1
|
Lapierre J, Rodriguez M, Ojha CR, El-Hage N. Critical Role of Beclin1 in HIV Tat and Morphine-Induced Inflammation and Calcium Release in Glial Cells from Autophagy Deficient Mouse. J Neuroimmune Pharmacol 2018; 13:355-370. [PMID: 29752681 PMCID: PMC6230516 DOI: 10.1007/s11481-018-9788-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
We previously showed that autophagy is an important component in human immunodeficiency virus (HIV) replication and in the combined morphine-induced neuroinflammation in human astrocytes and microglia. Here we further studied the consequences of autophagy using glial cells of mice partially lacking the essential autophagy gene Atg6 (Beclin1) exposed to HIV Tat and morphine. Tat is known to cause an inflammatory response, increase calcium release, and possibly interact with autophagy pathway proteins. Following Tat exposure, autophagy-deficient (Becn1+/-) glial cells had significantly and consistently reduced levels in the pro-inflammatory cytokine IL-6 and the chemokines RANTES and MCP-1 when compared to Tat-treated cells from control (C57BL/6J) mice, suggesting an association between the inflammatory effects of Tat and Beclin1. Further, differences in RANTES and MCP-1 secretion between C57BL/6J and Becn1+/- glia treated with Tat and morphine also suggest a role of Beclin1 in the morphine-induced enhancement. Analysis of autophagy maturation by immunoblot suggests that Beclin1 may be necessary for Tat, and to a lesser extent morphine-induced arrest of the pathway as demonstrated by accumulation of the adaptor protein p62/SQSTM1 in C57BL/6J glia. Calcium release induced by Tat alone or in combination with morphine in C57BL/6J glia was significantly reduced in Becn1+/- glia while minimal interactive effect of Tat with morphine in the production of reactive oxygen or nitrogen species was detected in glia derived from Becn1+/- or C57BL/6J. Overall, the data establish a role of Beclin1 in Tat and morphine-mediated inflammatory responses and calcium release in glial cells and support the notion that autophagy mediates Tat alone and combined morphine-induced neuropathology.
Collapse
Affiliation(s)
- Jessica Lapierre
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Chet Raj Ojha
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Abstract
Par-4 is a unique proapoptotic protein with the ability to induce apoptosis selectively in cancer cells. The X-ray crystal structure of the C-terminal domain of Par-4 (Par-4CC), which regulates its apoptotic function, was obtained by MAD phasing. Par-4 homodimerizes by forming a parallel coiled-coil structure. The N-terminal half of Par-4CC contains the homodimerization subdomain. This structure includes a nuclear export signal (Par-4NES) sequence, which is masked upon dimerization indicating a potential mechanism for nuclear localization. The heteromeric-interaction models specifically showed that charge interaction is an important factor in the stability of heteromers of the C-terminal leucine zipper subdomain of Par-4 (Par-4LZ). These heteromer models also displayed NES masking capacity and therefore the ability to influence intracellular localization.
Collapse
|
3
|
Han JY, Lim YJ, Choi JA, Lee JH, Jo SH, Oh SM, Song CH. The Role of Prostate Apoptosis Response-4 (Par-4) in Mycobacterium tuberculosis Infected Macrophages. Sci Rep 2016; 6:32079. [PMID: 27552917 PMCID: PMC4995434 DOI: 10.1038/srep32079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 01/30/2023] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a tumor suppressor protein that forms a complex with glucose-regulated protein 78 (GRP78) to induce apoptosis. Previously, we reported that ER stress-induced apoptosis is a critical host defense mechanism against Mycobacterium tuberculosis (Mtb). We sought to understand the role of Par-4 during ER stress-induced apoptosis in response to mycobacterial infection. Par-4 and GRP78 protein levels increased in response Mtb (strain: H37Ra) infection. Furthermore, Par-4 and GRP78 translocate to the surface of Mtb H37Ra-infected macrophages and induce apoptosis via caspase activation. NF-κB activation, Mtb-mediated ER stress, and Par-4 production were significantly diminished in macrophages with inhibited ROS production. To test Par-4 function during mycobacterial infection, we analyzed intracellular survival of Mtb H37Ra in macrophages with Par-4 overexpression or knockdown. Mtb H37Ra growth was significantly reduced in Par-4 overexpressing macrophages and increased in knockdown macrophages. We also observed increased Par-4, GRP78, and caspases activation in Bacillus Calmette-Guérin (BCG)-infected prostate cancer cells. Our data demonstrate that Par-4 is associated with ER stress-induced apoptosis resulting in reduced intracellular survival of mycobacteria. BCG treatment increases Par-4-dependent caspase activation in prostate cancer cells. These results suggest ER stress-induced Par-4 acts as an important defense mechanism against mycobacterial infection and regulates cancer.
Collapse
Affiliation(s)
- Ji-Ye Han
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Yun-Ji Lim
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Ji-Ae Choi
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jung-Hwan Lee
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Sung-Hee Jo
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Sung-Man Oh
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| |
Collapse
|
4
|
DeVaughn S, Müller-Oehring EM, Markey B, Brontë-Stewart HM, Schulte T. Aging with HIV-1 Infection: Motor Functions, Cognition, and Attention--A Comparison with Parkinson's Disease. Neuropsychol Rev 2015; 25:424-38. [PMID: 26577508 PMCID: PMC5519342 DOI: 10.1007/s11065-015-9305-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/08/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in highly active anti-retroviral therapy (HAART) in their various combinations have dramatically increased the life expectancies of HIV-infected persons. People diagnosed with HIV are living beyond the age of 50 but are experiencing the cumulative effects of HIV infection and aging on brain function. In HIV-infected aging individuals, the potential synergy between immunosenescence and HIV viral loads increases susceptibility to HIV-related brain injury and functional brain network degradation similar to that seen in Parkinson's disease (PD), the second most common neurodegenerative disorder in the aging population. Although there are clear diagnostic differences in the primary pathology of both diseases, i.e., death of dopamine-generating cells in the substantia nigra in PD and neuroinflammation in HIV, neurotoxicity to dopaminergic terminals in the basal ganglia (BG) has been implied in the pathogenesis of HIV and neuroinflammation in the pathogenesis of PD. Similar to PD, HIV infection affects structures of the BG, which are part of interconnected circuits including mesocorticolimbic pathways linking brainstem nuclei to BG and cortices subserving attention, cognitive control, and motor functions. The present review discusses the combined effects of aging and neuroinflammation in HIV individuals on cognition and motor function in comparison with age-related neurodegenerative processes in PD. Despite the many challenges, some HIV patients manage to age successfully, most likely by redistribution of neural network resources to enhance function, as occurs in healthy elderly; such compensation could be curtailed by emerging PD.
Collapse
Affiliation(s)
- S DeVaughn
- Bioscience Division, Neuroscience Program, SRI International, 333 Ravenswood Ave, Menlo Park, CA, USA
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, CA, USA
| | - E M Müller-Oehring
- Bioscience Division, Neuroscience Program, SRI International, 333 Ravenswood Ave, Menlo Park, CA, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - B Markey
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, CA, USA
| | - H M Brontë-Stewart
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - T Schulte
- Bioscience Division, Neuroscience Program, SRI International, 333 Ravenswood Ave, Menlo Park, CA, USA.
- Pacific Graduate School of Psychology, Palo Alto University, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Nookala AR, Shah A, Noel RJ, Kumar A. HIV-1 Tat-mediated induction of CCL5 in astrocytes involves NF-κB, AP-1, C/EBPα and C/EBPγ transcription factors and JAK, PI3K/Akt and p38 MAPK signaling pathways. PLoS One 2013; 8:e78855. [PMID: 24244375 PMCID: PMC3823997 DOI: 10.1371/journal.pone.0078855] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
The incidence of HIV-associated neurological disorders (HAND) has increased during recent years even though the highly active antiretroviral therapy (HAART) has significantly curtailed the virus replication and increased the life expectancy among HIV-1 infected individuals. These neurological deficits have been attributed to HIV proteins including HIV-1 Tat. HIV-1 Tat is known to up-regulate CCL5 expression in mouse astrocytes, but the mechanism of up-regulation is not known. The present study was undertaken with the objective of determining the mechanism(s) underlying HIV-1 Tat-mediated expression of CCL5 in astrocytes. SVGA astrocytes were transiently transfected with a plasmid encoding Tat, and expression of CCL5 was studied at the mRNA and protein levels using real time RT-PCR and multiplex cytokine bead array, respectively. HIV-1 Tat showed a time-dependent increase in the CCL5 expression with peak mRNA and protein levels, observed at 1 h and 48 h post-transfection, respectively. In order to explore the mechanism(s), pharmacological inhibitors and siRNA against different pathway(s) were used. Pre-treatment with SC514 (NF-κB inhibitor), LY294002 (PI3K inhibitor), AG490 (JAK2 inhibitor) and Janex-1 (JAK3 inhibitor) showed partial reduction of the Tat-mediated induction of CCL5 suggesting involvement of JAK, PI3K/Akt and NF-κB in CCL5 expression. These results were further confirmed by knockdown of the respective genes using siRNA. Furthermore, p38 MAPK was found to be involved since the knockdown of p38δ but not other isoforms showed partial reduction in CCL5 induction. This was further confirmed at transcriptional level that AP-1, C/EBPα and C/EBPγ were involved in CCL5 up-regulation.
Collapse
Affiliation(s)
- Anantha R. Nookala
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
| | - Ankit Shah
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
| | - Richard J. Noel
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bertrand SJ, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp Neurol 2013; 248:228-35. [PMID: 23811015 DOI: 10.1016/j.expneurol.2013.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/24/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023]
Abstract
HIV-1 enters the central nervous system early in infection; although HIV-1 does not directly infect neurons, HIV-1 may cause a variety of neurological disorders. Neuronal loss has been found in HIV-1, but synaptodendritic injury is more closely associated with the neurocognitive disorders of HIV-1. The HIV-1 transactivator of transcription (Tat) protein causes direct and indirect damage to neurons. The cysteine rich domain (residues 22-37) of Tat is important for producing neuronal death; however, little is known about the effects of the Tat protein functional domains on the dendritic network. The ability of HIV-1 Tat 1-101 Clades B and C, Tat 1-86 and Tat 1-72 proteins, as well as novel peptides (truncated 47-57, 1-72δ31-61, and 1-86 with a mutation at Cys22) to produce early synaptodendritic injury (24h), relative to later cell death (48h), was examined using cell culture. Treatment of primary hippocampal neurons with Tat proteins 1-72, 1-86 and 1-101B produced a significant early reduction in F-actin labeled puncta, implicating that these peptides play a role in synaptodendritic injury. Variants with a mutation, deletion, or lack of a cysteine rich region (1-86[Cys22], 1-101C, 1-72δ31-61, or 47-57) did not cause a significant reduction in F-actin rich puncta. Tat 1-72, 1-86, and 1-101B proteins did not significantly differ from one another, indicating that the second exon (73-86 or 73-101) does not play a significant role in the reduction of F-actin puncta. Conversely, peptides with a mutation, deletion, or lack of the cysteine rich domain (22-37) failed to produce a loss of F-actin puncta, indicating that the cysteine rich domain plays a key role in synaptodendritic injury. Collectively, these results suggest that for Tat proteins, 1) synaptodendritic injury occurs early, relative to cell death, and 2) the cysteine rich domain of the first exon is key for synaptic loss. Preventing such early synaptic loss may attenuate HIV-1 associated neurocognitive disorders.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Barnwell College Building, 1512 Pendleton Street, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Human immunodeficiency virus type 1 is associated with the development of neurocognitive disorders in many infected individuals, including a broad spectrum of motor impairments and cognitive deficits. Despite extensive research, the pathogenesis of HIV-associated neurocognitive disorders (HAND) is still not clear. This review provides a comprehensive view of HAND, including HIV neuroinvasion, HAND diagnosis and different level of disturbances, influence of highly-active antiretroviral therapy to HIV-associated dementia (HAD), possible pathogenesis of HAD, etc. Together, this review will give a thorough and clear understanding of HAND, especially HAD, which will be vital for future research, diagnosis and treatment.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| |
Collapse
|
8
|
Detection of anti-tat antibodies in CSF of individuals with HIV-associated neurocognitive disorders. J Neurovirol 2013; 19:82-8. [PMID: 23329164 DOI: 10.1007/s13365-012-0144-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Despite major advances in the development of antiretroviral therapies, currently available treatments have no effect on the production of HIV-Tat protein once the proviral DNA is formed. Tat is a highly neurotoxic and neuroinflammatory protein, but its effects may be modulated by antibody responses against it. We developed an indirect enzyme-linked immunosorbent assay and measured anti-Tat antibody titers in CSF of a well characterized cohort of 52 HIV-infected and 13 control individuals. We successfully measured anti-Tat antibodies in CSF of HIV-infected individuals with excellent sensitivity and specificity, spanning a broad range of detection from 10,000 to over 100,000 relative light units. We analyzed them for relationship to cognitive function, CD4 cell counts, and HIV viral load. Anti-Tat antibody levels were higher in those without neurocognitive dysfunction than in those with HIV-associated neurocognitive dysfunction (HAND) and in individuals with lower CD4 cell counts and higher viral loads. We provide details of an assay which may have diagnostic, prognostic, or therapeutic implications for patients with HAND. Active viral replication may be needed to drive the immune response against Tat protein, but this robust immune response against the protein may be neuroprotective.
Collapse
|
9
|
Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales. Pharmacol Rev 2012; 64:1004-26. [PMID: 22966039 DOI: 10.1124/pr.112.005850] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The evident limitations of the amyloid theory of the pathogenesis of Alzheimer's disease are increasingly putting alternatives in the spotlight. We argue here that a number of independently developing approaches to therapy-including specific and nonspecific anti-tumor necrosis factor (TNF) agents, apolipoprotein E mimetics, leptin, intranasal insulin, the glucagon-like peptide-1 mimetics and glycogen synthase kinase-3 (GSK-3) antagonists-are all part of an interlocking chain of events. All these approaches inform us that inflammation and thence cerebral insulin resistance constitute the pathway on which to focus for a successful clinical outcome in treating this disease. The key link in this chain presently absent is a recognition by Alzheimer's research community of the long-neglected history of TNF induction of insulin resistance. When this is incorporated into the bigger picture, it becomes evident that the interventions we discuss are not competing alternatives but equally valid approaches to correcting different parts of the same pathway to Alzheimer's disease. These treatments can be expected to be at least additive, and conceivably synergistic, in effect. Thus the inflammation, insulin resistance, GSK-3, and mitochondrial dysfunction hypotheses are not opposing ideas but stages of the same fundamental, overarching, pathway of Alzheimer's disease pathogenesis. The insight this provides into progenitor cells, including those involved in adult neurogenesis, is a key part of this approach. This pathway also has therapeutic implications for other circumstances in which brain TNF is pathologically increased, such as stroke, traumatic brain injury, and the infectious disease encephalopathies.
Collapse
Affiliation(s)
- Ian Clark
- Division of Medical Science and Biochemistry, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Individuals suffering from human immunodeficiency virus type 1 (HIV-1) infection suffer from a wide range of neurological deficits. The most pronounced are the motor and cognitive deficits observed in many patients in the latter stages of HIV infection. Gross postmortem inspection shows cortical atrophy and widespread
neuronal loss. One of the more debilitating of the HIV-related syndromes is AIDS-related dementia, or HAD. Complete understanding of HIV neurotoxicity has been elusive. Both direct and indirect toxic mechanisms have been implicated in the neurotoxicity of the
HIV proteins, Tat and gp120. The glutamatergic system, nitric oxide, calcium, oxidative stress, apoptosis, and microglia have all been implicated in the pathogenesis of HIV-related neuronal degeneration. The aim of this review is to summarize the most
recent work and provide an overview to the current theories of HIV-related neurotoxicity and potential avenues of therapeutic interventions to prevent the neuronal loss and motor/cognitive deficits previously described.
Collapse
Affiliation(s)
- David R. Wallace
- Department of Pharmacology and Physiology and Department of Forensic Sciences, Center for Health Sciences, Oklahoma State University, Tulsa, OK 74107-1898, USA
- *David R. Wallace:
| |
Collapse
|
12
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
13
|
Kaul D, Ahlawat A, Gupta SD. HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection. Mol Cell Biochem 2008; 323:143-8. [PMID: 19082544 DOI: 10.1007/s11010-008-9973-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
Abstract
The recent discovery of HIV-1 genome-encoded novel microRNA (miRNA; designated as hiv1-mir-H1) having ability to target selectively and specifically human cellular AATF gene, prompted us to explore the role of this miRNA in the regulation of genes involved in cellular apoptosis, proliferation and nucleic acid-based immune mechanism governed by miRNAs. Such a study revealed that this miRNA-induced knockdown of AATF gene, within normal human blood mononuclear cells, was responsible for the suppression of genes coding for Bcl-2, c-myc, Par-4 and Dicer. Further, hiv1-mir-H1 had the capacity to downregulate expression of cellular miR149 gene recognized to target Vpr gene encoded by HIV-1. Based upon these findings, we propose an "Epigenomic Pathway" through which hiv1-mir-H1 induced AATF gene knockdown within human mononuclear cells initiates their apoptosis.
Collapse
Affiliation(s)
- Deepak Kaul
- Molecular Biology Unit, Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, 160 012, India.
| | | | | |
Collapse
|
14
|
Gonzalez IH, Santana P, Gonzalez-Robayna I, Ferrer M, Morales V, Blanco FL, Fanjul LF. Regulation of the expression of prostate apoptosis response protein 4 (Par-4) in rat granulosa cells. Apoptosis 2008; 12:769-79. [PMID: 17219052 DOI: 10.1007/s10495-006-0019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The par-4 gene, directs the expression of a protein in the rat ventral prostate after apoptotic stimuli but not growth stimulatory, growth arresting or necrotic signals. Since Par-4 expression appears to be ubiquitous we investigated the possibility of Par-4 having a role in the rat ovary granulosa cells apoptotic death. Par-4 mRNA was detected by RT-PCR with oligonucleotides designed to prime Par-4 leucine zipper in the ovaries of 12 day old rats and reached the higher levels in 24 days old rats. In situ hybridization analysis revealed that Par-4 expression is restricted to granulosa cells. PMSG priming of 24 day old rats for 2 days greatly reduced Par-4 expression in granulosa cells as determined by in situ hybridization, RT-PCR of mRNA and protein immunodetection with Western blot. Granulosa cells placed in serum-fee culture, exhibited increased levels of Par-4 mRNA and protein, in good correlation with the degree of apoptosis. The culture-induced increases in Par-4 are significantly prevented by FSH. Transient transfection of granulosa cells with Par-4 leucine zipper domain that functions as a dominant-negative regulator of Par-4 activity resulted in lower rates of apoptosis while overexpression of the full length Par-4 counteracted FSH effects on apoptosis. Par-4 association with PKCzeta which is supposed to inhibit this kinase mediated antiapoptotic way is also prevented by FSH and, FSH antiapoptotic effects are counteracted by a PKCzeta specific inhibitor. These findings indicate that FSH by suppressing Par-4 expression in the ovary activates PKCzeta-dependent antiapoptotic pathway and suggest that Par-4 is part of the mechanism underlying granulosa cells apoptotic demise.
Collapse
Affiliation(s)
- Inmaculada Hernandez Gonzalez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Agrawal L, Louboutin JP, Strayer DS. Preventing HIV-1 tat-induced neuronal apoptosis using antioxidant enzymes: Mechanistic and therapeutic implications. Virology 2007; 363:462-72. [PMID: 17336361 DOI: 10.1016/j.virol.2007.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/01/2007] [Indexed: 12/20/2022]
Abstract
HIV-1 proteins, especially gp120 and Tat, elicit reactive oxygen species (ROS) and cause neuron apoptosis. We used antioxidant enzymes, Cu/Zn superoxide dismutase (SOD1) and glutathione peroxidase (GPx1) to study signaling and neuroprotection from Tat-induced apoptosis. SOD1 converts superoxide to peroxide; GPx1 converts peroxide to water. Primary human neurons were transduced with SV40-derived vectors carrying SOD1 and GPx1, then HIV-1 Tat protein was added. Both SV(SOD1) and SV(GPx1) delivered substantial transgene expression. Tat decreased endogenous cellular, but not transduced, SOD1 and GPx1. Tat rapidly increased neuron [Ca(2+)](i), which effect was not altered by SV(SOD1) or SV(GPx1). However, both vectors together blocked Tat-induced [Ca(2+)](i) fluxes. Similarly, neither SV(SOD1) nor SV(GPx1) protected neurons from Tat-induced apoptosis, but both vectors together did. Tat therefore activates multiple signaling pathways, in one of which superoxide acts as an intermediate while the other utilizes peroxide. Gene delivery to protect neurons from Tat must therefore target both.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Room 251, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
16
|
Flora G, Pu H, Hennig B, Toborek M. Cyclooxygenase-2 is involved in HIV-1 Tat-induced inflammatory responses in the brain. Neuromolecular Med 2007; 8:337-52. [PMID: 16775385 DOI: 10.1385/nmm:8:3:337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/07/2005] [Accepted: 12/05/2005] [Indexed: 12/21/2022]
Abstract
Cyclooxygenase (COX)-2, a rate-limiting enzyme for prostanoid synthesis, can be involved in inflammatory-mediated cytotoxicity. Although the contribution of COX-2 to peripheral inflammation is well understood, its role in brain inflammation is not fully recognized. In particular, COX-2 involvement in inflammatory responses induced by HIV proteins in the central nervous system is not known. Therefore, the present study focused on COX-2 expression and its role in modulating the expression of brain inflammatory-related genes following exposure to the HIV-1 transactivating protein Tat. Intrahippocampal injections of Tat induced dose-dependent upregulation of COX-2 mRNA and protein levels in C57BL/6 mice. COX-2 immunoreactivity was primarily localized in microglial cells and astrocytes. Tat-induced COX-2 expression was partially prevented by pyrrolidine dithiocarbamate, a potent antioxidant and an inhibitor of the transcription factor, nuclear factor kappaB. Most importantly, administration of the COX-2 inhibitor NS-398 attenuated Tat-mediated upregulation of mRNA and protein expression of inflammatory mediators, such as monocyte chemoattractant protein-1, interleukin-1beta, tumor necrosis factor-alpha, and inducible nitric oxide synthase. Moreover, treatment with NS-398 significantly attenuated Tat-induced activation of microglial cells. These results provide evidence that COX-2 overexpression can modulate induction of brain inflammatory mediators in response to HIV-1 Tat protein. Such alterations may play an important role in the development of brain inflammatory reactions in HIV-infected patients and contribute to the development of neurological complications in the course of HIV-1 infection.
Collapse
Affiliation(s)
- Govinder Flora
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Surgery, University of Kentucky, Lexington KY 40536, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Many patients infected with human immunodeficiency virus type-1 (HIV-1) suffer cognitive impairment ranging from mild to severe (HIV dementia), which may result from neuronal death in the basal ganglia, cerebral cortex and hippocampus. HIV-1 does not kill neurons by infecting them. Instead, viral proteins released from infected glial cells, macrophages and/or stem cells may directly kill neurons or may increase their vulnerability to other cell death stimuli. By binding to and/or indirectly activating cell surface receptors such as CXCR4 and the N-methyl-D-aspartate receptor, the HIV-1 proteins gp120 and Tat may trigger neuronal apoptosis and excitotoxicity as a result of oxidative stress, perturbed cellular calcium homeostasis and mitochondrial alterations. Membrane lipid metabolism and inflammation may also play important roles in determining whether neurons live or die in HIV-1-infected patients. Drugs and diets that target oxidative stress, excitotoxicity, inflammation and lipid metabolism are in development for the treatment of HIV-1 patients.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
18
|
Sui Z, Sniderhan LF, Fan S, Kazmierczak K, Reisinger E, Kovács AD, Potash MJ, Dewhurst S, Gelbard HA, Maggirwar SB. Human immunodeficiency virus-encoded Tat activates glycogen synthase kinase-3β to antagonize nuclear factor-κB survival pathway in neurons. Eur J Neurosci 2006; 23:2623-34. [PMID: 16817865 DOI: 10.1111/j.1460-9568.2006.04813.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated dementia is mediated by neuronal dysfunction and death, brought about by the action of soluble neurotoxic factors that are released by virally infected macrophages and microglia. Paradoxically, many candidate HIV-1 neurotoxins also possess the ability to activate nuclear factor-kappa B (NF-kappaB), which has a potent pro-survival effect in primary neurons. The present study explored this conundrum and investigated why NF-kappaB might fail to protect neurons that are exposed to candidate HIV-1 neurotoxins. Here, we evaluated the ability of virus-depleted conditioned medium produced by HIV-1-infected human macrophages (HIV-MCMs) to modulate NF-kappaB activity in neurons. We demonstrated that HIV-MCMs inhibit the normal signaling pathways that lead to NF-kappaB activation in neurons. This inhibitory effect of HIV-MCM is dependent upon the presence of HIV-1 Tat, which activates glycogen synthase kinase (GSK)-3beta in neurons. Activation of GSK-3beta, in turn, results in modification of the NF-kappaB subunit RelA at serine 468, thereby regulating the physical interaction of RelA with histone deacetylase-3 corepressor molecules. Furthermore, neutralization of Tat or inhibition of GSK-3beta activity prevents neuronal apoptosis induced by HIV-MCM. We conclude that HIV-1 Tat may compromise neuronal function and fate by interfering with normal survival pathways subserved by NF-kappaB. These findings may have important therapeutic implications for the management of HIV-1-associated dementia.
Collapse
Affiliation(s)
- Ziye Sui
- Interdepartmental Program in Neuroscience, University of Rochester School of Medicine and Dentistry, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA. HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. ACTA ACUST UNITED AC 2005; 50:14-26. [PMID: 15890409 DOI: 10.1016/j.brainresrev.2005.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 03/30/2005] [Accepted: 04/04/2005] [Indexed: 01/01/2023]
Abstract
Oxidative stress is thought to play a role in the onset of dementia. HIV-dementia has recently been demonstrated to be associated with oxidative stress as indexed by increased protein and lipid peroxidation in the brain and cerebrospinal fluid compared to HIV non-demented patients. The HIV protein Tat induces neurotoxicity, and, more recently, Tat was found to induce oxidative stress directly and indirectly. The role of Tat in HIV-dementia and possible therapeutic strategies involving endogenous and exogenous antioxidants are discussed.
Collapse
Affiliation(s)
- Chava B Pocernich
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
20
|
Jones G, Power C. Regulation of neural cell survival by HIV-1 infection. Neurobiol Dis 2005; 21:1-17. [PMID: 16298136 DOI: 10.1016/j.nbd.2005.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 02/03/2023] Open
Abstract
Infection by the lentivirus, human immunodeficiency virus type 1 (HIV-1), results in a variety of syndromes involving both the central (CNS) and the peripheral (PNS) nervous systems. Productive HIV-1 infection of the CNS is chiefly detectable in perivascular macrophages and microglia. HIV-1 encoded transcripts and proteins have also been detected in the PNS; however, productive viral replication appears to be sparse and restricted to the macrophage cell population. Despite the absence of productive infection of neurons, HIV-1 infection has been associated with neuronal loss in distinct regions of the brain. Neuronal cell loss may occur through both necrosis and apoptosis, although neuronal apoptosis appears to be a feature of AIDS, as only rare apoptotic neurons have been demonstrated in a few pre-AIDS cases. Although there is no clear consensus as to the underlying mechanism of HIV-induced neuropathogenesis, two complementary concepts predominate. Firstly, HIV-1 encoded proteins injure neurons directly without requiring the intermediary functions of nonneuronal cells. Alternatively, neuronal apoptosis may result indirectly from the secretion of neurotoxic host molecules by resident brain macrophages or microglia in response to HIV-1 infection, stimulation by viral proteins or immune activation. Herein, we review the neurological disorders and their underlying mechanisms associated with HIV infection, focusing on HIV-associated dementia (HAD) and HIV sensory neuropathy (HIV-SN). The evidence that neuronal loss in HIV-1-infected individuals may be due to neuronal apoptosis is then discussed. This review also summarizes the current data supporting both the direct and indirect mechanisms by which neuronal death may occur during infection with HIV-1 or the closely related lentiviruses SIV and FIV. Lastly, strategies are examined for treating or preventing HAD by targeting specific neurotoxic mechanisms.
Collapse
Affiliation(s)
- Gareth Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
21
|
D'Aversa TG, Eugenin EA, Berman JW. NeuroAIDS: Contributions of the human immunodeficiency virus-1 proteins tat and gp120 as well as CD40 to microglial activation. J Neurosci Res 2005; 81:436-46. [PMID: 15954144 DOI: 10.1002/jnr.20486] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microglia are the resident phagocytes of the brain and are an important source of proinflammatory mediators. Human immunodeficiency virus (HIV)-1 infects the central nervous system early in the course of disease, and it is believed that this occurs, in part, through the transmigration of HIV-1-infected cells across the blood-brain barrier. Infected cells release viral proteins, such as Tat and gp120. After microglia interact with these proteins, they become activated and secrete chemokines; up-regulate key surface receptors, such as CD40, and also activate resident cells. This review focuses on the consequences of microglial activation in NeuroAIDS, with an emphasis on chemokine production and CD40 up-regulation after interaction with tat or gp120. The importance of microglial CD40 in two other neurological diseases, Alzheimer's disease and multiple sclerosis, is also discussed.
Collapse
Affiliation(s)
- T G D'Aversa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
22
|
Williams MA, Turchan J, Lu Y, Nath A, Drachman DB. Protection of human cerebral neurons from neurodegenerative insults by gene delivery of soluble tumor necrosis factor p75 receptor. Exp Brain Res 2005; 165:383-91. [PMID: 15827736 DOI: 10.1007/s00221-005-2307-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
Apoptosis plays an important role in neuronal cell death in both chronic and acute human neurodegenerative diseases, including amyotrophic lateral sclerosis, Huntington's disease, cerebral ischemia, and human immunodeficiency virus (HIV) encephalopathy. We evaluated the ability of the extracellular binding domain of a dimeric tumor necrosis factor receptor (p75TNFR) to prevent neurotoxicity and death of human fetal cerebral neurons that were exposed in vitro to toxic agents known to be implicated in human neurological disorders, including tumor necrosis factor (TNFalpha) and the HIV proteins Tat and gp120. The extracellular domain of p75TNFR is capable of binding and neutralizing both soluble and transmembrane-anchored TNFalpha. We efficiently transduced human neurons using adenoviral vectors expressing p75TNFR (Ad.p75TNFR) or a control gene (lacZ). Treatment of control cultures with the toxic agents TNFalpha, TNFalpha plus actinomycin D, or Tat and gp120, induced neurotoxic alterations and apoptotic death of neurons. By contrast, transduction of neurons with Ad.p75TNFR prevented apoptosis and cell death due to these agents. We conclude that viral vector transfer of the p75TNFR gene efficiently protects human neurons from TNFalpha-, Tat- or gp120-induced apoptosis and cell death. These results suggest that p75TNFR transduction of neurons by viral vectors could be therapeutically useful in the treatment of many human neurodegenerative diseases.
Collapse
Affiliation(s)
- Marc Adrian Williams
- Departments of Neurology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
23
|
Toborek M, Lee YW, Flora G, Pu H, András IE, Wylegala E, Hennig B, Nath A. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 2005; 25:181-99. [PMID: 15962513 DOI: 10.1007/s10571-004-1383-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
(1) Alterations of brain microvasculature and the disruption of the blood-brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD). (2) It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS. (3) The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wong K, Sharma A, Awasthi S, Matlock EF, Rogers L, Van Lint C, Skiest DJ, Burns DK, Harrod R. HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB. J Biol Chem 2004; 280:9390-9. [PMID: 15611041 DOI: 10.1074/jbc.m408643200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) infects microglia, macrophages, and astrocytes in the central nervous system (CNS) and may cause severe neurological diseases, such as AIDS-related dementias or progressive encephalopathies, as a result of CNS inflammation and neurotrophin signaling defects associated with expression of viral antigens and HIV-1 replication in the brain. The HIV Tat protein can be endocytosed by surrounding uninfected cells; interacts with transcriptional coactivators/acetyltransferases, p300/CREB-binding protein, and p300/CREB-binding protein-associated factor (PCAF); and induces neuronal apoptosis. Since nerve growth factor (NGF) receptor and brain-derived neurotrophic factor receptor signaling through CREB requires p300 and PCAF histone acetyltransferases, we sought to determine whether HIV-1 Tat coactivator interactions interfere with neurotrophin receptor signaling in neuronal cells. Here, we demonstrate that Tat-coactivator interactions inhibit NGF- and brain-derived neurotrophic factor-responsive CRE trans-activation and neurotrophin protection against apoptosis in PC12 and IMR-32 neuroblastoma cells. Purified recombinant Tat or Tat-derived synthetic peptides, spanning p300- and PCAF-binding sequences, inhibit histone H3/H4 acetylation in vitro. A Tat mutant, TatK28A/K50A, defective for binding p300 and PCAF, neither repressed NGF-responsive CRE transactivation nor inhibited histone acetylation. HIV-1 Tat interacts in PCAF complexes in post-mortem CNS tissues from donor neuro-AIDS patients, as determined by fluorescence resonance energy transfer immunoconfocal microscopy. Importantly, these findings suggest that HIV-1 Tat-coactivator interactions may contribute to neurotrophin signaling impairments and neuronal apoptosis associated with HIV-1 infections of the CNS.
Collapse
Affiliation(s)
- Kasuen Wong
- Laboratory of Molecular Virology, Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Avraham HK, Jiang S, Lee TH, Prakash O, Avraham S. HIV-1 Tat-Mediated Effects on Focal Adhesion Assembly and Permeability in Brain Microvascular Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:6228-33. [PMID: 15528360 DOI: 10.4049/jimmunol.173.10.6228] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The blood-brain barrier (BBB) is a network formed mainly by brain microvascular endothelial cells (BMECs). The integrity of the BBB is critical for brain function. Breakdown of the BBB is commonly seen in AIDS patients with HIV-1-associated dementia despite the lack of productive HIV infection of the brain endothelium. The processes by which HIV causes these pathological conditions are not well understood. In this study we characterized the molecular mechanisms by which Tat mediates its pathogenic effects in vitro on primary human BMECs (HBMECs). Tat treatment of HBMECs stimulated cytoskeletal organization and increased focal adhesion sites compared with control cells or cells treated with heat-inactivated Tat. Pretreatment with Tat Abs or with the specific inhibitor SU-1498, which interferes with vascular endothelial growth factor receptor type 2 (Flk-1/KDR) phosphorylation, blocked the ability of Tat to stimulate focal adhesion assembly and the migration of HBMECs. Focal adhesion kinase (FAK) was tyrosine-phosphorylated by Tat and was found to be an important component of focal adhesion sites. Inhibition of FAK by the dominant interfering mutant form, FAK-related nonkinase, significantly blocked HBMEC migration and disrupted focal adhesions upon Tat activation. Furthermore, HIV-Tat induced permeability changes in HBMECs in a time-dependent manner. Tat also impaired BBB permeability, as observed in HIV-1 Tat transgenic mice. These studies define a mechanism for HIV-1 Tat in focal adhesion complex assembly in HBMECs via activation of FAK, leading to cytoskeletal reorganization and permeability changes.
Collapse
Affiliation(s)
- Hava Karsenty Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Khurdayan VK, Buch S, El-Hage N, Lutz SE, Goebel SM, Singh IN, Knapp PE, Turchan-Cholewo J, Nath A, Hauser KF. Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. Eur J Neurosci 2004; 19:3171-82. [PMID: 15217373 PMCID: PMC4305445 DOI: 10.1111/j.0953-816x.2004.03461.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human immunodeficiency virus (HIV)-1 infection can cause characteristic neural defects such as progressive motor dysfunction, striatal pathology and gliosis. Recent evidence suggests that HIV-induced pathogenesis is exacerbated by heroin abuse and that the synergistic neurotoxicity is a direct effect of heroin on the CNS, an alarming observation considering the high incidence of HIV infection with injection drug abuse. Although HIV infection results in neurodegeneration, neurons themselves are not directly infected. Instead, HIV affects microglia and astroglia, which subsequently contributes to the neurodegenerative changes. Opioid receptors are widely expressed by macroglia and macroglial precursors, and the activation of mu-opioid receptors can modulate programmed cell death, as well as the response of neural cells to cytotoxic insults. For this reason, we questioned whether opioid drugs might modify the vulnerability of macroglia and macroglial precursors to HIV-1 Tat protein. To address this problem, the effects of morphine and/or HIV Tat(1-72) on the viability of macroglia and macroglial precursors were assessed in mixed-glial cultures derived from mouse striatum. Our findings indicate that sustained exposure to morphine and Tat(1-72) viral protein induces the preferential death of glial precursors and some astrocytes. Moreover, the increased cell death is mediated by mu-opioid receptors and accompanied by the activation of caspase-3. Our results imply that opiates can enhance the cytotoxicity of HIV-1 Tat through direct actions on glial precursors and/or astroglia, suggesting novel cellular targets for HIV-opiate interactions.
Collapse
Affiliation(s)
- Valeriya K. Khurdayan
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Shreya Buch
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nazira El-Hage
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sarah E. Lutz
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Susan M. Goebel
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Indrapal N. Singh
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Pamela E. Knapp
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Avindra Nath
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kurt F. Hauser
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
- Correspondence: Kurt F. Hauser, Ph.D., Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298 USA, , Phone: (859) 323-6477, FAX: (859) 323-5946
| |
Collapse
|
27
|
Régulier EG, Reiss K, Khalili K, Amini S, Zagury JF, Katsikis PD, Rappaport J. T-cell and neuronal apoptosis in HIV infection: implications for therapeutic intervention. Int Rev Immunol 2004; 23:25-59. [PMID: 14690854 DOI: 10.1080/08830180490265538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pathogenesis of HIV infection involves the selective loss of CD4+ T cells contributing to immune deficiency. Although loss of T cells leading to immune dysfunction in HIV infection is mediated in part by viral infection, there is a much larger effect on noninfected T cells undergoing apoptosis in response to activation stimuli. In the subset of patients with HIV dementia complex, neuronal injury, loss, and apoptosis are observed. Viral proteins, gp120 and Tat, exhibit proapoptotic activities when applied to T cell and neuronal cultures by direct and indirect mechanisms. The pathways leading to cell death involve the activation of one or more death receptor pathways (i.e., TNF-alpha, Fas, and TRAIL receptors), chemokine receptor signaling, cytokine dysregulation, caspase activation, calcium mobilization, and loss of mitochondrial membrane potential. In this review, the mechanisms involved in T-cell and neuronal apoptosis, as well as antiapoptotic pathways potentially amenable to therapeutic application, are discussed.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
András IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 2003; 74:255-65. [PMID: 14515355 DOI: 10.1002/jnr.10762] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Disruption of the blood-brain barrier (BBB) is widely believed to be the main route of human immunodeficiency virus (HIV) entry into the central nervous system (CNS). Although mechanisms of this process are not fully understood, alterations of tight junction protein expression can contribute, at least in part, to this phenomenon. Tight junctions are critical structural and functional elements of cerebral microvascular endothelial cells and the BBB. The aim of the present study was to examine the effects of HIV-1 Tat protein on expression of tight junction proteins. Primary cultures of brain microvascular endothelial cells (BMEC) were employed in these experiments. A 24-hr exposure of BMEC to Tat(1-72) resulted in a decrease of claudin-1, claudin-5, and zonula occludens (ZO)-2 expression, whereas total levels of occludin and ZO-1 remained unchanged. In addition, a short (3-hr) exposure of BMEC to Tat(1-72) induced cellular redistribution of claudin-5 immunoreactivity. Tat(1-72)-induced alterations of claudin-5 expression also were confirmed in vivo where Tat(1-72) was injected into the right hippocampus of mice. These findings indicate that HIV-1 Tat protein can markedly affect expression and distribution of specific tight junction proteins in brain endothelium. Alterations of only distinct tight junction proteins suggest a finely tuned effect of Tat(1-72) on the BBB. Because tight junction proteins are critical for the barrier function of the BBB, such alterations can lead to disturbances of the BBB integrity and contribute to HIV trafficking into the brain.
Collapse
Affiliation(s)
- Ibolya E András
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Prostate apoptosis response-4 (par-4) is a pro-apoptotic gene identified in prostate cancer cells undergoing apoptosis. Par-4 protein, which contains a leucine zipper domain at the carboxy-terminus, functions as a transcriptional repressor in the nucleus. Par-4 selectively induces apoptosis in androgen-independent prostate cancer cells and Ras-transformed cells but not in androgen-dependent prostate cancer cells or normal cells. Cells that are resistant to apoptosis by Par-4 alone, however, are greatly sensitized by Par-4 to the action of other pro-apoptotic insults such as growth factor withdrawal, tumor necrosis factor, ionizing radiation, intracellular calcium elevation, or those involved in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and stroke. Apoptosis induction by Par-4 involves a complex mechanism that requires activation of the Fas death receptor signaling pathway and coparallel inhibition of cell survival NF-kappaB transcription activity. The unique ability of Par-4 to induce apoptosis in cancer cells but not normal cells and the ability of Par-4 antisense or dominant-negative mutant to abrogate apoptosis in neurodegenerative disease paradigms makes it an appealing candidate for molecular therapy of cancer and neuronal diseases.
Collapse
Affiliation(s)
- Nadia El-Guendy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
32
|
Dutta K, Engler FA, Cotton L, Alexandrov A, Bedi GS, Colquhoun J, Pascal SM. Stabilization of a pH-sensitive apoptosis-linked coiled coil through single point mutations. Protein Sci 2003; 12:257-65. [PMID: 12538889 PMCID: PMC2312421 DOI: 10.1110/ps.0223903] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 10/28/2002] [Accepted: 10/30/2002] [Indexed: 10/27/2022]
Abstract
The apoptosis-associated Par-4 protein has been implicated in cancers of the prostate, colon, and kidney, and in Alzheimer's and Huntington's diseases, among other neurodegenerative disorders. Previously, we have shown that a peptide from the Par-4 C-terminus, which is responsible for Par-4 self-association as well as interaction with all currently identified effector molecules, is natively unfolded at neutral pH, but forms a tightly associated coiled coil at acidic pH and low temperature. Here, we have alternately mutated the two acidic residues predicted to participate in repulsive electrostatic interactions at the coiled coil interhelical interface. Analysis of circular dichroism spectra reveals that a dramatic alteration of the folding/unfolding equilibrium of this peptide can be effected through directed-point mutagenesis, confirming that the two acidic residues are indeed key to the pH-dependent folding behavior of the Par-4 coiled coil, and further suggesting that alleviation of charge repulsion through exposure to either a low pH microenvironment or an electrostatically complementary environment may be necessary for efficient folding of the Par-4 C-terminus.
Collapse
Affiliation(s)
- Kaushik Dutta
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Flora G, Lee YW, Nath A, Hennig B, Maragos W, Toborek M. Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp Neurol 2003; 179:60-70. [PMID: 12504868 DOI: 10.1006/exnr.2002.8048] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tat is a major regulatory protein encoded by human immunodeficiency viral genome, which has been implicated in the pathogenesis of HIV infection, including neurologic complications associated with this disease. In addition, drug abuse has been identified as a major risk factor of HIV infection. We hypothesize that abusive drugs, such as methamphetamine (METH), can directly influence specific molecular processes that can further contribute to toxic effects of Tat. To elucidate the molecular signaling pathways of Tat- and/or METH-induced toxicity, we investigated the effects of a single injection of Tat (25 microg/microl into the right hippocampus) and/or METH (10 mg/kg, intraperitoneally) on the generation of cellular oxidative stress, DNA-binding activity of specific redox-responsive transcription factors, and expression of inflammatory genes. Administration of Tat or METH resulted in stimulation of cellular oxidative stress and activation of redox-regulated transcription factors in the cortical, striatal, and hippocampal regions of the mouse brain. In addition, DNA-binding activities of NF-kappaB, AP-1, and CREB in the frontal cortex and hippocampus were more pronounced in mice injected with Tat plus METH compared to the effects of Tat or METH alone. Intercellular adhesion molecule-1 gene expression also was upregulated in a synergistic manner in cortical, striatal, and hippocampal regions in mice which received injections of Tat combined with METH compared to the effects of these agents alone. Moreover, synergistic effects of Tat plus METH on the tumor necrosis factor-alpha and interleukin-1beta mRNA levels were observed in the striatal region. These results indicate that Tat and METH can cross-amplify their cellular effects, leading to alterations of redox-regulated inflammatory pathways in the brain. Such synergistic proinflammatory stimulation may have significant implications in HIV-infected patients who abuse drugs.
Collapse
Affiliation(s)
- Govinder Flora
- Department of Surgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 2002; 186 Suppl 2:S193-8. [PMID: 12424697 DOI: 10.1086/344528] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection of the nervous system is unique when compared with other viral encephalitides. Neuronal cell loss occurs in the absence of neuronal infection. Viral proteins, termed "virotoxins," are released from the infected glial cells that initiate a cascade of positive feedback loops by activating uninfected microglial cells and astrocytes. These activated cells release a variety of toxic substances that result in neuronal dysfunction and cell loss. The virotoxins act by a hit and run phenomenon. Thus, a transient exposure to the proteins initiates the neurotoxic cascade. High concentrations of these proteins likely occur in tight extracellular spaces where they may cause direct neurotoxicity as well. The emerging concepts in viral protein-induced neurotoxicity are reviewed as are the neurotoxic potential of each protein. Future therapeutic strategies must target common mechanisms such as oxidative stress and dysregulation of intracellular calcium involved in virotoxin-mediated neurotoxicity.
Collapse
Affiliation(s)
- Avi Nath
- Department of Neurology, Johns Hopkins University, 600 N. Wolfe Street, Meyer 6-109, Baltimore, MD 21287-7609, USA.
| |
Collapse
|
35
|
Haughey NJ, Mattson MP. Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J Acquir Immune Defic Syndr 2002; 31 Suppl 2:S55-61. [PMID: 12394783 DOI: 10.1097/00126334-200210012-00005] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients with AIDS often develop cognitive and motor dysfunction that results from damage to synapses and death of neurons in brain regions such as the hippocampus and basal ganglia. This brain syndrome, called AIDS dementia or HIV encephalitis, is believed to result from the infection of one or more populations of mitotic brain cells with HIV-1, which then release viral proteins that are toxic to neurons. Two neurotoxic HIV-1 proteins have been identified, the viral coat protein gp120 and the transcription regulator Tat. Each of these proteins can induce apoptosis of cultured neurons and can render neurons vulnerable to excitotoxicity and oxidative stress. Gp120 and Tat also cause neuronal dysfunction and death in rodents in vivo. Both gp120 and Tat disrupt neuronal calcium homeostasis by perturbing calcium-regulating systems in the plasma membrane and endoplasmic reticulum. Accordingly, drugs that stabilize cellular calcium homeostasis can protect neurons against the toxic effects of gp120 and Tat. By altering voltage-dependent calcium channels, glutamate receptor channels, and membrane transporters, the HIV-1 proteins promote calcium overload, oxyradical production, and mitochondrial dysfunction. A better understanding of how gp120 and Tat disrupt neuronal calcium homeostasis may lead to the development of novel treatments for AIDS patients.
Collapse
Affiliation(s)
- Norman J Haughey
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
36
|
Nesbit CE, Schwartz SA. In vitro and animal models of human immunodeficiency virus infection of the central nervous system. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:515-24. [PMID: 11986254 PMCID: PMC119973 DOI: 10.1128/cdli.9.3.515-524.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chadd E Nesbit
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, and Kaleida Health, Buffalo General Hospital, Buffalo, New York 14203, USA
| | | |
Collapse
|
37
|
Dutta K, Alexandrov A, Huang H, Pascal SM. pH-induced folding of an apoptotic coiled coil. Protein Sci 2001; 10:2531-40. [PMID: 11714921 PMCID: PMC2374040 DOI: 10.1110/ps.28801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 09/18/2001] [Accepted: 09/19/2001] [Indexed: 10/21/2022]
Abstract
Par-4 is a 38-kD protein pivotal to the apoptotic pathways of various cell types, most notably prostate cells and neurons, where it has been linked to prostate cancer and various neurodegenerative disorders including Alzheimer's and Huntington's diseases and HIV encephalitis. The C-terminal region of Par-4 is responsible for homodimerization and the ability of Par-4 to interact with proposed effector molecules. In this study, we show that the C-terminal 47 residues of Par-4 are natively unfolded at physiological pH and temperature. Evidence is rapidly accumulating that natively unfolded proteins play an important role in various cellular functions and signaling pathways, and that folding can often be induced on complexation with effector molecules or alteration of environment. Here we use primarily CD studies to show that changes in the environment, particularly pH and temperature, can induce the Par-4 C terminus to form a self-associated coiled coil.
Collapse
Affiliation(s)
- K Dutta
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
38
|
Bruce-Keller AJ, Barger SW, Moss NI, Pham JT, Keller JN, Nath A. Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J Neurochem 2001; 78:1315-24. [PMID: 11579140 DOI: 10.1046/j.1471-4159.2001.00511.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia are activated in humans following infection with human immunodeficiency virus (HIV), and brain inflammation is thought to be involved in neuronal injury and dysfunction during HIV infection. Numerous studies indicate a role for the HIV regulatory protein Tat in HIV-related inflammatory and neurodegenerative processes, although the specific effects of Tat on microglial activation, and the signal transduction mechanisms thereof, have not been elucidated. In the present study, we document the effects of Tat on microglial activation and characterize the signal transduction pathways responsible for Tat's pro-inflammatory effects. Application of Tat to N9 microglial cells increased multiple parameters of microglial activation, including superoxide production, phagocytosis, nitric oxide release and TNF alpha release. Tat also caused activation of both p42/p44 mitogen activated protein kinase (MAPK) and NF kappa B pathways. Inhibitor studies revealed that Tat-induced NF kappa B activation was responsible for increased nitrite release, while MAPK activation mediated superoxide release, TNF alpha release, and phagocytosis. Lastly, pre-treatment of microglial cells with physiological concentrations of 17 beta-estradiol suppressed Tat-mediated microglial activation by interfering with Tat-induced MAPK activation. Together, these data elucidate specific components of the microglial response to Tat and suggest that Tat could contribute to the neuropathology associated with HIV infection through microglial promulgation of oxidative stress.
Collapse
Affiliation(s)
- A J Bruce-Keller
- Department of Anatomy, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Berger JR, Chauhan A, Galey D, Nath A. Epidemiological evidence and molecular basis of interactions between HIV and JC virus. J Neurovirol 2001; 7:329-38. [PMID: 11517412 DOI: 10.1080/13550280152537193] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- J R Berger
- Department of Neurology, University of Kentucky, Lexington, Kentucky 40536-0284, USA
| | | | | | | |
Collapse
|
40
|
Aksenov MY, Hasselrot U, Bansal AK, Wu G, Nath A, Anderson C, Mactutus CF, Booze RM. Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum. Neurosci Lett 2001; 305:5-8. [PMID: 11356294 DOI: 10.1016/s0304-3940(01)01786-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress has been hypothesized to play a role in the pathogenesis of different neurodegenerative disorders, including HIV-related dementia. Tat, a nonstructural protein of HIV, is implicated in potentiation of neuronal apoptosis by mechanisms involving the disruption of calcium homeostasis and oxidative stress. The injection of Tat caused an increase of protein carbonyl formation in the rat striatum. Increased oxidative modification of proteins occurred early after Tat injection and preceded Tat-mediated astrogliosis. Immunostaining of brain sections demonstrated that an area of prominent protein carbonyl immunoreactivity surrounded an injection site in the striatum of Tat-injected rats. Intense protein carbonyl immunoreactivity was localized in cell bodies. Our study suggests that increased protein oxidation may be an important part of the mechanism of Tat neurotoxicity.
Collapse
Affiliation(s)
- M Y Aksenov
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, Bell J, Hauser KF, Mattson M. Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol 2001; 14:222-7. [PMID: 11106300 DOI: 10.1177/026988110001400305] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infection with the human immunodeficiency virus (HIV) selectively targets the basal ganglia resulting in loss of dopaminergic neurons. Although frequently asymptomatic, some patients may develop signs of dopamine deficiency de novo. Accordingly, they are highly susceptible to drugs that act on dopaminergic systems. Both neuroleptics and psychostimulants may exacerbate these symptoms. Experimental evidence suggests that viral proteins such as gp120 and Tat can cause toxicity to dopaminergic neurons, and this toxicity is synergistic with compounds such as methamphetamine and cocaine that also act on the dopaminergic system. In addition, other neurotransmitters that modulate dopaminergic function, such as glutamate and opioids, may also modify the susceptibility of the dopamine system to HIV. Therefore, a thorough understanding of the mechanisms that lead to this selective neurotoxicity of dopaminergic neurons would also likely lead to the development of therapeutic modalities for patients with HIV dementia.
Collapse
Affiliation(s)
- A Nath
- Department of Neurology, University of Kentucky, Lexington, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Culmsee C, Zhu Y, Krieglstein J, Mattson MP. Evidence for the involvement of Par-4 in ischemic neuron cell death. J Cereb Blood Flow Metab 2001; 21:334-43. [PMID: 11323519 DOI: 10.1097/00004647-200104000-00002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
After a stroke many neurons in the ischemic brain tissue die by a process called apoptosis, a form of cell death that may be preventable. The specific molecular cascades that mediate ischemic neuronal death are not well understood. The authors recently identified prostate apoptosis response-4 (Par-4) as a protein that participates in the death of cultured hippocampal neurons induced by trophic factor withdrawal and exposure to glutamate. Here, the authors show that Par-4 levels increase in vulnerable populations of hippocampal and striatal neurons in rats after transient forebrain ischemia; Par-4 levels increased within 6 hours of reperfusion and remained elevated in neurons undergoing apoptosis 3 days later. After transient focal ischemia in mice, Par-4 levels were increased 6 to 12 hours after reperfusion in the infarcted cortex and the striatum, and activation of caspase-8 occurred with a similar time course. Par-4 immunoreactivity was localized predominantly in cortical neurons at the border of the infarct area. A Par-4 antisense oligonucleotide protected cultured hippocampal neurons against apoptosis induced by chemical hypoxia and significantly reduced focal ischemic damage in mice. The current data suggest that early up-regulation of Par-4 plays a pivotal role in ischemic neuronal death in animal models of stroke and cardiac arrest.
Collapse
Affiliation(s)
- C Culmsee
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
43
|
Nath A, Maragos WF, Avison MJ, Schmitt FA, Berger JR. Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol 2001; 7:66-71. [PMID: 11519485 DOI: 10.1080/135502801300069737] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We report a patient with rapidly accelerating HIV dementia accompanied by seizures and an unusual movement disorder despite highly potent antiretroviral therapy. This clinical constellation was associated with the non-parenteral use of methamphetamine and cocaine. Fractional enhancement time on post contrast magnetic resonance imaging studies revealed a progressive breakdown of the blood brain barrier particularly in the basal ganglia. The movement disorder but not the dementia responded to a combination of dopamine replacement and anticholinergic therapy. While the movement disorder may have been unmasked by concomitant anticonvulsant therapy, we suggest in this instance, that prior drug abuse synergized with HIV to cause a domino effect on cerebral function. Careful attention and analysis to histories of remote non-injecting drug abuse may help substantiate our hypothesis.
Collapse
Affiliation(s)
- A Nath
- Department of Neurology, University of Kentucky, Lexington 40526-0284, USA
| | | | | | | | | |
Collapse
|
44
|
Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: Protection by memantine. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200002)47:2<186::aid-ana8>3.0.co;2-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, Hauser KF. Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience 2001; 102:555-63. [PMID: 11226693 PMCID: PMC4300203 DOI: 10.1016/s0306-4522(00)00461-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human immunodeficiency virus (HIV) infection selectively targets the striatum, a region rich in opioid receptor-expressing neural cells, resulting in gliosis and neuronal losses. Opioids can be neuroprotective or can promote neurodegeneration. To determine whether opioids modify the response of neurons to human immunodeficiency virus type 1 (HIV-1) Tat protein-induced neurotoxicity, neural cell cultures from mouse striatum were initially characterized for mu and/or kappa opioid receptor immunoreactivity. These cultures were continuously treated with morphine, the opioid antagonist naloxone, and/or HIV-1 Tat (1-72) protein, a non-neurotoxic HIV-1 Tat deletion mutant (TatDelta31-61) protein, or immunoneutralized HIV-1 Tat (1-72) protein. Neuronal and astrocyte viability was examined by ethidium monoazide exclusion, and by apoptotic changes in nuclear heterochromatin using Hoechst 33342. Morphine (10nM, 100nM or 1microM) significantly increased Tat-induced (100 or 200nM) neuronal losses by about two-fold at 24h following exposure. The synergistic effects of morphine and Tat were prevented by naloxone (3microM), indicating the involvement of opioid receptors. Furthermore, morphine was not toxic when combined with mutant Tat or immunoneutralized Tat. Neuronal losses were accompanied by chromatin condensation and pyknosis. Astrocyte viability was unaffected. These findings demonstrate that acute opioid exposure can exacerbate the neurodegenerative effect of HIV-1 Tat protein in striatal neurons, and infer a means by which opioids may hasten the progression of HIV-associated dementia.
Collapse
Affiliation(s)
- Julie A. Gurwell
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Avindra Nath
- Department of Neurology University of Kentucky College of Medicine Lexington, Kentucky 40536-0284
- Department of Microbiology & Immunology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Qinmiao Sun
- Department of Microbiology & Immunology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Jiayou Zhang
- Department of Microbiology & Immunology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Kenneth M. Martin
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Yan Chen
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
| | - Kurt F. Hauser
- Department of Anatomy & Neurobiology University of Kentucky College of Medicine Lexington, Kentucky 40536-0298
- Markey Cancer Center University of Kentucky Medical Center Lexington, Kentucky 40536-0084
- To whom correspondence should be addressed: Kurt F. Hauser, Ph.D. Department of Anatomy & Neurobiology University of Kentucky College of Medicine 800 Rose Street, Lexington, KY 40536-0298 Phone: (859) 323-6477; FAX: (859) 323-5946
| |
Collapse
|
46
|
Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 2000; 6:1380-7. [PMID: 11100124 DOI: 10.1038/82199] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurological disorders develop in most people infected with human immunodeficiency virus type 1 (HIV-1). However, the underlying mechanisms remain largely unknown. Here we report that binding of HIV-1 transactivator (Tat) protein to low-density lipoprotein receptor-related protein (LRP) promoted efficient uptake of Tat into neurons. LRP-mediated uptake of Tat was followed by translocation to the neuronal nucleus. Furthermore, the binding of Tat to LRP resulted in substantial inhibition of neuronal binding, uptake and degradation of physiological ligands for LRP, including alpha2-macroglobulin, apolipoprotein E4, amyloid precursor protein and amyloid beta-protein. In a model of macaques infected with a chimeric strain of simian-human immunodeficiency virus, increased staining of amyloid precursor protein was associated with Tat expression in the brains of simian-human immunodeficiency virus-infected macaques with encephalitis. These results indicate that HIV-1 Tat may mediate HIV-1-induced neuropathology through a pathway involving disruption of the metabolic balance of LRP ligands and direct activation of neuronal genes.
Collapse
Affiliation(s)
- Y Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Vacuolation in cellular organelles within the central nervous system is a common manifestation of oxidative injury. We found that the spongiform vacuolation observed in PVC-211 murine leukemia virus (PVC-MuLV) neurodegeneration was associated with oxidative damage as detected by immunoreactivity for 3-nitrotyrosine and protein carbonyl groups. This oxidative injury was present in brain before or concomitant with the appearance of activated microglia, vacuolation, and gliosis that characterize PVC-MuLV neuropathology. Treatment of infected F344 rat pups with the antioxidant vitamin E transiently protected and prolonged the latency of PVC-MuLV neurodegeneration. Taken together, these findings implicate oxidative damage and lipid peroxidation in the pathogenesis of PVC-MuLV neurodegeneration. This animal model may be useful for studies of mechanisms and potential therapies for progressive neurodegeneration following a well-defined insult.
Collapse
Affiliation(s)
- S G Wilt
- Research Service, Department of Veterans Affairs Medical Center, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
48
|
Mayne M, Holden CP, Nath A, Geiger JD. Release of calcium from inositol 1,4,5-trisphosphate receptor-regulated stores by HIV-1 Tat regulates TNF-alpha production in human macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6538-42. [PMID: 10843712 DOI: 10.4049/jimmunol.164.12.6538] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 protein Tat is neurotoxic and increases macrophage and microglia production of TNF-alpha, a cytopathic cytokine linked to the neuropathogenesis of HIV dementia. Others have shown that intracellular calcium regulates TNF-alpha production in macrophages, and we have shown that Tat releases calcium from inositol 1,4, 5-trisphosphate (IP3) receptor-regulated stores in neurons and astrocytes. Accordingly, we tested the hypothesis that Tat-induced TNF-alpha production was dependent on the release of intracellular calcium from IP3-regulated calcium stores in primary macrophages. We found that Tat transiently and dose-dependently increased levels of intracellular calcium and that this increase was blocked by xestospongin C, pertussis toxin, and by phospholipase C and type 1 protein kinase C inhibitors but not by protein kinase A or phospholipase A2 inhibitors. Xestospongin C, BAPTA-AM, U73122, and bisindolylmalemide significantly inhibited Tat-induced TNF-alpha production. These results demonstrate that in macrophages, Tat-induced release of calcium from IP3-sensitive intracellular stores and activation of nonconventional PKC isoforms play an important role in Tat-induced TNF-alpha production.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium Channels/physiology
- Calcium Signaling/immunology
- Cells, Cultured
- Dose-Response Relationship, Immunologic
- Estrenes/pharmacology
- Gene Products, tat/physiology
- HIV-1/physiology
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Fluid/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Pertussis Toxin
- Pyrrolidinones/pharmacology
- Receptors, Cytoplasmic and Nuclear/physiology
- Time Factors
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/biosynthesis
- Type C Phospholipases/physiology
- Virulence Factors, Bordetella/pharmacology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- M Mayne
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
49
|
Haughey NJ, Holden CP, Nath A, Geiger JD. Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 1999; 73:1363-74. [PMID: 10501179 DOI: 10.1046/j.1471-4159.1999.0731363.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.
Collapse
Affiliation(s)
- N J Haughey
- Department of Pharmacology and Therapeutics, University of Manitoba Faculty of Medicine, Winnipeg, Canada
| | | | | | | |
Collapse
|
50
|
Mattson MP, Duan W, Chan SL, Camandola S. Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J Mol Neurosci 1999; 13:17-30. [PMID: 10691289 DOI: 10.1385/jmn:13:1-2:17] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostate apoptosis response-4 (Par-4) is a 38-kDa protein initially identified as the product of a gene upregulated in prostate tumor cells undergoing apoptosis. Par-4 contains both a death domain and a leucine zipper domain, and has been shown to interact with several proteins known to modulate apoptosis, including protein kinase Czeta, Bcl-2, and caspase-8. A rapid increase in Par-4 levels occurs in neurons undergoing apoptosis in a variety of paradigms, including trophic factor withdrawal, and exposure to oxidative and metabolic insults. Par-4, which can be induced at the translational level, acts at an early stage of the apoptotic cascade prior to caspase activation and mitochondrial dysfunction. The mechanism whereby Par-4 promotes apoptosis may involve inhibition of the antiapoptotic transcription factor NF-kappaB and suppression of Bcl-2 expression and/or function. Studies of postmortem tissues from patients and animal models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis (ALS), and HIV encephalitis, have documented increased levels of Par-4 in vulnerable neurons. Manipulations that block Par-4 expression or function prevent neuronal cell death in models of each disorder, suggesting a critical role for Par-4 in the neurodegenerative process. Interestingly, Par-4 levels rapidly increase in synaptic terminals following various insults, and such local increases in Par-4 levels appear to play important roles in synaptic dysfunction and degeneration. A better understanding of the molecular and cellular biology of Par-4 will help clarify mechanisms of neuronal apoptosis, and may lead to the development of novel preventative and therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|