1
|
van Dommelen E, Des Rosiers L, Crafton E, Hull NM. Microcystins are present in water treatment plant residuals and are impacted by extraction and quantification methodology. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39324740 DOI: 10.1080/09593330.2024.2402098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Microcystins (MCs), a toxin produced by some species of the photosynthetic autotrophic cyanobacteria, are the most studied and monitored cyanotoxin in water. Water treatment plant (WTP) residuals are the byproduct of water treatment consisting of solids removed from WTP processes and have been shown to contain cyanobacterial cells. However, the presence of MCs in WTP residuals has not been systematically demonstrated. Samples from four different WTPs across the United States were used to quantify MCs in residuals while assessing extraction and quantification methods adapted from water samples for solid matrices. MCs were present in 100% of samples. MC-LA was the most prevalent variant in these samples (70.05% of MCs quantified by UPLC-PDA). Natural degradation observed in a WTP storage lagoon was also investigated to determine the impact of physical, chemical, and biological processes on MC concentrations in high-biomass residuals. This study demonstrates that residuals of various characteristics across the United States contain MCs, and no one method was found to maximize results consistently across all samples. Cyanotoxins accumulating in WTP residuals are a growing concern. Implications of this work can help regulations and future studies of potential reuse applications and understanding of potential ecological significance of MCs accumulating in WTP residuals.
Collapse
Affiliation(s)
- Emma van Dommelen
- Ohio State University College of Engineering, Columbus, OH, USA
- Hazen and Sawyer, Columbus, OH, USA
| | | | | | - Natalie M Hull
- Ohio State University College of Engineering, Columbus, OH, USA
| |
Collapse
|
2
|
Hu X, Wang Z, Ye X, Xie P, Liu Y. Analyzing MC-LR distribution characteristics in natural lakes by a novel fluorescence technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123123. [PMID: 38081380 DOI: 10.1016/j.envpol.2023.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
The death of aquatic and terrestrial organisms caused by cyanobacterial blooms has been a topic of considerable concern since the 19th century. Microcystin-LR (MC-LR) produced by cyanobacterial blooms threaten natural ecosystems and human health. Therefore, establishing an effective monitoring and early warning system to detect MC-LR in water bodies is crucial. However, rapidly and intuitively assessing the distribution traits of MC-LR in lakes is a challenging task due to the complexities and expenses associated with conventional detection methods. To overcome these technical limitations, we introduce a novel and effective method for evaluating the distribution of MC-LR in lakes. This method is achieved by using a fluorescence probe (BAD) technology, marking the first application of this technology in evaluating the distribution of MC-LR in natural lake environments. The probe BAD is endowed with unique functions through clever functionalization modification. Experimental results exhibit that BAD has different fluorescence signals at various lake sampling points. The correlation analysis of fluorescence data and physicochemical indicators determines that the fluorescence data of the probe exhibit good correlation with MC-LR, implying that BAD is capable of detecting MC-LR in lakes. Moreover, the introduction of fluorescence technology to achieve the intuitive distribution of MC-LR in the entire plateau lake. This study provides a new method for evaluating the distribution of MC-LR in plateau lakes. It opens a new avenue for exploring the relationship between cyanobacterial blooms and MC-LR in natural waters.
Collapse
Affiliation(s)
- Xiangyu Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Xiao Ye
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
3
|
Lee M, Kim SH, Kim D, Kim HJ. Rapid and Easy Detection of Microcystin-LR Using a Bioactivated Multi-Walled Carbon Nanotube-Based Field-Effect Transistor Sensor. BIOSENSORS 2024; 14:37. [PMID: 38248414 PMCID: PMC10813581 DOI: 10.3390/bios14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
In this study, we developed a multi-walled carbon nanotube (MWCNT)-based field-effect transistor (MWCNT-FET) sensor with high sensitivity and selectivity for microcystin-LR (MC-LR). Carboxylated MWCNTs were activated with an MC-LR-targeting aptamer (MCTA). Subsequently the bioactivated MWCNTs were immobilized between interdigitated drain (D) and source (S) electrodes through self-assembly. The top-gated MWCNT-FET sensor was configured by dropping the sample solution onto the D and S electrodes and immersing a Ag/AgCl electrode in the sample solution as a gate (G) electrode. We believe that the FET sensor's conduction path arises from the interplay between the MCTAs, with the applied gate potential modulating this path. Using standard instruments and a personal computer, the sensor's response was detected in real-time within a 10 min time frame. This label-free FET sensor demonstrated an impressive detection capability for MC-LR in the concentration range of 0.1-0.5 ng/mL, exhibiting a lower detection limit of 0.11 ng/mL. Additionally, the MWCNT-FET sensor displayed consistent reproducibility, a robust selectivity for MC-LR over its congeners, and minimal matrix interferences. Given these attributes, this easily mass-producible FET sensor is a promising tool for rapid, straightforward, and sensitive MC-LR detection in freshwater environments.
Collapse
Affiliation(s)
- Myeongsoon Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea; (M.L.); (D.K.)
| | - Seong H. Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA;
| | - Don Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea; (M.L.); (D.K.)
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea; (M.L.); (D.K.)
| |
Collapse
|
4
|
Alba Posse EJ, González C, Carriquiriborde P, Nadra A, Gasulla J. Optimization and validation of a protein phosphatase inhibition assay for accessible microcystin detection. Talanta 2023; 255:124174. [PMID: 36608426 DOI: 10.1016/j.talanta.2022.124174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022]
Abstract
The presence of cyanobacterial toxins in freshwater constitutes an increasing public health concern, especially affecting developing countries where the high cost of available methods makes monitoring programs difficult. The phosphatase inhibition assay (PPIA) is a sensitive method with low instrument requirements that allows the quantification of the most frequent cyanotoxins, microcystins (MCs). In this work, we implemented a PPIA, starting from Protein Phosphatase 1 (PP1) expression up to the validation with samples of algal blooms from Argentina. To do this, we optimized the expression and lyophilization of PP1, and the assay conditions. Also, we included robustness and possible interference analysis. We evaluated the most widely used cyanobacterial lysis methods and determined that heating for 15 min at 95 °C is simple and adequate for this assay. Then, we performed MC spikes recovery assays on water samples from three dams from Argentina, resulting in a recovery ranging from 77 to 115%. The limit of detection (LOD) was 0.4 μg/L and the linear range is 0.4 μg/L - 5 μg/L. Finally, we evaluated 65 environmental samples where MCs was measured by ELISA test containing from 0 μg/L to 625 μg/L. The PPIA showed excellent correlation (Pearson correlation coefficient = 0.967), no false negative and no false positives above the 1 μg/L WHO guideline (0.11 false positive rate). In conclusion, we optimized and validated a PPIA to be an effective and accessible alternative to available commercial tests.
Collapse
Affiliation(s)
- Ezequiel Jorge Alba Posse
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Carolina González
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Universidad de Buenos Aires, Argentina; Centro de investigaciones, Agua y Saneamientos Argentinos, CABA, Argentina
| | - Pedro Carriquiriborde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina; Centro de Investigaciones Del Medio Ambiente (CIM),Universidad Nacional de la Plata-CONICET, La Plata, Argentina
| | - Alejandro Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Javier Gasulla
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina; Centro de Investigaciones Del Medio Ambiente (CIM),Universidad Nacional de la Plata-CONICET, La Plata, Argentina.
| |
Collapse
|
5
|
Turner AD, Beach DG, Foss A, Samdal IA, Løvberg KLE, Waack J, Edwards C, Lawton LA, Dean KJ, Maskrey BH, Lewis AM. A Feasibility Study into the Production of a Mussel Matrix Reference Material for the Cyanobacterial Toxins Microcystins and Nodularins. Toxins (Basel) 2022; 15:27. [PMID: 36668847 PMCID: PMC9867187 DOI: 10.3390/toxins15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Microcystins and nodularins, produced naturally by certain species of cyanobacteria, have been found to accumulate in aquatic foodstuffs such as fish and shellfish, resulting in a risk to the health of the seafood consumer. Monitoring of toxins in such organisms for risk management purposes requires the availability of certified matrix reference materials to aid method development, validation and routine quality assurance. This study consequently targeted the preparation of a mussel tissue reference material incurred with a range of microcystin analogues and nodularins. Nine targeted analogues were incorporated into the material as confirmed through liquid chromatography with tandem mass spectrometry (LC-MS/MS), with an additional 15 analogues detected using LC coupled to non-targeted high resolution mass spectrometry (LC-HRMS). Toxins in the reference material and additional source tissues were quantified using LC-MS/MS, two different enzyme-linked immunosorbent assay (ELISA) methods and with an oxidative-cleavage method quantifying 3-methoxy-2-methyl-4-phenylbutyric acid (MMPB). Correlations between the concentrations quantified using the different methods were variable, likely relating to differences in assay cross-reactivities and differences in the abilities of each method to detect bound toxins. A consensus concentration of total soluble toxins determined from the four independent test methods was 2425 ± 575 µg/kg wet weight. A mean 43 ± 9% of bound toxins were present in addition to the freely extractable soluble form (57 ± 9%). The reference material produced was homogenous and stable when stored in the freezer for six months without any post-production stabilization applied. Consequently, a cyanotoxin shellfish reference material has been produced which demonstrates the feasibility of developing certified seafood matrix reference materials for a large range of cyanotoxins and could provide a valuable future resource for cyanotoxin risk monitoring, management and mitigation.
Collapse
Affiliation(s)
- Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Amanda Foss
- Greenwater Laboratories, 205 Zeagler Drive, Suite 302, Palatka, FL 32177, USA
| | | | | | - Julia Waack
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Linda A. Lawton
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Benjamin H. Maskrey
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| |
Collapse
|
6
|
He Q, Wang W, Xu Q, Liu Z, Teng J, Yan H, Liu X. Microcystins in Water: Detection, Microbial Degradation Strategies, and Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013175. [PMID: 36293755 PMCID: PMC9603262 DOI: 10.3390/ijerph192013175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 05/12/2023]
Abstract
Microcystins are secondary metabolites produced by some cyanobacteria, a class of cyclic heptapeptide toxins that are stable in the environment. Microcystins can create a variety of adverse health effects in humans, animals, and plants through contaminated water. Effective methods to degrade them are required. Microorganisms are considered to be a promising method to degrade microcystins due to their high efficiency, low cost, and environmental friendliness. This review focuses on perspectives on the frontiers of microcystin biodegradation. It has been reported that bacteria and fungi play an important contribution to degradation. Analysis of the biodegradation mechanism and pathway is an important part of the research. Microcystin biodegradation has been extensively studied in the existing research. This review provides an overview of (1) pollution assessment strategies and hazards of microcystins in water bodies and (2) the important contributions of various bacteria and fungi in the biodegradation of microcystins and their degradation mechanisms, including mlr gene-induced (gene cluster expressing microcystinase) degradation. The application of biodegradable technology still needs development. Further, a robust regulatory oversight is required to monitor and minimize MC contamination. This review aims to provide more references regarding the detection and removal of microcystins in aqueous environments and to promote the application of biodegradation techniques for the purification of microcystin-contaminated water.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Yan
- Correspondence: (H.Y.); (X.L.)
| | | |
Collapse
|
7
|
Hua S, Chen J, Wu L, Yu X, Ye J, Li Y, Zhu Y, Tian F. The monthly variation tendency of microcystin-LR levels in the Huangpu River (China) by applications of ELISA and HPLC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56876-56884. [PMID: 35347625 DOI: 10.1007/s11356-022-19791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, the contents of microcystin-LR (MC-LR) of Microcystis aeruginosa cultures in the laboratory and natural water samples from the Huangpu River in different seasons were detected through enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. Excellent correlation between the two methods was obtained (R2 > 0.99). ELISA was a reliable and simple method with high reproducibility (coefficient of variation < 25%) and satisfactory recovery for the monitoring of low levels of MC-LR. MC-LR concentrations in Huangpu River varied with the seasonal variation, which peaked in August with the temperature over 30 °C and then gradually declined with the decreasing temperature after August. The highest MC-LR concentration in the Huangpu River was below the WHO drinking water quality standard (1 µg/L). These results indicated that warm temperature accelerated the MC-LR synthesis and release, and it is necessary to regularly monitor the MC-LR levels, especially during the high algae period in summer. ELISA can be applied to detect the low levels of MC-LR in the field without complex treatment, avoiding the samples from denaturation and degradation during the transportation. Hence, ELISA is a better alternative of HPLC when HPLC is unavailable, especially when rapid testing is required in routine MC-LR analysis.
Collapse
Affiliation(s)
- Sijia Hua
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawen Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
- Program of Environmental Toxicology, University of California, Riverside, CA, 92521, USA
| | - Xinyue Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yongqiang Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
8
|
Oh KH, Beak KM, Shin Y, Cho YC. Assessing the microcystins concentration through optimized protein phosphatase inhibition assay in environmental samples. J Microbiol 2022; 60:602-609. [DOI: 10.1007/s12275-022-2020-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
|
9
|
Sundaravadivelu D, Sanan TT, Venkatapathy R, Mash H, Tettenhorst D, DAnglada L, Frey S, Tatters AO, Lazorchak J. Determination of Cyanotoxins and Prymnesins in Water, Fish Tissue, and Other Matrices: A Review. Toxins (Basel) 2022; 14:toxins14030213. [PMID: 35324710 PMCID: PMC8949488 DOI: 10.3390/toxins14030213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations. Identifying and quantifying cyanotoxins in surface waters, fish tissue, organs, and other matrices are crucial for risk assessment and for ensuring quality of food and water for consumption and recreational uses. This paper also summarizes currently available tissue extraction, preparation, and detection methods mentioned in previous studies that have quantified toxins in complex matrices. The structural diversity and complexity of many cyanobacterial and algal metabolites further impede accurate quantitation and structural confirmation for various cyanotoxins. Liquid chromatography–triple quadrupole mass spectrometer (LC–MS/MS) to enhance the sensitivity and selectivity of toxin analysis has become an essential tool for cyanotoxin detection and can potentially be used for the concurrent analysis of multiple toxins.
Collapse
Affiliation(s)
| | - Toby T. Sanan
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
- Correspondence: (T.T.S.); (J.L.); Tel.: +1-513-569-7076 (J.L.)
| | | | - Heath Mash
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
| | - Dan Tettenhorst
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
| | - Lesley DAnglada
- Office of Water, Science and Technology, U.S. EPA, Washington, DC 20004, USA; (L.D.); (S.F.)
| | - Sharon Frey
- Office of Water, Science and Technology, U.S. EPA, Washington, DC 20004, USA; (L.D.); (S.F.)
| | - Avery O. Tatters
- Center for Environmental Measurement and Modeling, U.S. EPA, Gulf Breeze, FL 32561, USA;
| | - James Lazorchak
- Center for Environmental Measurement and Modeling, U.S. EPA, Cincinnati, OH 45268, USA
- Correspondence: (T.T.S.); (J.L.); Tel.: +1-513-569-7076 (J.L.)
| |
Collapse
|
10
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|
11
|
Blagojević D, Babić O, Kaišarević S, Stanić B, Mihajlović V, Davidović P, Marić P, Smital T, Simeunović J. Evaluation of cyanobacterial toxicity using different biotests and protein phosphatase inhibition assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49220-49231. [PMID: 33932210 DOI: 10.1007/s11356-021-14110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria are prolific producers of numerous toxic compounds, among which microcystins (hepatotoxins) are the most frequently found. Cyanobacterial bloom in freshwaters is an increasing problem, and there is still a need for rapid and reliable methods for the detection of toxic cyanobacterial samples. In the present study, the toxicity of crude extracts of 11 cyanobacterial strains from different genera has been assessed on two cell lines (human hepatocellular carcinoma HepG2 and rainbow trout (Oncorhynchus mykiss) liver-derived RTL-W1 cells), crustaceans (Daphnia magna and Artemia salina), and zebrafish (Danio rerio) embryos, as well as by protein phosphatase 1 (PP1) inhibition assay and ELISA test to determine whether the toxicity could be due to the presence of hepatotoxins/microcystins. All the tested strains exhibited toxicity on HepG2 cell line (IC50 from 35 to 702 μg mL-1), including Arthrospira (Spirulina) strains, while toxicity against the RTL-W1 cells was detected only in the positive reference Microcystis PCC 7806 and Nostoc 2S9B. Tested strains expressed higher toxicity to D. magna and zebrafish embryos in comparison to A. salina, whereby Nostoc LC1B and Nostoc S8 belonged to the most toxic strains. The PP1-inhibiting compounds have been detected by PP1 assay only in four strains (Microcystis PCC 7806, Oscillatoria K3, Nostoc LC1B, and Nostoc S8), indicating that their toxic potency can be attributed to these compounds. On the other hand, very low levels of microcystins, as confirmed by ELISA, were insufficient to explain toxicity and different toxic potencies of tested cyanobacteria. Results presented in this study suggested HepG2 cell line as a particularly suitable model for cyanobacterial toxicity assessment. In addition, they highlight terrestrial cyanobacterial strains as potent producers of toxic compounds.
Collapse
Affiliation(s)
- Dajana Blagojević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Olivera Babić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Sonja Kaišarević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Bojana Stanić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Varja Mihajlović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Petar Davidović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Petra Marić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, 10000, Zagreb, Croatia
| | - Tvrtko Smital
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, 10000, Zagreb, Croatia
| | - Jelica Simeunović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia.
| |
Collapse
|
12
|
Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis. Toxins (Basel) 2021; 13:toxins13090596. [PMID: 34564601 PMCID: PMC8473049 DOI: 10.3390/toxins13090596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (<50%), although it provided effective release and recovery of >80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits.
Collapse
|
13
|
Liu J, Xing Y, Zhou X, Chen GY, Shi H. Light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor for Microcystin-LR. Biosens Bioelectron 2021; 176:112902. [PMID: 33341317 DOI: 10.1016/j.bios.2020.112902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
A novel U-shaped fiber-optic evanescent-wave fluorescent immunosensor was designed that exploits light-sheet excitation of skew rays in a passive fiber for sensitive microcystin-LR (MC-LR) detection in real-time. In particular, a light sheet comprising a thin plane of light can be concentrated into exciting the optimum ray group, resulting in enhanced interaction between light and fluorophores. Meanwhile, skew rays excited by transmitting light into an optical fiber with an angle offset allow a much higher number of total-internal-reflections with increased interaction length along the fiber interface, which strengthens the light-matter interactions. Under the optimal angle offset, the proposed evanescent wave fluorescent immunosensor is the first demonstration of integrating light-sheet skew rays and a U-shaped fiber-optic probe for enhanced sensitivity. The results show that fluorescence sensitivity of the U-shaped fiber-optic probe with light-sheet skew rays excitation is 16 times higher than that of collimated skew rays excitation. Combined with this newly designed light-sheet skew rays enhanced U-shaped fiber-optic fluorescent immunosensor, a sensitive and real-time MC-LR detection method was established based on the indirect competitive immunoassay principle. Real environmental water samples spiked with MC-LR were determined by the immunosensor with recovery rates between 85% and 112%. The present system could be an alternative tool for the on-site environmental monitoring, in-field food safety assurance and clinical diagnostics. It also advances the fiber-optic sensors field in terms of experimental design.
Collapse
Affiliation(s)
- Jinchuan Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunpeng Xing
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - George Y Chen
- Laser Physics and Photonic Devices Laboratories, UniSA STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Miller TR, Xiong A, Deeds JR, Stutts WL, Samdal IA, Løvberg KE, Miles CO. Microcystin Toxins at Potentially Hazardous Levels in Algal Dietary Supplements Revealed by a Combination of Bioassay, Immunoassay, and Mass Spectrometric Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8016-8025. [PMID: 32597644 DOI: 10.1021/acs.jafc.0c02024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are hepatotoxic heptapeptides produced by cyanobacteria and are potent inhibitors of protein phosphatases in eukaryotic cells. Algae for dietary supplements are harvested from outdoor environments and can be contaminated with MCs. Monitoring of MCs in these products is necessary but is complicated by their structural diversity (>250 congeners). We used a combination of protein phosphatase inhibition assay (PPIA), ELISA, LC-MS/MS, and nontargeted LC-high-resolution MS (LC-HRMS) with thiol derivatization to characterize the total MCs in 18 algal dietary supplements. LC-MS/MS revealed that some products contained >40 times the maximum acceptable concentration (MAC) of 1 μg/g MCs, but ELISA and PPIA showed up to 50-60 times the MAC. LC-HRMS identified all congeners targeted by LC-MS/MS plus MC-(H4)YR contributing up to 18% of total MCs, along with numerous minor MCs. Recommended dosages of the products greater than the MAC would result in 2.6-75 times the tolerable daily intake, presenting a risk to consumers. This study confirms the need for monitoring these products and presents strategies to fully describe the total MC pool in environmental samples and algal products.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Ame Xiong
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jonathan R Deeds
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740-3835, United States
| | - Whitney L Stutts
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740-3835, United States
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax B3H 3Z1, NS, Canada
| |
Collapse
|
16
|
Synthesis of metal-organic framework-5@chitosan material for the analysis of microcystins and nodularin based on ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1623:461198. [PMID: 32505287 DOI: 10.1016/j.chroma.2020.461198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022]
Abstract
Microcystins (MCs) and nodularin (NOD) are tumor promoters produced by cyanobacteria and present in surface water. In this work, a novel mesoporous metal-organic framework-5@chitosan (MOF-5@CS) material was synthesized and applied for the enrichment of MCs and NOD in water and fish samples. The mesoporous MOF-5@CS material was firstly synthesized via a one-step hydrothermal method, and the chitosan was combined with MOF-5 via chemical bonding assembly. As a new adsorbent, the as-synthesized material was found having a large specific surface area and good thermal stability. Under the optimized conditions, MCs and NOD were enriched by the MOF-5@CS material and detected by ultra-performance liquid chromatography-tandem mass spectrometry. The limit of detection of the new method for MCs and NOD were in the range of 0.0018-0.077 ng/mL. The value of relative standard deviation for repeatability were 2.69-6.30%, and the recovery of the analytes ranged from 84.36% to 118.51%. Compared with other reported method for MCs and NOD detection in complex matrices, better adsorption performance for MCs and NOD were obtained by our new method, and the sensitivity of MCs-RR and NOD were improved nearly 20 times and 30 times, respectively.
Collapse
|
17
|
Kumar P, Rautela A, Kesari V, Szlag D, Westrick J, Kumar S. Recent developments in the methods of quantitative analysis of microcystins. J Biochem Mol Toxicol 2020; 34:e22582. [PMID: 32662914 DOI: 10.1002/jbt.22582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akhil Rautela
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vigya Kesari
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - David Szlag
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
18
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
19
|
Wang H, Ramnani P, Pham T, Villarreal CC, Yu X, Liu G, Mulchandani A. Asymptomatic Diagnosis of Huanglongbing Disease Using Metalloporphyrin Functionalized Single-Walled Carbon Nanotubes Sensor Arrays. Front Chem 2020; 8:362. [PMID: 32478033 PMCID: PMC7237200 DOI: 10.3389/fchem.2020.00362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
Porphyrins, with or without metal ions (MPs), have been explored and applied in optical and electrochemical sensor fields owing to their special physicochemical properties. The presence of four nitrogen atoms at the centers of porphyrins means that porphyrins chelate most metal ions, which changes the binding ability of MPs with gas molecules via non-specific binding. In this article, we report hybrid chemiresistor sensor arrays based on single-walled carbon nanotubes (SWNTs) non-covalently functionalized with six different MPs using the solvent casting technique. The characteristics of MP-SWNTs were investigated through various optical and electrochemical methods, including UV spectroscopy, Raman, atomic force microscopy, current-voltage (I-V), and field-effect transistor (FET) measurement. The proposed sensor arrays were employed to monitor the four VOCs (tetradecene, linalool, phenylacetaldehyde, and ethylhexanol) emitted by citrus trees infected with Huanglongbing (HLB), of which the contents changed dramatically at the asymptomatic stage. The sensitivity to VOCs could change significantly, exceeding the lower limits of the SWNT-based sensors. For qualitative and quantitative analysis of the four VOCs, the data collected by the sensor arrays were processed using different regression models including partial least squares (PLS) and an artificial neural network (ANN), which further offered a diagnostic basis for Huanglongbing disease at the asymptomatic stage.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education and Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture China Agricultural University, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, United States
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Pankaj Ramnani
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, United States
| | - Tung Pham
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, United States
| | - Claudia Chaves Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Centro de Investigación y Extensión de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Xuejun Yu
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, United States
| | - Gang Liu
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education and Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture China Agricultural University, Beijing, China
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Bogard MJ, Vogt RJ, Hayes NM, Leavitt PR. Unabated Nitrogen Pollution Favors Growth of Toxic Cyanobacteria over Chlorophytes in Most Hypereutrophic Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3219-3227. [PMID: 32077281 DOI: 10.1021/acs.est.9b06299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human release of reactive nitrogen (N) to the environment has increased 10-fold since 1860 and is expected to increase by a further ∼75% by 2050. Much of this N enters phosphorus (P)-rich, eutrophic lakes in agricultural and urbanized watersheds. While N pollution of eutrophic lakes can promote toxic cyanobacterial growth, some cases of extreme N loading have led to the dominance of chlorophytes (green algae). As N loads required to shift communities from cyanobacterial to chlorophyte dominance are unclear, we experimentally tested phytoplankton responses to a gradient of N loading in a P-rich lake. Low-to-moderate doses (1-3 mg N L-1 week-1) promoted toxic cyanobacterial dominance and elevated concentrations of the hepatotoxin microcystin. Conversely, loads characteristic of pure urban or agricultural effluents (up to 18 mg N L-1 week-1) led to the dominance of chlorophytes over cyanobacteria and lower microcystin content. This indicates that N loads needed to sustain chlorophyte dominance are uncommon, likely restricted to select shallow lakes directly exposed to urban or agricultural effluents. As most N pollution regimes in P-rich lakes will favor toxic cyanobacterial dominance, restricting future N pollution will help curb further cyanobacterial dominance in lakes both directly and by constraining the capacity for future P loading and climate warming to drive cyanobacterial growth.
Collapse
Affiliation(s)
- Matthew J Bogard
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - Richard J Vogt
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nicole M Hayes
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - Peter R Leavitt
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, SK S4S 0A2, Canada
- Institute for Global Food Security, Queen's University Belfast, Belfast, Antrim BT9 5DL, U.K
| |
Collapse
|
21
|
Thuret-Benoist H, Pallier V, Feuillade-Cathalifaud G. Quantification of microcystins in natural waters by HPLC-UV after a pre-concentration step: validation of the analytical performances and study of the interferences. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103223. [PMID: 31401407 DOI: 10.1016/j.etap.2019.103223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
A method for the determination of microcystins concentrations (MC-LR, MC-RR, MC-YR) in natural water samples was optimized using High Performance Liquid Chromatography with UV/PDA detection after Solid Phase Extraction. Solid Phase Extraction is needed to clean natural sample and concentrate pollutant. The method was validated by evaluation of specificity and repeatability. Average recoveries in ultra-pure grade water were better than 95% with Relative Standard Deviation values lower than 4%. Matrix interferences, as pH, conductivity and organic matter content, were tested. pH must be fixed between 6 and 8 to avoid under-estimation or over-estimation and conductivity did not interfere with the analytical method. Organic Matter content negatively impacted microcystins quantification unlike organic matter characteristics. It over-estimated the concenration by an average of 19%. Then, the developed method was applied to study the occurrence of microcystins in Pigeard pond (France). These results constitute the first report on the concentration levels and seasonal variations of microcystins in this resource water.
Collapse
Affiliation(s)
- Hélène Thuret-Benoist
- University of Limoges, PEREINE Laboratory, EA 7500, ENSIL-ENSCI, 16 rue Atlantis, 87068 Limoges Cedex, France
| | - Virginie Pallier
- University of Limoges, PEREINE Laboratory, EA 7500, ENSIL-ENSCI, 16 rue Atlantis, 87068 Limoges Cedex, France
| | | |
Collapse
|
22
|
Zhang Y, Zhu Z, Teng X, Lai Y, Pu S, Pang P, Wang H, Yang C, Barrow CJ, Yang W. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator. Talanta 2019; 202:279-284. [DOI: 10.1016/j.talanta.2019.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
23
|
An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement. Mikrochim Acta 2019; 186:435. [PMID: 31197617 DOI: 10.1007/s00604-019-3504-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/12/2019] [Indexed: 01/31/2023]
Abstract
The high-affinity region of a truncated aptamer was applied to the development of a sensitive method for the determination of microcystin-LR (MC-LR) using competitive displacement and molecular beacons. In this assay, the fluorophore and quencher labelled complementary sequences of the aptamer are hybridized with the truncated aptamer to form a fluorophore-quencher pair. In the presence of MC-LR, the aptamer duplex dissociates, and the fluorophore-quencher pair is separated. This turn leads to an increase in the yellow fluorescence which is best measured at excitation/emission wavelengths of 555/580 nm. One of the truncated aptamers showed a 50-fold increase in the affinity (0.93 nM) compared to the wild type aptamer (50 nM). The truncated sequence shows considerable cross-reactivity with L congeners but none with other congeners. The assay works in 0.5 to 200 nM MC-LR concentration range. It was applied to spiked tap water samples and gave recoveries around 95 ± 5%. Graphical abstract Schematic representation of a method for determination of microcystin-LR via fluorescence that is induced by competitive displacement of complementary DNA strands in a truncated dsDNA aptamer.
Collapse
|
24
|
Shen Q, Feng J, Wang J, Li S, Wang Y, Ma J, Wang H. Laser irradiation desorption of microcystins from protein complex in fish tissue and liquid chromatography-tandem mass spectrometry analysis. Electrophoresis 2019; 40:1805-1811. [PMID: 31106441 DOI: 10.1002/elps.201900141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/07/2022]
Abstract
Microcystins are a group of cyanotoxins which interact with the C-terminal region of PP1 and PP2A proteins, so denaturation and inactivation are necessary for breaking covalent binding to release microcystins. In this study, a novel extraction method was developed by laser irradiation desorption of microcystins from fish protein. The sample was mixed with aqueous methanol and irradiated by a 450 nm laser, with an optimized value of laser power density at 8 W and exposure time at 5 min. ThenLC-MS/MS was applied for the determination of microcystins in fish extracts. The ionization behaviors of microcystins were investigated firstly, and doubly charged microcystins were selected as precursor ions in multiple reaction monitoring scan for quantification. This proposed quantitative method was well validated in terms of selectivity, linearity, sensitivity, accuracy, recovery, and stability. The successful application of this LC-MS/MS method showed its ability for the analysis of microcystins in low concentration, and it would be of significant interest for environmental and food safety applications to ensure the safety of fish and related products.
Collapse
Affiliation(s)
- Qing Shen
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P. R. China.,Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Junli Feng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jie Wang
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Shiyan Li
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou, P. R. China
| | - Yang Wang
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou, P. R. China
| | - Jianfeng Ma
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P. R. China
| |
Collapse
|
25
|
Picardo M, Filatova D, Nuñez O, Farré M. Recent advances in the detection of natural toxins in freshwater environments. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Brophy MJ, Trueman BF, Park Y, Betts RA, Gagnon GA. Fluorescence Spectra Predict Microcystin-LR and Disinfection Byproduct Formation Potential in Lake Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:586-594. [PMID: 30561985 DOI: 10.1021/acs.est.8b04139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Disinfection byproducts (DBPs) and algal toxins can be expensive to monitor and represent significant potential risks to human health. DBPs, including haloacetic acids and trihalomethanes, are possible or probable human carcinogens. Microcystin-LR-produced by cyanobacteria-is linked with various adverse health effects. Here we show that fluorescence spectra predict both microcystin-LR occurrence and DBP formation potential (DBPfp) in lake water. We compared models with either fluorescence spectra or a suite of water quality predictors as inputs. A regularized logistic regression model with fluorescence spectral inputs correctly classified 94% of test data with respect to microcystin-LR occurrence, with a 96% probability of correctly ranking a detect/nondetect pair. Regularized linear regression predicted DBPfp based on fluorescence inputs with a combined R2 of 0.83 on test data. A gradient-boosted classifier with seven water quality inputs was comparable in detecting microcystin-LR (91% correct), as was UV254 in predicting DBPfp (combined test R2 = 0.84), but no single parameter matched fluorescence spectra over both predictive tasks. Results highlight the potential for multiparameter monitoring via fluorescence spectroscopy, extending previous work on predicting DBPs alone. As a high-frequency monitoring tool, this approach could supplement mass spectrometric methods that may only be applicable at low frequency due to resource limitations.
Collapse
Affiliation(s)
- Michael J Brophy
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , Nova Scotia , B3H 4R2 Canada
| | - Benjamin F Trueman
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , Nova Scotia , B3H 4R2 Canada
| | - Yuri Park
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , Nova Scotia , B3H 4R2 Canada
| | - Rebecca A Betts
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , Nova Scotia , B3H 4R2 Canada
| | - Graham A Gagnon
- Department of Civil & Resource Engineering , Dalhousie University , Halifax , Nova Scotia , B3H 4R2 Canada
| |
Collapse
|
27
|
Bickman SR, Campbell K, Elliott C, Murphy C, O'Kennedy R, Papst P, Lochhead MJ. An Innovative Portable Biosensor System for the Rapid Detection of Freshwater Cyanobacterial Algal Bloom Toxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11691-11698. [PMID: 30208702 DOI: 10.1021/acs.est.8b02769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Harmful algal blooms in freshwater systems are increasingly common and present threats to drinking water systems, recreational waters, and ecosystems. A highly innovative simple to use, portable biosensor system (MBio) for the rapid and simultaneous detection of multiple cyanobacterial toxins in freshwater is demonstrated. The system utilizes a novel planar waveguide optical sensor that delivers quantitative fluorescent competitive immunoassay results in a disposable cartridge. Data are presented for the world's first duplex microcystin (MC)/cylindrospermopsin (CYN) assay cartridge using a combination of fluorophore-conjugated monoclonal antibodies as detector molecules. The on-cartridge detection limits of 20% inhibitory concentration (IC20) was 0.4 μg/L for MC and 0.7 μg/L for CYN. MC assay coverage of eight important MC congeners was demonstrated. Validation using 45 natural lake water samples from Colorado and Lake Erie showed quantitative correlation with commercially available laboratory-based enzyme linked immunosorbent assays. A novel cell lysis module was demonstrated using cyanobacteria cultures. Results show equivalent or better performance than the gold-standard but more tedious 3× freeze-thaw method, with >90% cell lysis for laboratory cultures. The MBio system holds promise as a versatile tool for multiplexed field-based cyanotoxin detection, with future analyte expansion including saxitoxin, anatoxin-a, and marine biotoxins.
Collapse
Affiliation(s)
- Sarah R Bickman
- MBio Diagnostics, Inc. , 5603 Arapahoe Ave , Boulder , Colorado 80303 , United States
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences , Queen's University, Belfast , Stranmillis Road , Belfast , United Kingdom , BT9 5AG
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences , Queen's University, Belfast , Stranmillis Road , Belfast , United Kingdom , BT9 5AG
| | - Caroline Murphy
- School of Biotechnology, National Centre for Sensor Research and Biomedical Diagnostics Institute , Dublin City University , Dublin 9 , Ireland
| | - Richard O'Kennedy
- School of Biotechnology, National Centre for Sensor Research and Biomedical Diagnostics Institute , Dublin City University , Dublin 9 , Ireland
| | - Philip Papst
- MBio Diagnostics, Inc. , 5603 Arapahoe Ave , Boulder , Colorado 80303 , United States
| | - Michael J Lochhead
- MBio Diagnostics, Inc. , 5603 Arapahoe Ave , Boulder , Colorado 80303 , United States
| |
Collapse
|
28
|
Złoch I, Hebel A, Mazur-Marzec H. Effect of crude extracts from Nodularia spumigena on round goby (Neogobius melanostomus). MARINE ENVIRONMENTAL RESEARCH 2018; 140:61-68. [PMID: 29861280 DOI: 10.1016/j.marenvres.2018.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Nodularia spumigena is a nitrogen-fixing filamentous cyanobacteria in the Baltic Sea. Nodularin (NOD), the hepatotoxic peptide produced by this cyanobacterium, accumulates in the organisms from different trophic levels. In this paper, the effects of N. spumigena cell extract on the round goby (Neogobius melanostomus) was investigated under laboratory conditions. This benthic fish species feed on mussels in which nodularin accumulation was well documented. In current study a sharp increase in the NOD concentration in analyzed organs was observed after 24 h (PPIA) after 72 h of exposure (LC/MS). To determine the direction and strength of the changes induced in the fish by the toxin, several biochemical markers of exposure such as concentration of glutathione and activities of catalase, guaiacol peroxidase and glutathione S-transferase were used. In analyzed organs (liver, gills and muscle) of the round goby, the activity of these enzymes were suppressed. Higher GSH/protein amount and CAT and POD activity in gills than in liver reflects the importance of gills in NOD entering into analyzed fish body when exposed to toxin. The results indicate that the round goby (Neogobius melanostomus) exposed to extracts from N. spumigena cells triggered a defense system in a time-dependent manner. The obtained results contribute to a better understanding of fish response to the presence of compounds produced by N. spumigena.
Collapse
Affiliation(s)
- Ilona Złoch
- Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agnieszka Hebel
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
29
|
Li D, Wu N, Tang S, Su G, Li X, Zhang Y, Wang G, Zhang J, Liu H, Hecker M, Giesy JP, Yu H. Factors associated with blooms of cyanobacteria in a large shallow lake, China. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:27. [PMID: 30148024 PMCID: PMC6096964 DOI: 10.1186/s12302-018-0152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Eutrophication of freshwater systems can result in blooms of phytoplankton, in many cases cyanobacteria. This can lead to shifts in structure and functions of phytoplankton communities adversely affecting the quality of drinking water sources, which in turn impairs public health. Relationships between structures of phytoplankton communities and concentrations of the toxicant, microcystin-leucine-arginine (MC-LR), have not been well examined in large shallow lakes. The present study investigated phytoplankton communities at seven locations from January to December of 2015 in Tai Lake, and relationships between structures and diversities of phytoplankton communities and water quality parameters, including concentrations of MC-LR and metals, were analyzed. RESULTS A total of 124 taxa of phytoplankton were observed, and the predominant taxa were Microcystis sp. and Dolichospermum flos-aquae of Cyanophyta and Planctonema sp. of Chlorophyta. The greatest diversities of phytoplankton communities, as indicated by species richness, Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices, were observed in spring. Furthermore, productivity of phytoplankton was significantly and negatively correlated with diversities. These results demonstrated that Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices of phytoplankton communities were significantly related to trophic status and overall primary productivity in Tai Lake. In addition, temperature of surface water, pH, permanganate index, biochemical oxygen demand, total phosphorus, arsenic, total nitrogen/total phosphorous ratio, and MC-LR were the main factors associated with structures of phytoplankton communities in Tai Lake. CONCLUSION The present study provided helpful information on phytoplankton community structure and diversity in Tai Lake from January to December of 2015. Our findings demonstrated that Simpson, Shannon-Wiener, the Berger and Parker, and the Pielou evenness indices could be used to assess and monitor for status and trends in water quality of Tai Lake. In addition, MC-LR was one of the main factors associated with structures of phytoplankton communities in Tai Lake. The findings may help to address important ecological questions about the impact of a changing environment on biodiversity of lake ecosystems and the control of algae bloom. Further studies are needed to explore the relationship between MC-LR and phytoplankton communities in the laboratory.
Collapse
Affiliation(s)
- Di Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Naicheng Wu
- Department of Hydrology and Water Resources Management, Kiel University, Kiel, 24118 Germany
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021 China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Xuwen Li
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Yong Zhang
- Jiangsu Environmental Monitoring Center, Nanjing, Jiangsu 210036 China
| | - Guoxiang Wang
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023 China
| | - Junyi Zhang
- Wuxi Environmental Monitoring Center, Wuxi, Jiangsu 214000 China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3 Canada
| | - John P. Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3 Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 China
| |
Collapse
|
30
|
Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination. Sci Rep 2018; 8:10686. [PMID: 30013209 PMCID: PMC6048102 DOI: 10.1038/s41598-018-28959-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 11/08/2022] Open
Abstract
In this work, we fabricated a novel graphene film composite biosensor for microcystin-LR detection as an alternative to time-consuming, expensive, non-portable and often skills-demanding conventional methods of analysis involved in water quality monitoring and assessment. Excellent linear correlation (R2 = 0.99) of the electron-transfer resistance was achieved over a wide range of microcystin-LR (MC-LR) concentration, i.e. 0.005–10 μg/L. As-prepared graphene film composite biosensors can specifically detect MC-LR with remarkable sensitivity and detection limit (2.3 ng/L) much lower than the World Health Organization (WHO) provisional guideline limit of microcystin-LR concentration (i.e. 1 μg/L) in different water sources. Their great potential can be attributed to large active surface area of graphene film and efficient charge transfer process enabled by their high conductivity. Developed graphene film composite biosensors were also successfully applied to determination of MC-LR in several environmental water samples with high detection recovery, which offers a promising possibility of large-scale manufacture of sensor tips due to their macroscopic free-standing nature, the scalable fabrication route and easily tunable size.
Collapse
|
31
|
Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material. J Chromatogr A 2018; 1560:1-9. [DOI: 10.1016/j.chroma.2018.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/30/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
|
32
|
Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar Drugs 2018; 16:md16070220. [PMID: 29949853 PMCID: PMC6070996 DOI: 10.3390/md16070220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanopeptolins (CPs) are one of the most frequently occurring cyanobacterial peptides, many of which are inhibitors of serine proteases. Some CP variants are also acutely toxic to aquatic organisms, especially small crustaceans. In this study, thirteen CPs, including twelve new variants, were detected in the cyanobacterium Nostoc edaphicum CCNP1411 isolated from the Gulf of Gdańsk (southern Baltic Sea). Structural elucidation was performed by tandem mass spectrometry with verification by NMR for CP962 and CP985. Trypsin and chymotrypsin inhibition assays confirmed the significance of the residue adjacent to 3-amino-6-hydroxy-2-piperidone (Ahp) for the activity of the peptides. Arginine-containing CPs (CPs-Arg²) inhibited trypsin at low IC50 values (0.24⁻0.26 µM) and showed mild activity against chymotrypsin (IC50 3.1⁻3.8 µM), while tyrosine-containing CPs (CPs-Tyr²) were selectively and potently active against chymotrypsin (IC50 0.26 µM). No degradation of the peptides was observed during the enzyme assays. Neither of the CPs were active against thrombin, elastase or protein phosphatase 1. Two CPs (CP962 and CP985) had no cytotoxic effects on MCF-7 breast cancer cells. Strong and selective activity of the new cyanopeptolin variants makes them potential candidates for the development of drugs against metabolic disorders and other diseases.
Collapse
|
33
|
Pandhal J, Siswanto A, Kuvshinov D, Zimmerman WB, Lawton L, Edwards C. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation. Front Microbiol 2018; 9:678. [PMID: 29675015 PMCID: PMC5895700 DOI: 10.3389/fmicb.2018.00678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD) reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min) destruction of two pure microcystins (MC-LR and MC-RR), together with removal of by-products even at low flow rate 1 L min−1 where bubble size was 0.56–0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR) removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min−1 flow rate compared to 1 L min−1. This lab-scale investigation demonstrates the potential of the novel plasma micro reactor with applications for in situ treatment of harmful algal blooms and cyanotoxins.
Collapse
Affiliation(s)
- Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Anggun Siswanto
- Vocational School, Diponegoro University, Semarang, Indonesia
| | - Dmitriy Kuvshinov
- School of Engineering and Computer Science, University of Hull, Kingston Upon Hull, United Kingdom
| | - William B Zimmerman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
34
|
Melnik S, Neumann AC, Karongo R, Dirndorfer S, Stübler M, Ibl V, Niessner R, Knopp D, Stoger E. Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:27-38. [PMID: 28421663 PMCID: PMC5785354 DOI: 10.1111/pbi.12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100-300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.
Collapse
Affiliation(s)
- Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Cathrine Neumann
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Ryan Karongo
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Sebastian Dirndorfer
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Martin Stübler
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University Munich, Munich, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
35
|
He X, Stanford BD, Adams C, Rosenfeldt EJ, Wert EC. Varied influence of microcystin structural difference on ELISA cross-reactivity and chlorination efficiency of congener mixtures. WATER RESEARCH 2017; 126:515-523. [PMID: 29017721 DOI: 10.1016/j.watres.2017.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is an antibody-based analytical method that has been widely applied in water treatment utilities for the screening of toxic cyanobacteria metabolites such as microcystins (MCs). However, it is unknown how the minor structural difference of MCs may impact their chlorination kinetics and measurement via ELISA method. It was found in this study that, regardless of the experimental conditions (n = 21), there was no MC-YR or MC-LY residual, while different removal rates of other MCs were observed (MC-RR > MC-LR > MC-LA ∼ MC-LF) as measured by liquid chromatography tandem mass spectrometry (LC-MS/MS), which was consistent with the relative reactivity of the amino acid variables with free chlorine. The removal of total MCs was generally lower as measured by ELISA than by LC-MS/MS. By incorporating both analytical results, existence of ADDA-containing byproducts or byproducts that had a higher sensitivity toward the ELISA kit was demonstrated, after excluding the contribution of the cross-reactivity of the parent MCs. It should be noted, however, that the cross-reactivities of MCs could be influenced not only by MC congeners, but also by other conditions such as mixtures and the applied ELISA kit.
Collapse
Affiliation(s)
- Xuexiang He
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| | - Benjamin D Stanford
- American Water, 1025 Laurel Oak Road, P.O. Box 1770, Voorhees, NJ 08043, United States
| | - Craig Adams
- Department of Civil Engineering, Saint Louis University, One N. Grand Blvd. St. Louis, MO 63103, United States
| | - Erik J Rosenfeldt
- Hazen and Sawyer, 4011 Westchase Blvd. Ste. 500, Raleigh, NC 27607, United States
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| |
Collapse
|
36
|
Jiang X, Lee S, Mok C, Lee J. Sustainable Methods for Decontamination of Microcystin in Water Using Cold Plasma and UV with Reusable TiO₂ Nanoparticle Coating. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050480. [PMID: 28475156 PMCID: PMC5451931 DOI: 10.3390/ijerph14050480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
Abstract
Microcystins (MCs) are a family of cyanotoxins and pose detrimental effects on human, animal, and ecological health. Conventional water treatment processes have limited success in removing MCs without producing harmful byproducts. Therefore, there is an urgent need for cost-effective and environmentally-friendly methods for treating MCs. The objective of this study was to develop sustainable and non-chemical-based methods for controlling MCs, such as using cold plasma and ultra violet (UV) light with titanium dioxide (TiO2) coating, which can be applied for diverse scale and settings. MCs, extracted from Microcystis aeruginosa, were treated with cold plasma or UV at irradiance of 1470 μW/cm2 (high) or 180 μW/cm2 (low). To assess synergistic effects, the outside of the UV treatment chamber was coated with nanoparticles (TiO2) prior to irradiation, which can be reused for a long time. The degradation efficiency of UV was enhanced by the reusable TiO2 coating at lower irradiance (70.41% [UV] vs. 79.61% [UV+TiO2], 120 min), but no significant difference was observed at higher irradiance. Cold plasma removed MCs rapidly under experimental conditions (92%, 120 min), indicating that it is a promising candidate for controlling MCs in water without generating harmful disinfection byproducts. It can be also easily and practically used in household settings during emergency situations.
Collapse
Affiliation(s)
- Xuewen Jiang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA.
| | - Seungjun Lee
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Chulkyoon Mok
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13557, Korea.
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA.
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13557, Korea.
| |
Collapse
|
37
|
Zhang W, Han C, Jia B, Saint C, Nadagouda M, Falaras P, Sygellou L, Vogiazi V, Dionysiou DD. A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens Bioelectron 2017; 91:664-672. [DOI: 10.1016/j.bios.2017.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
|
39
|
Quantitative determination by screening ELISA and HPLC-MS/MS of microcystins LR, LY, LA, YR, RR, LF, LW, and nodularin in the water of Occhito lake and crops. Anal Bioanal Chem 2016; 408:7699-7708. [DOI: 10.1007/s00216-016-9867-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
40
|
Production of monoclonal antibodies with broad specificity and development of an immunoassay for microcystins and nodularin in water. Anal Bioanal Chem 2016; 408:6037-44. [DOI: 10.1007/s00216-016-9692-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/29/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022]
|
41
|
Häggqvist K, Toruńska-Sitarz A, Błaszczyk A, Mazur-Marzec H, Meriluoto J. Morphologic, Phylogenetic and Chemical Characterization of a Brackish Colonial Picocyanobacterium (Coelosphaeriaceae) with Bioactive Properties. Toxins (Basel) 2016; 8:108. [PMID: 27077885 PMCID: PMC4848634 DOI: 10.3390/toxins8040108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022] Open
Abstract
Despite their cosmopolitan distribution, knowledge on cyanobacteria in the family Coelosphaeriaceae is limited. In this study, a single species culture of a coelosphaeran cyanobacterium isolated from a brackish rock pool in the Baltic Sea was established. The strain was characterized by morphological features, partial 16S rRNA sequence and nonribosomal oligopeptide profile. The bioactivity of fractionated extracts against several serine proteases, as well as protein-serine/threonine phosphatases was studied. Phylogenetic analyses of the strain suggested a close relationship with Snowella litoralis, but its morphology resembled Woronichinia compacta. The controversial morphologic and phylogenetic results demonstrated remaining uncertainties regarding species division in this cyanobacteria family. Chemical analyses of the strain indicated production of nonribosomal oligopeptides. In fractionated extracts, masses and ion fragmentation spectra of seven possible anabaenopeptins were identified. Additionally, fragmentation spectra of cyanopeptolin-like peptides were collected in several of the fractions. The nonribosomal oligopeptide profile adds another potential identification criterion in future inter- and intraspecies comparisons of coelosphaeran cyanobacteria. The fractionated extracts showed significant activity against carboxypeptidase A and trypsin. Inhibition of these important metabolic enzymes might have impacts at the ecosystem level in aquatic habitats with high cyanobacteria densities.
Collapse
Affiliation(s)
- Kerstin Häggqvist
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, Åbo 20520, Finland.
| | - Anna Toruńska-Sitarz
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, Åbo 20520, Finland.
| |
Collapse
|
42
|
Gan C, Sun Z, Ling L, He Z, Lei H, Liu Y. Construction of portable electrochemical immunosensors based on graphene hydrogel@polydopamine for microcystin-LR detection using multi-mesoporous carbon sphere-enzyme labels. RSC Adv 2016. [DOI: 10.1039/c6ra07881h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A portable electrochemical immunosensor was fabricated for the detection of microcystin-LR by using graphene hydrogel@polydopamine as the substrate material and multi-HRP-(MCSs/Thi@AuNPs)-Ab2 as the signal label.
Collapse
Affiliation(s)
- Cuifen Gan
- Department of Applied Chemistry
- College of Materials & Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zihong Sun
- Department of Applied Chemistry
- College of Materials & Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Li Ling
- The Guangdong Provincial Key Laboratory of Food Quality and Safety
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zuyu He
- Department of Applied Chemistry
- College of Materials & Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yingju Liu
- Department of Applied Chemistry
- College of Materials & Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
43
|
Stipić F, Burić P, Jakšić Ž, Pletikapić G, Dutour Sikirić M, Zgrablić G, Frkanec L, Lyons DM. Antibody-based donor-acceptor spatial reconfiguration in decorated lanthanide-doped nanoparticle colloids for the quantification of okadaic acid biotoxin. Colloids Surf B Biointerfaces 2015; 135:481-489. [PMID: 26283497 DOI: 10.1016/j.colsurfb.2015.07.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/04/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
With the increasing movement away from the mouse bioassay for the detection of toxins in commercially harvested shellfish, there is a growing demand for the development of new and potentially field-deployable tests in its place. In this direction we report the development of a simple and sensitive nanoparticle-based luminescence technique for the detection of the marine biotoxin okadaic acid. Photoluminescent lanthanide nanoparticles were conjugated with fluorophore-labelled anti-okadaic acid antibodies which, upon binding to okadaic acid, gave rise to luminescence resonance energy transfer from the nanoparticle to the organic fluorophore dye deriving from a reduction in distance between the two. The intensity ratio of the fluorophore: nanoparticle emission peaks was found to correlate with okadaic acid concentration, and the sensor showed a linear response in the 0.37-3.97 μM okadaic acid range with a limit of detection of 0.25 μM. This work may have important implications for the development of new, cheap, and versatile biosensors for a range of biomolecules and that are sufficiently simple to be applied in the field or at point-of-care.
Collapse
Affiliation(s)
- Filip Stipić
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Petra Burić
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Željko Jakšić
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Galja Pletikapić
- Department of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Maja Dutour Sikirić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Goran Zgrablić
- Time Resolved X-Ray Spectroscopy Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Leo Frkanec
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia.
| |
Collapse
|
44
|
Pan SD, Chen XH, Li XP, Cai MQ, Shen HY, Zhao YG, Jin MC. Double-sided magnetic molecularly imprinted polymer modified graphene oxide for highly efficient enrichment and fast detection of trace-level microcystins from large-volume water samples combined with liquid chromatography–tandem mass spectrometry. J Chromatogr A 2015; 1422:1-12. [DOI: 10.1016/j.chroma.2015.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 12/01/2022]
|
45
|
Liang H, Zhou W, Zhang Y, Qiao Q, Zhang X. Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study. Sci Rep 2015; 5:15166. [PMID: 26470644 PMCID: PMC4608006 DOI: 10.1038/srep15166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022] Open
Abstract
Toxic cyanobacterial blooms, which produce cyclic heptapeptide toxins known as microcystins, are worldwide environmental problems. On the other hand, the cyanobacteria protein (30–50%) has been recommended as substitute protein for aquaculture. The present laboratory study verified the feasibility of cyanobacteria protein substitution and risk assessment. Goldfish were fed diets supplemented lyophilised cyanobacteria powder for 16 weeks with the various doses: 0% (control), 10%, 20%, 30% and 40%. Low doses (10% and 20%) promoted growth whereas high doses (30% and 40%) inhibited growth. In cyanobacteria treated fish, the proximate composition of ash, crude fat content and crude protein content decreased in 16 weeks; the saturated fatty acid (SFA) content significantly increased; the n-3 polyunsaturated fatty acid content, collagen content and muscle pH significantly decreased; cooking loss percents increased significantly. Muscle fiber diameter and myofibril length were negatively correlation. Additionally, flavour compounds (e.g., amino acids, nucleotides, organic acids and carnosine) changed significantly in the treated fish, and odour compounds geosmin and 2-methylisoborneol increased significantly. The estimated daily intake (EDI) of microcystins in muscle was close to or exceeded the World Health Organization (WHO) tolerable daily intake (TDI), representing a great health risk. Cyanobacterie is not feasible for protein sources use in aquaculture.
Collapse
Affiliation(s)
- Hualei Liang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Wenshan Zhou
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Yulei Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Qin Qiao
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Xuezhen Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| |
Collapse
|
46
|
Foss AJ, Aubel MT. Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS). Toxicon 2015. [DOI: 10.1016/j.toxicon.2015.07.332] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Tan F, Saucedo NM, Ramnani P, Mulchandani A. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9256-63. [PMID: 26120934 DOI: 10.1021/acs.est.5b01674] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.
Collapse
Affiliation(s)
- Feng Tan
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- ‡Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Nuvia Maria Saucedo
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Pankaj Ramnani
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Ashok Mulchandani
- †Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
48
|
Yu H, Clark KD, Anderson JL. Rapid and sensitive analysis of microcystins using ionic liquid-based in situ dispersive liquid–liquid microextraction. J Chromatogr A 2015; 1406:10-8. [DOI: 10.1016/j.chroma.2015.05.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022]
|
49
|
Pyo D, Yim M. Comparison of strip analysis and HPLC analysis for the quantitative analysis of cyanobacterial toxin. ANALYTICAL SCIENCE AND TECHNOLOGY 2015. [DOI: 10.5806/ast.2015.28.3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Jakubowska N, Szeląg-Wasielewska E. Toxic picoplanktonic cyanobacteria--review. Mar Drugs 2015; 13:1497-518. [PMID: 25793428 PMCID: PMC4377996 DOI: 10.3390/md13031497] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria of a picoplanktonic cell size (0.2 to 2.0 µm) are common organisms of both freshwater and marine ecosystems. However, due to their small size and relatively short study history, picoplanktonic cyanobacteria, in contrast to the microplanktonic cyanobacteria, still remains a poorly studied fraction of plankton. So far, only little information on picocyanobacteria toxicity has been reported, while the number of reports concerning their presence in ecosystems is increasing. Thus, the issue of picocyanobacteria toxicity needs more researchers' attention and interest. In this report, we present information on the current knowledge concerning the picocyanobacteria toxicity, as well as their harmfulness and problems they can cause.
Collapse
Affiliation(s)
- Natalia Jakubowska
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Elżbieta Szeląg-Wasielewska
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|