1
|
Rubio C, Romo-Parra H, López-Landa A, Rubio-Osornio M. Classification of Current Experimental Models of Epilepsy. Brain Sci 2024; 14:1024. [PMID: 39452036 PMCID: PMC11506208 DOI: 10.3390/brainsci14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION This article provides an overview of several experimental models, including in vivo, genetics, chemical, knock-in, knock-out, electrical, in vitro, and optogenetics models, that have been employed to investigate epileptogenesis. The present review introduces a novel categorization of these models, taking into account the fact that the most recent classification that gained widespread acceptance was established by Fisher in 1989. A significant number of such models have become virtually outdated. OBJECTIVE This paper specifically examines the models that have contributed to the investigation of partial seizures, generalized seizures, and status epilepticus. DISCUSSION A description is provided of the primary features associated with the processes that produce and regulate the symptoms of various epileptogenesis models. Numerous experimental epilepsy models in animals have made substantial contributions to the investigation of particular brain regions that are capable of inducing seizures. Experimental models of epilepsy have also enabled the investigation of the therapeutic mechanisms of anti-epileptic medications. Typically, animals are selected for the development and study of experimental animal models of epilepsy based on the specific form of epilepsy being investigated. CONCLUSIONS Currently, it is established that specific animal species can undergo epileptic seizures that resemble those described in humans. Nevertheless, it is crucial to acknowledge that a comprehensive assessment of all forms of human epilepsy has not been feasible. However, these experimental models, both those derived from channelopathies and others, have provided a limited comprehension of the fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Héctor Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01219, Mexico
| | - Alejandro López-Landa
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Fan B, Zhao JV. Utilizing genetics and proteomics to assess the role of antihypertensive drugs in human longevity and the underlying pathways: a Mendelian randomization study. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:537-546. [PMID: 38769606 DOI: 10.1093/ehjcvp/pvae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Antihypertensive drugs are known to lower cardiovascular mortality, but the role of different types of antihypertensive drugs in lifespan has not been clarified. Moreover, the underlying mechanisms remain unclear. METHODS AND RESULTS To minimize confounding, we used Mendelian randomization to assess the role of different antihypertensive drug classes in longevity and examined the pathways via proteins. Genetic variants associated with systolic blood pressure (SBP) corresponding to drug-target genes were used as genetic instruments. The genetic associations with lifespan were obtained from a large genome-wide association study including 1 million European participants from UK Biobank and LifeGen. For significant antihypertensive drug classes, we performed sex-specific analysis, drug-target analysis, and colocalization. To examine the mediation pathways, we assessed the associations of 2291 plasma proteins with lifespan, and examined the associations of drug classes with the proteins affecting lifespan. After correcting for multiple testing, genetically proxied beta-blockers (BBs), calcium channel blockers (CCBs), and vasodilators were related to longer life years (BBs: 2.03, 95% CI 0.78-3.28 per 5 mmHg reduction in SBP, CCBs: 3.40, 95% CI 1.47-5.33, and vasodilators: 2.92, 95% CI 1.08-4.77). The beneficial effects of BBs and CCBs were more obvious in men. ADRB1, CACNA2D2, CACNB3, CPT1A, CPT2, and EDNRA genes were related to extended lifespan, with CPT2 further supported by colocalization evidence. Eighty-six proteins were related to lifespan, of which four proteins were affected by CCBs. CDH1 may mediate the association between CCBs and lifespan. CONCLUSIONS Beta-blockers, CCBs, and vasodilators may prolong lifespan, with potential sex differences for BBs and CCBs. The role of CCBs in lifespan is partly mediated by CDH1. Prioritizing the potential protein targets can provide new insights into healthy aging.
Collapse
Affiliation(s)
- Bohan Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhang Y, Chen B, Wang M, Liu H, Chen M, Zhu J, Zhang Y, Wang X, Wu Y, Liu D, Cui G, Kitakaze M, Kim JK, Wang Y, Luo T. A novel function of claudin-5 in maintaining the structural integrity of the heart and its implications in cardiac pathology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167274. [PMID: 38838411 DOI: 10.1016/j.bbadis.2024.167274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
This study aims to investigate the role of claudin-5 (Cldn5) in cardiac structural integrity. Proteomic analysis was performed to screen the protein profiles in enlarged left atrium from atrial fibrillation (AF) patients. Cldn5 shRNA adeno-associated virus (AAV) or siRNA was injected into the mouse left ventricle or added into HL1 cells respectively to knockdown Cldn5 in cardiomyocytes to observe whether the change of Cldn5 influences cardiac morphology and function, and affects those protein expressions stem from the proteomic analysis. Mitochondrial density and membrane potential were also measured by Mitotracker staining and JC-1 staining under the confocal microscope in HL1 cells. Cldn5 was reduced in cardiomyocytes from the left atrial appendage of AF patients compared to non-AF donors. Proteomic analysis showed 83 proteins were less abundant and 102 proteins were more abundant in AF patients. KEGG pathway analysis showed less abundant CACNA2D2, CACNB2, MYL2 and MAP6 were highly associated with dilated cardiomyopathy. Cldn5 shRNA AAV injection caused severe cardiac atrophy, dilation and myocardial dysfunction in mice. The decreases in mitochondrial numbers and mitochondrial membrane potentials in HL1 cells were observed after Cldn5 knockdown. We demonstrated for the first time the mechanism of Cldn5 downregulation-induced myocyte atrophy and myocardial dysfunction might be associated with the downregulation of CACNA2D2, CACNB2, MYL2 and MAP6, and mitochondrial dysfunction in cardiomyocytes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Baihe Chen
- Department of Functional Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Miao Wang
- Department of Pathophysiology, Jinan University, Guangzhou, China
| | - Haiqiong Liu
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minjun Chen
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiabiao Zhu
- Department of Basic Teaching, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yu Zhang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhou Wu
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Daishun Liu
- Department of Respiratory and Critical Medicine, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | | | - Jin Kyung Kim
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, United States of America
| | - Yiyang Wang
- Department of Pathophysiology, Jinan University, Guangzhou, China.
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| |
Collapse
|
4
|
Danis AB, Gallagher AA, Anderson AN, Isakharov A, Beeson KA, Schnell E. Altered Hippocampal Activation in Seizure-Prone CACNA2D2 Knock-out Mice. eNeuro 2024; 11:ENEURO.0486-23.2024. [PMID: 38749701 PMCID: PMC11097259 DOI: 10.1523/eneuro.0486-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.
Collapse
Affiliation(s)
- Alyssa B Danis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashlynn A Gallagher
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashley N Anderson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Arielle Isakharov
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Kathleen A Beeson
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
5
|
Page KM, Gumerov VM, Dahimene S, Zhulin IB, Dolphin AC. The importance of cache domains in α 2δ proteins and the basis for their gabapentinoid selectivity. Channels (Austin) 2023; 17:2167563. [PMID: 36735378 PMCID: PMC9901441 DOI: 10.1080/19336950.2023.2167563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this hybrid review, we have first collected and reviewed available information on the structure and function of the enigmatic cache domains in α2δ proteins. These are organized into two double cache (dCache_1) domains, and they are present in all α2δ proteins. We have also included new data on the key function of these domains with respect to amino acid and gabapentinoid binding to the universal amino acid-binding pocket, which is present in α2δ-1 and α2δ-2. We have now identified the reason why α2δ-3 and α2δ-4 do not bind gabapentinoid drugs or amino acids with bulky side chains. In relation to this, we have determined that the bulky amino acids Tryptophan and Phenylalanine prevent gabapentin from inhibiting cell surface trafficking of α2δ-1. Together, these novel data shed further light on the importance of the cache domains in α2δ proteins.
Collapse
Affiliation(s)
- Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- CONTACT Annette C Dolphin Dolphin Department of Neuroscience, Physiology and Pharmacology, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
6
|
Danis A, Gallagher AA, Anderson AN, Isakharov A, Beeson KA, Schnell E. Altered hippocampal activation in seizure-prone CACNA2D2 knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565511. [PMID: 37986872 PMCID: PMC10659305 DOI: 10.1101/2023.11.08.565511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy in hippocampal tissue from wildtype (WT) and α2δ-2 knockout (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos expression within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 hour after handling-associated convulsions, KO mice had fewer c-fos-positive cells in the dentate gyrus, indicating that activity in the dentate gyrus actually decreased. However, the dentate was significantly more active in KO mice compared to WT after administration of a subthreshold pentylenetetrazole dose, consistent with increased susceptibility to proconvulsant stimuli. Other histopathological markers of temporal lobe epilepsy in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar in WT and KO mice, apart from a small but significant increase in hilar mossy cell density, opposite to what is typically found in mice with temporal lobe epilepsy. This suggests that the differences in seizure-associated hippocampal function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.
Collapse
Affiliation(s)
- Alyssa Danis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
| | - Ashlynn A. Gallagher
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
| | - Ashley N. Anderson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
| | - Arielle Isakharov
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239
| | - Kathleen A. Beeson
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239
- Research and Development Service, Portland VA Health Care System, Portland, OR, 97239, Portland, OR, 97239
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
7
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2023. [PMID: 37822150 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University and University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Lin S, Wang C, Li Z, Qiu X. Distinct H3K27me3 and H3K27ac Modifications in Neural Tube Defects Induced by Benzo[a]pyrene. Brain Sci 2023; 13:brainsci13020334. [PMID: 36831877 PMCID: PMC9954656 DOI: 10.3390/brainsci13020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The pathological mechanisms of neural tube defects (NTDs) are not yet fully understood. Although the dysregulation of histone modification in NTDs is recognized, it remains to be fully elucidated on a genome-wide level. We profiled genome-wide H3K27me3 and H3K27ac occupancy by CUT&Tag in neural tissues from ICR mouse embryos with benzo[a]pyrene (BaP)-induced NTDs (250 mg kg-1) at E9.5. Furthermore, we performed RNA sequencing (RNA-seq) to investigate the regulation of histone modifications on gene expressions. Gene ontology and KEGG analysis were conducted to predict pathways involved in the development of NTDs. Our analysis of histone 3 lysine 27 modification in BaP-NTD neural tissues compared to BaP-nonNTD revealed 6045 differentially trimethylated regions and 3104 acetylated regions throughout the genome, respectively. The functional analysis identified a number of pathways uniquely enriched for BaP-NTD embryos, including known neurodevelopment related pathways such as anterior/posterior pattern specification, ephrin receptor signaling pathway, neuron migration and neuron differentiation. RNA-seq identified 423 differentially expressed genes (DEGs) between BaP-NTD and BaP-nonNTD group. The combination analysis of CUT&Tag and RNA-seq found that 55 DEGs were modified by H3K27me3 and 25 by H3K27ac in BaP-NTD, respectively. In the transcriptional regulatory network, transcriptional factors including Srsf1, Ume6, Zbtb7b, and Cad were predicated to be involved in gene expression regulation. In conclusion, our results provide an overview of histone modifications during neural tube closure and demonstrate a key role of genome-wide alterations in H3K27me3 and H3K27ac in NTDs corresponding with changes in transcription profiles.
Collapse
Affiliation(s)
- Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengrui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiwen Li
- Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, National Health Commission of the China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Women’s Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| |
Collapse
|
10
|
Jin D, Chen H, Chen SR, Pan HL. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens. J Neurochem 2023; 164:143-157. [PMID: 36222452 PMCID: PMC9892208 DOI: 10.1111/jnc.15706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Glutamate NMDA receptors (NMDARs) in the nucleus accumbens (NAc) are critically involved in drug dependence and reward. α2δ-1 is a newly discovered NMDAR-interacting protein that promotes synaptic trafficking of NMDARs independently of its conventional role as a calcium channel subunit. However, it remains unclear how repeated opioid exposure affects synaptic NMDAR activity and α2δ-1-NMDAR interaction in the NAc. In this study, whole-cell patch-clamp recordings showed that repeated treatment with morphine in mice markedly increased the NMDAR-mediated frequency of miniature excitatory postsynaptic currents (mEPSCs) and amplitude of puff NMDAR currents in medium spiny neurons in the NAc core region. Morphine treatment significantly increased the physical interaction of α2δ-1 with GluN1 and their synaptic trafficking in the NAc. In Cacna2d1 knockout mice, repeated treatment with morphine failed to increase the frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Furthermore, inhibition of α2δ-1 with gabapentin or disruption of the α2δ-1-NMDAR interaction with the α2δ-1 C terminus-interfering peptide blocked the morphine-elevated frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Correspondingly, systemically administered gabapentin, Cacna2d1 ablation, or microinjection of the α2δ-1 C terminus-interfering peptide into the NAc core attenuated morphine-induced conditioned place preference and locomotor sensitization. Our study reveals that repeated opioid exposure strengthens presynaptic and postsynaptic NMDAR activity in the NAc via α2δ-1. The α2δ-1-bound NMDARs in the NAc have a key function in the rewarding effect of opioids and could be targeted for treating opioid use disorder and addiction.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
12
|
Kato J, Inoue T, Yokoyama M, Kuroha M. A review of a new voltage-gated Ca 2+ channel α 2δ ligand, mirogabalin, for the treatment of peripheral neuropathic pain. Expert Opin Pharmacother 2021; 22:2311-2322. [PMID: 34431423 DOI: 10.1080/14656566.2021.1958780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuropathic pain (NeP) is a chronic and refractory condition in many patients, and its treatment is a challenge for physicians. A new voltage-gated Ca2+ channel α2δ ligand, mirogabalin, has a high specific binding affinity for the α2δ subunit, with a slower dissociation rate for α2δ-1 than α2δ-2 compared to that of pregabalin. Mirogabalin was shown to be effective in NeP animal models, with a margin of safety between central nervous system side effects and the analgesic effect of the dose. It exerted a favorable analgesic effect, was well tolerated in patients with peripheral NeP (P-NeP), and was first approved in Japan in 2019 and subsequently in Korea and Taiwan in 2020. AREAS COVERED The purpose of this article is to review the pharmacological characteristics, pharmacokinetics, and efficacy and safety of mirogabalin for NeP based on the results of non-clinical and clinical studies. EXPERT OPINION Although there are several first-line therapies for NeP, insufficient efficacy and adverse drug reactions of NeP drugs often cause patient dissatisfaction. Mirogabalin was effective and well tolerated with a step-wise dose increase in clinical studies on P-NeP patients. Thus, mirogabalin is expected to be a useful treatment option for patients with P-NeP.
Collapse
Affiliation(s)
- Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Teruyoshi Inoue
- Medical Science Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Mizuka Yokoyama
- Medical Science Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Masanori Kuroha
- Clinical Development Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| |
Collapse
|
13
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
14
|
Young SM, Veeraraghavan P. Presynaptic voltage-gated calcium channels in the auditory brainstem. Mol Cell Neurosci 2021; 112:103609. [PMID: 33662542 DOI: 10.1016/j.mcn.2021.103609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
Sound information encoding within the initial synapses in the auditory brainstem requires reliable and precise synaptic transmission in response to rapid and large fluctuations in action potential (AP) firing rates. The magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (CaV) in the presynaptic terminal are key determinants in triggering AP-mediated release. In the mammalian central nervous system (CNS), the CaV2.1 subtype is the critical subtype for CNS function, since it is the most efficient CaV2 subtype in triggering AP-mediated synaptic vesicle (SV) release. Auditory brainstem synapses utilize CaV2.1 to sustain fast and repetitive SV release to encode sound information. Therefore, understanding the presynaptic mechanisms that control CaV2.1 localization, organization and biophysical properties are integral to understanding auditory processing. Here, we review our current knowledge about the control of presynaptic CaV2 abundance and organization in the auditory brainstem and impact on the regulation of auditory processing.
Collapse
Affiliation(s)
- Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
15
|
Geisler SM, Benedetti A, Schöpf CL, Schwarzer C, Stefanova N, Schwartz A, Obermair GJ. Phenotypic Characterization and Brain Structure Analysis of Calcium Channel Subunit α 2δ-2 Mutant (Ducky) and α 2δ Double Knockout Mice. Front Synaptic Neurosci 2021; 13:634412. [PMID: 33679366 PMCID: PMC7933509 DOI: 10.3389/fnsyn.2021.634412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Auxiliary α2δ subunits of voltage-gated calcium channels modulate channel trafficking, current properties, and synapse formation. Three of the four isoforms (α2δ-1, α2δ-2, and α2δ-3) are abundantly expressed in the brain; however, of the available knockout models, only α2δ-2 knockout or mutant mice display an obvious abnormal neurological phenotype. Thus, we hypothesize that the neuronal α2δ isoforms may have partially specific as well as redundant functions. To address this, we generated three distinct α2δ double knockout mouse models by crossbreeding single knockout (α2δ-1 and -3) or mutant (α2δ-2/ducky) mice. Here, we provide a first phenotypic description and brain structure analysis. We found that genotypic distribution of neonatal litters in distinct α2δ-1/-2, α2δ-1/-3, and α2δ-2/-3 breeding combinations did not conform to Mendel's law, suggesting premature lethality of single and double knockout mice. Notably, high occurrences of infant mortality correlated with the absence of specific α2δ isoforms (α2Δ-2 > α2δ-1 > α2δ-3), and was particularly observed in cages with behaviorally abnormal parenting animals of α2δ-2/-3 cross-breedings. Juvenile α2δ-1/-2 and α2δ-2/-3 double knockout mice displayed a waddling gate similar to ducky mice. However, in contrast to ducky and α2δ-1/-3 double knockout animals, α2δ-1/-2 and α2δ-2/-3 double knockout mice showed a more severe disease progression and highly impaired development. The observed phenotypes within the individual mouse lines may be linked to differences in the volume of specific brain regions. Reduced cortical volume in ducky mice, for example, was associated with a progressively decreased space between neurons, suggesting a reduction of total synaptic connections. Taken together, our findings show that α2δ subunits differentially regulate premature survival, postnatal growth, brain development, and behavior, suggesting specific neuronal functions in health and disease.
Collapse
Affiliation(s)
- Stefanie M. Geisler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ariane Benedetti
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens L. Schöpf
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Arnold Schwartz
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
16
|
Zajączkowska R, Mika J, Leppert W, Kocot-Kępska M, Malec-Milewska M, Wordliczek J. Mirogabalin-A Novel Selective Ligand for the α2δ Calcium Channel Subunit. Pharmaceuticals (Basel) 2021; 14:112. [PMID: 33572689 PMCID: PMC7911728 DOI: 10.3390/ph14020112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
The efficacy of neuropathic pain control remains unsatisfactory. Despite the availability of a variety of therapies, a significant proportion of patients suffer from poorly controlled pain of this kind. Consequently, new drugs and treatments are still being sought to remedy the situation. One such new drug is mirogabalin, a selective ligand for the α2δ subunits of voltage-gated calcium channels (VGCC) developed by Sankyo group for the management of neuropathic pain. In 2019 in Japan, mirogabalin was approved for peripheral neuropathic pain following the encouraging results of clinical trials conducted with diabetic peripheral neuropathic pain (DPNP) and postherpetic neuralgia (PHN) patients. The ligand selectivity of mirogabalin for α2δ-1 and α2δ-2 and its slower dissociation rate for α2δ-1 than for α2δ-2 subunits of VGCC may contribute to its strong analgesic effects, wide safety margin, and relatively lower incidence of adverse effects compared to pregabalin and gabapentin. This article discusses the mechanism of action of mirogabalin, presents data on its pharmacodynamics and pharmacokinetics, and reviews the available experimental and clinical studies that have assessed the efficacy and safety of the drug in the treatment of selected neuropathic pain syndromes.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland; (R.Z.); (J.W.)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Wojciech Leppert
- Laboratory of Quality of Life Research, Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Małgorzata Malec-Milewska
- Department of Anesthesiology and Intensive Care, Medical Center for Postgraduate Education, 01-813 Warsaw, Poland;
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland; (R.Z.); (J.W.)
| |
Collapse
|
17
|
Wang W, Frankel WN. Overlaps, gaps, and complexities of mouse models of Developmental and Epileptic Encephalopathy. Neurobiol Dis 2021; 148:105220. [PMID: 33301879 PMCID: PMC8547712 DOI: 10.1016/j.nbd.2020.105220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022] Open
Abstract
Mouse models have made innumerable contributions to understanding the genetic basis of neurological disease and pathogenic mechanisms and to therapy development. Here we consider the current state of mouse genetic models of Developmental and Epileptic Encephalopathy (DEE), representing a set of rare but devastating and largely intractable childhood epilepsies. By examining the range of mouse lines available in this rapidly moving field and by detailing both expected and unusual features in representative examples, we highlight lessons learned in an effort to maximize the full potential of this powerful resource for preclinical studies.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| | - Wayne N Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| |
Collapse
|
18
|
Demontis GC, Pezzini F, Margari E, Bianchi M, Longoni B, Doccini S, Lalowski MM, Santorelli FM, Simonati A. Electrophysiological Profile Remodeling via Selective Suppression of Voltage-Gated Currents by CLN1/PPT1 Overexpression in Human Neuronal-Like Cells. Front Cell Neurosci 2020; 14:569598. [PMID: 33390903 PMCID: PMC7772423 DOI: 10.3389/fncel.2020.569598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.
Collapse
Affiliation(s)
| | - Francesco Pezzini
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Elisa Margari
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Marzia Bianchi
- Research Unit for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Hospital Istituto di Ricerca e Cura a Carattere Scientifico, Rome, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Stella Maris Foundation, Pisa, Italy
| | - Maciej Maurycy Lalowski
- Medicum, Biochemistry/Developmental Biology and HiLIFE-Helsinki Institute of Life Science, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricerca e Cura a Carattere Scientifico Stella Maris Foundation, Pisa, Italy
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Sun T, Huang GY, Wang ZH, Teng SH, Cao YH, Sun JL, Hanif Q, Chen NB, Lei CZ, Liao YY. Selection signatures of Fuzhong Buffalo based on whole-genome sequences. BMC Genomics 2020; 21:674. [PMID: 32993537 PMCID: PMC7526191 DOI: 10.1186/s12864-020-07095-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.
Collapse
Affiliation(s)
- Ting Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guang-Yun Huang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Zi-Hao Wang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Shao-Hua Teng
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Yan-Hong Cao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Jun-Li Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ning-Bo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yu-Ying Liao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.
| |
Collapse
|
20
|
Different functions of two putative Drosophila α 2δ subunits in the same identified motoneurons. Sci Rep 2020; 10:13670. [PMID: 32792569 PMCID: PMC7426832 DOI: 10.1038/s41598-020-69748-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Voltage gated calcium channels (VGCCs) regulate neuronal excitability and translate activity into calcium dependent signaling. The α1 subunit of high voltage activated (HVA) VGCCs associates with α2δ accessory subunits, which may affect calcium channel biophysical properties, cell surface expression, localization and transport and are thus important players in calcium-dependent signaling. In vertebrates, the functions of the different combinations of the four α2δ and the seven HVA α1 subunits are incompletely understood, in particular with respect to partially redundant or separate functions in neurons. This study capitalizes on the relatively simpler situation in the Drosophila genetic model containing two neuronal putative α2δ subunits, straightjacket and CG4587, and one Cav1 and Cav2 homolog each, both with well-described functions in different compartments of identified motoneurons. Straightjacket is required for normal Cav1 and Cav2 current amplitudes and correct Cav2 channel function in all neuronal compartments. By contrast, CG4587 does not affect Cav1 or Cav2 current amplitudes or presynaptic function, but is required for correct Cav2 channel allocation to the axonal versus the dendritic domain. We suggest that the two different putative α2δ subunits are required in the same neurons to regulate different functions of VGCCs.
Collapse
|
21
|
Kiroski I, Jiang Y, Gavrilovici C, Gao F, Lee S, Scantlebury MH, Vandal M, Park SK, Tsai LH, Teskey GC, Rho JM, Nguyen MD. Reelin Improves Cognition and Extends the Lifespan of Mutant Ndel1 Mice with Postnatal CA1 Hippocampus Deterioration. Cereb Cortex 2020; 30:4964-4978. [PMID: 32328622 DOI: 10.1093/cercor/bhaa088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 01/01/2023] Open
Abstract
The glycoprotein Reelin maintains neuronal positioning and regulates neuronal plasticity in the adult brain. Reelin deficiency has been associated with neurological diseases. We recently showed that Reelin is depleted in mice with a targeted disruption of the Ndel1 gene in forebrain postnatal excitatory neurons (Ndel1 conditional knockout (CKO)). Ndel1 CKO mice exhibit fragmented microtubules in CA1 pyramidal neurons, profound deterioration of the CA1 hippocampus and a shortened lifespan (~10 weeks). Here we report that Ndel1 CKO mice (of both sexes) experience spatial learning and memory deficits that are associated with deregulation of neuronal cell adhesion, plasticity and neurotransmission genes, as assessed by genome-wide transcriptome analysis of the hippocampus. Importantly, a single injection of Reelin protein in the hippocampus of Ndel1 CKO mice improves spatial learning and memory function and this is correlated with reduced intrinsic hyperexcitability of CA1 pyramidal neurons, and normalized gene deregulation in the hippocampus. Strikingly, when treated with Reelin, Ndel1 CKO animals that die from an epileptic phenotype, live twice as long as nontreated, or vehicle-treated CKO animals. Thus, Reelin confers striking beneficial effects in the CA1 hippocampus, and at both behavioral and organismal levels.
Collapse
Affiliation(s)
- Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, 3020 Children's Way, MC 5009, San Diego, California 92123, USA
| | - Fan Gao
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, Boston, USA
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Morris H Scantlebury
- Departments of Pediatrics and Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Milene Vandal
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, Boston, USA
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, 3020 Children's Way, MC 5009, San Diego, California 92123, USA
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
22
|
α2δ-2 Protein Controls Structure and Function at the Cerebellar Climbing Fiber Synapse. J Neurosci 2020; 40:2403-2415. [PMID: 32086258 DOI: 10.1523/jneurosci.1514-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
α2δ proteins (Cacna2d1-4) are auxiliary subunits of voltage-dependent calcium channels that also drive synapse formation and maturation. Because cerebellar Purkinje cells (PCs) predominantly, if not exclusively, express one isoform of this family, α2δ-2 (Cacna2d2), we used PCs as a model system to examine roles of α2δ in excitatory synaptic function in male and female Cacna2d2 knock-out (KO) mice. Whole-cell recordings of PCs from acute cerebellar slices revealed altered climbing fiber (CF)-evoked complex spike generation, as well as increased amplitude and faster decay of CF-evoked EPSCs. CF terminals in the KO were localized more proximally on PC dendrites, as indicated by VGLUT2+ immunoreactive puncta, and computational modeling demonstrated that the increased EPSC amplitude can be partly attributed to the more proximal location of CF terminals. In addition, CFs in KO mice exhibited increased multivesicular transmission, corresponding to greater sustained responses during repetitive stimulation, despite a reduction in the measured probability of release. Electron microscopy demonstrated that mutant CF terminals had twice as many vesicle release sites, providing a morphologic explanation for the enhanced glutamate release. Though KO CFs evoked larger amplitude EPSCs, the charge transfer was the same as wild-type as a result of increased glutamate reuptake, producing faster decay kinetics. Together, the larger, faster EPSCs in the KO explain the altered complex spike responses, which degrade information transfer from PCs and likely contribute to ataxia in Cacna2d2 KO mice. Our results also illustrate the multidimensional synaptic roles of α2δ proteins.SIGNIFICANCE STATEMENT α2δ proteins (Cacna2d1-4) regulate synaptic transmission and synaptogenesis, but coexpression of multiple α2δ isoforms has obscured a clear understanding of how various α2δ proteins control synaptic function. We focused on roles of the α2δ-2 protein (Cacna2d2), the deletion of which causes cerebellar ataxia and epilepsy in mice and humans. Because cerebellar Purkinje cells (PCs) only express this single isoform, we studied excitatory climbing fiber synaptic function onto PCs in Cacna2d2 KO mice. Using optical and electrophysiological analysis, we provide a detailed description of the changes in PCs lacking α2δ-2, and provide a comprehensive mechanistic explanation for how functional synaptic phenotypes contribute to the altered cerebellar output.
Collapse
|
23
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
24
|
Punetha J, Karaca E, Gezdirici A, Lamont RE, Pehlivan D, Marafi D, Appendino JP, Hunter JV, Akdemir ZC, Fatih JM, Jhangiani SN, Gibbs RA, Innes AM, Posey JE, Lupski JR. Biallelic CACNA2D2 variants in epileptic encephalopathy and cerebellar atrophy. Ann Clin Transl Neurol 2019; 6:1395-1406. [PMID: 31402629 PMCID: PMC6689679 DOI: 10.1002/acn3.50824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To characterize the molecular and clinical phenotypic basis of developmental and epileptic encephalopathies caused by rare biallelic variants in CACNA2D2. METHODS Two affected individuals from a family with clinical features of early onset epileptic encephalopathy were recruited for exome sequencing at the Centers for Mendelian Genomics to identify their molecular diagnosis. GeneMatcher facilitated identification of a second family with a shared candidate disease gene identified through clinical gene panel-based testing. RESULTS Rare biallelic CACNA2D2 variants have been previously reported in three families with developmental and epileptic encephalopathy, and one family with congenital ataxia. We identified three individuals in two unrelated families with novel homozygous rare variants in CACNA2D2 with clinical features of developmental and epileptic encephalopathy and cerebellar atrophy. Family 1 includes two affected siblings with a likely damaging homozygous rare missense variant c.1778G>C; p.(Arg593Pro) in CACNA2D2. Family 2 includes a proband with a homozygous rare nonsense variant c.485_486del; p.(Tyr162Ter) in CACNA2D2. We compared clinical and molecular findings from all nine individuals reported to date and note that cerebellar atrophy is shared among all. INTERPRETATION Our study supports the candidacy of CACNA2D2 as a disease gene associated with a phenotypic spectrum of neurological disease that include features of developmental and epileptic encephalopathy, ataxia, and cerebellar atrophy. Age at presentation may affect apparent penetrance of neurogenetic trait manifestations and of a particular clinical neurological endophenotype, for example, seizures or ataxia.
Collapse
Affiliation(s)
- Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Ryan E Lamont
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Juan P Appendino
- Clinical Neuroscience, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jill V Hunter
- Department of Radiology, Texas Children's Hospital, Houston, Texas
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
25
|
Geisler S, Schöpf CL, Stanika R, Kalb M, Campiglio M, Repetto D, Traxler L, Missler M, Obermair GJ. Presynaptic α 2δ-2 Calcium Channel Subunits Regulate Postsynaptic GABA A Receptor Abundance and Axonal Wiring. J Neurosci 2019; 39:2581-2605. [PMID: 30683685 PMCID: PMC6445987 DOI: 10.1523/jneurosci.2234-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/26/2023] Open
Abstract
Presynaptic α2δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α2δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α2δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABAARs. Strikingly, presynaptic α2δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABAARs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α2δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α2δ-2 can modulate postsynaptic GABAAR abundance. Finally, exclusion of the alternatively spliced exon 23 of α2δ-2 is essential for the trans-synaptic mechanism. The novel function of α2δ-2 identified here may explain how abnormal α2δ subunit expression can cause excitatory-inhibitory imbalance often associated with neuropsychiatric disorders.SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α2δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α2δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α2δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.
Collapse
Affiliation(s)
- Stefanie Geisler
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Clemens L Schöpf
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Ruslan Stanika
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Marcus Kalb
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Marta Campiglio
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Larissa Traxler
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| |
Collapse
|
26
|
|
27
|
Abstract
Voltage-gated calcium (CaV) channels are associated with β and α2δ auxiliary subunits. This review will concentrate on the function of the α2δ protein family, which has four members. The canonical role for α2δ subunits is to convey a variety of properties on the CaV1 and CaV2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for α2δ proteins has been proposed, some of which involve competition with calcium channels for α2δ or increase α2δ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for α2δ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
28
|
Epileptic Encephalopathy and Cerebellar Atrophy Resulting from Compound Heterozygous CACNA2D2 Variants. Case Rep Genet 2018; 2018:6308283. [PMID: 30410802 PMCID: PMC6205307 DOI: 10.1155/2018/6308283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
CACNA2D2 encodes an auxiliary subunit of the voltage-dependent calcium channel. To date, there have only been two reports of individuals with early-infantile epileptic encephalopathy due to CACNA2D2 mutations. In both reports, patients were homozygous for the identified variants. Here, we report a patient with epileptic encephalopathy and cerebellar atrophy who was found to have two novel variants in the CACNA2D2 gene: c.782C>T (p.Pro261Leu) and c.3137T>C (p.Leu1046Pro), by whole-exome sequencing. The variants were shown to be inherited in trans and the unaffected parents were confirmed to be heterozygous carriers. This is the third report of recessive CACNA2D2 variants associated with disease and the first report of compound heterozygous variants. The clinical description of this new case highlights the phenotypic similarities amongst individuals with CACNA2D2-related disease and suggests that CACNA2D2 should be considered as a differential diagnosis in individuals with cerebellar dysfunction and multiple seizure types that begin in the first year of life.
Collapse
|
29
|
Gong N, Park J, Luo ZD. Injury-induced maladaptation and dysregulation of calcium channel α 2 δ subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol 2018; 175:2231-2243. [PMID: 28646556 PMCID: PMC5980513 DOI: 10.1111/bph.13930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) play important roles in physiological functions including the modulation of neurotransmitter release, neuronal network activities, intracellular signalling pathways and gene expression. Some pathological conditions, including nerve injuries, can cause the dysregulation of VGCCs and their subunits. This in turn can lead to a functional maladaptation of VGCCs and their subunits, which can contribute to the development of disorders such as pain sensations. This review has summarized recent findings related to maladaptive changes in the dysregulated VGCC α2 δ1 subunit (Cav α2 δ1 ) with a focus on exploring the mechanisms underlying the contribution of Cav α2 δ1 to pain signal transduction. At least under neuropathic pain conditions, the dysregulated Cav α2 δ1 can modulate VGCC functions as well as other plasticity changes. The latter includes abnormal excitatory synaptogenesis resulting from its interactions with injury-induced extracellular matrix glycoprotein molecule thrombospondins, which is independent of the VGCC functions. Blocking Cav α2 δ1 with gabapentinoids can reverse neuropathic pain significantly with relatively mild side effects, but only in a small population of neuropathic pain patients due to reasons yet to be explored. There are emerging data suggesting that early preventive treatment with gabapentinoids can prevent aberrant excitatory synapse formation and the development of chronic pain. If these findings are confirmed clinically, this could be an attractive approach for neuropathic pain management. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Nian Gong
- Department of Anesthesiology & Perioperative CareSchool of Medicine, University of California IrvineIrvineCAUSA
| | - John Park
- Department of Pharmacology, School of MedicineUniversity of California IrvineIrvineCAUSA
| | - Z David Luo
- Department of Anesthesiology & Perioperative CareSchool of Medicine, University of California IrvineIrvineCAUSA
- Department of Pharmacology, School of MedicineUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
30
|
Sabour D, Machado RSR, Pinto JP, Rohani S, Sahito RGA, Hescheler J, Futschik ME, Sachinidis A. Parallel Genome-wide Profiling of Coding and Non-coding RNAs to Identify Novel Regulatory Elements in Embryonic and Maturated Heart. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:158-173. [PMID: 30195755 PMCID: PMC6023836 DOI: 10.1016/j.omtn.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022]
Abstract
Heart development is a complex process, tightly regulated by numerous molecular mechanisms. Key components of the regulatory network underlying heart development are transcription factors (TFs) and microRNAs (miRNAs), yet limited investigation of the role of miRNAs in heart development has taken place. Here, we report the first parallel genome-wide profiling of polyadenylated RNAs and miRNAs in a developing murine heart. These data enable us to identify dynamic activation or repression of numerous biological processes and signaling pathways. More than 200 miRNAs and 25 long non-coding RNAs were differentially expressed during embryonic heart development compared to the mature heart; most of these had not been previously associated with cardiogenesis. Integrative analysis of expression data and potential regulatory interactions suggested 28 miRNAs as novel regulators of embryonic heart development, representing a considerable expansion of the current repertoire of known cardiac miRNAs. To facilitate follow-up investigations, we constructed HeartMiR (http://heartmir.sysbiolab.eu), an open access database and interactive visualization tool for the study of gene regulation by miRNAs during heart development.
Collapse
Affiliation(s)
- Davood Sabour
- University of Cologne (UKK), Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany; Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 47134 Babol, Iran
| | - Rui S R Machado
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Center for Biomedical Research (CBMR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P Pinto
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Center for Biomedical Research (CBMR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Susan Rohani
- University of Cologne (UKK), Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Raja G A Sahito
- University of Cologne (UKK), Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Jürgen Hescheler
- University of Cologne (UKK), Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Center for Biomedical Research (CBMR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal; School of Biomedical Sciences, Faculty of Medicine and Dentistry, Institute of Translational and Stratified Medicine (ITSMED), University of Plymouth, Plymouth PL6 8BU, UK.
| | - Agapios Sachinidis
- University of Cologne (UKK), Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany.
| |
Collapse
|
31
|
Celli R, Santolini I, Guiducci M, van Luijtelaar G, Parisi P, Striano P, Gradini R, Battaglia G, Ngomba RT, Nicoletti F. The α2δ Subunit and Absence Epilepsy: Beyond Calcium Channels? Curr Neuropharmacol 2018; 15:918-925. [PMID: 28290248 PMCID: PMC5652034 DOI: 10.2174/1570159x15666170309105451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background: Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the pathological oscillatory activity of this network, and some of the first-line drugs used in the treatment of absence epilepsy inhibit T-type calcium channels. The α2δ subunit is a component of high voltage-activated VSCCs (i.e., L-, N-, P/Q-, and R channels) and studies carried out in heterologous expression systems suggest that it may also associate with T channels. The α2δ subunit is also targeted by thrombospondins, which regulate synaptogenesis in the central nervous system. Objective: To discuss the potential role for the thrombospondin/α2δ axis in the pathophysiology of absence epilepsy. Methods: We searched PubMed articles for the terms “absence epilepsy”, “T-type voltage-sensitive calcium channels”, “α2δ subunit”, “ducky mice”, “pregabalin”, “gabapentin”, “thrombospondins”, and included papers focusing this Review's scope. Results: We moved from the evidence that mice lacking the α2δ-2 subunit show absence seizures and α2δ ligands (gabapentin and pregabalin) are detrimental in the treatment of absence epilepsy. This suggests that α2δ may be protective against absence epilepsy via a mechanism that does not involve T channels. We discuss the interaction between thrombospondins and α2δ and its potential relevance in the regulation of excitatory synaptic formation in the cortico-thalamo-cortical network. Conclusion: We speculate on the possibility that the thrombospondin/α2δ axis is critical for the correct functioning of the cortico-thalamo-cortical network, and that abnormalities in this axis may play a role in the pathophysiology of absence epilepsy.
Collapse
Affiliation(s)
- Roberta Celli
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | - Ines Santolini
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | - Michela Guiducci
- Departments of Neurosciences, Mental Health and Sensory Organs, Experimental Medicine, and Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen. Netherlands
| | - Pasquale Parisi
- Departments of Neurosciences, Mental Health and Sensory Organs, Experimental Medicine, and Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | - Roberto Gradini
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | | | - Richard T Ngomba
- University of Lincoln, School of Pharmacy, Lincoln, United Kingdom
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
32
|
Domon Y, Arakawa N, Inoue T, Matsuda F, Takahashi M, Yamamura N, Kai K, Kitano Y. Binding Characteristics and Analgesic Effects of Mirogabalin, a Novel Ligand for the α2δ Subunit of Voltage-Gated Calcium Channels. J Pharmacol Exp Ther 2018; 365:573-582. [DOI: 10.1124/jpet.117.247551] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
|
33
|
Dubey M, Brouwers E, Hamilton EM, Stiedl O, Bugiani M, Koch H, Kole MH, Boschert U, Wykes RC, Mansvelder HD, van der Knaap MS, Min R. Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts. Ann Neurol 2018; 83:636-649. [PMID: 29466841 PMCID: PMC5900999 DOI: 10.1002/ana.25190] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/12/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Present address:
Current address for Mohit Dubey: Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eelke Brouwers
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Eline M.C. Hamilton
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of PathologyVU University Medical CenterAmsterdamThe Netherlands
| | - Henner Koch
- Department of NeurologyUniversity of Tübingen, Hertie Institute for Clinical Brain ResearchTübingenGermany
| | - Maarten H.P. Kole
- Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
- Cell Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology, EMD Serono Research & Development InstituteBillericaMA
| | - Robert C. Wykes
- Department of Clinical & Experimental Epilepsy, UCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| |
Collapse
|
34
|
Ruan X, Chen T, Wang X, Li Y. Suxiao Jiuxin Pill protects cardiomyocytes against mitochondrial injury and alters gene expression during ischemic injury. Exp Ther Med 2017; 14:3523-3532. [PMID: 29042943 PMCID: PMC5639384 DOI: 10.3892/etm.2017.4964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Suxiao Jiuxin Pill (SX), a traditional Chinese medicine compound consisting primarily of tetramethylpyrazine and borneol, has been reported to protect against ischemic heart disease. However, the effects of SX on mitochondrial injury and gene expression in various signaling pathways are unclear. The aim of the present study was to investigate the effects of SX on mitochondrial injury and to screen the expression of genes potentially altered by SX using a cell culture model of ischemic injury. Simulated ischemia was established by culturing HL-1 cardiomyocytes in Dulbecco's modified Eagle medium without glucose or serum in a hypoxic chamber containing 95% N2 and 5% CO2 for 24 h. HL-1 cardiomyocytes were divided into 3 groups: Control, ischemic injury and ischemic injury + SX (100 µg/ml; n=3 wells/group). Mitochondrial membrane potential was detected by staining with JC-1 dye. The mRNA expression levels of adenylyl cyclase (Adcy) 1–9, adrenoceptor β1, Akt1, ATPase Na+/K+ transporting subunit β2, calcium voltage-gated channel auxiliary subunit α2δ (Cacna2d)2, Cacna2d3, calcium channel voltage-dependent γ subunit 8, cytochrome C oxidase subunit 6A2 (Cox6a2), fibroblast growth factor receptor (Fgfr) 4, Fgf8, Fgf12, Gnas complex locus, glycogen synthase kinase 3β (Gsk3b), mitogen-activated protein kinase (Mapk)11-14, Mapk kinase kinase kinase 1 (Map4k1), Mas1, nitric oxide synthase 3 (Nos3), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (Pik3ca), phospholipase A2 group 4A, rap guanine nucleotide exchange factor 4 and ryanodine receptor 2 were detected using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of phosphoinositide 3-kinase (PI3K), MAS-1 and phosphorylated-endothelial NOS were also examined by immunofluorescence staining. The decrease in mitochondrial membrane potential in the cell culture model of ischemic injury (P<0.001) was significantly attenuated by SX treatment (P<0.001). Furthermore, increases in the mRNA expression levels of Adcy2 (P<0.05), 3 (P<0.01) and 8 (P<0.05) in the ischemic injury model were significantly attenuated by SX treatment (P<0.01), and SX treatment significantly decreased the mRNA expression levels of Adcy1 (P<0.01) and 6 (P<0.05) in ischemic cells. Decreases in the mRNA expression levels of Cox6a2 (P<0.001), Gsk3b (P<0.01) and Pik3ca (P<0.001) in the ischemic injury model were also significantly attenuated by SX treatment (P<0.05, P<0.01 and P<0.001, respectively). In addition, the decrease in the protein expression of PI3K (P<0.001) was significantly attenuated by SX treatment (P<0.001). The present findings indicate that SX may protect cardiomyocytes against mitochondrial injury and attenuate alterations in the gene expression of Adcy2, 3 and 8, Cox6a2, Gsk3b and Pik3ca during ischemic injury.
Collapse
Affiliation(s)
- Xiaofen Ruan
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tiejun Chen
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaolong Wang
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiping Li
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
35
|
α2δ2 Controls the Function and Trans-Synaptic Coupling of Cav1.3 Channels in Mouse Inner Hair Cells and Is Essential for Normal Hearing. J Neurosci 2017; 36:11024-11036. [PMID: 27798183 DOI: 10.1523/jneurosci.3468-14.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/03/2016] [Indexed: 11/21/2022] Open
Abstract
The auxiliary subunit α2δ2 modulates the abundance and function of voltage-gated calcium channels. Here we show that α2δ2 mRNA is expressed in neonatal and mature hair cells. A functional α2δ2-null mouse, the ducky mouse (du), showed elevated auditory brainstem response click and frequency-dependent hearing thresholds. Otoacoustic emissions were not impaired pointing to normal outer hair cell function. Peak Ca2+ and Ba2+ currents of mature du/du inner hair cells (IHCs) were reduced by 30-40%, respectively, and gating properties, such as the voltage of half-maximum activation and voltage sensitivity, were altered, indicating that Cav1.3 channels normally coassemble with α2δ2 at IHC presynapses. The reduction of depolarization-evoked exocytosis in du/du IHCs reflected their reduced Ca2+ currents. Ca2+- and voltage-dependent K+ (BK) currents and the expression of the pore-forming BKα protein were normal. Cav1.3 and Cavβ2 protein expression was unchanged in du/du IHCs, forming clusters at presynaptic ribbons. However, the close apposition of presynaptic Cav1.3 clusters with postsynaptic glutamate receptor GluA4 and PSD-95 clusters was significantly impaired in du/du mice. This implies that, in addition to controlling the expression and gating properties of Cav1.3 channels, the largely extracellularly localized α2δ2 subunit moreover plays a so far unknown role in mediating trans-synaptic alignment of presynaptic Ca2+ channels and postsynaptic AMPA receptors. SIGNIFICANCE STATEMENT Inner hair cells possess calcium channels that are essential for transmitting sound information into synaptic transmitter release. Voltage-gated calcium channels can coassemble with auxiliary subunit α2δ isoforms 1-4. We found that hair cells of the mouse express the auxiliary subunit α2δ2, which is needed for normal hearing thresholds. Using a mouse model with a mutant, nonfunctional α2δ2 protein, we showed that the α2δ2 protein is necessary for normal calcium currents and exocytosis in inner hair cells. Unexpectedly, the α2δ2 protein is moreover required for the optimal spatial alignment of presynaptic calcium channels and postsynaptic glutamate receptor proteins across the synaptic cleft. This suggests that α2δ2 plays a novel role in organizing the synapse.
Collapse
|
36
|
Volland C, Bremer S, Hellenkamp K, Hartmann N, Dybkova N, Khadjeh S, Kutschenko A, Liebetanz D, Wagner S, Unsöld B, Didié M, Toischer K, Sossalla S, Hasenfuß G, Seidler T. Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival. Sci Rep 2016; 6:33853. [PMID: 27667030 PMCID: PMC5036039 DOI: 10.1038/srep33853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/05/2016] [Indexed: 11/21/2022] Open
Abstract
TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity.
Collapse
Affiliation(s)
- Cornelia Volland
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Sebastian Bremer
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Kristian Hellenkamp
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Nico Hartmann
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Nataliya Dybkova
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Sara Khadjeh
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Anna Kutschenko
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Bernhard Unsöld
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Michael Didié
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
- Institute of Pharmacology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Samuel Sossalla
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
37
|
Barbe MF, Krueger JJ, Loomis R, Otte J, Gordon J. Memory deficits, gait ataxia and neuronal loss in the hippocampus and cerebellum in mice that are heterozygous for Pur-alpha. Neuroscience 2016; 337:177-190. [PMID: 27651147 DOI: 10.1016/j.neuroscience.2016.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 01/21/2023]
Abstract
Pur-alpha is a highly conserved sequence-specific DNA and RNA binding protein with established roles in DNA replication, RNA translation, cell cycle regulation, and maintenance of neuronal differentiation. Prior studies have shown that mice lacking Pur-alpha (-/-) display decreased neurogenesis and impaired neuronal differentiation. We sought to examine for the first time, the behavioral phenotype and brain histopathology of mice that are heterozygous (+/-) for Pur-alpha. Standardized behavioral phenotyping revealed a decreased escape response to touch, limb and abdominal hypotonia, and gait abnormalities in heterozygous Pur-alpha (+/-) mice, compared to wild-type (+/+) littermates. Footprint pattern analyses showed wider-based steps, increased missteps and more outwardly rotated hindpaws in heterozygous Pur-alpha (+/-) mice, suggestive of cerebellar pathology. The Barnes maze and novel object location testing revealed significant memory deficits in heterozygous Pur-alpha mice, suggestive of hippocampal pathology. Quantitative immunohistochemical assays of the vermal region of the cerebellum and CA1-3 regions of the hippocampus revealed reduced numbers of neurons in general, as well as reduced numbers of Pur-alpha+-immunopositive neurons and dendrites in heterozygous Pur-alpha mice, compared to wild-type littermates. Past studies have implicated mutations in Pur-alpha in several diseases of brain development and neurodegeneration. When combined with these new findings, the Pur-alpha heterozygous knockout mice may provide an animal model to study mechanisms of and treatments for Pur-alpha-related cognitive deficiencies and neuropathology.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA; Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Jessica J Krueger
- Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Regina Loomis
- Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jessica Otte
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA; Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jennifer Gordon
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA; Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Cao Y, Li R, Li Y, Zhang T, Wu N, Zhang J, Guo Z. Identification of Transcription Factor-Gene Regulatory Network in Acute Myocardial Infarction. Heart Lung Circ 2016; 26:343-353. [PMID: 27746059 DOI: 10.1016/j.hlc.2016.06.1209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a common disease with serious mortality and morbidity, worldwide. The present study aimed to identify differentially expressed genes (DEGs) and construct a transcription factor-gene regulatory network to further study the early diagnosis of AMI. METHODS The integrated analysis of publicly available Gene Expression Omnibus datasets of AMI was performed. Differentially expressed genes were identified between AMI and normal blood samples. Gene Ontology enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the transcription factor-gene regulatory network were used to obtain insights into the functions of DEGs. Quantitative real-time polymerase chain reactions (qRT-PCR) were performed to validate the expression level of DEGs. RESULTS A total of 2,502 DEGs, including 917 up-regulated genes and 1,585 down-regulated genes, were identified between AMI and normal blood samples by integrating four expression profiles of AMI. Differentially expressed genes were significantly enriched in pathways including complement and coagulation cascades, Staphylococcus aureus infection, and cell adhesion molecules. Transcription factors were screened and performed to construct the regulatory network. The transcription factor-gene regulatory network consisted of 871 interactions between 80 transcription factors and 716 DEGs. ETS homologous factor (EHF) was one of transcription factors that had high connectivity with DEGs and regulated CACNB4 in the network. Verification by qRT-PCR revealed that EHF, KRT6A and DSG3 were significantly up-regulated, while CACNG4 was significantly down-regulated in AMI. Furthermore, CACNG6, CACNB4 and CLDN18 had a tendency to be down-regulated, and CALML3 had a tendency to be up-regulated in AMI. CONCLUSIONS The identification of important differentially expressed transcription factors and genes in the development of AMI would be the groundwork for the early diagnosis and early intervention of AMI.
Collapse
Affiliation(s)
- Yuejuan Cao
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| | - Rongqing Li
- Department of Cardiac Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yangchun Li
- Department of Vascular surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tao Zhang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Nan Wu
- Department of Cardiac Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jianyan Zhang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhaozeng Guo
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
39
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
40
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 745] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
41
|
Mendus D, Rankin-Gee EK, Mustapha M, Porter BE. Increased sensitivity to kindling in mice lacking TSP1. Neuroscience 2015; 305:302-8. [PMID: 26241338 PMCID: PMC6699182 DOI: 10.1016/j.neuroscience.2015.07.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The development of a hyperexcitable neuronal network is thought to be a critical event in epilepsy. Thrombospondins (TSPs) regulate synaptogenesis by binding the neuronal α2δ subunit of the voltage-gated calcium channel. TSPs regulate synapse formation during development and in the mature brain following injury. It is unclear if TSPs are involved in hyperexcitability that contributes to the development of epilepsy. Here we explore the development of epilepsy using a pentylenetetrazole (PTZ) kindling model in mice lacking TSP1 and TSP2. Unexpectedly, we found increased sensitivity to PTZ kindling in mice lacking TSP1, while mice lacking TSP2 kindled similar to wild-type. We found that the increased seizure susceptibility in the TSP1 knockout (KO) mice was not due to a compensatory increase in TSP2 mRNA as TSP1/2 KO mice were sensitive to PTZ, similar to the TSP1 KO mice. Furthermore, there were similar levels of TGF-B signal activation during kindling in the TSP1 KO mice compared to wild-type. We observed decreased expression of voltage-dependent calcium channel subunit CACNA2D1 mRNA in TSP1, TSP2, and TSP1/2 KO mice. Decreased CACNA2D2 mRNA was only detected in mice that lacked TSP1 and α2δ-1/2 protein levels in the cortex were lower in the TSP 1/2 KO mice. CACNA2D2 knockout mice have spontaneous seizures and increased PTZ seizure susceptibility. Here we report similar findings, TSP1, and TSP1/2 KO mice have low levels of CACNA2D2 mRNA expression and α2δ-1/2 receptor level in the cortex, and are more susceptible to seizures. CACNA2D2 mutations in mice and humans can cause epilepsy. Our data suggest TSP1 in particular may control CACNA2D2 levels and could be a modifier of seizure susceptibility.
Collapse
Affiliation(s)
- D Mendus
- The Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305, USA; The Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - E K Rankin-Gee
- The Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - M Mustapha
- The Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - B E Porter
- The Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Gil YS, Kim JH, Kim CH, Han JI, Zuo Z, Baik HJ. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes. Eur J Pharmacol 2015; 762:112-7. [DOI: 10.1016/j.ejphar.2015.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/17/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
43
|
Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicol Lett 2015; 237:112-20. [DOI: 10.1016/j.toxlet.2015.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
|
44
|
Wu C, Wang J, Peng J, Patel N, Huang Y, Gao X, Aljarallah S, Eubanks JH, McDonald R, Zhang L. Modeling early-onset post-ischemic seizures in aging mice. Exp Neurol 2015; 271:1-12. [PMID: 25943585 PMCID: PMC4758832 DOI: 10.1016/j.expneurol.2015.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/26/2022]
Abstract
Stroke is the leading cause of seizures and epilepsy in the aged population, with post-stroke seizures being a poor prognostic factor. The pathological processes underlying post-stroke seizures are not well understood and studies of these seizures in aging/aged animals remain scarce. Therefore, our primary objective was to model post-stroke seizures in aging mice (C57 black strain, 16-20 months-old), with a focus on early-onset, convulsive seizures that occur within 24-hours of brain ischemia. We utilized a middle cerebral artery occlusion model and examined seizure activity and brain injury using combined behavioral and electroencephalographic monitoring and histological assessments. Aging mice exhibited vigorous convulsive seizures within hours of the middle cerebral artery occlusion. These seizures manifested with jumping, rapid running, barrel-rolling and/or falling all in the absence of hippocampal-cortical electrographic discharges. Seizure development was closely associated with severe brain injury and acute mortality. Anticonvulsive treatments after seizure occurrence offered temporary seizure control but failed to improve animal survival. A separate cohort of adult mice (6-8 months-old) exhibited analogous early-onset convulsive seizures following the middle cerebral artery occlusion but had better survival outcomes following anticonvulsive treatment. Collectively, our data suggest that early-onset convulsive seizures are a result of severe brain ischemia in aging animals.
Collapse
Affiliation(s)
- Chiping Wu
- Toronto Western Research Institute, University Health Network, Canada
| | - Justin Wang
- Toronto Western Research Institute, University Health Network, Canada
| | - Jessie Peng
- Toronto Western Research Institute, University Health Network, Canada
| | - Nisarg Patel
- Toronto Western Research Institute, University Health Network, Canada
| | - Yayi Huang
- Toronto Western Research Institute, University Health Network, Canada
| | - Xiaoxing Gao
- Toronto Western Research Institute, University Health Network, Canada
| | - Salman Aljarallah
- Toronto Western Research Institute, University Health Network, Canada; Neurology Unit, Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - James H Eubanks
- Toronto Western Research Institute, University Health Network, Canada; Department of Surgery (Neurosurgery), University of Toronto, Canada
| | - Robert McDonald
- Department of Neuroscience, University of Lethbridge, Canada
| | - Liang Zhang
- Toronto Western Research Institute, University Health Network, Canada; Department of Medicine (Neurology), University of Toronto, Canada.
| |
Collapse
|
45
|
Zvejniece L, Vavers E, Svalbe B, Veinberg G, Rizhanova K, Liepins V, Kalvinsh I, Dambrova M. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects. Pharmacol Biochem Behav 2015; 137:23-9. [PMID: 26234470 DOI: 10.1016/j.pbb.2015.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 02/02/2023]
Abstract
Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain disorders.
Collapse
Affiliation(s)
- Liga Zvejniece
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga, LV-1007, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Grigory Veinberg
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | | | | | - Ivars Kalvinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga, LV-1007, Latvia
| |
Collapse
|
46
|
Geisler S, Schöpf CL, Obermair GJ. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Gen Physiol Biophys 2014; 34:105-118. [PMID: 25504062 DOI: 10.4149/gpb_2014037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/06/2014] [Indexed: 11/08/2022]
Abstract
In nerve cells the ubiquitous second messenger calcium regulates a variety of vitally important functions including neurotransmitter release, gene regulation, and neuronal plasticity. The entry of calcium into cells is tightly regulated by voltage-gated calcium channels, which consist of a heteromultimeric complex of a pore forming α₁, and the auxiliary β and α₂δ subunits. Four genes (Cacna2d1-4) encode for the extracellular membrane-attached α₂δ subunits (α₂δ-1 to α₂δ-4), out of which three isoforms (α₂δ-1 to -3) are strongly expressed in the central nervous system. Over the years a wealth of studies has demonstrated the classical role of α₂δ subunits in channel trafficking and calcium current modulation. Recent studies in specialized neuronal cell systems propose roles of α₂δ subunits beyond the classical view and implicate α₂δ subunits as important regulators of synapse formation. These findings are supported by the identification of novel human disease mutations associated with α₂δ subunits and by the fact that α₂δ subunits are the target of the anti-epileptic and anti-allodynic drugs gabapentin and pregabalin. Here we review the recently emerging evidence for specific as well as redundant neuronal roles of α₂δ subunits and discuss the mechanisms for establishing and maintaining specificity.
Collapse
Affiliation(s)
- Stefanie Geisler
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clemens L Schöpf
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
47
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
48
|
Maheshwari A, Noebels JL. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. PROGRESS IN BRAIN RESEARCH 2014; 213:223-52. [PMID: 25194492 DOI: 10.1016/b978-0-444-63326-2.00012-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Absence epilepsy is a common disorder that arises in childhood and can be refractory to medical treatment. Single genetic mutations in mice, at times found in patients with absence epilepsy, provide the unique opportunity to bridge the gap between dysfunction at the genetic level and pathological oscillations within the thalamocortical circuit. Interestingly, unlike other forms of epilepsy, only genes related to ion channels have so far been linked to absence phenotypes. Here, we delineate a paradigm which attempts to unify the various monogenic models based on decades of research. While reviewing the particular impact of these individual mutations, we posit a framework involving fast feedforward disinhibition as one common mechanism that can lead to increased tonic inhibition in the cortex and/or thalamus. Enhanced tonic inhibition hyperpolarizes principal cells, deinactivates T-type calcium channels, and leads to reciprocal burst firing within the thalamocortical loop. We also review data from pharmacologic and polygenic models in light of this paradigm. Ultimately, many questions remain unanswered regarding the pathogenesis of absence epilepsy.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Developmental Neurogenetics Laboratory, Baylor College of Medicine Houston, TX, USA.
| | - Jeffrey L Noebels
- Department of Neurology, Developmental Neurogenetics Laboratory, Baylor College of Medicine Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
49
|
Synaptic dysfunction in prion diseases: a trafficking problem? Int J Cell Biol 2013; 2013:543803. [PMID: 24369467 PMCID: PMC3863542 DOI: 10.1155/2013/543803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022] Open
Abstract
Synaptic dysfunction is an important cause of neurological symptoms in prion diseases, a class of clinically heterogeneous neurodegenerative disorders caused by misfolding of the cellular prion protein (PrPC). Experimental data suggest that accumulation of misfolded PrPC in the endoplasmic reticulum (ER) may be crucial in synaptic failure, possibly because of the activation of the translational repression pathway of the unfolded protein response. Here, we report that this pathway is not operative in mouse models of genetic prion disease, consistent with our previous observation that ER stress is not involved. Building on our recent finding that ER retention of mutant PrPC impairs the secretory trafficking of calcium channels essential for synaptic function, we propose a model of pathogenicity in which intracellular retention of misfolded PrPC results in loss of function or gain of toxicity of PrPC-interacting proteins. This neurotoxic modality may also explain the phenotypic heterogeneity of prion diseases.
Collapse
|
50
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|