest RfD. Consequently, a worst-case exposure scenario was applied in this study. It was assumed that there was the use of 7.5 sanitary napkins/day for 7 days/month. In the case of panty liners or overnight sanitary napkins, the utilization of 90 panty liners/month or 21 overnight sanitary napkins/month was assumed, respectively. In addition, 43 kg, the body weight of 12 to 13-year-old young women, and 100% VOCs skin absorption were employed for risk assessment. The systemic exposure dose (SED) values were calculated ranging from 1.74 (1,1,2-trichloroethane) ng/kg/day to 144.4 (ethanol, absolute) µg/kg/day. Uncertainty factors (UFs) were applied ranging from 10 to 100,000 in accordance with the robustness of animal or human experiments. The margin of exposure (MOE) of 34 VOCs was more than 1 (acceptable MOE > 1). Applicable carcinogenic references reported that the cancer risk of five VOCs was below 10-6. Based on our findings, evidence indicates that the non-cancer and cancer risks associated with VOCs detected in sanitary pads currently used in South Korea do not pose an adverse health risk in women.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- a College of Pharmacy, Dankook University , Cheonan , Republic of Korea
| | - Jung Dae Lee
- b Division of Toxicology, College of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Ji-Young Kim
- a College of Pharmacy, Dankook University , Cheonan , Republic of Korea
| | - Joo Young Lee
- c BK21plus team, College of Pharmacy, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Ok-Nam Bae
- d College of Pharmacy, Hanyang University , Ansan , South Korea
| | - Yong-Kyu Choi
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Eunji Baek
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Sejin Kang
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Chungsik Min
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Kyungwon Seo
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Kihwan Choi
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Byung-Mu Lee
- b Division of Toxicology, College of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Kyu-Bong Kim
- a College of Pharmacy, Dankook University , Cheonan , Republic of Korea
| |
Collapse
|
29
|
De Abrew KN, Shan YK, Wang X, Krailler JM, Kainkaryam RM, Lester CC, Settivari RS, LeBaron MJ, Naciff JM, Daston GP. Use of connectivity mapping to support read across: A deeper dive using data from 186 chemicals, 19 cell lines and 2 case studies. Toxicology 2019; 423:84-94. [DOI: 10.1016/j.tox.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/30/2019] [Accepted: 05/19/2019] [Indexed: 01/21/2023]
|
30
|
Estimating uncertainty in the context of new approach methodologies for potential use in chemical safety evaluation. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Kovarich S, Ceriani L, Fuart Gatnik M, Bassan A, Pavan M. Filling Data Gaps by Read-across: A Mini Review on its Application, Developments and Challenges. Mol Inform 2019; 38:e1800121. [PMID: 30977298 DOI: 10.1002/minf.201800121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/08/2019] [Indexed: 11/07/2022]
Abstract
Read-across is a non-testing data gap filling technique which provides information for toxicological assessments by inferring from known toxicity data of compound(s) with a "similar" property or chemical profile. The increased usage of read-across was driven by monetary, timing and ethical costs associated with in vivo testing, as well as promoted by regulatory frameworks to minimize new animal testing (e. g., EU-REACH). Several guidance documents have been published by ECHA and OECD providing guidelines on how to perform, assess and document a read-across study. In parallel, much effort was invested by the scientific community to provide good read-across practices and structured frameworks to enhance validity of read-across justifications. Nevertheless, read-across is an evolving method with several open issues and opportunities. A brief review is here provided on key developments on the use of read-across, regulatory and scientific expectations, practical hurdles and open challenges.
Collapse
Affiliation(s)
- Simona Kovarich
- S-IN Soluzioni Informatiche S.r.l., via G. Ferrari via 14, 36100, Vicenza -, Italy
| | - Lidia Ceriani
- S-IN Soluzioni Informatiche S.r.l., via G. Ferrari via 14, 36100, Vicenza -, Italy
| | - Mojca Fuart Gatnik
- S-IN Soluzioni Informatiche S.r.l., via G. Ferrari via 14, 36100, Vicenza -, Italy
| | - Arianna Bassan
- S-IN Soluzioni Informatiche S.r.l., via G. Ferrari via 14, 36100, Vicenza -, Italy
| | - Manuela Pavan
- S-IN Soluzioni Informatiche S.r.l., via G. Ferrari via 14, 36100, Vicenza -, Italy
| |
Collapse
|
32
|
Benigni R, Laura Battistelli C, Bossa C, Giuliani A, Fioravanzo E, Bassan A, Fuart Gatnik M, Rathman J, Yang C, Tcheremenskaia O. Evaluation of the applicability of existing (Q)SAR models for predicting the genotoxicity of pesticides and similarity analysis related with genotoxicity of pesticides for facilitating of grouping and read across. ACTA ACUST UNITED AC 2019. [DOI: 10.2903/sp.efsa.2019.en-1598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Schultz TW, Richarz AN, Cronin MT. Assessing uncertainty in read-across: Questions to evaluate toxicity predictions based on knowledge gained from case studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Patlewicz G, Cronin MT, Helman G, Lambert JC, Lizarraga LE, Shah I. Navigating through the minefield of read-across frameworks: A commentary perspective. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Stuard SB, Heinonen T. Relevance and Application of Read-Across - Mini Review of European Consensus Platform for Alternatives and Scandinavian Society for Cell Toxicology 2017 Workshop Session. Basic Clin Pharmacol Toxicol 2018. [PMID: 29524304 DOI: 10.1111/bcpt.13006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure activity relationship (SAR)-based read-across is an effective approach for addressing data gaps in human health risk assessment for 'data-poor' chemicals. In read-across, available data on chemical structural analogues are used to predict the toxicity potential of the data-poor chemical. This approach has long been recognized by regulatory agencies and used by industry to evaluate the hazards of chemicals for which there are limited direct data. Construction of a scientifically robust SAR-based read-across hazard assessment is a complex and iterative process involving multiple considerations in each step. Traditional in vivo data generated using regulatory guideline compliant study designs typically forms the basis for read-across assessments. Recently, however, new data streams have been explored and incorporated to enhance read-across predictivity. These in vitro and omics data streams may be used in different ways involving identification of hazards or to provide insight into modes of action for observed toxicological responses. These 'new approach methods' can also enable comparison of biological responses across analogues or a category of structurally related chemicals in order to establish a pattern of biological similarity in addition chemical similarity and/or to help address potency differences across a category. The purpose of this workshop session was to inform on practical considerations in conducting SAR-based read-across assessments and to review recent activities related to application of new approach methods to the practice of read-across.
Collapse
|
36
|
Myatt GJ, Ahlberg E, Akahori Y, Allen D, Amberg A, Anger LT, Aptula A, Auerbach S, Beilke L, Bellion P, Benigni R, Bercu J, Booth ED, Bower D, Brigo A, Burden N, Cammerer Z, Cronin MTD, Cross KP, Custer L, Dettwiler M, Dobo K, Ford KA, Fortin MC, Gad-McDonald SE, Gellatly N, Gervais V, Glover KP, Glowienke S, Van Gompel J, Gutsell S, Hardy B, Harvey JS, Hillegass J, Honma M, Hsieh JH, Hsu CW, Hughes K, Johnson C, Jolly R, Jones D, Kemper R, Kenyon MO, Kim MT, Kruhlak NL, Kulkarni SA, Kümmerer K, Leavitt P, Majer B, Masten S, Miller S, Moser J, Mumtaz M, Muster W, Neilson L, Oprea TI, Patlewicz G, Paulino A, Lo Piparo E, Powley M, Quigley DP, Reddy MV, Richarz AN, Ruiz P, Schilter B, Serafimova R, Simpson W, Stavitskaya L, Stidl R, Suarez-Rodriguez D, Szabo DT, Teasdale A, Trejo-Martin A, Valentin JP, Vuorinen A, Wall BA, Watts P, White AT, Wichard J, Witt KL, Woolley A, Woolley D, Zwickl C, Hasselgren C. In silico toxicology protocols. Regul Toxicol Pharmacol 2018; 96:1-17. [PMID: 29678766 DOI: 10.1016/j.yrtph.2018.04.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.
Collapse
Affiliation(s)
- Glenn J Myatt
- Leadscope, Inc., 1393 Dublin Rd, Columbus, OH 43215, USA.
| | - Ernst Ahlberg
- Predictive Compound ADME & Safety, Drug Safety & Metabolism, AstraZeneca IMED Biotech Unit, Mölndal, Sweden
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004 Japan
| | - David Allen
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | - Lennart T Anger
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | - Aynur Aptula
- Unilever, Safety and Environmental Assurance Centre, Colworth, Beds, UK
| | - Scott Auerbach
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, USA
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, USA
| | | | | | - Joel Bercu
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, USA
| | - Ewan D Booth
- Syngenta, Product Safety Department, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Dave Bower
- Leadscope, Inc., 1393 Dublin Rd, Columbus, OH 43215, USA
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Natalie Burden
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | - Zoryana Cammerer
- Janssen Research & Development, 1400 McKean Road, Spring House, PA 19477, USA
| | - Mark T D Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Kevin P Cross
- Leadscope, Inc., 1393 Dublin Rd, Columbus, OH 43215, USA
| | - Laura Custer
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ 08903, USA
| | | | - Krista Dobo
- Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT 06340, USA
| | - Kevin A Ford
- Global Blood Therapeutics, South San Francisco, CA 94080, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Piscataway, NJ 08855, USA
| | | | - Nichola Gellatly
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | | | - Kyle P Glover
- Defense Threat Reduction Agency, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Susanne Glowienke
- Novartis Pharma AG, Pre-Clinical Safety, Werk Klybeck, CH-4057, Basel, Switzerland
| | - Jacky Van Gompel
- Janssen Pharmaceutical Companies of Johnson & Johnson, 2340 Beerse, Belgium
| | - Steve Gutsell
- Unilever, Safety and Environmental Assurance Centre, Colworth, Beds, UK
| | - Barry Hardy
- Douglas Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, CH-4057 Basel / Basel-Stadt, Switzerland
| | - James S Harvey
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Jedd Hillegass
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ 08903, USA
| | | | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, NC 27709, USA
| | - Chia-Wen Hsu
- FDA Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | - Kathy Hughes
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Robert Jolly
- Toxicology Division, Eli Lilly and Company, Indianapolis, IN, USA
| | - David Jones
- Medicines and Healthcare Products Regulatory Agency, 151 Buckingham Palace Road, London, SW1W 9SZ, UK
| | - Ray Kemper
- Vertex Pharmaceuticals Inc., Discovery and Investigative Toxicology, 50 Northern Ave, Boston, MA, USA
| | - Michelle O Kenyon
- Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT 06340, USA
| | - Marlene T Kim
- FDA Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | - Naomi L Kruhlak
- FDA Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | - Sunil A Kulkarni
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Klaus Kümmerer
- Institute for Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13.311b, 21335 Lüneburg, Germany
| | - Penny Leavitt
- Bristol-Myers Squibb, Drug Safety Evaluation, 1 Squibb Dr, New Brunswick, NJ 08903, USA
| | | | - Scott Masten
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, USA
| | - Scott Miller
- Leadscope, Inc., 1393 Dublin Rd, Columbus, OH 43215, USA
| | - Janet Moser
- Chemical Security Analysis Center, Department of Homeland Security, 3401 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5405, USA; Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43210, USA
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Wolfgang Muster
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Louise Neilson
- British American Tobacco, Research and Development, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, Health Sciences Center, The University of New Mexico, NM, USA
| | - Grace Patlewicz
- U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC 27711, USA
| | - Alexandre Paulino
- SAPEC Agro, S.A., Avenida do Rio Tejo, Herdade das Praias, 2910-440 Setúbal, Portugal
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research Center, Lausanne, Switzerland
| | - Mark Powley
- FDA Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | | | | | - Andrea-Nicole Richarz
- European Commission, Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, Via Enrico Fermi 2749, 21027 Ispra, VA, Italy
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Benoit Schilter
- Chemical Food Safety Group, Nestlé Research Center, Lausanne, Switzerland
| | | | - Wendy Simpson
- Unilever, Safety and Environmental Assurance Centre, Colworth, Beds, UK
| | - Lidiya Stavitskaya
- FDA Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | | | | | - David T Szabo
- RAI Services Company, 950 Reynolds Blvd., Winston-Salem, NC 27105, USA
| | | | | | | | | | - Brian A Wall
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA
| | - Pete Watts
- Bibra, Cantium House, Railway Approach, Wallington, Surrey, SM6 0DZ, UK
| | - Angela T White
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Joerg Wichard
- Bayer Pharma AG, Investigational Toxicology, Muellerstr. 178, D-13353 Berlin, Germany
| | - Kristine L Witt
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, USA
| | - Adam Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN 46229, USA
| | | |
Collapse
|
37
|
Sakuratani Y, Horie M, Leinala E. Integrated Approaches to Testing and Assessment: OECD Activities on the Development and Use of Adverse Outcome Pathways and Case Studies. Basic Clin Pharmacol Toxicol 2018; 123 Suppl 5:20-28. [DOI: 10.1111/bcpt.12955] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Sakuratani
- Environment Health and Safety Division; Environment Directorate; Organisation for Economic Co-operation and Development (OECD); Paris France
| | - Masashi Horie
- Environment Health and Safety Division; Environment Directorate; Organisation for Economic Co-operation and Development (OECD); Paris France
| | - Eeva Leinala
- Environment Health and Safety Division; Environment Directorate; Organisation for Economic Co-operation and Development (OECD); Paris France
| |
Collapse
|
38
|
Lester C, Reis A, Laufersweiler M, Wu S, Blackburn K. Structure activity relationship (SAR) toxicological assessments: The role of expert judgment. Regul Toxicol Pharmacol 2018; 92:390-406. [DOI: 10.1016/j.yrtph.2017.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 12/17/2022]
|
39
|
Gelbke HP, Ellis-Hutchings R, Müllerschön H, Murphy S, Pemberton M. Toxicological assessment of lower alkyl methacrylate esters by a category approach. Regul Toxicol Pharmacol 2018; 92:104-127. [DOI: 10.1016/j.yrtph.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
|
40
|
Pradeep P, Mansouri K, Patlewicz G, Judson R. A systematic evaluation of analogs and automated read-across prediction of estrogenicity: A case study using hindered phenols. ACTA ACUST UNITED AC 2017; 4:22-30. [PMID: 30057968 DOI: 10.1016/j.comtox.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Read-across is an important data gap filling technique used within category and analog approaches for regulatory hazard identification and risk assessment. Although much technical guidance is available that describes how to develop category/analog approaches, practical principles to evaluate and substantiate analog validity (suitability) are still lacking. This case study uses hindered phenols as an example chemical class to determine: (1) the capability of three structure fingerprint/descriptor methods (PubChem, ToxPrints and MoSS MCSS) to identify analogs for read-across to predict Estrogen Receptor (ER) binding activity and, (2) the utility of data confidence measures, physicochemical properties, and chemical R-group properties as filters to improve ER binding predictions. The training dataset comprised 462 hindered phenols and 257 non- hindered phenols. For each chemical of interest (target), source analogs were identified from two datasets (hindered and non-hindered phenols) that had been characterized by a fingerprint/descriptor method and by two cut-offs: (1) minimum similarity distance (range: 0.1 - 0.9) and, (2) N closest analogs (range: 1 - 10). Analogs were then filtered using: (1) physicochemical properties of the phenol (termed global filtering) and, (2) physicochemical properties of the R-groups neighboring the active hydroxyl group (termed local filtering). A read-across prediction was made for each target chemical on the basis of a majority vote of the N closest analogs. The results demonstrate that: (1) concordance in ER activity increases with structural similarity, regardless of the structure fingerprint/descriptor method, (2) increased data confidence significantly improves read-across predictions, and (3) filtering analogs using global and local properties can help identify more suitable analogs. This case study illustrates that the quality of the underlying experimental data and use of endpoint relevant chemical descriptors to evaluate source analogs are critical to achieving robust read-across predictions.
Collapse
Affiliation(s)
- Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.,National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.,National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
41
|
Grace P, George H, Prachi P, Imran S. Navigating through the minefield of read-across tools: A review of in silico tools for grouping. ACTA ACUST UNITED AC 2017; 3:1-18. [PMID: 30221211 DOI: 10.1016/j.comtox.2017.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Read-across is a popular data gap filling technique used within analogue and category approaches for regulatory purposes. In recent years there have been many efforts focused on the challenges involved in read-across development, its scientific justification and documentation. Tools have also been developed to facilitate read-across development and application. Here, we describe a number of publicly available read-across tools in the context of the category/analogue workflow and review their respective capabilities, strengths and weaknesses. No single tool addresses all aspects of the workflow. We highlight how the different tools complement each other and some of the opportunities for their further development to address the continued evolution of read-across.
Collapse
Affiliation(s)
- Patlewicz Grace
- National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA
| | - Helman George
- National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Pradeep Prachi
- National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Shah Imran
- National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA
| |
Collapse
|
42
|
Schultz TW, Cronin MT. Lessons learned from read-across case studies for repeated-dose toxicity. Regul Toxicol Pharmacol 2017; 88:185-191. [DOI: 10.1016/j.yrtph.2017.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
43
|
Skin sensitization risk assessment: Considering available data for weight of evidence assessments. Regul Toxicol Pharmacol 2016; 82:186-187. [DOI: 10.1016/j.yrtph.2016.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
|
44
|
Kulkarni SA, Benfenati E, Barton-Maclaren TS. Improving confidence in (Q)SAR predictions under Canada's Chemicals Management Plan - a chemical space approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:851-863. [PMID: 27762155 DOI: 10.1080/1062936x.2016.1243152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
One of the key challenges of Canada's Chemicals Management Plan (CMP) is assessing chemicals with limited/no empirical hazard data for their risk to human health. In some instances, these chemicals have not been tested broadly for their toxicological potency; as such, limited information exists on their potential to induce human health effects following exposure. Although (quantitative) structure activity relationship ((Q)SAR) models are able to generate predictions to address data gaps for certain toxicological endpoints, the confidence in predictions also needs to be addressed. One way to address this issue is to apply a chemical space approach. This approach uses international toxicological databases, for example, those available in the Organisation for Economic Co-operation and Development (OECD) QSAR Toolbox. The approach,assesses a model's ability to predict the potential hazards of chemicals that have limited hazard data that require assessment under the CMP when compared to a larger, data-rich chemical space that is structurally similar to chemicals of interest. This evaluation of a model's predictive ability makes (Q)SAR analysis more transparent and increases confidence in the application of these predictions in a risk-assessment context. Using this approach, predictions for such chemicals obtained from four (Q)SAR models were successfully classified into high, medium and low confidence levels to better inform their use in decision-making.
Collapse
Affiliation(s)
- S A Kulkarni
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, Canada
| | - E Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | |
Collapse
|
45
|
Shah I, Liu J, Judson RS, Thomas RS, Patlewicz G. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Regul Toxicol Pharmacol 2016; 79:12-24. [DOI: 10.1016/j.yrtph.2016.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 02/03/2023]
|
46
|
Ball N, Cronin MTD, Shen J, Blackburn K, Booth ED, Bouhifd M, Donley E, Egnash L, Hastings C, Juberg DR, Kleensang A, Kleinstreuer N, Kroese ED, Lee AC, Luechtefeld T, Maertens A, Marty S, Naciff JM, Palmer J, Pamies D, Penman M, Richarz AN, Russo DP, Stuard SB, Patlewicz G, van Ravenzwaay B, Wu S, Zhu H, Hartung T. Toward Good Read-Across Practice (GRAP) guidance. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 33:149-66. [PMID: 26863606 PMCID: PMC5581000 DOI: 10.14573/altex.1601251] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/11/2016] [Indexed: 12/04/2022]
Abstract
Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislation such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document presents the state of the art, summarizes insights learned from reviewing ECHA published decisions regarding the relative successes/pitfalls surrounding read-across under REACH, and compiles the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHA's published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data, and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015.
Collapse
Affiliation(s)
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jie Shen
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA
| | | | - Ewan D Booth
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Mounir Bouhifd
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | | | - Laura Egnash
- Stemina Biomarker Discovery Inc., Madison, WI, USA
| | - Charles Hastings
- BASF SE, Ludwigshafen am Rhein, Germany, and Research Triangle Park, NC, USA
| | | | - Andre Kleensang
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - E Dinant Kroese
- Risk Analysis for Products in Development, TNO Zeist, The Netherlands
| | - Adam C Lee
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE, USA
| | - Thomas Luechtefeld
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Alexandra Maertens
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Sue Marty
- The Dow Chemical Company, Midland, MI, USA
| | | | | | - David Pamies
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | | | - Andrea-Nicole Richarz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel P Russo
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | | | - Grace Patlewicz
- US EPA/ORD, National Center for Computational Toxicology, Research Triangle Park, NC, USA
| | | | - Shengde Wu
- The Procter and Gamble Co., Cincinatti, OH, USA
| | - Hao Zhu
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA.,University of Konstanz, CAAT-Europe, Konstanz, Germany
| |
Collapse
|
47
|
Zhang X, Sühring R, Serodio D, Bonnell M, Sundin N, Diamond ML. Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements. CHEMOSPHERE 2016; 144:2401-2407. [PMID: 26613357 DOI: 10.1016/j.chemosphere.2015.11.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
In the wake of the listing by the Stockholm Convention of PBDEs, an increasing number of "novel" flame retardants (NFRs) are being used in products. The properties that make for desirable flame retardants can also lead to negative health effects, long environmental residence times and an affinity for organic matrices. While NFRs are currently in use, little information is available regarding their physical-chemical properties and environmental fate. In this study, 94 halogenated and organophosphate NFRs were evaluated for their persistence and long-range transport potential. Physical-chemical properties (namely liquid sub-cooled vapor pressure P(l) and solubility S(l), air-water (K(AW)), octanol-water (K(OW)), and octanol-air (K(OA)) partition coefficients) of the NFRs were predicted using three chemical property estimation tools: EPI Suite, SPARC and Absolv. Physical-chemical properties predicted using these tools were generally within 10(2)-10(3) for compounds with molecular weight < 800 g/mol. Estimated physical-chemical properties of compounds with >800 g/mol, and/or the presence of a heteroatom and/or a polar functional group could deviate by up to 10(12). According to the OECD P(OV) and LRTP Screening Tool, up to 40% of the NFRs have a persistence and/or long range transport potential of medium to high level of concern and up to 60% have persistence and or long range transport potential similar to the PBDEs they are replacing. Long range transport potential could be underestimated by the OECD model since the model under-predicts long range transport potential of some organophosphate compounds.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto M5S 3B1, Canada
| | - Roxana Sühring
- Leuphana University Lüneburg, Schanhorststraße 1, 21335 Lüneburg, Germany
| | - Daniela Serodio
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto M1C 1A4, Ontario, Canada
| | - Mark Bonnell
- Existing Substances Division, Science and Technology Branch, Environment Canada, 351 St-Joseph Blvd, Place Vincent Massey, Gatineau K1A 0H3, Quebec, Canada
| | - Nils Sundin
- Existing Substances Division, Science and Technology Branch, Environment Canada, 351 St-Joseph Blvd, Place Vincent Massey, Gatineau K1A 0H3, Quebec, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto M5S 3B1, Canada; Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto M1C 1A4, Ontario, Canada.
| |
Collapse
|
48
|
Patlewicz G, Fitzpatrick JM. Current and Future Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity. Chem Res Toxicol 2016; 29:438-51. [PMID: 26686752 DOI: 10.1021/acs.chemrestox.5b00388] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exploiting non-testing approaches to predict toxicity early in the drug discovery development cycle is a helpful component in minimizing expensive drug failures due to toxicity being identified in late development or even during clinical trials. Changes in regulations in the industrial chemicals and cosmetics sectors in recent years have prompted a significant number of advances in the development, application, and assessment of non-testing approaches, such as (Q)SARs. Many efforts have also been undertaken to establish guiding principles for performing read-across within category and analogue approaches. This review offers a perspective, as taken from these sectors, of the current status of non-testing approaches, their evolution in light of the advances in high-throughput approaches and constructs such as adverse outcome pathways, and their potential relevance for drug discovery. It also proposes a workflow for how non-testing approaches could be practically integrated within testing and assessment strategies.
Collapse
Affiliation(s)
- Grace Patlewicz
- National Center for Computational Toxicology (NCCT), U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Jeremy M Fitzpatrick
- National Center for Computational Toxicology (NCCT), U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
49
|
Patlewicz G, Worth AP, Ball N. Validation of Computational Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:165-187. [PMID: 27671722 DOI: 10.1007/978-3-319-33826-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this chapter, we provide an overview of how (Quantitative) Structure Activity Relationships, (Q)SARs, are validated and applied for regulatory purposes. We outline how chemical categories are derived to facilitate endpoint specific read-across using tools such as the OECD QSAR Toolbox and discuss some of the current difficulties in addressing the residual uncertainties of read-across. Finally we put forward a perspective of how non-testing approaches may evolve in light of the advances in new and emerging technologies and how these fit within the Adverse Outcome Pathway (AOP) framework.
Collapse
Affiliation(s)
- Grace Patlewicz
- Dupont Haskell Global Centers for Health and Environmental Sciences, Newark, DE, 19711, USA.
- National Center for Computational Toxicology (NCCT), US Environmental Protection Agency (EPA), Research Triangle Park, NC, 27711, USA.
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Nicholas Ball
- Toxicology and Environmental Research and Consulting (TERC), Environment, Health and Safety (EH&S), The Dow Chemical Company, Horgen, Zurich, 8810, Switzerland
| |
Collapse
|
50
|
Berggren E, Amcoff P, Benigni R, Blackburn K, Carney E, Cronin M, Deluyker H, Gautier F, Judson RS, Kass GEN, Keller D, Knight D, Lilienblum W, Mahony C, Rusyn I, Schultz T, Schwarz M, Schüürmann G, White A, Burton J, Lostia AM, Munn S, Worth A. Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1232-40. [PMID: 25956009 PMCID: PMC4671246 DOI: 10.1289/ehp.1409342] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/06/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Safety assessment for repeated dose toxicity is one of the largest challenges in the process to replace animal testing. This is also one of the proof of concept ambitions of SEURAT-1, the largest ever European Union research initiative on alternative testing, co-funded by the European Commission and Cosmetics Europe. This review is based on the discussion and outcome of a workshop organized on initiative of the SEURAT-1 consortium joined by a group of international experts with complementary knowledge to further develop traditional read-across and include new approach data. OBJECTIVES The aim of the suggested strategy for chemical read-across is to show how a traditional read-across based on structural similarities between source and target substance can be strengthened with additional evidence from new approach data--for example, information from in vitro molecular screening, "-omics" assays and computational models--to reach regulatory acceptance. METHODS We identified four read-across scenarios that cover typical human health assessment situations. For each such decision context, we suggested several chemical groups as examples to prove when read-across between group members is possible, considering both chemical and biological similarities. CONCLUSIONS We agreed to carry out the complete read-across exercise for at least one chemical category per read-across scenario in the context of SEURAT-1, and the results of this exercise will be completed and presented by the end of the research initiative in December 2015.
Collapse
|