1
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
2
|
Visco DB, Manhães-de-Castro R, da Silva MM, Costa-de-Santana BJR, Pereira Dos Santos Junior J, Saavedra LM, de Lemos MDTB, Valdéz-Alarcón JJ, Lagranha CJ, Guzman-Quevedo O, Torner L, Toscano AE. Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutr Neurosci 2024; 27:20-41. [PMID: 36576161 DOI: 10.1080/1028415x.2022.2156034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aims to assess the effect of neonatal treatment with kaempferol on neuromotor development, proliferation of neural precursor cells, the microglia profile, and antioxidant enzyme gene expression in the hippocampus. METHODS A rat model of cerebral palsy was established using perinatal anoxia and sensorimotor restriction of hindlimbs during infancy. Kaempferol (1 mg/ kg) was intraperitoneally administered during the neonatal period. RESULTS Neonatal treatment with kaempferol reduces the impact of the cerebral palsy model on reflex ontogeny and on the maturation of physical features. Impairment of locomotor activity development and motor coordination was found to be attenuated by kaempferol treatment during the neonatal period in rats exposed to cerebral palsy. Neonatal treatment of kaempferol in cerebral palsy rats prevents a substantial reduction in the number of neural precursor cells in the dentate gyrus of the hippocampus, an activated microglia profile, and increased proliferation of microglia in the sub-granular zone and in the granular cell layer. Neonatal treatment with kaempferol increases gene expression of superoxide dismutase and catalase in the hippocampus of rats submitted to the cerebral palsy model. DISCUSSION Kaempferol attenuates the impact of cerebral palsy on neuromotor behavior development, preventing altered hippocampal microglia activation and mitigating impaired cell proliferation in a neurogenic niche in these rats. Neonatal treatment with kaempferol also increases antioxidant defense gene expression in the hippocampus of rats submitted to the cerebral palsy model.
Collapse
Affiliation(s)
- Diego Bulcão Visco
- Laboratory of Neurofunctional, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Raul Manhães-de-Castro
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Márcia Maria da Silva
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Bárbara J R Costa-de-Santana
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Joaci Pereira Dos Santos Junior
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Luís Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | | | - Juan José Valdéz-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología - Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Claudia Jacques Lagranha
- Graduate Program in Biochemistry and Physiology (PGBqF), Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Omar Guzman-Quevedo
- Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Ana Elisa Toscano
- Graduate Program in Nutrition (Posnutri), Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| |
Collapse
|
3
|
Vidinopoulos K, Azman Z, Somers A, Zahra VA, Thiel A, Lu H, Pham Y, Tran NT, Allison BJ, Herlenius E, Hooper S, Galinsky R, Polglase GR. Mechanical ventilation induces brainstem inflammation in preterm fetal sheep. Front Pediatr 2023; 11:1225294. [PMID: 37936886 PMCID: PMC10626530 DOI: 10.3389/fped.2023.1225294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Background Preterm infants have immature respiratory drive and often require prolonged periods of mechanical ventilation. Prolonged mechanical ventilation induces systemic inflammation resulting in ventilation-induced brain injury, however its effect on brainstem respiratory centers is unknown. We aimed to determine the effects of 24 h of mechanical ventilation on inflammation and injury in brainstem respiratory centres of preterm fetal sheep. Methods Preterm fetal sheep at 110 ± 1 days (d) gestation were instrumented to provide mechanical ventilation in utero. At 112 ± 1 d gestation, fetuses received either mechanical ventilation (VENT; n = 7; 3 ml/kg) for 24 h, or no ventilation (CONT; n = 6). At post-mortem, fetal brainstems were collected for assessment of mRNA and histological markers of inflammation and injury. Results In utero ventilation (IUV) did not alter any blood-gas parameters. IUV significantly increased systemic IL-6 and IL-8 concentrations over the 24 h period compared to CONT. The number of ameboid microglia within the nucleus tractus solitarius and the raphe nucleus increased in VENT fetuses (p < 0.05 for both vs. control). The % area fraction of GFAP + staining was not significantly higher within the preBötzinger complex (p = 0.067) and retrotrapezoid nucleus and parafacial respiratory group (p = 0.057) in VENT fetuses compared to CONT. Numbers of caspase-3 and TUNEL-positive cells were similar between groups. Gene expression (mRNA) levels of inflammation, injury, cell death and prostaglandin synthesis within the brainstem were similar between groups. Conclusion Mechanical ventilation induces a systemic inflammatory response with only moderate inflammatory effects within the brainstem respiratory centres of preterm fetal sheep.
Collapse
Affiliation(s)
- Kayla Vidinopoulos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Zahrah Azman
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Ainsley Somers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Hui Lu
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Nhi Thao Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stuart Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ohkuma K, Ono T, Oshima Y, So K, Tsumura K, Yamasaki F, Nakura Y, Yanagihara I, Nomiyama M, Yokoyama M. Diagnostic accuracy of amniotic fluid interleukin-6 for fetal inflammatory response syndrome. J Obstet Gynaecol Res 2023. [PMID: 36869638 DOI: 10.1111/jog.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
AIM This study aimed to clarify the diagnostic accuracy of amniotic fluid interleukin-6 for fetal inflammatory response syndrome (FIRS). METHODS This retrospective cohort study was conducted in a single institution and targeted cases of preterm birth within 24 h after amniocentesis among singleton cases that underwent amniocentesis at our hospital for suspected intraamniotic inflammation (IAI) from gestational ages of 22-36 weeks between August 2014 and March 2020. FIRS was defined as >11.0 pg/mL of umbilical cord blood interleukin-6. RESULTS The analysis included 158 pregnant women. There was a strong correlation between amniotic fluid interleukin-6 and umbilical cord blood interleukin-6 (r = 0.70, p < 0.001). The area under the receiver operating characteristic curve of amniotic fluid interleukin-6 for FIRS was 0.93, with a cutoff value of 15.5 ng/mL, and showed high sensitivity and specificity (0.91 and 0.88, respectively). An amniotic fluid interleukin-6 cutoff value of ≥15.5 ng/mL was associated with a significant risk of FIRS (adjusted odds ratio: 27.9; 95% confidence interval: 6.3-123.0; p < 0.001). CONCLUSIONS The results of this study show that amniotic interleukin 6 alone can be used to diagnose FIRS prenatally. While there is a need for validation, it may be possible to treat IAI while preventing damage to the central nervous and respiratory systems in the uterus by keeping the amniotic fluid interleukin-6 below the cutoff value.
Collapse
Affiliation(s)
- Kana Ohkuma
- Department of Obstetrics and Gynecology, National Hospital Organization, Saga National Hospital, Saga, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Ono
- Department of Obstetrics and Gynecology, National Hospital Organization, Saga National Hospital, Saga, Japan
| | - Yuko Oshima
- Department of Obstetrics and Gynecology, National Hospital Organization, Saga National Hospital, Saga, Japan
| | - Kunio So
- Department of Obstetrics and Gynecology, National Hospital Organization, Saga National Hospital, Saga, Japan
| | - Keisuke Tsumura
- Department of Obstetrics and Gynecology, National Hospital Organization, Saga National Hospital, Saga, Japan
| | - Fumio Yamasaki
- Department of Pathology, Japan Community Health Care Organization, Saga Central Hospital, Saga, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Makoto Nomiyama
- Department of Obstetrics and Gynecology, National Hospital Organization, Saga National Hospital, Saga, Japan
| | - Masatoshi Yokoyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
5
|
Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020422. [PMID: 36829980 PMCID: PMC9952227 DOI: 10.3390/antiox12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The detrimental effects of oxidative stress (OS) can start as early as after conception. A growing body of evidence has shown the pivotal role of OS in the development of several pathological conditions during the neonatal period, which have been therefore defined as OS-related neonatal diseases. Due to the physiological immaturity of their antioxidant defenses and to the enhanced antenatal and postnatal exposure to free radicals, preterm infants are particularly susceptible to oxidative damage, and several pathophysiological cascades involved in the development of prematurity-related complications are tightly related to OS. This narrative review aims to provide a detailed overview of the OS-related pathophysiological mechanisms that contribute to the main OS-related diseases during pregnancy and in the early postnatal period in the preterm population. Particularly, focus has been placed on pregnancy disorders typically associated with iatrogenic or spontaneous preterm birth, such as intrauterine growth restriction, pre-eclampsia, gestational diabetes, chorioamnionitis, and on specific postnatal complications for which the role of OS has been largely ascertained (e.g., respiratory distress, bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, necrotizing enterocolitis, neonatal sepsis). Knowledge of the underlying pathophysiological mechanisms may increase awareness on potential strategies aimed at preventing the development of these conditions or at reducing the ensuing clinical burden.
Collapse
|
6
|
Gulbiniene V, Balciuniene G, Dumalakiene I, Viliene R, Pilypiene I, Ramasauskaite D. The significance of TNF-α and MMP-8 concentrations in non-invasively obtained amniotic fluid predicting fetal inflammatory response syndrome. Int J Gynaecol Obstet 2023; 160:476-482. [PMID: 36151969 PMCID: PMC10092754 DOI: 10.1002/ijgo.14478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To determine the significance of tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-8 (MMP-8) in vaginally obtained amniotic fluid predicting fetal inflammatory response syndrome (FIRS) after preterm premature rupture of membranes (PPROM). METHODS In this prospective case-control study, TNF-α and MMP-8 concentrations were evaluated in vaginally obtained amniotic fluid from women with PPROM at 22-34 weeks of pregnancy. Biomarkers' concentrations were determined using an enzyme-linked immunosorbent assay. Patients were divided into two groups: the FIRS group (cord blood interleukin-6 > 11 pg/ml or histological funisitis) and the non-FIRS group (without these findings). The data were analyzed using R package (R-4.0.5). RESULTS The median TNF-α and MMP-8 concentrations in amniotic fluid from the 145 women included in the study were higher in the FIRS group than in the non-FIRS group. The area under the curve of TNF-α and MMP-8 was 0.77 and 0.75, respectively. The TNF-α concentration cut-off predicting FIRS was 89.20 pg/ml and was 170.76 pg/ml for MMP-8. In regression analysis, MMP-8 concentration was an independent predictor for FIRS. An MMP-8 concentration greater than 170 ng/ml and a TNF-α concentration greater than 89 pg/ml increased the odds of FIRS 7.62 and 14.92 times, respectively. CONCLUSIONS MMP-8 and TNF-α concentrations in vaginally obtained amniotic fluid may be good predictors for FIRS after PPROM before 34 weeks of pregnancy. The non-invasive amniotic fluid analysis could be an alternative method to invasive amniocentesis.
Collapse
Affiliation(s)
- Violeta Gulbiniene
- Center of Obstetrics and Gynaecology, Institute of Clinical Medicine of the Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Greta Balciuniene
- Center of Obstetrics and Gynaecology, Institute of Clinical Medicine of the Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Irena Dumalakiene
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rita Viliene
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ingrida Pilypiene
- Center of Obstetrics and Gynaecology, Institute of Clinical Medicine of the Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Diana Ramasauskaite
- Center of Obstetrics and Gynaecology, Institute of Clinical Medicine of the Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
Buka SL, Lee YH, Goldstein JM. Infections During Pregnancy and Risks for Adult Psychosis: Findings from the New England Family Study. Curr Top Behav Neurosci 2023; 61:49-69. [PMID: 36376640 DOI: 10.1007/7854_2022_397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For the past 40 years, our team has conducted a unique program of research investigating the prenatal risks for schizophrenia and related adult psychiatric disorders. The New England Family Study is a long-term prospective cohort study of over 16,000 individuals followed from the prenatal period for over 50 years. This chapter summarizes several major phases and findings from this work, highlighting recent results on maternal prenatal bacterial infections and brain imaging. Implications regarding the causes and potential prevention of major psychotic disorders are discussed.
Collapse
Affiliation(s)
- Stephen L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| | - Younga Heather Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Jill M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Ozen M, Aghaeepour N, Marić I, Wong RJ, Stevenson DK, Jantzie LL. Omics approaches: interactions at the maternal-fetal interface and origins of child health and disease. Pediatr Res 2023; 93:366-375. [PMID: 36216868 PMCID: PMC9549444 DOI: 10.1038/s41390-022-02335-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Immunoperinatology is an emerging field. Transdisciplinary efforts by physicians, physician-scientists, basic science researchers, and computational biologists have made substantial advancements by identifying unique immunologic signatures of specific diseases, discovering innovative preventative or treatment strategies, and establishing foundations for individualized neonatal intensive care of the most vulnerable neonates. In this review, we summarize the immunobiology and immunopathology of pregnancy, highlight omics approaches to study the maternal-fetal interface, and their contributions to pregnancy health. We examined the importance of transdisciplinary, multiomic (such as genomics, transcriptomics, proteomics, metabolomics, and immunomics) and machine-learning strategies in unraveling the mechanisms of adverse pregnancy, neonatal, and childhood outcomes and how they can guide the development of novel therapies to improve maternal and neonatal health. IMPACT: Discuss immunoperinatology research from the lens of omics and machine-learning approaches. Identify opportunities for omics-based approaches to delineate infection/inflammation-associated maternal, neonatal, and later life adverse outcomes (e.g., histologic chorioamnionitis [HCA]).
Collapse
Affiliation(s)
- Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Khatib N, Ginsberg Y, Ben David C, Ross MG, Vitner D, Zipori Y, Zamora O, Weiner Z, Beloosesky R. Magnesium sulphate neuroprotection mechanism is placental mediated by inhibition of inflammation, apoptosis and oxidative stress. Placenta 2022; 127:29-36. [DOI: 10.1016/j.placenta.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
|
10
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
11
|
Elsayed NA, Boyer TM, Burd I. Fetal Neuroprotective Strategies: Therapeutic Agents and Their Underlying Synaptic Pathways. Front Synaptic Neurosci 2021; 13:680899. [PMID: 34248595 PMCID: PMC8262796 DOI: 10.3389/fnsyn.2021.680899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
Synaptic signaling is integral for proper brain function. During fetal development, exposure to inflammation or mild hypoxic-ischemic insult may lead to synaptic changes and neurological damage that impairs future brain function. Preterm neonates are most susceptible to these deleterious outcomes. Evaluating clinically used and novel fetal neuroprotective measures is essential for expanding treatment options to mitigate the short and long-term consequences of fetal brain injury. Magnesium sulfate is a clinical fetal neuroprotective agent utilized in cases of imminent preterm birth. By blocking N-methyl-D-aspartate receptors, magnesium sulfate reduces glutamatergic signaling, which alters calcium influx, leading to a decrease in excitotoxicity. Emerging evidence suggests that melatonin and N-acetyl-L-cysteine (NAC) may also serve as novel putative fetal neuroprotective candidates. Melatonin has important anti-inflammatory and antioxidant properties and is a known mediator of synaptic plasticity and neuronal generation. While NAC acts as an antioxidant and a precursor to glutathione, it also modulates the glutamate system. Glutamate excitotoxicity and dysregulation can induce perinatal preterm brain injury through damage to maturing oligodendrocytes and neurons. The improved drug efficacy and delivery of the dendrimer-bound NAC conjugate provides an opportunity for enhanced pharmacological intervention. Here, we review recent literature on the synaptic pathways underlying these therapeutic strategies, discuss the current gaps in knowledge, and propose future directions for the field of fetal neuroprotective agents.
Collapse
Affiliation(s)
- Nada A. Elsayed
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theresa M. Boyer
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Prasad JD, van de Looij Y, Gunn KC, Ranchhod SM, White PB, Berry MJ, Bennet L, Sizonenko SV, Gunn AJ, Dean JM. Long-term coordinated microstructural disruptions of the developing neocortex and subcortical white matter after early postnatal systemic inflammation. Brain Behav Immun 2021; 94:338-356. [PMID: 33307171 DOI: 10.1016/j.bbi.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.
Collapse
Affiliation(s)
- Jaya D Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology, Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | - Katherine C Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sonya M Ranchhod
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Petra B White
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Mary J Berry
- The Department of Pediatrics and Health Care, University of Otago, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
13
|
Kim JM, Lee SY, Lee JY. Melatonin for the prevention of fetal injury associated with intrauterine inflammation. Am J Reprod Immunol 2021; 86:e13402. [PMID: 33583108 DOI: 10.1111/aji.13402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine inflammation is shown to be associated with preterm birth, fetal inflammatory response syndrome, and other pregnancy-related comorbidities such as central nervous system diseases including cerebral palsy and periventricular leukomalacia, pulmonary diseases such as bronchopulmonary dysplasia and respiratory distress syndrome, and necrotizing enterocolitis, to name a few. Many animal studies on intrauterine inflammation demonstrate that ascending infection of reproductive organs or the production of proinflammatory cytokines by some stimuli in utero results in such manifestations. Melatonin, known for its primary function in maintaining circadian rhythm, is now recognized as one of the most potent antioxidant and anti-inflammatory drugs. In some studies, melatonin injection in pregnant animals with intrauterine inflammation significantly reduced the number of preterm births, the severity of structural disintegration of the fetal lungs observed in bronchopulmonary dysplasia, and perinatal brain injuries with improvement in neuromotor function. These implicated benefits of melatonin in pregnant women with intrauterine inflammation seem promising in many research studies, strongly supporting the hypothesis that melatonin has antioxidative and anti-inflammatory properties that can potentially be taken by pregnant women who are at risk of having intrauterine inflammation. In this review, the potential of melatonin for improving outcomes of the pregnancies with intrauterine inflammation will be discussed.
Collapse
Affiliation(s)
- Jang Mee Kim
- Department of Medicine, CHA University School of Medicine, Pocheon, Korea
| | - Seung-Yun Lee
- Educational Competence Support Center, Hanshin University, Osan, Korea
| | - Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
14
|
Holloway RK, Ireland G, Sullivan G, Becher JC, Smith C, Boardman JP, Gressens P, Miron VE. Microglial inflammasome activation drives developmental white matter injury. Glia 2021; 69:1268-1280. [PMID: 33417729 PMCID: PMC8607465 DOI: 10.1002/glia.23963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Injury to the developing brain during the perinatal period often causes hypomyelination, leading to clinical deficits for which there is an unmet therapeutic need. Dysregulation of inflammation and microglia have been implicated, yet the molecular mechanisms linking these to hypomyelination are unclear. Using human infant cerebrospinal fluid (CSF) and postmortem tissue, we found that microglial activation of the pro-inflammatory molecular complex the NLRP3 inflammasome is associated with pathology. By developing a novel mouse brain explant model of microglial inflammasome activation, we demonstrate that blocking the inflammasome rescues myelination. In human and mouse, we discovered a link between the inflammasome product IL1β and increased levels of follistatin, an endogenous inhibitor of activin-A. Follistatin treatment was sufficient to reduce myelination, whereas myelination was rescued in injured explants upon follistatin neutralization or supplementation with exogenous activin-A. Our data reveal that inflammasome activation in microglia drives hypomyelination and identifies novel therapeutic strategies to reinstate myelination following developmental injury.
Collapse
Affiliation(s)
- Rebecca K Holloway
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Graeme Ireland
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Gemma Sullivan
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Julie-Clare Becher
- Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, Centre for Comparative Pathology, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Pierre Gressens
- Department of Perinatal Imaging and Health, Rayne's Institute, King's College London, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Park JY, Park CW, Moon KC, Park JS, Jun JK, Lee SJ, Kim JH. Retinopathy of prematurity in infants without fetal growth restriction is decreased with the progression of acute histologic chorioamnionitis: New observation as a protective factor against retinopathy of prematurity. Placenta 2020; 104:161-167. [PMID: 33348284 DOI: 10.1016/j.placenta.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION IGF-1 deficiency in prenatal period is known to be a definite pathophysiology of retinopathy of prematurity(ROP), which is more frequent in infants with fetal growth restriction(FGR). Of note, recent reports demonstrated intra-amniotic inflammation(IAI) closely linked to acute histologic chorioamnionitis(acute-HCA) is associated with a decrease in intact-form of IGFBP-1, ultimately rising the probability of an increase in IGF-1. Therefore, we hypothesized ROP in preterm-infants without FGR would be decreased with the progression of acute-HCA. METHODS The frequency of ROP was examined in 85 singleton preterm-infants(24.5weeks ≤ gestational-age[GA] at delivery<30weeks) due to either preterm-labor and intact-membranes(PTL) or preterm premature rupture of membranes(preterm-PROM) without FGR(birth-weight<5th percentile for GA). Patients were divided according to the progression of inflammation in extra-placental membranes(EPM) and the progression of inflammation in chorionic-vessel(CV) and umbilical-cord(UC). RESULTS 1) ROP was present in 40%(34/85) of study-population; 2) Of note, there was a significant stepwise-decrease in ROP with the progression of inflammation in EPM(inflammation-free EPM vs. inflammation restricted to CD vs. amnionitis; 55.6%[15/27]vs.39.5%[17/43]vs.13.3%[2/15]) and the progression of inflammation in CV and UC(inflammation-free CV and UC vs. inflammation restricted to CV and umbilical vessels vs. inflammation in Wharton's jelly[WJ]; 49.2%[29/59]vs.25.0%[3/12]vs.14.3%[2/14])(each-for P < 0.05, Chi-square test and each-for P < 0.01, linear-by-linear association); 3) Multiple logistic-regression analysis demonstrated amnionitis(Odds-Ratio 0.120, 95%Confidence-Interval 0.022-0.654, P = 0.014) and inflammation in WJ(Odds-Ratio 0.124, 95%Confidence-Interval 0.022-0.694, P = 0.018) were independent protective-factors against ROP. DISCUSSION ROP in preterm-infants due to PTL or preterm-PROM without FGR is decreased with the progression of acute-HCA. This finding may be an evidence to suggest the progression of acute-HCA is closely associated with reducing the pathophysiology of ROP.
Collapse
Affiliation(s)
- Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Reproductive Medicine and Population, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Reproductive Medicine and Population, Seoul National University Medical Research Center, Seoul, South Korea
| | - Seok Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Hun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea; Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2020; 21:ijms21186475. [PMID: 32899855 PMCID: PMC7554896 DOI: 10.3390/ijms21186475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets. Term-equivalent fetal sheep received 30 min of bilateral carotid artery occlusion, recovery for 90 min, followed by a 25-h intracerebroventricular infusion of vehicle or a mimetic peptide that blocks connexin hemichannels or by a sham ischemia + vehicle infusion. Brain tissues were stained for interneuronal markers or perineuronal nets. Cerebral ischemia was associated with loss of cortical interneurons and perineuronal nets. The mimetic peptide infusion reduced loss of glutamic acid decarboxylase-, calretinin-, and parvalbumin-expressing interneurons and perineuronal nets. The interneuron and perineuronal net densities were negatively correlated with total seizure burden after ischemia. These data suggest that the opening of connexin43 hemichannels after perinatal hypoxia-ischemia causes loss of cortical interneurons and perineuronal nets and that this exacerbates seizures. Connexin43 hemichannel blockade may be an effective strategy to attenuate seizures and may improve long-term neurological outcomes after perinatal hypoxia-ischemia.
Collapse
|
17
|
Yap V, Perlman JM. Mechanisms of brain injury in newborn infants associated with the fetal inflammatory response syndrome. Semin Fetal Neonatal Med 2020; 25:101110. [PMID: 32303463 DOI: 10.1016/j.siny.2020.101110] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fetal inflammatory response syndrome (FIRS) is characterized by umbilical cord inflammation and elevated fetal pro-inflammatory cytokines. Surviving neonates, especially very preterm infants, have increased rates of neonatal morbidity including neurodevelopmental impairment. The mechanism of brain injury in FIRS is complex and may involve "multiple hits." Exposure to in utero inflammation initiates a cascade of the fetal immune response, where pro-inflammatory cytokines can cause direct injury to oligodendrocytes and neurons. Activation of microglia results in further injury to vulnerable pre-myelinating oligodendrocytes and influences the integrity of the fetal and newborn's blood-brain barrier, resulting in further exposure of the brain to developmental insults. Newborns exposed to FIRS are frequently exposed to additional perinatal and postnatal insults that can result in further brain injury. Future directions should include evaluations for new therapeutic interventions aimed at reducing brain injury by dampening FIRS, inhibition of microglial activation, and regeneration of immature oligodendrocytes.
Collapse
Affiliation(s)
- Vivien Yap
- Weill Cornell Medicine - New York Presbyterian Hospital, 525 East 68th Street, Suite N-506, New York, NY, 10065, United States.
| | - Jeffrey M Perlman
- Weill Cornell Medicine - New York Presbyterian Hospital, 525 East 68th Street, Suite N-506, New York, NY, 10065, United States
| |
Collapse
|
18
|
McNamara NB, Miron VE. Microglia in developing white matter and perinatal brain injury. Neurosci Lett 2019; 714:134539. [PMID: 31614181 DOI: 10.1016/j.neulet.2019.134539] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Perinatal brain injury (PBI) to the developing white matter results in hypomyelination of axons and can cause long-term motor and cognitive deficits e.g. cerebral palsy. There are currently no approved therapies aimed at repairing the white matter following insult, underscoring the need to investigate the mechanisms underlying the pathogenesis of PBI. Microglia have been strongly implicated, but their function and heterogeneity in this context remain poorly understood, posing a barrier to the development of microglia-targeted therapies for white matter repair following PBI. In this review, we discuss the roles of microglia in normal white matter development and in PBI, and potential drug strategies to influence microglial responses in this setting.
Collapse
Affiliation(s)
- Niamh B McNamara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
19
|
Congenital Cytomegalovirus Infection in Children with Autism Spectrum Disorder: Systematic Review and Meta-Analysis. J Autism Dev Disord 2019; 48:1483-1491. [PMID: 29185167 DOI: 10.1007/s10803-017-3412-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Association of congenital cytomegalovirus (CMV) infection with autism spectral disorder (ASD) has been suggested since 1980s. Despite the observed association, its role as a risk factor for ASD remains to be defined. In the present review, we systematically evaluated the available evidence associating congenital CMV infection with ASD using PubMed, Web of Science, Cochrane Library, and Embase databases. Any studies on children with CMV infection and ASD were evaluated for eligibility and three observational studies were included in meta-analysis. Although a high prevalence of congenital CMV infection in ASD cases (OR 11.31, 95% CI 3.07-41.66) was indicated, too few events (0-2 events) in all included studies imposed serious limitations. There is urgent need for further studies to clarify this issue.
Collapse
|
20
|
Khatib N, Ginsberg Y, Shalom-Paz E, Dabaja H, Gutzeit O, Zmora O, Millo Z, Ross MG, Weiner Z, Beloosesky R. Fetal neuroprotective mechanism of maternal magnesium sulfate for late gestation inflammation: in a rodent model. J Matern Fetal Neonatal Med 2019; 33:3732-3739. [PMID: 30835601 DOI: 10.1080/14767058.2019.1583735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Maternal administration of magnesium sulfate (Mg) is used in humans to protect the fetal brain during preterm delivery. We sought to determine the neuroprotective mechanism of Mg in a rat model of late gestation maternal inflammation.Methods: Pregnant rats at 20 d of gestation (20 total, four groups, N = 5 in each group) received i.p. LPS or saline. Dams were randomized for s.c. saline or Mg supplementation 2 h prior and following the LPS/saline injections. Dams were sacrificed 4 h following the last treatment. Fetal brains were collected from the four treatment groups. Fetal brain caspase 3 active form, NF-kB p65, neuronal nitric oxide synthase (phospho-nNos), and proinflammatory cytokines levels were determined by western blot.Results: Maternal LPS at e20 significantly (p < .01) increased fetal brain caspase 3 active form (af) (0.27 ± 0.02 versus 0.15 ± 0.06u), NFkB (0.23 ± 0.01 versus 0.13 ± 0.01u), and phospho-nNOS (0.22 ± 0.01 versus 0.12 ± 0.01u) and fetal brain proinflammatory cytokines (IL-6 0.21 ± 0.01 versus 0.11 ± 0.01 u; TNFα 0.29 ± 0.01 versus 0.15 ± 0.01u), compared with control fetuses. Mg treatment significantly (p < .05) reduced fetal brain caspase 3 af (0.16 ± 0.01u), NFkB p65 (0.11 ± 0.01u), phospho-nNOS (0.1 ± 0.01u), as well as brain proinflammatory cytokines (IL-6 0.07 ± 0.01u; TNFα 0.15 ± 0.01u) to levels similar to controls.Conclusion: Maternal inflammation-induced fetal brain injury at late gestation may be mediated by the activation of inflammatory response, oxidative stress, and apoptosis. Maternal Mg may attenuate the injury by inhibition of these putative pathways.
Collapse
Affiliation(s)
- Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Einat Shalom-Paz
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Hanin Dabaja
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Olga Gutzeit
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Osnat Zmora
- Department of Pediatric Surgery, Assaf Harofeh Medical Center, Zerifin, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, Israel
| | - Zvika Millo
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
21
|
Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, Bieda J, Maymon E, Pacora P, Fettweis JM, Buck GA, Jefferson KK, Strauss JF, Erez O, Hassan SS. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol 2019; 220:267.e1-267.e39. [PMID: 30832984 PMCID: PMC6733039 DOI: 10.1016/j.ajog.2018.10.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The human placenta has been traditionally viewed as sterile, and microbial invasion of this organ has been associated with adverse pregnancy outcomes. Yet, recent studies that utilized sequencing techniques reported that the human placenta at term contains a unique microbiota. These conclusions are largely based on the results derived from the sequencing of placental samples. However, such an approach carries the risk of capturing background-contaminating DNA (from DNA extraction kits, polymerase chain reaction reagents, and laboratory environments) when low microbial biomass samples are studied. OBJECTIVE To determine whether the human placenta delivered at term in patients without labor who undergo cesarean delivery harbors a resident microbiota ("the assemblage of microorganisms present in a defined niche or environment"). STUDY DESIGN This cross-sectional study included placentas from 29 women who had a cesarean delivery without labor at term. The study also included technical controls to account for potential background-contaminating DNA, inclusive in DNA extraction kits, polymerase chain reaction reagents, and laboratory environments. Bacterial profiles of placental tissues and background technical controls were characterized and compared with the use of bacterial culture, quantitative real-time polymerase chain reaction, 16S ribosomal RNA gene sequencing, and metagenomic surveys. RESULTS (1) Twenty-eight of 29 placental tissues had a negative culture for microorganisms. The microorganisms retrieved by culture from the remaining sample were likely contaminants because corresponding 16S ribosomal RNA genes were not detected in the same sample. (2) Quantitative real-time polymerase chain reaction did not indicate greater abundances of bacterial 16S ribosomal RNA genes in placental tissues than in technical controls. Therefore, there was no evidence of the presence of microorganisms above background contamination from reagents in the placentas. (3) 16S ribosomal RNA gene sequencing did not reveal consistent differences in the composition or structure of bacterial profiles between placental samples and background technical controls. (4) Most of the bacterial sequences obtained from metagenomic surveys of placental tissues were from cyanobacteria, aquatic bacteria, or plant pathogens, which are microbes unlikely to populate the human placenta. Coprobacillus, which constituted 30.5% of the bacterial sequences obtained through metagenomic sequencing of placental samples, was not identified in any of the 16S ribosomal RNA gene surveys of these samples. These observations cast doubt as to whether this organism is really present in the placenta of patients at term not in labor. CONCLUSION With the use of multiple modes of microbiologic inquiry, a resident microbiota could not be identified in human placentas delivered at term from women without labor. A consistently significant difference in the abundance and/or presence of a microbiota between placental tissue and background technical controls could not be found. All cultures of placental tissue, except 1, did not yield bacteria. Incorporating technical controls for potential sources of background-contaminating DNA for studies of low microbial biomass samples, such as the placenta, is necessary to derive reliable conclusions.
Collapse
Affiliation(s)
- Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI.
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Ali Alhousseini
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Janine Bieda
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Eli Maymon
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Percy Pacora
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Jennifer M Fettweis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA; Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA; Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA
| | - Kimberly K Jefferson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Maternity Department "D" and Obstetrical Day Care Center, Division of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Sonia S Hassan
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
22
|
van den Heuij LG, Fraser M, Miller SL, Jenkin G, Wallace EM, Davidson JO, Lear CA, Lim R, Wassink G, Gunn AJ, Bennet L. Delayed intranasal infusion of human amnion epithelial cells improves white matter maturation after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 2019; 39:223-239. [PMID: 28895475 PMCID: PMC6365606 DOI: 10.1177/0271678x17729954] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury remains highly associated with neurodevelopmental disability after preterm birth. There is increasing evidence that disability is linked with impaired white matter maturation, but there is no specific treatment. In this study, we evaluated whether, in preterm fetal sheep, delayed intranasal infusion of human amnion epithelial cells (hAECs) given 1, 3 and 10 days after severe HI, induced by umbilical cord occlusion for 25 min, can restore white matter maturation or reduce delayed cell loss. After 21 days recovery, asphyxia was associated with reduced electroencephalographic (EEG) maturation, brain weight and cortical area, impaired maturation of oligodendrocytes (OLs), no significant loss of total OLs but a marked reduction in immature/mature OLs and reduced myelination. Intranasal infusion of hAECs was associated with improved brain weight and restoration of immature/mature OLs and fractional area of myelin basic protein, with reduced microglia and astrogliosis. Cortical EEG frequency distribution was partially improved, with reduced loss of cortical area, and attenuated cleaved-caspase-3 expression and microgliosis. Neuronal survival in deep grey matter nuclei was improved, with reduced microglia, astrogliosis and cleaved-caspase-3-positive apoptosis. These findings suggest that delayed intranasal hAEC administration has potential to alleviate chronic dysmaturation after perinatal HI.
Collapse
Affiliation(s)
- Lotte G van den Heuij
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Suzanne L Miller
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Graham Jenkin
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Euan M Wallace
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Joanne O Davidson
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca Lim
- 2 The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Guido Wassink
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- 1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Yap V, Perlman JM. Intraventricular Hemorrhage and White Matter Injury in the Preterm Infant. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Salman S, Hibbert J, Page-Sharp M, Manning L, Simmer K, Doherty DA, Patole S, Batty KT, Strunk T. Effects of maturation and size on population pharmacokinetics of pentoxifylline and its metabolites in very preterm infants with suspected late-onset sepsis or necrotizing enterocolitis: a pilot study incorporating clinical outcomes. Br J Clin Pharmacol 2018; 85:147-159. [PMID: 30281170 DOI: 10.1111/bcp.13775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/08/2018] [Accepted: 09/09/2018] [Indexed: 01/10/2023] Open
Abstract
AIMS Infection-induced inflammation is associated with adverse long-term outcomes in preterm infants. Pentoxifylline (PTX) is a candidate for adjunct immunomodulatory therapy in preterm infants with late-onset sepsis (LOS) and necrotizing enterocolitis (NEC), but pharmacokinetic data in this population are extremely limited. This study aims to characterize the pharmacokinetic properties of intravenous PTX and its metabolites in preterm infants. METHOD An open label pilot clinical study of intravenous PTX as an adjunct therapy in preterm infants (gestation <32 weeks) with suspected LOS or NEC was undertaken. PTX was infused for 12 h for two days (60 mg kg-1 per 12 h), and in infants with confirmed diagnosis of LOS or NEC, for 6 h for another 4 days (30 mg kg-1 per 6 h). Plasma concentrations of PTX and its principal metabolites from collected blood samples were measured using a validated LCMS assay. NONMEM was used to analyse the data using population pharmacokinetic modelling. RESULTS The preterm infants (n = 26) had a median (range) gestation of 24.8 weeks (23.3-30.4) and birthweight of 689 g (370-1285). PTX was well tolerated and without treatment-limiting adverse effects. Changes in size (weight) and maturation were successfully modelled for PTX and metabolites. After allometric scaling, clearance increased with postmenstrual age, increasing by approximately 30% per week for PTX and M1 (lisofylline) and simulations of current dosing demonstrated a six-fold difference in exposure between 24 and 35 weeks postmenstrual age. CONCLUSIONS The developed model can be used to explore dosing strategies based on size and maturation for preterm infants.
Collapse
MESH Headings
- Administration, Intravenous
- Body Weight/physiology
- Drug Therapy, Combination/methods
- Enterocolitis, Necrotizing/blood
- Enterocolitis, Necrotizing/drug therapy
- Female
- Humans
- Infant
- Infant, Extremely Premature/blood
- Infant, Extremely Premature/physiology
- Infant, Newborn
- Infant, Premature, Diseases/blood
- Infant, Premature, Diseases/drug therapy
- Infant, Very Low Birth Weight/blood
- Infant, Very Low Birth Weight/physiology
- Male
- Metabolic Clearance Rate/physiology
- Models, Biological
- Pentoxifylline/administration & dosage
- Pentoxifylline/pharmacokinetics
- Phosphodiesterase Inhibitors/administration & dosage
- Phosphodiesterase Inhibitors/pharmacokinetics
- Pilot Projects
- Sepsis/blood
- Sepsis/drug therapy
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Sam Salman
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Julie Hibbert
- Centre for Neonatal Research and Education, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Madhu Page-Sharp
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Laurens Manning
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Karen Simmer
- Centre for Neonatal Research and Education, School of Medicine, University of Western Australia, Crawley, WA, Australia
- Neonatal Directorate, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Dorota A Doherty
- Division of Obstetrics and Gynaecology, University of Western Australia, Crawley, WA, Australia
| | - Sanjay Patole
- Centre for Neonatal Research and Education, School of Medicine, University of Western Australia, Crawley, WA, Australia
- Neonatal Directorate, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Kevin T Batty
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Tobias Strunk
- Centre for Neonatal Research and Education, School of Medicine, University of Western Australia, Crawley, WA, Australia
- Neonatal Directorate, King Edward Memorial Hospital, Subiaco, WA, Australia
| |
Collapse
|
25
|
Boardman JP, Ireland G, Sullivan G, Pataky R, Fleiss B, Gressens P, Miron V. The Cerebrospinal Fluid Inflammatory Response to Preterm Birth. Front Physiol 2018; 9:1299. [PMID: 30258368 PMCID: PMC6144928 DOI: 10.3389/fphys.2018.01299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Preterm birth is the leading risk factor for perinatal white matter injury, which can lead to motor and neuropsychiatric impairment across the life course. There is an unmet clinical need for therapeutics. White matter injury is associated with an altered inflammatory response in the brain, primarily led by microglia, and subsequent hypomyelination. However, microglia can release both damaging and trophic factors in response to injury, and a comprehensive assessment of these factors in the preterm central nervous system (CNS) has not been carried out. Method: A custom antibody array was used to assess relative levels of 50 inflammation- and myelination-associated proteins in the cerebrospinal fluid (CSF) of preterm infants in comparison to term controls. Results: Fifteen proteins differed between the groups: BDNF, BTC, C5a, FasL, Follistatin, IL-1β, IL-2, IL-4, IL-9, IL-17A, MIP-1α, MMP8, SPP1, TGFβ, and TNFβ (p < 0.05). To investigate the temporal regulation of these proteins after injury, we mined a gene expression dataset of microglia isolated from a mouse model of developmental white matter injury. Microglia in the experimental model showed dynamic temporal expression of genes encoding these proteins, with an initial and sustained pro-inflammatory response followed by a delayed anti-inflammatory response, and a continuous expression of genes predicted to inhibit healthy myelination. Conclusion: Preterm CSF shows a distinct neuroinflammatory profile compared to term controls, suggestive of a complex neural environment with concurrent damaging and reparative signals. We propose that limitation of pro-inflammatory responses, which occur early after perinatal insult, may prevent expression of myelination-suppressive genes and support healthy white matter development.
Collapse
Affiliation(s)
- James P Boardman
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Ireland
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Bobbi Fleiss
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Pierre Gressens
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Jiang K, Wong L, Chen Y, Xing X, Li D, Wang T, Jarvis JN. Soluble inflammatory mediators induce transcriptional re-organization that is independent of dna methylation changes in cultured human chorionic villous trophoblasts. J Reprod Immunol 2018; 128:2-8. [PMID: 29800761 PMCID: PMC6086739 DOI: 10.1016/j.jri.2018.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 11/23/2022]
Abstract
The studies proposed here were undertaken to test the hypothesis that, under specific circumstances (e.g., a strong enough inflammatory stimulus), genes that are repressed at the maternal-fetal interface via DNA methylation might be de-methylated, allowing either a maternal immune response to the semi-allogenic fetus or the onset of early labor. Chorionic trophoblasts (CT) were isolated from fetal membranes, followed by incubation with medium from LPS-activated PBMC or resting PBMC medium for 2 h. RNA and DNA were isolated from the cells for RNA-seq and DNA methylation studies. Two hrs after being exposed to conditioned medium from LPS-activated PBMC, CT showed differential expression of 114 genes, all but 2 of which showed higher expression in the stimulated cells than is the unstimulated cells. We also identified 318 differentially methylated regions (DMRs) that associated with 306 genes (155 protein coding genes) in the two groups, but the observed methylation changes had negligible impact on the observed transcriptional changes in CT. CT display complex patterns of transcription in response to inflammation. DNA methylation does not appear to be an important regulator of the observed transcriptional changes.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Laiping Wong
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Yanmin Chen
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO, 63108, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO, 63108, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO, 63108, USA
| | - James N Jarvis
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA; Genetics, Genomics, & Bioinformatics Program, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
27
|
Bernson-Leung ME, Boyd TK, Meserve EE, Danehy AR, Kapur K, Trenor CC, Lehman LL, Rivkin MJ. Placental Pathology in Neonatal Stroke: A Retrospective Case-Control Study. J Pediatr 2018; 195:39-47.e5. [PMID: 29397159 DOI: 10.1016/j.jpeds.2017.11.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 11/29/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To assess the association of placental abnormalities with neonatal stroke. STUDY DESIGN This retrospective case-control study at 3 academic medical centers examined placental specimens for 46 children with neonatal arterial or venous ischemic stroke and 99 control children without stroke, using a standard protocol. Between-group comparisons used χ2 and Fisher exact t test. Correlations used Spearman correlation coefficient. RESULTS Case placentas were more likely than controls to meet criteria for ≥1 of 5 major categories of pathologic abnormality (89% vs 62%; OR, 5.1; 95% CI, 1.9-14.0; P = .0007) and for ≥2 categories (38% vs 8%; OR, 7.3; 95% CI, 2.9-19.0; P < .0001). Fetal vascular malperfusion occurred in 50% of cases and 17% of controls (OR, 4.8; 95% CI, 2.2-10.5; P = .0001). Amniotic fluid inflammation occurred in 46% of cases with arterial ischemic stroke vs 25% of controls (OR, 2.6; 95% CI, 1.1-6.1; P = .037). There was evidence of a "stress response" (meconium plus elevated nucleated red blood cells) in 24% of cases compared with 1% of controls (OR, 31; 95% CI, 3.8-247.0; P < .0001). CONCLUSIONS Placental abnormality was more common in children with neonatal stroke compared with controls. All placental findings represent subacute-to-chronic intrauterine stressors. Placental thrombotic processes were associated with both arterial and venous stroke. Our findings provide evidence for specific mechanisms that may predispose to acute perinatal stroke. Amniotic fluid inflammation associated with neonatal arterial ischemic stroke deserves further investigation.
Collapse
Affiliation(s)
- Miya E Bernson-Leung
- Department of Neurology, Boston Children's Hospital, Boston, MA; Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA
| | - Theonia K Boyd
- Department of Pathology, Boston Children's Hospital, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Emily E Meserve
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Amy R Danehy
- Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Cameron C Trenor
- Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA; Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA
| | - Michael J Rivkin
- Department of Neurology, Boston Children's Hospital, Boston, MA; Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Boston, MA; Department of Radiology, Boston Children's Hospital, Boston, MA; Department of Psychiatry, Boston Children's Hospital, Boston, MA.
| |
Collapse
|
28
|
Soucy-Giguère L, Gasse C, Giguère Y, Demers S, Bujold E, Boutin A. Intra-amniotic inflammation and child neurodevelopment: a systematic review protocol. Syst Rev 2018; 7:12. [PMID: 29357925 PMCID: PMC5778727 DOI: 10.1186/s13643-018-0683-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/12/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Intra-amniotic inflammation is associated with adverse pregnancy and neonatal outcomes. However, the impact on child neurodevelopment remains unclear. We aim to assess the effect of intra-amniotic inflammation on neurodevelopmental outcomes in children. METHODS The databases MEDLINE, Embase, CINAHL, and Cochrane will be searched from their inception until November 2017. Randomized trials and cohort studies in which inflammatory markers were measured in amniotic fluid collected by amniocentesis and in which infant's neurodevelopment was assessed will be eligible. Two reviewers will independently select eligible studies, assess their risk of bias, and extract data. Results will be compared and a third party will be consulted in case of disagreement. Our primary outcome of interest is child neurodevelopment, assessed with either a validated tool or by revision of medical records for specific diagnosis. Secondary outcomes will include abnormal brain imaging. Relative risks will be pooled and sensitivity analyses will be performed for the indication of amniocentesis, gestational age at amniocentesis, gestational age at delivery, and fetal sex. Risk of bias will be assessed using the Cochrane Collaboration's tool for assessing the risk of bias in randomized trials or an adapted version of the ROBINS-1 for the risk of bias in non-randomized studies. DISCUSSION This systematic review will report the current evidence regarding the association between amniotic inflammation and child neurodevelopment, and the modifiers of this association. The review will generate new hypotheses on pathological pathways and will guide future research. SYSTEMATIC REVIEW REGISTRATION PROSPERO 2017 65065.
Collapse
Affiliation(s)
- Laurence Soucy-Giguère
- Reproduction, Mother and Child Health Unit, CHU de Québec-Université Laval Research Center, Université Laval, 2705, Boul. Laurier, TR-66, Québec, QC G1V 4G2 Canada
| | - Cédric Gasse
- Reproduction, Mother and Child Health Unit, CHU de Québec-Université Laval Research Center, Université Laval, 2705, Boul. Laurier, TR-66, Québec, QC G1V 4G2 Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, 1050, Avenue de la Médecine, Québec, QC G1V 0A6 Canada
| | - Yves Giguère
- Reproduction, Mother and Child Health Unit, CHU de Québec-Université Laval Research Center, Université Laval, 2705, Boul. Laurier, TR-66, Québec, QC G1V 4G2 Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, 1050, Avenue de la Médecine, Québec, QC G1V 0A6 Canada
| | - Suzanne Demers
- Reproduction, Mother and Child Health Unit, CHU de Québec-Université Laval Research Center, Université Laval, 2705, Boul. Laurier, TR-66, Québec, QC G1V 4G2 Canada
- Department of Gynecology, Obstetrics and Reproduction, Faculty of Medicine, Université Laval, 1050, Avenue de la Médecine, Québec, QC G1V 0A6 Canada
| | - Emmanuel Bujold
- Reproduction, Mother and Child Health Unit, CHU de Québec-Université Laval Research Center, Université Laval, 2705, Boul. Laurier, TR-66, Québec, QC G1V 4G2 Canada
- Department of Gynecology, Obstetrics and Reproduction, Faculty of Medicine, Université Laval, 1050, Avenue de la Médecine, Québec, QC G1V 0A6 Canada
| | - Amélie Boutin
- Reproduction, Mother and Child Health Unit, CHU de Québec-Université Laval Research Center, Université Laval, 2705, Boul. Laurier, TR-66, Québec, QC G1V 4G2 Canada
| |
Collapse
|
29
|
Chan-Ling T, Gole GA, Quinn GE, Adamson SJ, Darlow BA. Pathophysiology, screening and treatment of ROP: A multi-disciplinary perspective. Prog Retin Eye Res 2017; 62:77-119. [PMID: 28958885 DOI: 10.1016/j.preteyeres.2017.09.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022]
Abstract
The population of infants at risk for retinopathy of prematurity (ROP) varies by world region; in countries with well developed neonatal intensive care services, the highest risk infants are those born at less than 28 weeks gestational age (GA) and less than 1 kg at birth, while, in regions where many aspects of neonatal intensive and ophthalmological care are not routinely available, more mature infants up to 2000 g at birth and 37 weeks GA are also at risk for severe ROP. Treatment options for both groups of patients include standard retinal laser photocoagulation or, more recently, intravitreal anti-VEGF drugs. In addition to detection and treatment of ROP, this review highlights new opportunities created by telemedicine, where screening and diagnosis of ROP in remote locations can be undertaken by non-ophthalmologists using digital fundus cameras. The ophthalmological care of the ROP infant is undertaken in the wider context of neonatal care and general wellbeing of the infant. Because of this context, this review takes a multi-disciplinary perspective with contributions from retinal vascular biologists, pediatric ophthalmologists, an epidemiologist and a neonatologist. This review highlights the latest insights regarding cellular and molecular mechanisms in the formation of the retinal vasculature in the human infant, pathogenesis of ROP, detection and treatment of severe ROP, the risks and benefits of anti-VEGF therapy, the identification of new therapies over the horizon, and the optimal neonatal care regimen for best ROP outcomes, and the benefits and pitfalls of telemedicine in the remote screening and diagnosis of ROP, all of which have the potential to improve ROP outcomes.
Collapse
Affiliation(s)
- Tailoi Chan-Ling
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia.
| | - Glen A Gole
- Discipline of Paediatrics and Child Health, University of Queensland, Qld Children's Hospital, Sth Brisbane, Qld 4101, Australia.
| | - Graham E Quinn
- Division of Ophthalmology, The Children's Hospital of Philadelphia and Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Samuel J Adamson
- Department of Anatomy, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Brian A Darlow
- Department of Paediatrics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
30
|
McDougall ARA, Hale N, Rees S, Harding R, De Matteo R, Hooper SB, Tolcos M. Erythropoietin Protects Against Lipopolysaccharide-Induced Microgliosis and Abnormal Granule Cell Development in the Ovine Fetal Cerebellum. Front Cell Neurosci 2017; 11:224. [PMID: 28804448 PMCID: PMC5532439 DOI: 10.3389/fncel.2017.00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin (EPO) ameliorates inflammation-induced injury in cerebral white matter (WM). However, effects of inflammation on the cerebellum and neuroprotective effects of EPO are unknown. Our aims were to determine: (i) whether lipopolysaccharide (LPS)-induced intrauterine inflammation causes injury to, and/or impairs development of the cerebellum; and (ii) whether recombinant human EPO (rhEPO) mitigates these changes. At 107 ± 1 days gestational age (DGA; ~0.7 of term), fetal sheep received LPS (~0.9 μg/kg; i.v.) or an equivalent volume of saline, followed 1 h later with 5000 IU/kg rhEPO (i.v.) or an equivalent volume of saline (i.v.). This generated the following experimental groups: control (saline + saline; n = 6), LPS (LPS + saline, n = 8) and LPS + rhEPO (n = 8). At necropsy (116 ± 1 DGA; ~0.8 of term) the brain was perfusion-fixed and stained histologically (H&E) and immunostained to identify granule cells (Neuronal Nuclei, NeuN), granule cell proliferation (Ki67), Bergmann glia (glial fibrillary acidic protein, GFAP), astrogliosis (GFAP) and microgliosis (Iba-1). In comparison to controls, LPS fetuses had an increased density of Iba-1-positive microglia (p < 0.005) in the lobular WM; rhEPO prevented this increase (p < 0.05). The thickness of both the proliferative (Ki67-positive) and post-mitotic zones (Ki67-negative) of the EGL were increased in LPS-exposed fetuses compared to controls (p < 0.05), but were not different between controls and LPS + rhEPO fetuses. LPS also increased (p < 0.001) the density of granule cells (NeuN-positive) in the internal granule layer (IGL); rhEPO prevented the increase (p < 0.01). There was no difference between groups in the areas of the vermis (total cross-section), molecular layer (ML), IGL or WM, the density of NeuN-positive granule cells in the ML, the linear density of Bergmann glial fibers, the areal density or somal area of the Purkinje cells, the areal coverage of GFAP-positive astrocytes in the lobular and deep WM, the density of Iba-1-positive microglia in the deep WM or the density of apopotic cells in the cerebellum. LPS-induced intrauterine inflammation caused microgliosis and abnormal development of granule cells. rhEPO ameliorated these changes, suggesting that it is neuroprotective against LPS-induced inflammatory effects in the cerebellum.
Collapse
Affiliation(s)
- Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Sandra Rees
- Department of Anatomy and Neuroscience, University of MelbourneParkville, VIC, Australia
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash UniversityClayton, VIC, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash UniversityClayton, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
31
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
32
|
Patra A, Huang H, Bauer JA, Giannone PJ. Neurological consequences of systemic inflammation in the premature neonate. Neural Regen Res 2017; 12:890-896. [PMID: 28761416 PMCID: PMC5514858 DOI: 10.4103/1673-5374.208547] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite substantial progress in neonatal care over the past two decades leading to improved survival of extremely premature infants, extreme prematurity continues to be associated with long term neurodevelopmental impairments. Cerebral white matter injury is the predominant form of insult in preterm brain leading to adverse neurological consequences. Such brain injury pattern and unfavorable neurologic sequelae is commonly encountered in premature infants exposed to systemic inflammatory states such as clinical or culture proven sepsis with or without evidence of meningitis, prolonged mechanical ventilation, bronchopulmonary dysplasia, necrotizing enterocolitis and chorioamnionitis. Underlying mechanisms may include cytokine mediated processes without direct entry of pathogens into the brain, developmental differences in immune response and complex neurovascular barrier system that play a critical role in regulating the cerebral response to various systemic inflammatory insults in premature infants. Understanding of these pathologic mechanisms and clinical correlates of such injury based on serum biomarkers or brain imaging findings on magnetic resonance imaging will pave way for future research and translational therapeutic opportunities for the developing brain.
Collapse
Affiliation(s)
- Aparna Patra
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hong Huang
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John A Bauer
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Peter J Giannone
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Edey LF, O'Dea KP, Herbert BR, Hua R, Waddington SN, MacIntyre DA, Bennett PR, Takata M, Johnson MR. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse. Biol Reprod 2016; 95:125. [PMID: 27760748 PMCID: PMC5333944 DOI: 10.1095/biolreprod.116.143289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 01/30/2023] Open
Abstract
Inflammation plays a key role in human term and preterm labor (PTL). Intrauterine LPS has been widely used to model inflammation-induced complications of pregnancy, including PTL. It has been shown to induce an intense myometrial inflammatory cell infiltration, but the role of LPS-induced inflammatory cell activation in labor onset and fetal demise is unclear. We investigated this using a mouse model of PTL, where an intrauterine injection of 10 μg of LPS (serotype 0111:B4) was given at E16 of CD1 mouse pregnancy. This dose induced PTL at an average of 12.7 h postinjection in association with 85% fetal demise. Flow cytometry showed that LPS induced a dramatic systemic inflammatory response provoking a rapid and marked leucocyte infiltration into the maternal lung and liver in association with increased cytokine levels. Although there was acute placental inflammatory gene expression, there was no corresponding increase in fetal brain inflammatory gene expression until after fetal demise. There was marked myometrial activation of NFκB and MAPK/AP-1 systems in association with increased chemokine and cytokine levels, both of which peaked with the onset of parturition. Myometrial macrophage and neutrophil numbers were greater in the LPS-injected mice with labor onset only; prior to labor, myometrial neutrophils and monocytes numbers were greater in PBS-injected mice, but this was not associated with an earlier onset of labor. These data suggest that intrauterine LPS induces parturition directly, independent of myometrial inflammatory cell infiltration, and that fetal demise occurs without fetal inflammation. Intrauterine LPS provokes a marked local and systemic inflammatory response but with limited inflammatory cell infiltration into the myometrium or placenta.
Collapse
Affiliation(s)
- Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Renyi Hua
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai, China
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom.,Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus DuCane Road, London, United Kingdom
| | - Philip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus DuCane Road, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
34
|
Abu-Raya B, Smolen KK, Willems F, Kollmann TR, Marchant A. Transfer of Maternal Antimicrobial Immunity to HIV-Exposed Uninfected Newborns. Front Immunol 2016; 7:338. [PMID: 27630640 PMCID: PMC5005931 DOI: 10.3389/fimmu.2016.00338] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
The transfer of maternal immune factors to the newborn is critical for protection from infectious disease in early life. Maternally acquired passive immunity provides protection until the infant is beyond early life's increased susceptibility to severe infections or until active immunity is achieved following infant's primary immunization. However, as reviewed here, human immunodeficiency virus (HIV) infection alters the transfer of immune factors from HIV-infected mothers to the HIV-exposed newborns and young infants. This may relate to the immune activation in HIV-infected pregnant women, associated with the production of inflammatory cytokines at the maternofetal interface associated with inflammatory responses in the newborn. We also summarize mother-targeting interventions to improve the health of infants born to HIV-infected women, such as immunization during pregnancy and reduction of maternal inflammation. Maternal immunization offers the potential to compensate for the decreased transplacentally transferred maternal antibodies observed in HIV-exposed infants. Current data suggest reduced immunogenicity of vaccines in HIV-infected pregnant women, possibly reducing the protective impact of maternal immunization for HIV-exposed infants. Fortunately, levels of antibodies appear preserved in the breast milk of HIV-infected women, which supports the recommendation to breast-feed during antiretroviral treatment to protect HIV-exposed infants.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia , Vancouver, BC , Canada
| | - Kinga K Smolen
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Fabienne Willems
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Tobias R Kollmann
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia , Vancouver, BC , Canada
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
35
|
|
36
|
Garnier Y, Coumans ABC, Jensen A, Hasaart THM, Berger R. Infection-Related Perinatal Brain Injury: The Pathogenic Role of Impaired Fetal Cardiovascular Control. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300150-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Tom H. M. Hasaart
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; Department of obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands
| | - Richard Berger
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; Department of obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands; Universitätsfrauenklinik Bochum, Knappschaftskrankenhaus, In der Schornau 23-25, 44982 Bochum
| |
Collapse
|
37
|
Romero R, Chaemsaithong P, Docheva N, Korzeniewski SJ, Tarca AL, Bhatti G, Xu Z, Kusanovic JP, Dong Z, Yoon BH, Hassan SS, Chaiworapongsa T, Yeo L, Kim YM, Kim YM. Clinical chorioamnionitis at term V: umbilical cord plasma cytokine profile in the context of a systemic maternal inflammatory response. J Perinat Med 2016; 44:53-76. [PMID: 26360486 PMCID: PMC5625297 DOI: 10.1515/jpm-2015-0121] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Microbial invasion of the fetus due to intra-amniotic infection can lead to a systemic inflammatory response characterized by elevated concentrations of cytokines in the umbilical cord plasma/serum. Clinical chorioamnionitis represents the maternal syndrome often associated with intra-amniotic infection, although other causes of this syndrome have been recently described. The objective of this study was to characterize the umbilical cord plasma cytokine profile in neonates born to mothers with clinical chorioamnionitis at term, according to the presence or absence of bacteria and/or intra-amniotic inflammation. MATERIALS AND METHODS A cross-sectional study was conducted, including patients with clinical chorioamnionitis at term (n=38; cases) and those with spontaneous term labor without clinical chorioamnionitis (n=77; controls). Women with clinical chorioamnionitis were classified according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) and amniotic fluid interleukin (IL)-6 concentration into three groups: 1) no intra-amniotic inflammation; 2) intra-amniotic inflammation without detectable microorganisms; or 3) microbial-associated intra-amniotic inflammation. A fetal inflammatory response syndrome (FIRS) was defined as an umbilical cord plasma IL-6 concentration >11 pg/mL. The umbilical cord plasma concentrations of 29 cytokines were determined with sensitive and specific V-PLEX immunoassays. Nonparametric statistical methods were used for analysis, adjusting for a false discovery rate of 5%. RESULTS 1) Neonates born to mothers with clinical chorioamnionitis at term (considered in toto) had significantly higher median umbilical cord plasma concentrations of IL-6, IL-12p70, IL-16, IL-13, IL-4, IL-10 and IL-8, but significantly lower interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF)-α concentrations than neonates born to mothers with spontaneous term labor without clinical chorioamnionitis; 2) neonates born to mothers with clinical chorioamnionitis at term but without intra-amniotic inflammation had higher concentrations of IL-6, IL-12p70, IL-13, IL-4, IL-5, and IL-8, but lower IFN-γ, than neonates not exposed to clinical chorioamnionitis, suggesting that maternal fever in the absence of intra-amniotic inflammation leads to a change in the fetal cytokine network; 3) there were significant, positive correlations between maternal and umbilical cord plasma IL-6 and IL-8 concentrations (IL-6: Spearman correlation=0.53; P<0.001; IL-8: Spearman correlation=0.42; P<0.001), consistent with placental transfer of cytokines; 4) an elevated fetal plasma IL-6 (>11 pg/mL), the diagnostic criterion for FIRS, was present in 21% of cases (8/38), and all these neonates were born to mothers with proven intra-amniotic infection; and 5) FIRS was associated with a high concentration of umbilical cord plasma IL-8, IL-10 and monocyte chemoattractant protein (MCP)-1. CONCLUSIONS Neonates born to mothers with clinical chorioamnionitis at term had higher concentrations of umbilical cord plasma cytokines than those born to mothers without clinical chorioamnionitis. Even neonates exposed to clinical chorioamnionitis but not to intra-amniotic inflammation had elevated concentrations of multiple cytokines, suggesting that intrapartum fever alters the fetal immune response.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA,Department of Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan P. Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF). Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile,Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan Korea
| | | |
Collapse
|
38
|
Romero R, Miranda J, Chaemsaithong P, Chaiworapongsa T, Kusanovic JP, Dong Z, Ahmed AI, Shaman M, Lannaman K, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L, Kim YM. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2015; 28:1394-409. [PMID: 25190175 PMCID: PMC5371030 DOI: 10.3109/14767058.2014.958463] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The objectives of this study were to: (1) determine the amniotic fluid (AF) microbiology of patients with preterm prelabor rupture of membranes (PROM); and (2) examine the relationship between intra-amniotic inflammation with and without microorganisms (sterile inflammation) and adverse pregnancy outcomes in patients with preterm PROM. METHODS AF samples obtained from 59 women with preterm PROM were analyzed using cultivation techniques (for aerobic and anaerobic bacteria as well as genital mycoplasmas) and with broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). AF concentration of interleukin-6 (IL-6) was determined using ELISA. Results of both tests were correlated with AF IL-6 concentrations and the occurrence of adverse obstetrical/perinatal outcomes. RESULTS (1) PCR/ESI-MS, AF culture, and the combination of these two tests each identified microorganisms in 36% (21/59), 24% (14/59) and 41% (24/59) of women with preterm PROM, respectively; (2) the most frequent microorganisms found in the amniotic cavity were Sneathia species and Ureaplasma urealyticum; (3) the frequency of microbial-associated and sterile intra-amniotic inflammation was overall similar [ 29% (17/59)]: however, the prevalence of each differed according to the gestational age when PROM occurred; (4) the earlier the gestational age at preterm PROM, the higher the frequency of both microbial-associated and sterile intra-amniotic inflammation; (5) the intensity of the intra-amniotic inflammatory response against microorganisms is stronger when preterm PROM occurs early in pregnancy; and (6) the frequency of acute placental inflammation (histologic chorioamnionitis and/or funisitis) was significantly higher in patients with microbial-associated intra-amniotic inflammation than in those without intra-amniotic inflammation [93.3% (14/15) versus 38% (6/16); p = 0.001]. CONCLUSIONS (1) The frequency of microorganisms in preterm PROM is 40% using both cultivation techniques and PCR/ESI-MS; (2) PCR/ESI-MS identified microorganisms in the AF of 50% more women with preterm PROM than AF culture; and (3) sterile intra-amniotic inflammation was present in 29% of these patients, and it was as or more common than microbial-associated intra-amniotic inflammation among those presenting after, but not before, 24 weeks of gestation.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Jezid Miranda
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan P. Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Majid Shaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kia Lannaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong J. Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Pathology, College of Medicine Inje University, Haeundae Paik Hospital, Seoul, Korea
| |
Collapse
|
39
|
Iessa N, Bérard A. Update on Prepregnancy Maternal Obesity: Birth Defects and Childhood Outcomes. J Pediatr Genet 2015; 4:71-83. [PMID: 27617118 PMCID: PMC4918711 DOI: 10.1055/s-0035-1556739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/25/2015] [Indexed: 12/16/2022]
Abstract
Obesity is a growing global health epidemic. It is estimated that more than 20% of pregnancies are complicated by obesity. Prepregnancy obesity has been associated with birth defects such as neural tube defects, macrosomia, fetal death, and long-term effects such as asthma on the offspring. We provide a summary of the most recent studies and meta-analyses on obesity and birth outcome. Possible mechanisms of actions are explored and recommendations for further research are highlighted.
Collapse
Affiliation(s)
- Noha Iessa
- Faculty of Pharmacy, University of Montreal, Montreal, Québec, Canada
- Research Center, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Anick Bérard
- Faculty of Pharmacy, University of Montreal, Montreal, Québec, Canada
- Research Center, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
40
|
Pang Y, Tien LT, Zhu H, Shen J, Wright CF, Jones TK, Mamoon SA, Bhatt AJ, Cai Z, Fan LW. Interleukin-1 receptor antagonist reduces neonatal lipopolysaccharide-induced long-lasting neurobehavioral deficits and dopaminergic neuronal injury in adult rats. Int J Mol Sci 2015; 16:8635-54. [PMID: 25898410 PMCID: PMC4425101 DOI: 10.3390/ijms16048635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023] Open
Abstract
Our previous study showed that a single lipopolysaccharide (LPS) treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β) levels, as well as reduced tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra) protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg) with or without IL-1ra (0.1 mg/kg), or sterile saline was injected intracerebrally into postnatal day 5 (P5) Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan.
| | - Hobart Zhu
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Juying Shen
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Camilla F Wright
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Tembra K Jones
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Samir A Mamoon
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
41
|
Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 2015; 9:40. [PMID: 25741233 PMCID: PMC4330788 DOI: 10.3389/fnins.2015.00040] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data.
Collapse
Affiliation(s)
- Raffaella Moretti
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Julien Pansiot
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Donatella Bettati
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Nathalie Strazielle
- Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292 - Lyon University Lyon, France ; Brain-i Lyon, France
| | | | - Giuseppe Damante
- S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Bobbi Fleiss
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| | - Luigi Titomanlio
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Pediatric Emergency Department, APHP, Robert Debré Hospital Paris, France
| | - Pierre Gressens
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| |
Collapse
|
42
|
Zhang J, Sadowska GB, Chen X, Park SY, Kim JE, Bodge CA, Cummings E, Lim YP, Makeyev O, Besio WG, Gaitanis J, Banks WA, Stonestreet BS. Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. FASEB J 2015; 29:1739-53. [PMID: 25609424 DOI: 10.1096/fj.14-258822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.
Collapse
Affiliation(s)
- Jiyong Zhang
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Grazyna B Sadowska
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaodi Chen
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Seon Yeong Park
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeong-Eun Kim
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Courtney A Bodge
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Erin Cummings
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yow-Pin Lim
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Oleksandr Makeyev
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Walter G Besio
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - John Gaitanis
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William A Banks
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Barbara S Stonestreet
- *Department of Pediatrics, Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA; ProThera Biologics, Incorporated, Providence, Rhode Island, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA; Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA; and Geriatric Research Educational, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
van de Looij Y, Ginet V, Chatagner A, Toulotte A, Somm E, Hüppi PS, Sizonenko SV. Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain. Ann Clin Transl Neurol 2014; 1:955-67. [PMID: 25574471 PMCID: PMC4284122 DOI: 10.1002/acn3.138] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
Objective Lactoferrin (Lf) is an iron-binding glycoprotein secreted in maternal milk presenting anti-inflammatory and antioxidant properties. It shows efficient absorption into the brain from nutritional source. Brain injury frequently resulting from cerebral hypoxia-ischemia (HI) has a high incidence in premature infants with ensuing neurodevelopmental disabilities. We investigated the neuroprotective effect of maternal nutritional supplementation with Lf during lactation in a rat model of preterm HI brain injury using magnetic resonance imaging (MRI), brain gene, and protein expression. Methods Moderate brain HI was induced using unilateral common carotid artery occlusion combined with hypoxia (6%, 30 min) in the postnatal day 3 (P3) rat brain (24–28 weeks human equivalent). High-field multimodal MRI techniques were used to investigate the effect of maternal Lf supplementation through lactation. Expression of cytokine coding genes (TNF-α and IL-6), the prosurvival/antiapoptotic AKT protein and caspase-3 activation were also analyzed in the acute phase after HI. Results MRI analysis demonstrated reduced cortical injury in Lf rats few hours post-HI and in long-term outcome (P25). Lf reduced HI-induced modifications of the cortical metabolism and altered white matter microstructure was recovered in Lf-supplemented rats at P25. Lf supplementation significantly decreased brain TNF-α and IL-6 gene transcription, increased phosphorylated AKT levels and reduced activation of caspase-3 at 24 h post-injury. Interpretation Lf given through lactation to rat pups with cerebral HI injury shows neuroprotective effects on brain metabolism, and cerebral gray and white matter recovery. This nutritional intervention may be of high interest for the clinical field of preterm brain neuroprotection.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland ; Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Vanessa Ginet
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Alexandra Chatagner
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Audrey Toulotte
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Emmanuel Somm
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Petra S Hüppi
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva Geneva, Switzerland
| |
Collapse
|
44
|
Kim Y, Kim YK, Kim NK, Kim SH, Kim OJ, Oh SH. Circulating matrix metalloproteinase-9 level is associated with cerebral white matter hyperintensities in non-stroke individuals. Eur Neurol 2014; 72:234-40. [PMID: 25248031 DOI: 10.1159/000362876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUNDS The pathogenesis of cerebral white matter hyperintensities (WMH) has been poorly understood. Our aim was to investigate the association of circulating proteins, the biomarkers of inflammation, blood-brain barrier (BBB) dysfunction, and thrombosis with WMH in non-stroke individuals. METHODS Demographic, laboratory, and brain magnetic resonance imaging parameters were prospectively analyzed in 137 subjects. The relationship between plasma interleukin-6, tumor necrosis factor-α, matrx-metalloproteinase-9 (MMP-9), plasminogen activator inhibitor-1 and overt WMH (Fazekas grading score ≥2) was analyzed. RESULTS In univariate analysis, old age, high blood pressure, history of hypertension, and elevated plasma MMP-9 level were associated with overt WMH. In multivariate analysis, plasma MMP-9 still maintained a significant association with WMH. Plasma MMP-9 level was weakly but significantly associated with WMH volume (r = 0.232, p = 0.006). All the other circulating proteins examined failed to demonstrate a significant relationship with WMH. CONCLUSIONS Plasma MMP-9 is associated with pathophysiology of WMH development.
Collapse
Affiliation(s)
- Yoon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
Albertsson AM, Bi D, Duan L, Zhang X, Leavenworth JW, Qiao L, Zhu C, Cardell S, Cantor H, Hagberg H, Mallard C, Wang X. The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. J Neuroinflammation 2014; 11:153. [PMID: 25187205 PMCID: PMC4172879 DOI: 10.1186/s12974-014-0153-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023] Open
Abstract
Background Preterm brain injury consists primarily of periventricular leukomalacia accompanied by elements of gray-matter injury, and these injuries are associated with cerebral palsy and cognitive impairments. Inflammation is believed to be an important contributing factor to these injuries. The aim of this study was to examine the immune response in a postnatal day (PND) 5 mouse model of preterm brain injury induced by hypoxia-ischemia (HI) that is characterized by focal white and gray-matter injury. Methods C57Bl/6 mice at PND 5 were subjected to unilateral HI induced by left carotid artery ligation and subsequent exposure to 10% O2 for 50 minutes, 70 minutes, or 80 minutes. At seven days post-HI, the white/gray-matter injury was examined. The immune responses in the brain after HI were examined at different time points after HI using RT-PCR and immunohistochemical staining. Results HI for 70 minutes in PND 5 mice induced local white-matter injury with focal cortical injury and hippocampal atrophy, features that are similar to those seen in preterm brain injury in human infants. HI for 50 minutes resulted in a small percentage of animals being injured, and HI for 80 minutes produced extensive infarction in multiple brain areas. Various immune responses, including changes in transcription factors and cytokines that are associated with a T-helper (Th)1/Th17-type response, an increased number of CD4+ T-cells, and elevated levels of triggering receptor expressed on myeloid cells 2 (TREM-2) and its adaptor protein DNAX activation protein of 12 kDa (DAP12) were observed using the HI 70 minute preterm brain injury model. Conclusions We have established a reproducible model of HI in PND 5 mice that produces consistent local white/gray-matter brain damage that is relevant to preterm brain injury in human infants. This model provides a useful tool for studying preterm brain injury. Both innate and adaptive immune responses are observed after HI, and these show a strong pro-inflammatory Th1/Th17-type bias. Such findings provide a critical foundation for future studies on the mechanism of preterm brain injury and suggest that blocking the Th1/Th17-type immune response might provide neuroprotection after preterm brain injury.
Collapse
|
46
|
Sorokin Y, Romero R, Mele L, Iams JD, Peaceman AM, Leveno KJ, Harper M, Caritis SN, Mercer BM, Thorp JM, O'Sullivan MJ, Ramin SM, Carpenter MW, Rouse DJ, Sibai B. Umbilical cord serum interleukin-6, C-reactive protein, and myeloperoxidase concentrations at birth and association with neonatal morbidities and long-term neurodevelopmental outcomes. Am J Perinatol 2014; 31:717-26. [PMID: 24338120 PMCID: PMC4359689 DOI: 10.1055/s-0033-1359723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of the study is to determine if umbilical cord serum concentrations of interleukin-6 (IL-6), C-reactive protein (CRP), and myeloperoxidase (MPO), in pregnancies at risk for preterm birth (PTB), are associated with neonatal morbidities and/or altered neurodevelopmental outcomes in the children. STUDY DESIGN Umbilical cord serum samples were collected at birth from 400 newborns delivered within a multicenter randomized controlled trial of repeated versus single course of antenatal corticosteroids (ACs), in women at increased risk for PTB. Newborns were followed through discharge and were evaluated between 36 and 42 months corrected age with neurological examination and Bayley Scales of Infant Development. Umbilical cord serum concentrations of IL-6, CRP, and MPO were determined using enzyme-linked immunoassays. Multivariate logistic regression analyses explored the relationship between umbilical cord serum IL-6, CRP, and MPO levels, adverse newborn outcomes, and PTB < 32 weeks of gestational age (GA). RESULTS Univariate analysis revealed that umbilical cord IL-6 above the 75th percentile was associated with increased respiratory distress syndrome (RDS) and chronic lung disease (CLD), but not with necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), or neonatal sepsis; however, this association was not significant after adjusting for GA at delivery and treatment group. No significant associations between CRP or MPO and RDS, CLD, NEC, sepsis, or IVH were evident. Regression analysis revealed that CRP above the 75th percentile was associated with a decreased risk of CLD (odds ratio, 0.10; 95% confidence interval, 0.02-0.41). No associations between umbilical cord IL-6, CRP, or MPO and MDI < 70 or PDI < 70 were evident. Umbilical cord serum concentrations of IL-6, CRP, and MPO, above the 75th percentile, were associated with more frequent PTB < 32 weeks of GA. CONCLUSION Elevated umbilical cord serum concentration of CRP is associated with reduced risk for CLD even after adjusting for GA at delivery. Occurrence of levels > 75th percentile of IL-6, CRP, and MPO in umbilical cord serum was associated with PTB < 32 weeks of GA. Elevated umbilical cord serum concentrations of IL-6, CRP, and MPO at birth were not associated with poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Yoram Sorokin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | | | - Lisa Mele
- Biostatistics Center, The George Washington University, Washington, District of Columbia
| | - Jay D Iams
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Alan M Peaceman
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois
| | - Kenneth J Leveno
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Margaret Harper
- Department of Obstetrics and Gynecology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Steve N Caritis
- Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M Mercer
- Department of Obstetrics and Gynecology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - John M Thorp
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mary Jo O'Sullivan
- Department of Obstetrics and Gynecology, University of Miami, Miami, Florida
| | - Susan M Ramin
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Marshall W Carpenter
- Department of Obstetrics and Gynecology, Brown University, Providence, Rhode Island
| | - Dwight J Rouse
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Baha Sibai
- Department of Obstetrics and Gynecology, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
47
|
Threlkeld SW, Gaudet CM, La Rue ME, Dugas E, Hill CA, Lim YP, Stonestreet BS. Effects of inter-alpha inhibitor proteins on neonatal brain injury: Age, task and treatment dependent neurobehavioral outcomes. Exp Neurol 2014; 261:424-33. [PMID: 25084519 DOI: 10.1016/j.expneurol.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 07/20/2014] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full term birth related complications. HI injury often results in learning and processing deficits that reflect widespread damage to an extensive range of cortical and sub-cortical brain structures. Further, inflammation has been implicated in the long-term progression and severity of HI injury. Recently, inter-alpha inhibitor proteins (IAIPs) have been shown to attenuate inflammation in models of systemic infection. Importantly, preclinical studies of neonatal HI injury and neuroprotection often focus on single time windows of assessment or single behavioral domains. This approach limits translational validity, given evidence for a diverse spectrum of neurobehavioral deficits that may change across developmental windows following neonatal brain injury. Therefore, the aims of this research were to assess the effects of human IAIPs on early neocortical cell death (72h post-insult), adult regional brain volume measurements (cerebral cortex, hippocampus, striatum, corpus callosum) and long-term behavioral outcomes in juvenile (P38-50) and adult (P80+) periods across two independent learning domains (spatial and non-spatial learning), after postnatal day 7 HI injury in rats. Here, for the first time, we show that IAIPs reduce acute neocortical neuronal cell death and improve brain weight outcome 72h following HI injury in the neonatal rat. Further, these longitudinal studies are the first to show age, task and treatment dependent improvements in behavioral outcome for both spatial and non-spatial learning following systemic administration of IAIPs in neonatal HI injured rats. Finally, results also show sparing of brain regions critical for spatial and non-spatial learning in adult animals treated with IAIPs at the time of injury onset. These data support the proposal that inter-alpha inhibitor proteins may serve as novel therapeutics for brain injury associated with premature birth and/or neonatal brain injury and highlight the importance of assessing multiple ages, brain regions and behavioral domains when investigating experimental treatment efficacy.
Collapse
Affiliation(s)
- Steven W Threlkeld
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA.
| | - Cynthia M Gaudet
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA
| | - Molly E La Rue
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Ethan Dugas
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA
| | - Courtney A Hill
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., East Providence, RI 02914, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| |
Collapse
|
48
|
Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. THE LANCET. INFECTIOUS DISEASES 2014; 14:751-762. [PMID: 24877996 DOI: 10.1016/s1473-3099(14)70710-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preterm birth and infectious diseases are the most common causes of neonatal and early childhood deaths worldwide. The rates of preterm birth have increased over recent decades and account for 11% of all births worldwide. Preterm infants are at significant risk of severe infection in early life and throughout childhood. Bacteraemia, inflammation, or both during the neonatal period in preterm infants is associated with adverse outcomes, including death, chronic lung disease, and neurodevelopmental impairment. Recent studies suggest that bacteraemia could trigger cerebral injury even without penetration of viable bacteria into the CNS. Here we review available evidence that supports the concept of a strong association between bacteraemia, inflammation, and cerebral injury in preterm infants, with an emphasis on the underlying biological mechanisms, clinical correlates, and translational opportunities.
Collapse
Affiliation(s)
- Tobias Strunk
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia; Neonatal Clinical Care Unit, King Edward Memorial Hospital, Perth, WA, Australia.
| | - Terrie Inder
- Department of Pediatrics, Neurology and Radiology, Washington University, St Louis, USA
| | - Xiaoyang Wang
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Shangjie, Henan, China
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Romero R, Kadar N, Miranda J, Korzeniewski SJ, Schwartz AG, Chaemsaithong P, Rogers W, Soto E, Gotsch F, Yeo L, Hassan SS, Chaiworapongsa T. The diagnostic performance of the Mass Restricted (MR) score in the identification of microbial invasion of the amniotic cavity or intra-amniotic inflammation is not superior to amniotic fluid interleukin-6. J Matern Fetal Neonatal Med 2014; 27:757-69. [PMID: 24028673 PMCID: PMC5881917 DOI: 10.3109/14767058.2013.844123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Intra-amniotic infection/inflammation are major causes of spontaneous preterm labor and delivery. However, diagnosis of intra-amniotic infection is challenging because most are subclinical and amniotic fluid (AF) cultures take several days before results are available. Several tests have been proposed for the rapid diagnosis of microbial invasion of the amniotic cavity (MIAC) or intra-amniotic inflammation. The aim of this study was to examine the diagnostic performance of the AF Mass Restricted (MR) score in comparison with interleukin-6 (IL-6) and matrix metalloproteinase-8 (MMP-8) for the identification of MIAC or inflammation. METHODS AF samples were collected from patients with singleton gestations and symptoms of preterm labor (n = 100). Intra-amniotic inflammation was defined as >100 white blood cells/mm(3) (WBCs) in AF; MIAC was defined as a positive AF culture. AF IL-6 and MMP-8 were determined using ELISA. The MR score was obtained using the Surface-Enhanced Laser Desorption Ionization Time of Flight (SELDI-TOF) mass spectrometry. Sensitivity and specificity were calculated and logistic regression models were fit to construct receiver-operating characteristic (ROC) curves for the identification of each outcome. The McNemar's test and paired sample non-parametric statistical techniques were used to test for differences in diagnostic performance metrics. RESULTS (1) The prevalence of MIAC and intra-amniotic inflammation was 34% (34/100) and 40% (40/100), respectively; (2) there were no significant differences in sensitivity of the three tests under study (MR score, IL-6 or MMP-8) in the identification of either MIAC or intra-amniotic inflammation (using the following cutoffs: MR score >2, IL-6 >11.4 ng/mL, and MMP-8 >23 ng/mL); (3) there was no significant difference in the sensitivity among the three tests for the same outcomes when the false positive rate was fixed at 15%; (4) the specificity for IL-6 was not significantly different from that of the MR score in identifying either MIAC or intra-amniotic inflammation when using previously reported thresholds; and (5) there were no significant differences in the area under the ROC curve when comparing the MR score, IL-6 or MMP-8 in the identification of these outcomes. CONCLUSIONS IL-6 and the MR score have equivalent diagnostic performance in the identification of MIAC or intra-amniotic inflammation. Selection from among these three tests (MR score, IL-6 and MMP-8) for diagnostic purposes should be based on factors such as availability, reproducibility, and cost. The MR score requires a protein chip and a SELDI-TOF instrument which are not widely available or considered "state of the art". In contrast, immunoassays for IL-6 can be performed in the majority of clinical laboratories.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Nicholas Kadar
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
| | - Jezid Miranda
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Alyse G. Schwartz
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Wade Rogers
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eleazar Soto
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Francesca Gotsch
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Integrata Verona, Ostetricia Ginecologia, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
50
|
Chau V, McFadden DE, Poskitt KJ, Miller SP. Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol 2014; 41:83-103. [PMID: 24524448 DOI: 10.1016/j.clp.2013.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chorioamnionitis (or placental infection) is suspected to be a risk factor for brain injury in premature infants. The suggested association between chorioamnionitis and cystic periventricular leukomalacia and cerebral palsy is uncertain because of the variability of study designs and definitions of chorioamnionitis. Improvements in neonatal intensive care may have attenuated the impact of chorioamnionitis on brain health outcomes. Large multicenter studies using rigorous definitions of chorioamnionitis on placental pathologies and quantitative magnetic resonance techniques may offer the optimal way to clarify the complex role of chorioamnionitis in modifying brain health and long-term outcomes.
Collapse
Affiliation(s)
- Vann Chau
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, Department of Pediatrics, 563 Spadina Crescent, Toronto, Ontario, M5S 2J7, Canada; Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.
| | - Deborah E McFadden
- Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Pathology, BC Children's & Women's Health Center, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada; University of British Columbia, Departments of Pediatrics, Pathology and Radiology, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kenneth J Poskitt
- Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada; University of British Columbia, Departments of Pediatrics, Pathology and Radiology, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Departments of Pediatrics and Radiology, BC Children's & Women's Health Center, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - Steven P Miller
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; Neurosciences and Mental Health Program, Research Institute, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, Department of Pediatrics, 563 Spadina Crescent, Toronto, Ontario, M5S 2J7, Canada; Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|