1
|
Lang SM, Hoffmann J, Schiffl H. E -cigarettes and kidney health: current knowledge and future perspectives. Int Urol Nephrol 2024:10.1007/s11255-024-04278-0. [PMID: 39531135 DOI: 10.1007/s11255-024-04278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chronic conventional cigarette smoking has been closely linked to incident chronic kidney disease (CKD) in the general population. It is associated with the acceleration of pre-existing CKD and failure of kidney allograft function. Cessation of conventional cigarette smoking is effective in reducing the increased risk of smoking induced kidney damage. METHODS This narrative review summarizes current knowledge and future study perspectives of the impact of e-cigarettes (e-cigs) use on kidney health. RESULTS The past decade has seen a dramatic increase in the use of electronic nicotine delivering systems, also called e-cigs. Compared to conventional cigarette smoking, little is known concerning the effects of e-cigs use on kidney health. A few cross-sectional studies suggest an association between vaping and kidney damage (albuminuria, reduction in estimated glomerular filtration rate) in adolescents and young adults. Furthermore, limited animal experiments indicate that e-cigs constituents/aerosols may lead to structural and functional kidney damage. The renal health effects of e-cigs remain largely uncertain and make it difficult to draw definitive conclusions about e-cigs use and kidney health. The relatively new popularity of e-cigs, the wide variability in device design and e-liquid formulations, and the lack of standardized methods to measure daily or life-long e-cigs exposure make it challenging to conduct comprehensive long-term studies. CONCLUSIONS Nephrologists should actively address smoking habits in their patients and urge cessation of conventional cigarette smoking as well as e-cigs use to prevent CKD progression and improve overall health.
Collapse
Affiliation(s)
- Susanne M Lang
- Klinik für Innere Medizin V, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Julia Hoffmann
- Klinik für Innere Medizin V, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Helmut Schiffl
- Department of Internal Medicine IV, Nephrology, University Hospital Munich, Munich, Germany
| |
Collapse
|
2
|
Han D, Yao Y, Wang F, He W, Sun T, Li H. A study on the correlation between hyperuricemia and TG/HDL-c ratio in the Naxi ethnic group at high-altitude regions of Yunnan. Front Med (Lausanne) 2024; 11:1416021. [PMID: 39188875 PMCID: PMC11345255 DOI: 10.3389/fmed.2024.1416021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Objective The study aimed to explore the risk factors for hyperuricemia (HUA) in the Naxi ethnic population residing in high-altitude areas of Yunnan, China, and assess the clinical value of the triglyceride/high-density lipoprotein cholesterol (TG/HDL-c) ratio as a diagnostic marker. Methods In this cross-sectional study, clinical data were collected from the health checkup population in the People's Hospital of Yulong Naxi Autonomous County, Yunnan Province, from January 2021 to January 2023. Participants were divided into quartiles based on the TG/HDL-c ratio (Q1, Q2, Q3, and Q4) for group analysis using chi-square tests, t-tests, and rank sum tests. Logistic regression analysis and linear regression models were employed to further investigate the correlation between the prevalence of hyperuricemia and TG/HDL-c ratio in this high-altitude Naxi population. Results A total of 714 participants from the health checkup population were included in the study, of whom 61.5% were male participants and 38.5% were female participants, and the average age was 41.21 ± 11.69 years. The mean uric acid level was 388.51 ± 99.24. After correcting for confounding factors, TG/HDL-c, serum creatinine (Scr), blood urea nitrogen (BUN), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), red blood cells (RBCs), and hemoglobin (Hb) showed a positive correlation with blood uric acid. Further analysis involved categorizing the TG/HDL-c ratio from a continuous variable to a categorical variable using quartiles. The fully adjusted model showed results that were consistent with the trend observed in the continuous variable analysis when considering the TG/HDL-c ratio as a categorical variable. In addition, in all unadjusted and adjusted models, the serum uric acid (SUA) levels in the high TG/HDL-c ratio group were significantly higher than those in the low TG/HDL-c ratio group (trend p < 0.001). Further linear relationship analysis indicated that after adjusting for covariates, there was an approximate linear relationship between the TG/HDL-c and SUA levels, with a coefficient (β) of 5.421. Conclusion The prevalence of hyperuricemia is greater in high-altitude areas of Yunnan, showing a nearly linear positive correlation with the TG/HDL-c ratio. Monitoring TG/HDL-c levels may benefit patients with hyperuricemia.
Collapse
Affiliation(s)
- Dongmei Han
- The Rehabilitation Department of Nephrology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Yaqi Yao
- The Rehabilitation Department of Nephrology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Fengshuang Wang
- The Rehabilitation Department of Nephrology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing He
- Yulong County Naxi Autonomous County People's Hospital, Lijiang, Yunnan, China
| | - Tianbao Sun
- The Rehabilitation Department of Nephrology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Han Li
- The Rehabilitation Department of Nephrology, The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Cox AJ, Brown KC, Valentovic MA. The Flavoring Agent Ethyl Vanillin Induces Cellular Stress Responses in HK-2 Cells. TOXICS 2024; 12:472. [PMID: 39058124 PMCID: PMC11280803 DOI: 10.3390/toxics12070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Flavored e-cigarettes are a popular alternative to cigarette smoking; unfortunately, the extrapulmonary effects are not well-characterized. Human proximal tubule cells were cultured for 24 or 48 h with 0-1000 µM ethyl vanillin (ETH VAN) and cytotoxicity evaluated. Mitochondrial health was significantly diminished following 48 h of exposure, accompanied by significantly decreased spare capacity, coupling efficiency, and ATP synthase expression. ETH VAN at 24 h inhibited glycolysis. The endoplasmic reticulum (ER) stress marker C/EBP homologous protein (CHOP) was increased at 100 μM relative to 500-1000 μM. The downstream proapoptotic marker cleaved caspase-3 subsequently showed a decreasing trend in expression after 48 h of exposure. The autophagy biomarkers microtubule-associated proteins 1A/1B light chain 3 (LC3B-I and LC3B-II) were measured by Western blot. LC3B-II levels and the LC3B-II/LC3B-I ratio increased at 24 h, which suggested activation of autophagy. In contrast, by 48 h, the autophagy biomarker LC3B-II decreased, resulting in no change in the LC3B-II/LC3B-I ratio. Mitophagy biomarker PTEN-induced putative kinase 1 (PINK1) expression decreased after 48 h of exposure. The downstream marker Parkin was not significantly changed after 24 or 48 h. These findings indicate that the flavoring ETH VAN can induce energy pathway dysfunction and cellular stress responses in a renal model.
Collapse
Affiliation(s)
| | | | - Monica A. Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (A.J.C.); (K.C.B.)
| |
Collapse
|
4
|
Cox A, Brown KC, Bender C, Valentovic MA. The e-liquid flavoring cinnamaldehyde induces cellular stress responses in human proximal tubule (HK-2) kidney cells. Biomed Pharmacother 2024; 175:116666. [PMID: 38677246 PMCID: PMC11293278 DOI: 10.1016/j.biopha.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Flavored e-liquid use has become popular among e-cigarette users recently, but the effects of such products outside the lung are not well characterized. In this work, acute exposure to the popular flavoring cinnamaldehyde (CIN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-100 µM CIN for 24-48 h and cellular stress responses were assessed. Mitochondrial viability via MTT assay was significantly decreased at 20 µM for 24 and 48 h exposure. Seahorse XFp analysis showed significantly decreased mitochondrial energy output at 20 µM by 24 h exposure, in addition to significantly reduced ATP Synthase expression. Seahorse analysis also revealed significantly decreased glycolytic function at 20 µM by 24 h exposure, suggesting inability of glycolytic processes to compensate for reduced mitochondrial energy output. Cleaved caspase-3 expression, a mediator of apoptosis, was significantly increased at the 24 h mark. C/EBP homologous protein (CHOP) expression, a mediator of ER-induced apoptosis, was induced by 48 h and subsequently lost at the highest concentration of 100 µM. This decrease was accompanied by a simultaneous decrease in its downstream target cleaved caspase-3 at the 48 h mark. The autophagy marker microtubule-associated protein 1 A/1B light chain 3 (LC3B-I and LC3B-II) expression was significantly increased at 100 µM by 24 h. Autophagy-related 7 (ATG7) protein and mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and PARKIN expression were significantly reduced at 24 and 48 h exposure. These results indicate acute exposure to CIN in the kidney HK-2 model induces mitochondrial dysfunction and cellular stress responses.
Collapse
Affiliation(s)
- Ashley Cox
- Department of Biomedical Sciences, Toxicology Research Cluster, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Toxicology Research Cluster, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, United States
| | - Christopher Bender
- Department of Biomedical Sciences, Toxicology Research Cluster, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, United States.
| |
Collapse
|
5
|
Tolba YM, Omar SS, El Hak AR, Nagui DA. Electronic cigarettes can damage lingual papillae and taste buds. Can vitamins C and E supplementation reverse this damage? Life Sci 2023; 329:121955. [PMID: 37473801 DOI: 10.1016/j.lfs.2023.121955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
AIMS This histological study focuses on the impact of electronic cigarette liquid (EC) on lingual papillae, especially taste buds, compare it to nicotine, and investigates the potential of vitamins in reversing these unwanted changes. MAIN METHODS 40 adult male rats were allocated into 5 groups. Control injected saline intraperitoneally, electronic cigarettes group injected EC-liquid containing nicotine of dose (0.75 mg/kg), electronic cigarette group injected EC-liquid then supplemented orally with vitamins C and E, nicotine group injected pure nicotine of dose (0.75 mg/kg) and lastly nicotine group injected with pure nicotine of dose (0.75 mg/kg) then supplemented orally with vitamins C and E. Keratin surface area and the ratio between taste buds and its epithelial covering surface areas in fungiform papillae were measured. KEY FINDINGS Histological examination of EC group revealed abnormal epithelial stratification and mitotic figs. EC plus V group showed intact basal cell layer. N group showed better histological stratification than EC group. Fungiform and circumvallate papillae in EC and N groups showed distorted appearance of taste buds. Histomorphometry analysis showed a significant decrease in taste buds to epithelium surface areas in EC, nicotine, and EC plus V groups, p-value (<0.05). There was no significant difference between control and N plus V groups. SIGNIFICANCE Administration of vitamins C and E showed preservation of normal histological features of the lingual mucous membrane. EC caused striking damage to taste buds even after the administration of vitamins. The negative effects of electronic cigarettes are not confined only to the presence of nicotine.
Collapse
Affiliation(s)
| | - Samia S Omar
- Faculty of Dentistry, Alexandria University, Egypt
| | | | - Dina A Nagui
- Faculty of Dentistry, Alexandria University, Egypt
| |
Collapse
|
6
|
Ali N, Xavier J, Engur M, Pv M, Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131828. [PMID: 37320902 DOI: 10.1016/j.jhazmat.2023.131828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Joseph Xavier
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | - Melih Engur
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | | |
Collapse
|
7
|
Jang YS, Nerobkova N, Yun I, Kim H, Park EC. Association between smoking behavior and serum uric acid among the adults: Findings from a national cross-sectional study. PLoS One 2023; 18:e0285080. [PMID: 37130102 PMCID: PMC10153749 DOI: 10.1371/journal.pone.0285080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Gout incidence is increasing worldwide; appropriate management of serum uric acid levels and a healthy lifestyle may help its prevention. The popularity of electronic cigarettes and the resultant emergence of dual smokers is increasing. Despite many studies on the effects of various health behaviors on serum uric acid levels, the association between smoking and serum uric acid levels remains controversial. This study aimed to investigate the association between smoking and serum uric acid levels. METHODS In this study, total sample of 27,013 participants (11,924 men and 15,089 women) were analyzed. This study used data from the Korea National Health and Nutrition Examination Survey (2016-2020) and grouped adults into dual smokers, single smokers, ex-smokers, and non-smokers. Multiple logistic regression analyses were performed to investigate the association between smoking behavior and serum uric acid levels. RESULTS Compared to male non-smokers, male dual smokers had significantly higher serum uric acid level (odds ratio [OR], 1.43; 95% confidence interval [CI], 1.08-1.88). In female, serum uric acid level was higher among single smokers than non-smokers (OR, 1.68; 95% CI, 1.25-2.25). Higher serum uric acid levels were more likely to be present in male dual smokers with a > 20 pack-year smoking habit (OR, 1.84; 95% CI, 1.06-3.18). CONCLUSION Dual smoking may contribute to high serum uric acid levels in adults. Thus, serum uric acid levels should be properly managed through smoking cessation.
Collapse
Affiliation(s)
- Yun Seo Jang
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Nataliya Nerobkova
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Il Yun
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Hyunkyu Kim
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-Cheol Park
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Shabestari AN, Tamehri Zadeh SS, Zahmatkesh P, Baghdadabad LZ, Mirzaei A, Mashhadi R, Mesbah G, Khajavi A, Akbarzadehmoallemkolaei M, Khoshchehreh M, Rahimnia R, Kazem Aghamir SM. The Impact of Conventional Smoking versus Electronic Cigarette on the Expression of VEGF, PEMPA1, and PTEN in Rat Prostate. Prostate Int 2022. [DOI: 10.1016/j.prnil.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Scharf P, Rizzetto F, Xavier LF, Farsky SHP. Xenobiotics Delivered by Electronic Nicotine Delivery Systems: Potential Cellular and Molecular Mechanisms on the Pathogenesis of Chronic Kidney Disease. Int J Mol Sci 2022; 23:10293. [PMID: 36142207 PMCID: PMC9498982 DOI: 10.3390/ijms231810293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized as sustained damage to the renal parenchyma, leading to impaired renal functions and gradually progressing to end-stage renal disease (ESRD). Diabetes mellitus (DM) and arterial hypertension (AH) are underlying diseases of CKD. Genetic background, lifestyle, and xenobiotic exposures can favor CKD onset and trigger its underlying diseases. Cigarette smoking (CS) is a known modified risk factor for CKD. Compounds from tobacco combustion act through multi-mediated mechanisms that impair renal function. Electronic nicotine delivery systems (ENDS) consumption, such as e-cigarettes and heated tobacco devices, is growing worldwide. ENDS release mainly nicotine, humectants, and flavorings, which generate several byproducts when heated, including volatile organic compounds and ultrafine particles. The toxicity assessment of these products is emerging in human and experimental studies, but data are yet incipient to achieve truthful conclusions about their safety. To build up the knowledge about the effect of currently employed ENDS on the pathogenesis of CKD, cellular and molecular mechanisms of ENDS xenobiotic on DM, AH, and kidney functions were reviewed. Unraveling the toxic mechanisms of action and endpoints of ENDS exposures will contribute to the risk assessment and implementation of proper health and regulatory interventions.
Collapse
Affiliation(s)
| | | | | | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
10
|
Raja A, Zelikoff JT, Jaimes EA. A contemporary review of nephrotoxicity and e-cigarette use. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Mir M, Rauf I, Goksoy S, Khedr A, Jama AB, Mushtaq H, Jain NK, Khan SA, Surani S, Koritala T. Electronic Cigarettes: Are They Smoking Cessation Aids or Health Hazards? Cureus 2022; 14:e25330. [PMID: 35761921 PMCID: PMC9232181 DOI: 10.7759/cureus.25330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
The US Food and Drug Administration (FDA) recently approved the marketing of an electronic cigarette (e-cig) brand called Vuse (RJ Reynolds Vapor Company, US) to help aid in smoking cessation for adult smokers. It was believed that the consumption of traditional cigarettes and their harmful effects would be reduced given the availability of newer e-cigarettes. However, adolescent use of tobacco and nicotine products rather increased with the availability of the same e-cigarettes, and the FDA-approved market boom only worsened this problem. Although the FDA underlines the importance of marketing e-cigarettes as a possible solution for adult traditional smoking, its consequences on adolescents' health raise many concerns, which we narrated in this review article.
Collapse
|
12
|
Ismail NA, Nabila T, Ramadhani AS, Ahsani DN. Electronic and Conventional Cigarette Exposure Aggravate Metabolic Parameters in High-Fat Diet-Induced Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The health implications of the perceived use of electronic cigarettes (e-cigarettes) are safer than conventional cigarettes on metabolic parameters are not clearly understood. The current study evaluates the metabolic parameters as the impact of cigarette and e-cigarette exposure in high-fat-diet (HFD)-induced rats.
METHODS: Twenty-four male Wistar rats were divided into four groups: i) NC: normal control group; ii) HFD Alone; iii) HFD + Cig and iv) HFD + E-Cig, administered HFD followed by cigarette or e-cigarette exposure, respectively. Six cigarettes stick with nicotine 2 mg/stick and 2 ml of e-cigarette liquid with nicotine 6 mg/ml were used for 25 cycles of exposure. In the end, the rats were sacrificed and obtained blood for metabolic parameter analysis, consisting of lipid profile, glucose, uric acid, urea, creatinine, aspartate transaminase (AST), and alanine transaminase (ALT). Statistical analysis with One-Way ANOVA with post hoc was used for high-density lipoprotein (HDL), triglyceride, total cholesterol, glucose, uric acid, urea, and creatinine. Furthermore, Kruskal-Wallis with Mann-Whitney U was used for nonparametric data such as low-density lipoprotein (LDL), AST, and ALT.
RESULTS: Data of all metabolic parameters were shown a significant increase in the group of HFD Alone, HFD + Cig, and HFD + E-Cig, otherwise HDL levels. Furthermore, HFD + Cig followed by HFD + E-Cig groups were significantly higher compared to HFD Alone group.
CONCLUSION: E-cigarettes were shown to be less harmful than conventional cigarettes but did not guarantee it was safe. Both cigarettes and e-cigarettes aggravated metabolic parameters in HFD-induced rats.
Collapse
|
13
|
Chen T, Wu M, Dong Y, Kong B, Cai Y, Hei C, Wu K, Zhao C, Chang Q. Effect of e-cigarette refill liquid on follicular development and
estrogen secretion in rats. Tob Induc Dis 2022; 20:36. [PMID: 35529323 PMCID: PMC8988604 DOI: 10.18332/tid/146958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tairen Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Mengjing Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuting Dong
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bin Kong
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kai Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Mohammed HO, Ahmed Alaa El-Din E, Farag AI. Impact of e-cigarettes on colonic mucosa and the role of recovery: involvement of oxidative and inflammatory pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64561-64571. [PMID: 34312757 PMCID: PMC8313116 DOI: 10.1007/s11356-021-15575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/18/2021] [Indexed: 04/16/2023]
Abstract
Electronic cigarettes (e-cigarettes) (EC) are often advertised as a safer alternative to conventional cigarettes. Its widespread use has led to increased interest in its adverse health effects, thanks to few restrictions and a lack of regulatory guidelines. The study aimed to evaluate the influence of exposure to e-cigarette aerosol inhalation in rat colon model and conduct a follow-up after cessation of exposure. The experiment included 30 male adult Albino rats. The animals were divided into three groups: group I (control), non-exposed animals; group II (exposed), was exposed to electronic cigarette liquid vapor for four consecutive weeks; and group III (recovery), was followed up for another 4 weeks after exposure to an e-cigarette as exposed group and for the same duration. In the exposed group, malondialdehyde (MDA) and total nitric oxide (NO) increased significantly in colonic tissue, while superoxide dismutase (SOD) decreased. On histological examination, colonic mucosa showed distortion and loss of its epithelial lining with heavy inflammatory cell infiltration. Also, there was a significant decrease in periodic acid-Schiff-positive goblet cells and area percent of proliferating cell nuclear antigen expression. Tumor necrosis factor-alpha (TNFα) expression significantly increased in colonic mucosa. After 4 weeks of EC cessation, the colonic mucosal histological structure showed recovery with downregulated TNFα immunoexpression and restored oxidant/antioxidant balance. In conclusion, the usage of electronic cigarettes resulted in marked pathological alterations in the colonic mucosa, which could be attributed to oxidative and inflammatory stresses. In contrast, the cessation of exposure led to recovery.
Collapse
Affiliation(s)
- Heba O. Mohammed
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Azza I. Farag
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Devresse A, Gohy S, Robert A, Kanaan N. How to manage cigarette smoking in kidney transplant candidates and recipients? Clin Kidney J 2021; 14:2295-2303. [PMID: 34754426 PMCID: PMC8572985 DOI: 10.1093/ckj/sfab072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/19/2021] [Indexed: 01/15/2023] Open
Abstract
Tobacco smoking is a frequent problem affecting many kidney transplant (KT) candidates and recipients. The negative impact of active smoking on KT outcomes has been demonstrated. Consequently, most guidelines strongly recommend quitting smoking before considering kidney transplantation. However, nicotine addiction is a complex multifactorial disease and only 3-5% of the patients who try to quit by themselves achieve prolonged abstinence. Smoking cessation programmes (SCPs) have proven their efficacy in the general population to increase the rate of quitting and should therefore be proposed to all smoking KT candidates and recipients. Nevertheless, SCPs have not been evaluated in the KT field and not all KT centres have easy access to these programmes. In this work, we aim to review the current knowledge on the subject and provide an overview of the available interventions to help smoking patients quit. We detail non-pharmaceutical and pharmaceutical approaches and discuss their use in KT candidates and recipients.
Collapse
Affiliation(s)
- Arnaud Devresse
- Nephrology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sophie Gohy
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pneumology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Cystic Fibrosis Reference Center, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain, Brussels, Belgium
| | - Arnaud Robert
- Nephrology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Nephrology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Bonner E, Chang Y, Christie E, Colvin V, Cunningham B, Elson D, Ghetu C, Huizenga J, Hutton SJ, Kolluri SK, Maggio S, Moran I, Parker B, Rericha Y, Rivera BN, Samon S, Schwichtenberg T, Shankar P, Simonich MT, Wilson LB, Tanguay RL. The chemistry and toxicology of vaping. Pharmacol Ther 2021; 225:107837. [PMID: 33753133 PMCID: PMC8263470 DOI: 10.1016/j.pharmthera.2021.107837] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.
Collapse
Affiliation(s)
- Emily Bonner
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Chang
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Emerson Christie
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Victoria Colvin
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Daniel Elson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Christine Ghetu
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Juliana Huizenga
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Stephanie Maggio
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Ian Moran
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Bethany Parker
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Samantha Samon
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Trever Schwichtenberg
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Lindsay B Wilson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
17
|
Cao Y, Wu D, Ma Y, Ma X, Wang S, Li F, Li M, Zhang T. Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145475. [PMID: 33770885 DOI: 10.1016/j.scitotenv.2021.145475] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Electronic cigarettes (E-cigarette) are an alternative for traditional cigarette smokers to quit smoking. Based on the current understanding, electronic cigarettes have rapidly become popular among existing smokers and former non-smokers. However, increasing research at different levels reveals that e-cigarettes are unsafe. This review provides an overview of the toxicology of e-cigarettes based on existing in vivo and in vitro studies and compares their toxicity with that of traditional cigarettes. Moreover, we describe the associated toxicity components in e-cigarettes, as well as the potential mechanism by which e-cigarettes exert toxic effects. As is known to all, the nicotine in traditional cigarettes and e-cigarettes has certain toxicity. Besides, a few studies have shown that propylene glycol and vegetable glycerin mixture and flavoring agents in e-cigarettes also are the key components causing adverse effects in animals or cells. There is insufficient scientific evidence on the toxicity of e-cigarettes due to the lack of standardized research methods, prompting the need to conduct a comprehensive toxicity assessment of e-cigarette toxicity to elucidate the safety issues of e-cigarettes. Eventually, a basis for decision-making on whether people use e-cigarettes will be obtained.
Collapse
Affiliation(s)
- Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Menghan Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
18
|
Kim T, Kim Y, Kang J. Association of electronic cigarette exposure with serum uric acid level and hyperuricemia: 2016-2017 Korea National Health and Nutritional Examination Survey. PLoS One 2021; 16:e0247868. [PMID: 33647052 PMCID: PMC7920355 DOI: 10.1371/journal.pone.0247868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The present study evaluated the association of electronic cigarette (EC) exposure with serum uric acid (UA) level and hyperuricemia (HUA) using a nationally representative sample of South Korea. METHODS This study included 10,692 participants (9,905, 609, and 178, never, ever, and current EC users, respectively). Urinary cotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels were used to determine conventional smoking exposure among EC users. The association between EC use and UA level was evaluated by linear regression analysis. Multivariable logistic regression analysis was used to assess the association between EC and HUA. Subgroup analysis confined to cotinine-verified active smokers was performed to address the association between the dual use of EC and combustible cigarettes and serum UA levels. RESULTS The serum UA level was highest among current EC users, followed by ever and never EC users. The prevalence of HUA was 26.2%, 19.3%, and 10.8% in current, ever, and never EC users, respectively. Although EC exposure was positively associated with HUA in a dose-dependent manner only in men (Ptrend = 0.04), a similar tendency was also observed in women with marginal significance (Ptrend = 0.102). The positive association of HUA with EC exposure was more apparent among dual users (odds ratio [OR] = 1.96, 95% confidence interval [CI]: 1.29-2.99) than among those who only smoked combustible cigarettes. CONCLUSIONS EC exposure was associated with higher serum UA level and higher OR of HUA. The positive association between EC exposure and HUA was more prominent in dual users who concurrently consumed EC and combustible cigarettes.
Collapse
Affiliation(s)
- Taeyun Kim
- Division of Pulmonology, Department of Internal Medicine, The Armed Forces Goyang Hospital, Goyang-si, South Korea
| | - Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Kosin University Gospel Hospital, Busan, South Korea
| | - Jihun Kang
- Department of Family Medicine, Kosin University College of Medicine, Kosin University Gospel Hospital, Busan, South Korea
| |
Collapse
|
19
|
Eshraghian EA, Al-Delaimy WK. A review of constituents identified in e-cigarette liquids and aerosols. Tob Prev Cessat 2021; 7:10. [PMID: 33585727 PMCID: PMC7873740 DOI: 10.18332/tpc/131111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Identification of chemicals present in e-liquids and aerosols is a vital first step in assessing the human health effects of e-cigarettes. We aim to identify the qualitative and quantitative constituents present in e-cigarette liquids and aerosols. METHODS A comprehensive search of scientific databases included literature up to July 2020. A total of 28 articles met inclusion criteria; 18 articles assessed e-liquid constituents and 15 articles assessed aerosol constituents. Of these, 5 assessed constituents present in both mediums. We included English-language publications that examine qualitative and/or quantitative constituents in e-cigarette liquids and aerosols. RESULTS In total, articles identified 60 compounds in e-liquids and 47 compounds in aerosols. A total of 22 compounds were identified in both e-liquids and aerosols. These are: acenaphthylene, acetaldehyde, acetol, antimony, benzaldehyde, benzene, chromium, copper, diacetyl, formaldehyde, glycerol, lead, limonene, naphthalene, nickel, nicotine, nicotine-N'-oxides, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-Nitrosonornicotine (NNN), propylene glycol, toluene, and vegetable glycerin. Some of the identified chemicals have been labeled as harmful, toxic, or cancerous through human, animal, and cell line studies. A variety of laboratory methods were used for analyses, which made reported levels less consistent. CONCLUSIONS E-liquids and aerosols contain a variety of chemicals with potential health effects from inhaling them. Further, secondhand health effects are unknown because of limited understanding of the dose of exposure by non-users. Identification of constituents in e-cigarettes is the first step to determine their risks to humans and support evidence-based regulations and health policies.
Collapse
Affiliation(s)
- Emily A Eshraghian
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, United States
| | - Wael K Al-Delaimy
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, United States
| |
Collapse
|
20
|
Reilly SM, Cheng T, DuMond J. Method Validation Approaches for Analysis of Constituents in ENDS. TOB REGUL SCI 2020; 6:242-265. [PMID: 32789155 PMCID: PMC7416875 DOI: 10.18001/trs.6.4.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We assessed how many peer-reviewed publications reporting chemical quantities and/or yields from electronic nicotine delivery systems (ENDS) have included adequate method validation characteristics in the publication for appropriate interpretation of data quality for informing tobacco regulatory science. METHODS We searched 5 databases (Web of Knowledge, PubMed, SciFinder, Embase, EBSCOhost) for ENDS publications between January 2007 and September 2018. Of the 283 publications screened, 173 publications were relevant for analysis. We identified the publications that report a certain degree of control in data quality, ie, the publications that report marginally validated methods (MVMs). MVMs refer to the methods that: (1) report 3 or more International Conference on Harmonisation (ICH) method validation characteristics, (2) state the method was validated, (3) cite their own previous publication(s) that report MVMs, or (4) use a method within the accreditation scope of an accredited laboratory. RESULTS Overall, 97 publications (56%) report MVMs in their studies. This percentage also reflects the publication distribution for the majority of the 28 chemicals measured by MVMs. CONCLUSIONS This study highlights the need for reporting sufficient validation characteristics following appropriate guidance to ensure the accuracy and reliability of the published analytical data for proper data interpretations that may support policy.
Collapse
Affiliation(s)
- Samantha M Reilly
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | - Tianrong Cheng
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | - Jenna DuMond
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
21
|
Wong AL, McElroy SM, Robinson JM, Mulloy SM, El Banna FK, Harris AC, LeSage MG, Lee AM. Flavor-specific enhancement of electronic cigarette liquid consumption and preference in mice. Drug Alcohol Depend 2020; 211:107995. [PMID: 32354580 PMCID: PMC7328293 DOI: 10.1016/j.drugalcdep.2020.107995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The use of electronic cigarettes has increased over the past decade. To determine how the abuse liability of electronic cigarette liquids (e-liquids) differs from nicotine alone, and to determine the impact of flavor, we compared nicotine-containing fruit- and tobacco-flavored e-liquids, and their nicotine-free versions, to nicotine alone in mouse models of oral consumption, reward and aversion. METHODS Adult male C57BL/6 J mice voluntarily consumed oral nicotine, equivalent nicotine concentrations of fruit- and tobacco-flavored e-liquid, and equivalent dilutions of the nicotine-free versions in 2-bottle choice tests. Conditioned place preference and place aversion were assessed with peripherally administered e-liquids or nicotine. Serum nicotine and cotinine levels were measured after subcutaneous injections of e-liquid or nicotine. RESULTS Mice showed higher consumption and preference for the fruit-flavored e-liquid compared with nicotine alone. This increase was not due to the flavor itself as consumption of the nicotine-free fruit-flavored e-liquid was not elevated until the highest concentration tested. The increased consumption and preference were not observed with the tobacco-flavored e-liquid. The conditioned place preference, place aversion and nicotine pharmacokinetics of the fruit-flavored e-liquid were not significantly different from nicotine alone. CONCLUSIONS Our data suggest that fruit, but not tobacco flavor, increased the oral consumption of e-liquid compared with nicotine alone. Moreover, this enhancement was not due to increased consumption of the flavor itself, altered rewarding or aversive properties after peripheral administration, or altered pharmacokinetics. This flavor-specific enhancement suggests that some flavors may lead to higher nicotine intake and increased use of e-liquids compared with nicotine alone.
Collapse
Affiliation(s)
- A L Wong
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S M McElroy
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - J M Robinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S M Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - F K El Banna
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A C Harris
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - M G LeSage
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Merecz-Sadowska A, Sitarek P, Zielinska-Blizniewska H, Malinowska K, Zajdel K, Zakonnik L, Zajdel R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. Int J Mol Sci 2020; 21:ijms21020652. [PMID: 31963832 PMCID: PMC7013895 DOI: 10.3390/ijms21020652] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Worldwide use of electronic cigarettes has been rapidly expanding over recent years, but the long-term effect of e-cigarette vapor exposure on human health and environment is not well established; however, its mechanism of action entails the production of reactive oxygen species and trace metals, and the exacerbation of inflammation, which are associated with potential cytotoxicity and genotoxicity. The present study examines the effects of selected liquid chemicals used in e-cigarettes, such as propylene glycol/vegetable glycerin, nicotine and flavorings, on living organisms; the data collected indicates that exposure to e-cigarette liquid has potentially detrimental effects on cells in vitro, and on animals and humans in vivo. While e-liquid exposure can adversely influence the physiology of living organisms, vaping is recommended as an alternative for tobacco smoking. The study also compares the impact of e-cigarette liquid exposure and traditional cigarette smoke on organisms and the environmental impact. The environmental influence of e-cigarette use is closely connected with the emission of airborne particulate matter, suggesting the possibility of passive smoking. The obtained data provides an insight into the impact of nicotine delivery systems on living organisms and the environment.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Correspondence: ; Tel.: +48-663-626-667
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | | | - Katarzyna Malinowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Lukasz Zakonnik
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| | - Radoslaw Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| |
Collapse
|
23
|
Abstract
Sale of electronic cigarette (e-cigarette) products has exponentially increased in the past decade, which raise concerns about its safety. This updated review provides the available toxicology profile of e-cigarettes, summarizing evidence from in vitro and in vivo studies. Data regarding which components in e-liquids exhibit potential toxicities are inconsistent. Some studies have reported that nicotine plays a significant role in inducing adverse outcomes and that solvents alone do not induce any adverse effects. However, other studies have suggested that nicotine is not associated with any adverse outcomes, whereas solvents and flavorings are the key components to elicit considerable deleterious effects on cells or animals. In addition, most of the studies that have compared the toxicity of e-cigarettes with tobacco cigarettes have suggested that e-cigarettes are less toxic than tobacco cigarettes. Nevertheless, scientific evidence regarding the toxicity profile of e-cigarette is insufficient owing to the lack of a standardized research approach. In the future, scientific toxicology data derived from standardized testing protocols including nicotine, ingredients analysis, the various e-cigarette devices made from different materials are urgently needed for thorough toxicology assessment. This review aims to update the toxicity profiles, identify knowledge gaps, and outline future directions for e-cigarettes research, which would greatly benefit public health professionals.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wenjing Liu
- Science and Technology Museum of Inner Mongolia , Hohhot, Inner Mongolia , China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University , Shanghai , China
| |
Collapse
|
24
|
Gaur S, Agnihotri R. Health Effects of Trace Metals in Electronic Cigarette Aerosols-a Systematic Review. Biol Trace Elem Res 2019; 188:295-315. [PMID: 29974385 DOI: 10.1007/s12011-018-1423-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Abstract
Electronic cigarettes (ECs) are essentially nicotine delivery devices that mimic the appearance of a conventional cigarette (CC). Lately, they have been marketed as tools for quitting smoking. Even though they are promoted as safe alternatives to CC, they are not devoid of hazardous components. Literature reveals that the EC aerosols and e-liquids are a potential source of elements that induce and promote development of chronic conditions. These include trace metals which are leached from their core assembly. Some of these metals like nickel, chromium, cadmium, tin, aluminum, and lead are potential carcinogens. They have been associated with fatal conditions like lung and sinonasal cancer. Besides, they may have adverse effects on oral tissues like periodontal ligament and mucosa where they may trigger chronic periodontitis and oral cancer. However, there is only trivial evidence related to health hazards of metals released from ECs. With this background, the present review first focuses on the structure of the ECs followed by an appraisal of the data from experimental studies about the metals released in EC aerosols and their associated health hazards.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Bals R, Boyd J, Esposito S, Foronjy R, Hiemstra PS, Jiménez-Ruiz CA, Katsaounou P, Lindberg A, Metz C, Schober W, Spira A, Blasi F. Electronic cigarettes: a task force report from the European Respiratory Society. Eur Respir J 2019; 53:13993003.01151-2018. [PMID: 30464018 DOI: 10.1183/13993003.01151-2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 01/10/2023]
Abstract
There is a marked increase in the development and use of electronic nicotine delivery systems or electronic cigarettes (ECIGs). This statement covers electronic cigarettes (ECIGs), defined as "electrical devices that generate an aerosol from a liquid" and thus excludes devices that contain tobacco. Database searches identified published articles that were used to summarise the current knowledge on the epidemiology of ECIG use; their ingredients and accompanied health effects; second-hand exposure; use of ECIGs for smoking cessation; behavioural aspects of ECIGs and social impact; in vitro and animal studies; and user perspectives.ECIG aerosol contains potentially toxic chemicals. As compared to conventional cigarettes, these are fewer and generally in lower concentrations. Second-hand exposures to ECIG chemicals may represent a potential risk, especially to vulnerable populations. There is not enough scientific evidence to support ECIGs as an aid to smoking cessation due to a lack of controlled trials, including those that compare ECIGs with licenced stop-smoking treatments. So far, there are conflicting data that use of ECIGs results in a renormalisation of smoking behaviour or for the gateway hypothesis. Experiments in cell cultures and animal studies show that ECIGs can have multiple negative effects. The long-term effects of ECIG use are unknown, and there is therefore no evidence that ECIGs are safer than tobacco in the long term. Based on current knowledge, negative health effects cannot be ruled out.
Collapse
Affiliation(s)
- Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | | | - Susanna Esposito
- Pediatric Clinic, Dept of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Robert Foronjy
- Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, New York, NY, USA
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paraskevi Katsaounou
- 1st ICU Evangelismos Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Anne Lindberg
- Dept of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Carlos Metz
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Dept of Chemical Safety and Toxicology, Munich, Germany
| | - Avrum Spira
- Boston University School of Medicine, Boston, MA, USA
| | - Francesco Blasi
- Dept of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
26
|
Huang SJ, Xu YM, Lau ATY. Electronic cigarette: A recent update of its toxic effects on humans. J Cell Physiol 2018; 233:4466-4478. [PMID: 29215738 DOI: 10.1002/jcp.26352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
Abstract
Electronic cigarettes (e-cigarettes), battery-powered and liquid-vaporizing devices, were invented to replace the conventional cigarette (c-cigarette) smoking for the sake of reducing the adverse effects on multiple organ systems that c-cigarettes have induced. Although some of the identified harmful components in e-cigarettes were alleged to be measured in lower quantity than those in c-cigarettes, researchers unveiled that the toxic effects of e-cigarettes should not be understated. This review is sought for an attempt to throw light on several typical types of e-cigarette components (tobacco-specific nitrosamines, carbonyl compounds, and volatile organic compounds) by revealing their possible impacts on human bodies through different action mechanisms characterized by alteration of specific biomarkers on cellular and molecular levels. In addition, this review is intended to draw the limelight that like c-cigarettes, e-cigarettes could also be accompanied with toxic effects on whole human body, which are especially apparent on respiratory system. From head to foot, from physical aspect to chemical aspect, from genotype to phenotype, potential alterations will take place upon the intake of the liquid aerosol.
Collapse
Affiliation(s)
- Shu-Jie Huang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS, Morris AM, Qian Y, Bello D, Demokritou P. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:549-557. [PMID: 29102637 PMCID: PMC5848214 DOI: 10.1016/j.jhazmat.2017.10.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigs) have fast increased in popularity but the physico-chemical properties and toxicity of the generated emission remain unclear. Reactive oxygen species (ROS) are likely present in e-cig emission and can play an important role in e-cig toxicity. However, e-cig ROS generation is poorly documented. Here, we generated e-cig exposures using a recently developed versatile exposure platform and performed systematic ROS characterization on e-cig emissions using complementary acellular and cellular techniques: 1) a novel acellular Trolox-based mass spectrometry method for total ROS and hydrogen peroxide (H2O2) detection, 2) electron spin resonance (ESR) for hydroxyl radical detection in an acellular and cellular systems and 3) in vitro ROS detection in small airway epithelial cells (SAEC) using the dihydroethidium (DHE) assay. Findings confirm ROS generation in cellular and acellular systems and is highly dependent on the e-cig brand, flavor, puffing pattern and voltage. Trolox method detected a total of 1.2-8.9nmol H2O2eq./puff; H2O2 accounted for 12-68% of total ROS. SAEC cells exposed to e-cig emissions generated up to eight times more ROS compared to control. The dependency of e-cig emission profile on e-cig features and operational parameters should be taken into consideration in toxicological studies.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yipei Zhang
- Department of Public Health, University of Massachusetts Lowell, MA 01854, USA
| | - Jennifer D Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Justine Shaffer
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Stephen S Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Anna M Morris
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA; Department of Public Health, University of Massachusetts Lowell, MA 01854, USA.
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, Das S, Singh P, Yong Z, Lee JH, Vega K, Du A, Shin J, Javier C, Tian J, Brown JH, Breen EC. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R834-R847. [PMID: 29384700 DOI: 10.1152/ajpregu.00270.2017] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | | | - Mark Hepokoski
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Denzil Mathew
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Alex Moshensky
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Andrew Willeford
- Department of Pharmacology, University of California , San Diego, California
| | - Soumita Das
- Department of Pathology, University of California , San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California , San Diego, California.,Nephrology Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Zach Yong
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jasmine H Lee
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| | - Kevin Vega
- Department of Pathology, University of California , San Diego, California
| | - Ashley Du
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - John Shin
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Christian Javier
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jiang Tian
- Division of Cardiovascular Medicine and Center for Hypertension and Personalized Medicine, University of Toledo , Toledo, Ohio.,Department of Medicine, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio
| | - Joan Heller Brown
- Department of Pharmacology, University of California , San Diego, California
| | - Ellen C Breen
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| |
Collapse
|
29
|
Zucchet A, Schmaltz G. Electronic cigarettes—A review of the physiological health effects. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electronic cigarettes (ECs) are devices that are used recreationally or as smoking cessation tools, and have become increasingly popular in recent years. We conducted a review of the available literature to determine the health effects caused by the use of these devices. A heating element in the EC aerosolizes a solution of propylene glycol, glycerol, nicotine (optional), and flavouring (optional). These compounds are generally harmless on their own. However, upon heating, they produce various carcinogens and irritants. We found that concentrations of these toxicants vary significantly depending on the type of EC device, the type of EC liquid, and the smoking behaviour of the user. Exposure to these vapours can cause inflammation and oxidative damage to in vitro and in vivo cells. EC aerosol can also potentially affect organ systems and especially cardiovascular and lung function. We concluded that EC use causes acute effects on health but not as severe as those of conventional cigarettes (CCs). These devices could, therefore, be of use for smokers of CCs wishing to quit. However, as EC aerosol introduces new toxicants not found in CCs, long-term studies are needed to investigate possible chronic effects associated with EC use.
Collapse
Affiliation(s)
- Alyssa Zucchet
- Department of Biology, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Grégory Schmaltz
- Department of Biology, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
| |
Collapse
|
30
|
Glasser AM, Collins L, Pearson JL, Abudayyeh H, Niaura RS, Abrams DB, Villanti AC. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. Am J Prev Med 2017; 52:e33-e66. [PMID: 27914771 PMCID: PMC5253272 DOI: 10.1016/j.amepre.2016.10.036] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
CONTEXT Rapid developments in e-cigarettes, or electronic nicotine delivery systems (ENDS), and the evolution of the overall tobacco product marketplace warrant frequent evaluation of the published literature. The purpose of this article is to report updated findings from a comprehensive review of the published scientific literature on ENDS. EVIDENCE ACQUISITION The authors conducted a systematic review of published empirical research literature on ENDS through May 31, 2016, using a detailed search strategy in the PubMed electronic database, expert review, and additional targeted searches. Included studies presented empirical findings and were coded to at least one of nine topics: (1) Product Features; (2) Health Effects; (3) Consumer Perceptions; (4) Patterns of Use; (5) Potential to Induce Dependence; (6) Smoking Cessation; (7) Marketing and Communication; (8) Sales; and (9) Policies; reviews and commentaries were excluded. Data from included studies were extracted by multiple coders (October 2015 to August 2016) into a standardized form and synthesized qualitatively by topic. EVIDENCE SYNTHESIS There were 687 articles included in this systematic review. The majority of studies assessed patterns of ENDS use and consumer perceptions of ENDS, followed by studies examining health effects of vaping and product features. CONCLUSIONS Studies indicate that ENDS are increasing in use, particularly among current smokers, pose substantially less harm to smokers than cigarettes, are being used to reduce/quit smoking, and are widely available. More longitudinal studies and controlled trials are needed to evaluate the impact of ENDS on population-level tobacco use and determine the health effects of longer-term vaping.
Collapse
Affiliation(s)
- Allison M Glasser
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia.
| | - Lauren Collins
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Jennifer L Pearson
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Haneen Abudayyeh
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Raymond S Niaura
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - David B Abrams
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Andrea C Villanti
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
31
|
Bourke L, Bauld L, Bullen C, Cumberbatch M, Giovannucci E, Islami F, McRobbie H, Silverman DT, Catto JWF. E-cigarettes and Urologic Health: A Collaborative Review of Toxicology, Epidemiology, and Potential Risks. Eur Urol 2017; 71:915-923. [PMID: 28073600 DOI: 10.1016/j.eururo.2016.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
CONTEXT Use of electronic cigarettes (ECs) is on the rise in most high-income countries. Smoking conventional cigarettes is a known risk factor for urologic malignancy incidence, progression, and mortality, as well as for other urologic health indicators. The potential impact of EC use on urologic health is therefore of clinical interest to the urology community. OBJECTIVE To review the available data on current EC use, including potential benefits in urologic patients, potential issues linked to toxicology of EC constituents, and how this might translate into urologic health risks. EVIDENCE ACQUISITION A Medline search was carried out in August 2016 for studies reporting urologic health outcomes and EC use. Snowballing techniques were also used to identify relevant studies from recent systematic reviews. A narrative synthesis of data around EC health outcomes, toxicology, and potential use in smoking cessation and health policy was carried out. EVIDENCE SYNTHESIS We found no studies to date that have been specifically designed to prospectively assess urologic health risks, even in an observational setting. Generating such data would be an important contribution to the debate on the role of ECs in public health and clinical practice. There is evidence from a recent Cochrane review of RCTs that ECs can support smoking cessation. There are emerging data indicating that potentially harmful components of ECs such as tobacco-specific nitrosamines, polyaromatic hydrocarbons, and heavy metals could be linked to possible urologic health risks. CONCLUSIONS ECs might be a useful tool to encourage cessation of conventional cigarette smoking. However, data collection around the specific impact of ECs on urologic health is needed to clarify the possible patient benefits, outcomes, and adverse events. PATIENT SUMMARY While electronic cigarettes might help some people to stop smoking, their overall impact on urologic health is not clear.
Collapse
Affiliation(s)
- Liam Bourke
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK.
| | - Linda Bauld
- Institute for Social Marketing and UK Centre for Tobacco and Alcohol Studies, University of Stirling, Stirling, UK
| | - Christopher Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Marcus Cumberbatch
- Academic Urology Unit, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Farhad Islami
- Surveillance and Health Services Research, American Cancer Society, Atlanta, GA, USA
| | - Hayden McRobbie
- Wolfson Institute of Preventative Medicine and UK Centre for Tobacco and Alcohol Studies, Queen Mary University of London, London, UK
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James W F Catto
- Academic Urology Unit, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Luo T, Liu G, Long M, Yang J, Song R, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Zou H, Liu Z. Treatment of cadmium-induced renal oxidative damage in rats by administration of alpha-lipoic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1832-1844. [PMID: 27796992 DOI: 10.1007/s11356-016-7953-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that is widespread and nephrotoxic, but the mechanism of its toxicity is not well understood. Alpha-lipoic acid (α-LA) has a protective effect on Cd-induced oxidative stress, but the underlying mechanism is also not clear. This study aimed to confirm that Cd causes renal damage and to explore the potential underlying mechanism of α-LA to the kidney. Rats were randomly divided into four groups: control group, Cd group (50 mg/L CdAc2), Cd+α-LA group (50 mg/L CdAc2 + 50 mg/kg body wt/day α-LA), and α-LA group (50 mg/kg body wt/day). The rats were exposed to Cd via drinking water and α-LA in the form of gavage at the same time every day. After 12 weeks, the activity of antioxidant enzymes and the level of Cd in the kidney were analyzed. Renal damage was evaluated based on histopathological and ultrastructure examinations. The apoptosis index was determined based on the results of western blotting and qRT-PCR. Our results indicate that accumulation of Cd causes serious kidney damage and α-LA has a protective effect against Cd-induced oxidative stress and apoptosis. Further, the findings indicate that the antioxidant, Cd chelation, and antiapoptotic activities of α-LA are the key factors that alleviate nephrotoxicity.
Collapse
Affiliation(s)
- Tongwang Luo
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Mengfei Long
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Jinlong Yang
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Yi Wang
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
33
|
Singh J, Luquet E, Smith DP, Potgieter HJ, Ragazzon P. Toxicological and analytical assessment of e-cigarette refill components on airway epithelia. Sci Prog 2016; 99:351-398. [PMID: 28742478 PMCID: PMC10365464 DOI: 10.3184/003685016x14773090197706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There are over 2.6 million users of e-cigarettes in the United Kingdom alone as they have been promoted as a safer alternative to traditional cigarettes. The addition of flavours and aromas has also proven to be popular with younger generations. In this review, we survey the range of studies in the short timeframe since e-cigarettes reached the market to draw attention to the health associated risks and benefits of their introduction. We complement this review with a case study reporting on the composition of selected e-cigarette refills with particular emphasis on the toxicological activity of its components on lung cells.
Collapse
Affiliation(s)
- Jasjot Singh
- Department of Biology and Chemistry at the University of Applied Sciences Bremen
| | - Emilie Luquet
- Department of Biology at the IUT Universite d'Auvergne
| | - David P.T. Smith
- Specialist Research Infrastructure Technician at the School of Environment and Life Sciences at the University of Salford
| | - Herman J. Potgieter
- Division of Chemistry and Environmental Science, Manchester Metropolitan University
| | | |
Collapse
|
34
|
Meernik C, Goldstein AO. Should Clinicians Recommend E-cigarettes to Their Patients Who Smoke? No. Ann Fam Med 2016; 14:302-3. [PMID: 27401416 PMCID: PMC4940458 DOI: 10.1370/afm.1961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Clare Meernik
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam O Goldstein
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|