1
|
Bizzarri M, Monti N, Piombarolo A, Angeloni A, Verna R. Myo-Inositol and D-Chiro-Inositol as Modulators of Ovary Steroidogenesis: A Narrative Review. Nutrients 2023; 15:nu15081875. [PMID: 37111094 PMCID: PMC10145676 DOI: 10.3390/nu15081875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Myo-inositol is a natural polyol, the most abundant among the nine possible structural isomers available in living organisms. Inositol confers some distinctive traits that allow for a striking distinction between prokaryotes and eukaryotes, the basic clusters into which organisms are partitioned. Inositol cooperates in numerous biological functions where the polyol participates or by furnishing the fundamental backbone of several related derived metabolites, mostly obtained through the sequential addition of phosphate groups (inositol phosphates, phosphoinositides, and pyrophosphates). Overall myo-inositol and its phosphate metabolites display an entangled network, which is involved in the core of the biochemical processes governing critical transitions inside cells. Noticeably, experimental data have shown that myo-inositol and its most relevant epimer D-chiro-inositol are both necessary to permit a faithful transduction of insulin and of other molecular factors. This improves the complete breakdown of glucose through the citric acid cycle, especially in glucose-greedy tissues, such as the ovary. In particular, while D-chiro-inositol promotes androgen synthesis in the theca layer and down-regulates aromatase and estrogen expression in granulosa cells, myo-inositol strengthens aromatase and FSH receptor expression. Inositol effects on glucose metabolism and steroid hormone synthesis represent an intriguing area of investigation, as recent results have demonstrated that inositol-related metabolites dramatically modulate the expression of several genes. Conversely, treatments including myo-inositol and its isomers have proven to be effective in the management and symptomatic relief of a number of diseases associated with the endocrine function of the ovary, namely polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
- Systems Biology Group Lab, Sapienza University, 00160 Rome, Italy
| | - Noemi Monti
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Aurora Piombarolo
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Roberto Verna
- Systems Biology Group Lab, Sapienza University, 00160 Rome, Italy
| |
Collapse
|
2
|
Fedeli V, Catizone A, Querqui A, Unfer V, Bizzarri M. The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner’s Results. Int J Mol Sci 2023; 24:ijms24076296. [PMID: 37047265 PMCID: PMC10093919 DOI: 10.3390/ijms24076296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandrogenism plays a critical role in a large fraction of subjects. Inositol isomers—myo-Inositol and D-Chiro-Inositol—have recently been pharmacologically effective in managing many PCOS symptoms while rescuing ovarian fertility. However, some disappointing clinical results prompted the reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH response and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the two isomers are given in association—according to the physiological ratio of 40:1—patients could benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective. Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to increased androgen synthesis without considering the contemporary downregulation of aromatase and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective only for those PCOS phenotypes featured by hyperandrogenism.
Collapse
|
3
|
Su XB, Ko ALA, Saiardi A. Regulations of myo-inositol homeostasis: Mechanisms, implications, and perspectives. Adv Biol Regul 2023; 87:100921. [PMID: 36272917 DOI: 10.1016/j.jbior.2022.100921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Phosphorylation is the most common module of cellular signalling pathways. The dynamic nature of phosphorylation, which is conferred by the balancing acts of kinases and phosphatases, allows this modification to finely control crucial cellular events such as growth, differentiation, and cell cycle progression. Although most research to date has focussed on protein phosphorylation, non-protein phosphorylation substrates also play vital roles in signal transduction. The most well-established substrate of non-protein phosphorylation is inositol, whose phosphorylation generates many important signalling molecules such as the second messenger IP3, a key factor in calcium signalling. A fundamental question to our understanding of inositol phosphorylation is how the levels of cellular inositol are controlled. While the availability of protein phosphorylation substrates is known to be readily controlled at the levels of transcription, translation, and/or protein degradation, the regulatory mechanisms that control the uptake, synthesis, and removal of inositol are underexplored. Potentially, such mechanisms serve as an important layer of regulation of cellular signal transduction pathways. There are two ways in which mammalian cells acquire inositol. The historic use of radioactive 3H-myo-inositol revealed that inositol is promptly imported from the extracellular environment by three specific symporters SMIT1/2, and HMIT, coupling sodium or proton entry, respectively. Inositol can also be synthesized de novo from glucose-6P, thanks to the enzymatic activity of ISYNA1. Intriguingly, emerging evidence suggests that in mammalian cells, de novo myo-inositol synthesis occurs irrespective of inositol availability in the environment, prompting the question of whether the two sources of inositol go through independent metabolic pathways, thus serving distinct functions. Furthermore, the metabolic stability of myo-inositol, coupled with the uptake and endogenous synthesis, determines that there must be exit pathways to remove this extraordinary sugar from the cells to maintain its homeostasis. This essay aims to review our current knowledge of myo-inositol homeostatic metabolism, since they are critical to the signalling events played by its phosphorylated forms.
Collapse
Affiliation(s)
- Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - An-Li Andrea Ko
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Wei X, Zhu Y, Zhao X, Zhao Y, Jing Y, Liu G, Wang S, Li H, Ma Y. Transcriptome profiling of mRNAs in muscle tissue of Pinan cattle and Nanyang cattle. Gene 2022; 825:146435. [PMID: 35301069 DOI: 10.1016/j.gene.2022.146435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Mammalian muscle development is regulated by complex gene networks at the molecular level. The revelation of gene regulatory mechanisms is an important basis for the study of muscle development and molecular breeding. To analyze the excellent meat performance of Pinan cattle at the molecular level, we performed high-throughput RNA sequencing to analyze the key regulatory genes that determine the muscle quality traits in Pinan cattle (n = 3) and Nanyang cattle (n = 3). We identified 57 differentially expressed genes in muscle tissue of Pinan cattle compared to that of Nanyang cattle, including 32 upregulated and 25 downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in 'molecular function', including voltage-gated ion channel activity, calcium channel activity and calcium ion binding, and KEGG pathway analysis results revealed that adrenergic signaling in cardio myocytes, cell adhesion molecules and inositol phosphate metabolism pathway were significantly enriched. We identified the reliability of RNA-Seq data through RT-qPCR. Meanwhile, we found that GSTA3, PLCB1 and ISYNA1 genes are highly expressed in muscle tissue of Pinan cattle, and these genes play important roles in PI3K/Akt, MEK1/2-ERK and p53-ISYNA1 signaling pathway. In summary, our results suggested that these differentially expressed genes may play important roles in muscle development in Pinan cattle. However, the functions and mechanism of these significantly differential expressed genes should be investigated in future studies.
Collapse
Affiliation(s)
- Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yadi Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yujia Jing
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gege Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China; School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
5
|
Ghosh N, Das A, Biswas N, Mahajan SP, Madeshiya AK, Khanna S, Sen CK, Roy S. MYO-Inositol In Fermented Sugar Matrix Improves Human Macrophage Function. Mol Nutr Food Res 2022; 66:e2100852. [PMID: 35073444 PMCID: PMC9420542 DOI: 10.1002/mnfr.202100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened hos-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolstered respiratory burst activity and improved wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. Additionally, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerges as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| |
Collapse
|
6
|
Dinicola S, Unfer V, Facchinetti F, Soulage CO, Greene ND, Bizzarri M, Laganà AS, Chan SY, Bevilacqua A, Pkhaladze L, Benvenga S, Stringaro A, Barbaro D, Appetecchia M, Aragona C, Bezerra Espinola MS, Cantelmi T, Cavalli P, Chiu TT, Copp AJ, D’Anna R, Dewailly D, Di Lorenzo C, Diamanti-Kandarakis E, Hernández Marín I, Hod M, Kamenov Z, Kandaraki E, Monastra G, Montanino Oliva M, Nestler JE, Nordio M, Ozay AC, Papalou O, Porcaro G, Prapas N, Roseff S, Vazquez-Levin M, Vucenik I, Wdowiak A. Inositols: From Established Knowledge to Novel Approaches. Int J Mol Sci 2021; 22:10575. [PMID: 34638926 PMCID: PMC8508595 DOI: 10.3390/ijms221910575] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.
Collapse
Affiliation(s)
- Simona Dinicola
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Vittorio Unfer
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Fabio Facchinetti
- Obstetrics and Gynecology Unit, Mother-Infant and Adult Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christophe O. Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France;
| | - Nicholas D. Greene
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Mariano Bizzarri
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, Hospital “Filippo Del Ponte”, University of Insubria, 21100 Varese, Italy;
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Arturo Bevilacqua
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University, 00161 Rome, Italy;
| | - Lali Pkhaladze
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi 0112, Georgia;
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy;
| | - Daniele Barbaro
- U.O. Endocrinology in Livorno Hospital, USL Nordovest Toscana, 57100 Livorno, Italy;
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, 00161 Rome, Italy;
| | - Cesare Aragona
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - Tonino Cantelmi
- Institute for Interpersonal Cognitive Therapy, 00100 Rome, Italy;
| | - Pietro Cavalli
- Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, 98122 Messina, Italy;
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, 59000 Lille, France;
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, 04100 Latina, Italy;
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, Universidad Nacional Autónoma de México (UNAM), Mexico City 07760, Mexico;
| | - Moshe Hod
- Department of Obstetrics and Gynecology Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Eleni Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Giovanni Monastra
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - John E. Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | | | - Ali C. Ozay
- Department of Obstetrics and Gynecology, Near East University Hospital, Nicosia 99138, Cyprus;
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | | | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, 54250 Thessaloniki, Greece;
| | - Scott Roseff
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Boca Raton, FL 33458, USA;
| | - Monica Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME, CONICET-FIBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires 2490, Argentina;
| | - Ivana Vucenik
- Department of Medical & Research Technology and Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
7
|
Lepore E, Lauretta R, Bianchini M, Mormando M, Di Lorenzo C, Unfer V. Inositols Depletion and Resistance: Principal Mechanisms and Therapeutic Strategies. Int J Mol Sci 2021; 22:6796. [PMID: 34202683 PMCID: PMC8268915 DOI: 10.3390/ijms22136796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inositols are natural molecules involved in several biochemical and metabolic functions in different organs and tissues. The term "inositols" refers to five natural stereoisomers, among which myo-Inositol (myo-Ins) is the most abundant one. Several mechanisms contribute to regulate cellular and tissue homeostasis of myo-Ins levels, including its endogenous synthesis and catabolism, transmembrane transport, intestinal adsorption and renal excretion. Alterations in these mechanisms can lead to a reduction of inositols levels, exposing patient to several pathological conditions, such as Polycystic Ovary Syndrome (PCOS), hypothyroidism, hormonal and metabolic imbalances, like weight gain, hyperinsulinemia, dyslipidemia, and metabolic syndrome. Indeed, myo-Ins is involved in different physiological processes as a key player in signal pathways, including reproductive, hormonal, and metabolic modulation. Genetic mutations in genes codifying for proteins of myo-Ins synthesis and transport, competitive processes with structurally similar molecules, and the administration of specific drugs that cause a central depletion of myo-Ins as a therapeutic outcome, can lead to a reduction of inositols levels. A deeper knowledge of the main mechanisms involved in cellular inositols depletion may add new insights for developing tailored therapeutic approaches and shaping the dosages and the route of administration, with the aim to develop efficacious and safe approaches counteracting inositols depletion-induced pathological events.
Collapse
Affiliation(s)
- Elisa Lepore
- R&D Department, Lo.Li. Pharma, 00156 Rome, Italy;
| | - Rosa Lauretta
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Marta Bianchini
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Marilda Mormando
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, La Sapienza University Polo Pontino, 04100 Latina, Italy;
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
8
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
9
|
D'Souza SW, Copp AJ, Greene NDE, Glazier JD. Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery? Adv Nutr 2020; 12:212-222. [PMID: 32892218 PMCID: PMC7849949 DOI: 10.1093/advances/nmaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.
Collapse
Affiliation(s)
- Stephen W D'Souza
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
10
|
Shotgun proteome analysis of seminal plasma differentiate boars by reproductive performance. Theriogenology 2020; 157:130-139. [PMID: 32810790 DOI: 10.1016/j.theriogenology.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
There is a need to identify subfertile boars before they enter into the breeding herd. Seminal plasma proteins are essential for normal sperm function and transport and play an important role in fertilization. The objective of this study was to use liquid chromatography tandem mass spectrometry for shotgun proteome analysis to investigate whether differences in boar fertility phenotype can be differentiated by seminal plasma protein abundance. Following 50 breedings, boars were categorized into one of four phenotypes: high farrowing rate and total born (HFHB; n = 9), high farrowing rate with low total born (HFLB; n = 10), low farrowing rate and total born (LFLB; n = 9), and low farrowing rate with high total born (LFHB; n = 4) that were distinct (p < 0.05) from each other by these variables. There were 506 proteins measured in at least one sample across all animals. There were 245 high confidence proteins and 56 were differentially abundant between the high fertility phenotype (HFHB) and at least one of the three subfertile groups. Findings support that seminal plasma protein profiles are distinct between boars with different fertility phenotypes.
Collapse
|
11
|
Leder EH, André C, Le Moan A, Töpel M, Blomberg A, Havenhand JN, Lindström K, Volckaert FAM, Kvarnemo C, Johannesson K, Svensson O. Post-glacial establishment of locally adapted fish populations over a steep salinity gradient. J Evol Biol 2020; 34:138-156. [PMID: 32573797 DOI: 10.1111/jeb.13668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.
Collapse
Affiliation(s)
- Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Carl André
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Alan Le Moan
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Mats Töpel
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan N Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Filip A M Volckaert
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Charlotta Kvarnemo
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Johannesson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Ola Svensson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department for Pre-School and School Teacher Education, University of Borås, Borås, Sweden
| |
Collapse
|
12
|
Bevilacqua A, Bizzarri M. Inositols in Insulin Signaling and Glucose Metabolism. Int J Endocrinol 2018; 2018:1968450. [PMID: 30595691 PMCID: PMC6286734 DOI: 10.1155/2018/1968450] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
In the past decades, both the importance of inositol for human health and the complex interaction between glucose and inositol have been the subject of increasing consideration. Glucose has been shown to interfere with cellular transmembrane transport of inositol, inhibiting, among others, its intestinal absorption. Moreover, intracellular glucose is required for de novo biosynthesis of inositol through the inositol-3-phosphate synthase 1 pathway, while a few glucose-related metabolites, like sorbitol, reduce intracellular levels of inositol. Furthermore, inositol, via its major isomers myo-inositol and D-chiro-inositol, and probably some of its phosphate intermediate metabolites and correlated enzymes (like inositol hexakisphosphate kinase) participate in both insulin signaling and glucose metabolism by influencing distinct pathways. Indeed, clinical data support the beneficial effects exerted by inositol by reducing glycaemia levels and hyperinsulinemia and buffering negative effects of sustained insulin stimulation upon the adipose tissue and the endocrine system. Due to these multiple effects, myoIns has become a reliable treatment option, as opposed to hormonal stimulation, for insulin-resistant PCOS patients.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
- Center for Research in Neurobiology “Daniel Bovet” (CRiN), Sapienza University of Rome, 00185 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group Lab, Sapienza University of Rome, via A. Scarpa 16, 00161 Rome, Italy
| |
Collapse
|
13
|
Salsaa M, Case K, Greenberg ML. Orchestrating phospholipid biosynthesis: Phosphatidic acid conducts and Opi1p performs. J Biol Chem 2017; 292:18729-18730. [PMID: 29127205 DOI: 10.1074/jbc.h117.809970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid (PA) and the conserved integral ER membrane protein Scs2p regulate localization of the transcriptional repressor Opi1p, which controls expression of phospholipid biosynthesis genes, but the mechanisms conducting Opi1p localization are not fully understood. A new study suggests the existence of a distinct pool of PA in the ER that is required for regulation of Opi1p localization and thus phospholipid metabolism in yeast.
Collapse
Affiliation(s)
- Michael Salsaa
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Kendall Case
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
14
|
Dinicola S, Minini M, Unfer V, Verna R, Cucina A, Bizzarri M. Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. Int J Mol Sci 2017; 18:E2187. [PMID: 29053604 PMCID: PMC5666868 DOI: 10.3390/ijms18102187] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023] Open
Abstract
Communities eating a western-like diet, rich in fat, sugar and significantly deprived of fibers, share a relevant increased risk of both metabolic and cancerous diseases. Even more remarkable is that a low-fiber diet lacks some key components-as phytates and inositols-for which a mechanistic link has been clearly established in the pathogenesis of both cancer and metabolic illness. Reduced bioavailability of inositol in living organisms could arise from reduced food supply or from metabolism deregulation. Inositol deregulation has been found in a number of conditions mechanistically and epidemiologically associated to high-glucose diets or altered glucose metabolism. Indeed, high glucose levels hinder inositol availability by increasing its degradation and by inhibiting both myo-Ins biosynthesis and absorption. These underappreciated mechanisms may likely account for acquired, metabolic deficiency in inositol bioavailability.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
| | - Mirko Minini
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
| | - Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, 5250 Chiasso, Switzerland.
| | - Roberto Verna
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
- Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
15
|
Kalujnaia S, Hazon N, Cramb G. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R287-98. [PMID: 27252471 PMCID: PMC5008666 DOI: 10.1152/ajpregu.00056.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.
Collapse
Affiliation(s)
- Svetlana Kalujnaia
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| | - Neil Hazon
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Gordon Cramb
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| |
Collapse
|
16
|
KOGUCHI TOMOYUKI, TANIKAWA CHIZU, MORI JINICHI, KOJIMA YOSHIYUKI, MATSUDA KOICHI. Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol 2016; 48:2415-24. [DOI: 10.3892/ijo.2016.3456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 11/05/2022] Open
|
17
|
Yu W, Ye C, Greenberg ML. Inositol Hexakisphosphate Kinase 1 (IP6K1) Regulates Inositol Synthesis in Mammalian Cells. J Biol Chem 2016; 291:10437-44. [PMID: 26953345 DOI: 10.1074/jbc.m116.714816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
myo-Inositol, the precursor of all inositol compounds, has pivotal roles in cell metabolism and signaling pathways. Although physiological studies indicate a strong correlation between abnormal intracellular inositol levels and neurological disorders, very little is known about the regulation of inositol synthesis in mammalian cells. In this study, we report that IP6K1, an inositol hexakisphosphate kinase that catalyzes the synthesis of inositol pyrophosphate, regulates inositol synthesis in mammalian cells. Ip6k1 ablation led to profound changes in DNA methylation and expression of Isyna1 (designated mIno1), which encodes the rate-limiting enzyme inositol-3-phosphate synthase. Interestingly, IP6K1 preferentially bound to the phospholipid phosphatidic acid, and this binding was required for IP6K1 nuclear localization and the regulation of mIno1 transcription. This is the first demonstration of IP6K1 as a novel negative regulator of inositol synthesis in mammalian cells.
Collapse
Affiliation(s)
- Wenxi Yu
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Cunqi Ye
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
18
|
MR Spectra of Normal Adult Testes and Variations with Age: Preliminary Observations. Eur Radiol 2015; 26:2261-7. [PMID: 26474986 DOI: 10.1007/s00330-015-4055-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim was to determine the proton MR (1H-MR) spectra of normal adult testes and variations with age. METHODS Forty-one MR spectra of normal testes, including 16 testes from men aged 20-39 years (group I) and 25 testes from men aged 40-69 years (group II), were analyzed. A single-voxel point-resolved spectroscopy sequence (PRESS), with TR/TE: 2000/25 ms was used. The volume of interest was placed to include the majority of normal testicular parenchyma. Association between normalized metabolite concentrations, defined as ratios of the calculated metabolite concentrations relative to creatine concentration, and age was assessed. RESULTS Quantified metabolites of the spectra were choline (Cho), creatine (Cr), myo-inositol (mI), scyllo-inositol, taurine, lactate, GLx compound, glucose, lipids, and macromolecules resonating at 0.9 ppm (LM09), around 20 ppm (LM20), and at 13 ppm (LM13). Most prominent peaks were Cho, Cr, mI, and lipids. A weak negative correlation between mI and age (P = 0.015) was observed. Higher normalized concentrations of Cho (P = 0.03), mI (P = 0.08), and LM13 (P = 0.05) were found in group I than in group II. CONCLUSIONS 1H-MR spectra of a normal adult testis showed several metabolite peaks. A decrease of levels of Cho, mI, and LM13 was observed with advancing age. KEY POINTS • Single-voxel PRESS MRS of a normal testis is feasible. • 1H-MR spectra of a normal testis showed several metabolite peaks. • Most prominent peaks were Cho, Cr, mI, and lipids. • A decrease of Cho, mI, and LM13 was seen with advancing age.
Collapse
|
19
|
Torell F, Bennett K, Cereghini S, Rännar S, Lundstedt-Enkel K, Moritz T, Haumaitre C, Trygg J, Lundstedt T. Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling. PLoS One 2015; 10:e0129260. [PMID: 26086868 PMCID: PMC4472231 DOI: 10.1371/journal.pone.0129260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/06/2015] [Indexed: 12/17/2022] Open
Abstract
Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.
Collapse
Affiliation(s)
- Frida Torell
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Silvia Cereghini
- CNRS, UMR7622, 75005, Paris, France
- Sorbonne Universités, UPMC, UMR7622, 75005, Paris, France
- Inserm U-1156, Paris, France
| | | | | | | | - Cecile Haumaitre
- CNRS, UMR7622, 75005, Paris, France
- Sorbonne Universités, UPMC, UMR7622, 75005, Paris, France
- Inserm U-1156, Paris, France
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| | | |
Collapse
|
20
|
Liu G, Yan T, Fang T, Jia G, Chen X, Zhao H, Wang J, Wu C. Nutrimetabolomic analysis provides new insights into spermine-induced ileum-system alterations for suckling rats. RSC Adv 2015. [DOI: 10.1039/c5ra01507c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of spermine supplementation on the ileum metabolism of suckling rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Tao Yan
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Tingting Fang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| |
Collapse
|
21
|
Ye C, Greenberg ML. Inositol synthesis regulates the activation of GSK-3α in neuronal cells. J Neurochem 2014; 133:273-83. [PMID: 25345501 DOI: 10.1111/jnc.12978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022]
Abstract
The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are pivotal for cell signaling. Mood stabilizers lithium and valproic acid, used for treating bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol synthesis in neuronal cells is not well understood. Here, we examined inositol effects on proliferation of SK-N-SH neuroblastoma cells. The essential role of inositol synthesis in proliferation is underscored by the findings that exogenous inositol was dispensable for proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the inhibition of inositol synthesis by knocking down INO1, which encodes inositol-3-phosphate synthase, the rate-limiting enzyme of inositol synthesis, led to the inactivation of GSK-3α by increasing the inhibitory phosphorylation of this kinase. Similarly, the mood stabilizer valproic acid effected transient decreases in intracellular inositol, leading to inactivation of GSK-3α. As GSK-3 inhibition has been proposed as a likely therapeutic mechanism of action, the finding that inhibition of inositol synthesis results in the inactivation of GSK-3α suggests a unifying hypothesis for mechanism of mood-stabilizing drugs. Inositol is an essential metabolite that serves as a precursor for inositol lipids and inositol phosphates. We report that inhibition of the rate-limiting enzyme of inositol synthesis leads to the inactivation of glycogen synthase kinase (GSK) 3α by increasing inhibitory phosphorylation of this kinase. These findings have implications for the therapeutic mechanisms of mood stabilizers and suggest that inositol synthesis and GSK 3α activity are intrinsically related.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
22
|
Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase. Mol Biol Rep 2014; 41:5039-52. [PMID: 24752405 DOI: 10.1007/s11033-014-3370-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 04/05/2014] [Indexed: 12/20/2022]
Abstract
Myo-inositol-1-phosphate (MIP) synthase is a key enzyme in the myo-inositol biosynthesis pathway. Disruption of the inositol signaling pathway is associated with bipolar disorders. Previous work suggested that MIP synthase could be an attractive target for the development of anti-bipolar drugs. Inhibition of this enzyme could possibly help in reducing the risk of a disease in patients. With this objective, three dimensional structure of the protein was modeled followed by the active site prediction. For the first time, computational studies were carried out to obtain structural insights into the interactive behavior of this enzyme with ligands. Virtual screening was carried out using FILTER, ROCS and EON modules of the OpenEye scientific software. Natural products from the ZINC database were used for the screening process. Resulting compounds were docked into active site of the target protein using FRED (Fast Rigid Exhaustive Docking) and GOLD (Genetic Optimization for Ligand Docking) docking programs. The analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in ligand binding. Four compounds are shortlisted and their binding assay analysis is underway.
Collapse
|
23
|
Deranieh RM, He Q, Caruso JA, Greenberg ML. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. J Biol Chem 2013; 288:26822-33. [PMID: 23902760 DOI: 10.1074/jbc.m113.479121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS.
Collapse
|
24
|
Seelan RS, Pisano MM, Greene RM, Casanova MF, Parthasarathy RN. Differential methylation of the gene encoding myo-inositol 3-phosphate synthase (Isyna1) in rat tissues. Epigenomics 2012; 3:111-24. [PMID: 21841945 DOI: 10.2217/epi.10.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Myo-inositol levels are frequently altered in several brain disorders. Myo-inositol 3-phosphate synthase, encoded by the Isyna1 gene, catalyzes the synthesis of myo-inositol in cells. Very little is known about the mechanisms regulating Isyna1 expression in brain and other tissues. In this study, we have examined the role of DNA methylation in regulating Isyna1 expression in rat tissues. MATERIALS & METHODS Transfection analysis using in vitro methylated promoter constructs, Southern blot analysis of genomic DNA from various tissues digested with a methylation-sensitive enzyme and CpG methylation profiling of genomic DNA from different tissues were used to determine differential methylation of Isyna1 in tissues. Transfection analysis using plasmids harboring mutated CpG residues in the 5'-upstream region of Isyna1 was used to identify critical residues mediating promoter activity. RESULTS The -700 bp to -500 bp region (region 1) of Isyna1 exhibited increased methylation in brain cortex compared with other tissues; it also exhibited sex-specific methylation differences between matched male and female brain cortices. Mutation analysis identified one CpG residue in region 1 necessary for promoter activity in neuronal cells. A tissue-specific differentially methylated region (T-DMR) was found to be localized between +450 bp and +650 bp (region 3). This DMR was comparatively highly methylated in spleen, moderately methylated in brain cortex and poorly methylated in testis, consistent with mRNA levels observed in these tissues. CONCLUSION Rat Isyna1 exhibits tissue-specific DNA methylation. Brain DNA was uniquely methylated in the 5'-upstream region and displayed gender specificity. A T-DMR was identified within the gene body of Isyna1. These findings suggest that Isyna1 is regulated, in part, by DNA methylation and that significant alterations in methylation patterns during development could have a major impact on inositol phosphate synthase expression in later life.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Molecular, Cellular & Craniofacial Biology, Birth Defects Center, University of Louisville, 501 S. Preston St, KY 40292, USA.
| | | | | | | | | |
Collapse
|
25
|
The role of inositol and the principles of labelling, extraction, and analysis of inositides in mammalian cells. Methods Mol Biol 2010. [PMID: 20645178 DOI: 10.1007/978-1-60327-175-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Inositides have an important impact on diverse areas of cellular regulation. However, since this area has grown exponentially from the mid 1980s onwards, many workers find themselves relatively new to the field. In this chapter, we establish a broad foundation for the rest of the book by covering some important principles of inositide methodologies. The focus is especially directed to those methods or aspects of methodology not covered in detail in other chapters. This includes the often neglected influence of the inositide precursor, inositol, and important background information relating to the labelling and extraction of inositides from cells and tissues. This introductory section also gives a "birds eye" view of important methods and protocols found within this volume and hopefully acts as a touchstone to assess which of the methodologies described within this book is most appropriate for your particular study(ies) of inositides.
Collapse
|
26
|
Martin FPJ, Wang Y, Yap IKS, Sprenger N, Lindon JC, Rezzi S, Kochhar S, Holmes E, Nicholson JK. Topographical Variation in Murine Intestinal Metabolic Profiles in Relation to Microbiome Speciation and Functional Ecological Activity. J Proteome Res 2009; 8:3464-74. [DOI: 10.1021/pr900099x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Francois-Pierre J. Martin
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Yulan Wang
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Ivan K. S. Yap
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Norbert Sprenger
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - John C. Lindon
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Serge Rezzi
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Sunil Kochhar
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Elaine Holmes
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| | - Jeremy K. Nicholson
- Nestlé Research Center, P. O. Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy
| |
Collapse
|
27
|
Seelan RS, Lakshmanan J, Casanova MF, Parthasarathy RN. Identification of myo-inositol-3-phosphate synthase isoforms: characterization, expression, and putative role of a 16-kDa gamma(c) isoform. J Biol Chem 2009; 284:9443-57. [PMID: 19188364 PMCID: PMC2666597 DOI: 10.1074/jbc.m900206200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/02/2009] [Indexed: 11/06/2022] Open
Abstract
Myo-inositol is an important constituent of membrane phospholipids and is a precursor for the phosphoinositide signaling pathway. It is synthesized from glucose 6-phosphate by myo-inositol-3-phosphate synthase (IP synthase), a homotrimer composed of a 68-kDa polypeptide in most mammalian tissues. It is a putative target for mood-stabilizing drugs such as lithium and valproate. Here, we show that the rat gene (Isyna1) encoding this enzyme generates a number of alternatively spliced transcripts in addition to the fully spliced form that encodes the 68-kDa subunit (the alpha isoform). Specifically, we identify a small 16-kDa subunit (the gamma(c) isoform) derived by an intron retention mechanism and provide evidence for its existence in rat tissues. The gamma(c) isoform is highly conserved in mammals, but it lacks the catalytic domain while retaining the NAD(+) binding domain. Both alpha and gamma(c) isoforms are predominantly expressed in many rat tissues and display apparent stoichiometry in purified enzyme preparations. An IP synthase polyclonal antibody not only detects the alpha and gamma(c) isoforms but also several other isoforms in pancreas, intestine, and testis suggesting that the holoenzyme is composed of unique subunits in various tissues. Interestingly, the alpha isoform is not expressed in the intestine. IP synthase activity assays using purified alpha and gamma(c) isoforms indicate that the latter negatively modulates alpha isoform activity, possibly by competing for NAD(+) molecules. Our findings have important ramifications for understanding the mood stabilization process and suggest that inositol biosynthesis is a highly regulated and dynamic process.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Psychiatry, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
28
|
Azab AN, Ishak JF, Kaplanski J, Delbar V, Greenberg ML. Mechanisms of action of the mood stabilizer valproate: a focus on GSK-3 inhibition. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.4.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Valproate is the most widely prescribed antiepileptic drug worldwide, and it is also used in the treatment of bipolar affective disorder, migraine headache and cancer. However, the therapeutic mechanism of action of valproate in these illness states is not understood. This article reviews the pharmacological effects of valproate that may explain its therapeutic efficacy. It focuses on the hypothesis that inhibition of glycogen synthase kinase-3 by valproate is a crucial therapeutic mechanism of this drug in the treatment of bipolar affective disorder. Other cellular pathways and signaling molecules that are targets of valproate (such as inositol de novo biosynthesis, histone deacetylase, protein kinase C, γ-aminobutyric acid, the extracellular signal-regulated kinase pathway and others) are also discussed.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Julia F Ishak
- Ben-Gurion University of the Negev, Medical School for International Health, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
29
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
30
|
Alcázar-Román AR, Wente SR. Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 2007; 117:1-13. [DOI: 10.1007/s00412-007-0126-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
|
31
|
Gagné JP, Éthier C, Gagné P, Mercier G, Bonicalzi MÈ, Mes-Masson AM, Droit A, Winstall E, Isabelle M, Poirier GG. Comparative proteome analysis of human epithelial ovarian cancer. Proteome Sci 2007; 5:16. [PMID: 17892554 PMCID: PMC2072939 DOI: 10.1186/1477-5956-5-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 09/24/2007] [Indexed: 01/10/2023] Open
Abstract
Background Epithelial ovarian cancer is a devastating disease associated with low survival prognosis mainly because of the lack of early detection markers and the asymptomatic nature of the cancer until late stage. Using two complementary proteomics approaches, a differential protein expression profile was carried out between low and highly transformed epithelial ovarian cancer cell lines which realistically mimic the phenotypic changes observed during evolution of a tumour metastasis. This investigation was aimed at a better understanding of the molecular mechanisms underlying differentiation, proliferation and neoplastic progression of ovarian cancer. Results The quantitative profiling of epithelial ovarian cancer model cell lines TOV-81D and TOV-112D generated using iTRAQ analysis and two-dimensional electrophoresis coupled to liquid chromatography tandem mass spectrometry revealed some proteins with altered expression levels. Several of these proteins have been the object of interest in cancer research but others were unrecognized as differentially expressed in a context of ovarian cancer. Among these, series of proteins involved in transcriptional activity, cellular metabolism, cell adhesion or motility and cytoskeleton organization were identified, suggesting their possible role in the emergence of oncogenic pathways leading to aggressive cellular behavior. Conclusion The differential protein expression profile generated by the two proteomics approaches combined to complementary characterizations studies will open the way to more exhaustive and systematic representation of the disease and will provide valuable information that may be helpful to uncover the molecular mechanisms related to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
- CNRS UMR6061 Université de Rennes 1, Groupe Cycle Cellulaire, Université de Rennes 1, Faculté de Médecine, 2 Avenue du Pr Léon Bernard, CS 3417, Rennes cedex, France
| | - Chantal Éthier
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Pierre Gagné
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Geneviève Mercier
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Marie-Ève Bonicalzi
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CHUM)-Hôpital Notre-Dame and Institut du cancer de Montréal, 1560 rue Sherbrooke Est, Montréal, Québec, H2L 4M1, Canada
| | - Arnaud Droit
- Proteomics Platform, Québec Genomic Center, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Eric Winstall
- Proteomics Platform, Québec Genomic Center, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Maxim Isabelle
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| | - Guy G Poirier
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
- Proteomics Platform, Québec Genomic Center, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705, Boulevard Laurier, Ste-Foy, Québec, G1V 4G2, Canada
| |
Collapse
|
32
|
Dogra N, Warburton C, McMaster WR. Leishmania major abrogates gamma interferon-induced gene expression in human macrophages from a global perspective. Infect Immun 2007; 75:3506-15. [PMID: 17470541 PMCID: PMC1932916 DOI: 10.1128/iai.00277-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with Leishmania major triggers several pathways in the host cell that are crucial to initial infection as well as those that are used by Leishmania to enhance its replication and virulence. To identify the molecular events of the host cell in response to Leishmania, the global gene expression of the human monocytic cell line THP-1 either infected with Leishmania major in the presence and absence of gamma interferon (IFN-gamma) or in the presence of IFN-gamma alone was analyzed using high-density human oligonucleotide microarrays, followed by statistical analysis. The persistence of the parasite despite an extensive response to IFN-gamma, added 24 h after infection with L. major, suggests that L. major can survive in an IFN-gamma-enriched environment in vitro. Results demonstrate that L. major counteracts the IFN-gamma response in macrophages on a large scale. Expression of genes involved in the innate immune response, cell adhesion, proteasomal degradation, Toll-like receptor expression, a variety of signaling molecules, and matrix metalloproteinases was significantly modulated.
Collapse
Affiliation(s)
- Nisha Dogra
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
33
|
Parthasarathy LK, Seelan RS, Tobias C, Casanova MF, Parthasarathy RN. Mammalian inositol 3-phosphate synthase: its role in the biosynthesis of brain inositol and its clinical use as a psychoactive agent. Subcell Biochem 2006; 39:293-314. [PMID: 17121280 DOI: 10.1007/0-387-27600-9_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Latha K Parthasarathy
- Molecular Neuroscience Laboratory, Autism Research Unit, Mental Health, Behavioral Science and Research Services, VA Medical Center (151), Louisville, Kentucky 40206, USA
| | | | | | | | | |
Collapse
|
34
|
Martin KL, Smith TK. The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol 2006; 61:89-105. [PMID: 16824097 PMCID: PMC3793301 DOI: 10.1111/j.1365-2958.2006.05216.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bloodstream-form Trypanosoma brucei (the causative agent of African sleeping sickness) the glycosylphosphatidylinositol (GPI) anchor biosynthetic pathway has been validated genetically and chemically as a drug target. The conundrum that GPI anchors could not be in vivo labelled with [3H]-inositol led us to hypothesize that de novo synthesis was responsible for supplying myo-inositol for phosphatidylinositol (PI) destined for GPI synthesis. The rate-limiting step of the de novo synthesis is the isomerization of glucose 6-phosphate to 1-D-myo-inositol-3-phosphate, catalysed by a 1-D-myo-inositol-3-phosphate synthase (INO1). When grown under non-permissive conditions, a conditional double knockout demonstrated that INO1 is an essential gene in bloodstream-form T. brucei. It also showed that the de novo synthesized myo-inositol is utilized to form PI, which is preferentially used in GPI biosynthesis. We also show for the first time that extracellular myo-inositol can in fact be used in GPI formation although to a limited extent. Despite this, extracellular inositol cannot compensate for the deletion of INO1. Supporting these results, there was no change in PI levels in the conditional double knockout cells grown under non-permissive conditions, showing that perturbation of growth is due to a specific lack of de novo synthesized myo-inositol and not a general inositol-less death. These results suggest that there is a distinction between de novo synthesized myo-inositol and that from the extracellular environment.
Collapse
Affiliation(s)
- Kirstee L. Martin
- Division of Biological Chemistry and Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Terry K. Smith
- Division of Biological Chemistry and Molecular Microbiology, The School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
35
|
Affiliation(s)
- Javad Torabinejad
- Department of Biochemistry, Virginia Tech, 306 Fralin Biotechnology Center, Blacksburg, VA 24061, USA
| | | |
Collapse
|
36
|
Shi Y, Vaden DL, Ju S, Ding D, Geiger JH, Greenberg ML. Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. J Biol Chem 2005; 280:41805-10. [PMID: 16221686 DOI: 10.1074/jbc.m505181200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a genetic screen for Saccharomyces cerevisiae mutants hypersensitive to the inositol-depleting drugs lithium and valproate, a loss of function allele of TPI1 was identified. The TPI1 gene encodes triose phosphate isomerase, which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate. A single mutation (N65K) in tpi1 completely abolished Tpi1p enzyme activity and led to a 30-fold increase in the intracellular DHAP concentration. The tpi1 mutant was unable to grow in the absence of inositol and exhibited the "inositol-less death" phenotype. Similarly, the pgk1 mutant, which accumulates DHAP as a result of defective conversion of 3-phosphoglyceroyl phosphate to 3-phosphoglycerate, exhibited inositol auxotrophy. DHAP as well as glyceraldehyde 3-phosphate and oxaloacetate inhibited activity of both yeast and human myo-inositol-3 phosphate synthase, the rate-limiting enzyme in de novo inositol biosynthesis. Implications for the pathology associated with TPI deficiency and responsiveness to inositol-depleting anti-bipolar drugs are discussed. This study is the first to establish a connection between perturbation of glycolysis and inhibition of de novo inositol biosynthesis.
Collapse
Affiliation(s)
- Yihui Shi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
37
|
Seelan RS, Parthasarathy LK, Parthasarathy RN. E2F1 regulation of the human myo-inositol 1-phosphate synthase (ISYNA1) gene promoter. Arch Biochem Biophys 2004; 431:95-106. [PMID: 15464731 DOI: 10.1016/j.abb.2004.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Indexed: 01/23/2023]
Abstract
Human myo-inositol 1-phosphate synthase (IP synthase; E.C. 5.5.1.4), encoded by ISYNA1, catalyzes the de novo synthesis of inositol 1-phosphate from glucose 6-phosphate. It is a potential target for mood-stabilizing drugs such as lithium and valproate. But, very little is known about the regulation of human IP synthase. Here, we have characterized the minimal promoter of ISYNA1 and show that it is upregulated by E2F1. Upregulation occurs in a dose-dependent fashion and can be suppressed by ectopic expression of Rb. EMSA and antibody supershift analysis identified a functional E2F binding motif at -117. Complex formation at this site was competed by an excess of unlabeled Sp1 oligo consistent with the -117 E2F site overlapping an Sp1 motif. Because the -117 E2F motif is not a high-affinity binding site, we propose that the upregulation of ISYNA1 occurs through the cooperative interaction of several low-affinity E2F binding motifs present in the minimal promoter.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Molecular Neuroscience and Bioinformatics Laboratories, Mental Health, Behavioral Science and Research Services, VA Medical Center (151), Louisville, KY 40206, USA
| | | | | |
Collapse
|
38
|
Seelan RS, Parthasarathy LK, Parthasarathy RN. Lithium modulation of the human inositol monophosphatase 2 (IMPA2) promoter. Biochem Biophys Res Commun 2004; 324:1370-8. [PMID: 15504365 DOI: 10.1016/j.bbrc.2004.09.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 11/29/2022]
Abstract
The inositol-signaling pathway is a therapeutic target for lithium in the treatment of bipolar disorder. Inositol monophosphatases (IMPases) play a key role in inositol signaling. Lithium's ability to inhibit IMPase 1 is well known, but its effect on IMPase 2 or on the transcriptional regulation of these genes has not been studied. Here, we report the identification and characterization of the minimal promoter of IMPA2 (encoding IMPase 2) in HeLa (epithelial) and SK-N-AS (neuronal) cells. IMPA2 promoter activity appears to be contributed by different elements in the 5' flanking region, suggesting that the gene is differentially regulated in neuronal and non-neuronal cells. Furthermore, IMPA2 promoter activity in both cell lines is downregulated, in a dose-dependent manner, by lithium after treatment for only 24h. This effect is also observed in vivo. Our results suggest a possible role for IMPA2 in bipolar disorder.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Molecular Neuroscience and Bioinformatics Laboratories, Mental Health, Behavioral Science and Research Services, VA Medical Center (151), Louisville, KY 40206, USA
| | | | | |
Collapse
|
39
|
Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML. Human 1-D-myo-Inositol-3-phosphate Synthase Is Functional in Yeast. J Biol Chem 2004; 279:21759-65. [PMID: 15024000 DOI: 10.1074/jbc.m312078200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.
Collapse
Affiliation(s)
- Shulin Ju
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|