1
|
Karal MAS, Billah MM, Nasrin T, Moniruzzaman M. Interaction of anionic Fe 3O 4 nanoparticles with lipid vesicles: a review on deformation and poration under various conditions. RSC Adv 2024; 14:25986-26001. [PMID: 39161454 PMCID: PMC11331399 DOI: 10.1039/d4ra05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
This review focuses on the deformation and poration of lipid vesicles caused by the interaction of anionic magnetite nanoparticles (MNPs). Effects of various factors, such as surface charge density, salt and sugar concentrations in buffer, membrane cholesterol content, polymer-grafted phospholipid, and membrane potential have been discussed for the interaction of MNPs with lipid vesicles. To quantify these effects on the vesicles, compactness, fraction of deformation and poration, dynamics of membrane permeation, and kinetics of membrane permeation have been critically evaluated. The review explores the potential advancements as well as future directions of the research field in the biomedical application of MNPs.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology Jashore 7408 Bangladesh +880-2-42142012 +880-242142046
| | - Tawfika Nasrin
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| |
Collapse
|
2
|
Song YH, Cho HM, Ryu YC, Hwang BH, Seo JH. Electrosprayable Levan-Coated Nanoclusters and Ultrasound-Responsive Drug Delivery for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21509-21521. [PMID: 38642038 DOI: 10.1021/acsami.3c18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.
Collapse
Affiliation(s)
- Young Hoon Song
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hye Min Cho
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
3
|
Tornacı S, Erginer M, Gökalsın B, Aysan A, Çetin M, Sadauki M, Fındıklı N, Genç S, Sesal C, Toksoy Öner E. Investigating the cryoprotective efficacy of fructans in mammalian cell systems via a structure-functional perspective. Carbohydr Polym 2024; 328:121704. [PMID: 38220340 DOI: 10.1016/j.carbpol.2023.121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Fructans have long been known with their role in protecting organisms against various stress factors due to their ability to induce controlled dehydration and support membrane stability. Considering the vital importance of such features in cryo-technologies, this study aimed to explore the cryoprotective efficacy of fructans in mammalian cell systems where structurally different fructan polymers were examined on in vitro cell models derived from organs such as the liver, frequently used in transplantation, osteoblast, and cord cells, commonly employed in cell banking, as well as human seminal fluids that are of vital importance in assisted reproductive technology. To gain insights into the fructan/membrane interplay, structural differences were linked to rheological properties as well as to lipid membrane interactions where both fluorescein leakage from unilamellar liposomes and membrane integrity of osteoblast cells were monitored. High survival rates obtained with human endothelial, osteoblast and liver cells for up to two months clearly showed that fructans could be considered as effective non-permeating cryoprotectants, especially for extended periods of cryopreservation. In trials with human seminal fluid, short chained levan in combination with human serum albumin and glycerol proved very effective in preserving semen samples across multiple patients without any morphological abnormalities.
Collapse
Affiliation(s)
- Selay Tornacı
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Merve Erginer
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey
| | - Barış Gökalsın
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Arzu Aysan
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Metin Çetin
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Mubarak Sadauki
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Necati Fındıklı
- Department of Biomedical Engineering, Beykent University, Istanbul, Turkey; Bahceci Health Group, Istanbul, Turkey
| | - Seval Genç
- Marmara University, Department of Metallurgical & Materials Engineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
4
|
Hu Y, Liu X, Zhang W, Chen J, Chen X, Tan S. Inulin Can Improve Red Blood Cell Cryopreservation by Promoting Vitrification, Stabilizing Cell Membranes, and Inhibiting Ice Recrystallization. ACS Biomater Sci Eng 2024; 10:851-862. [PMID: 38176101 DOI: 10.1021/acsbiomaterials.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenqian Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiangming Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaoxiao Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
5
|
Fernández-Lainez C, Aan de Stegge M, Silva-Lagos LA, López-Velázquez G, de Vos P. β(2 → 1)-β(2 → 6) and β(2 → 1) fructans protect from impairment of intestinal tight junction's gene expression and attenuate human dendritic cell responses in a fructan-dependent fashion. Carbohydr Polym 2023; 320:121259. [PMID: 37659831 DOI: 10.1016/j.carbpol.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 09/04/2023]
Abstract
β(2 → 1)-β(2 → 6) branched graminan-type fructans (GTFs) and β(2 → 1) linear fructans (ITFs) possess immunomodulatory properties and protect human intestinal barrier function, however the mechanisms underlying these effects are not well studied. Herein, GTFs and ITFs effects with different degree of polymerization (DP) values on tight junctions (TJs) genes CLDN-1, -2 and -3, CDH1, OCLN and TJP1 were studied in Caco-2 gut epithelial cells, under homeostatic and inflammatory conditions. Also, cytokine production in dendritic cells (DCs) was studied. Higher DP fructans decreased the expression of the pore forming CLDN-2. Higher DP GTFs enhanced CLDN-3, OCLN, and TJP-1. Fructans prevented mRNA dysregulation of CLDN-1, -2 and -3 induced by the barrier disruptors A23187 and deoxynivalenol in a fructan-type dependent fashion. The production of pro-inflammatory cytokines MCP-1/CCL2, MIP-1α/CCL3 and TNFα by DCs was also attenuated in a fructan-type dependent manner and was strongly attenuated by DCs cultured with medium of Caco-2 cells which were pre-exposed to fructans. Our data show that specific fructans have TJs and DCs modulating effects and contribute to gut homeostasis. This might serve to design effective dietary means to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Cuidad de México, Mexico.
| | - Myrthe Aan de Stegge
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Luis Alfredo Silva-Lagos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Parafiniuk A, Kromer K, Fleszar MG, Kreitschitz A, Wiśniewski J, Gamian A. Localization of Sesquiterpene Lactones Biosynthesis in Flowers of Arnica Taxa. Molecules 2023; 28:molecules28114379. [PMID: 37298857 DOI: 10.3390/molecules28114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Arnica montana is a valuable plant with high demand on the pharmaceutical and cosmetic market due to the presence of helenalin (H) and 11α, 13-dihydrohelenalin (DH) sesquiterpene lactones (SLs), with many applications and anti-inflammatory, anti-tumor, analgesic and other properties. Despite the great importance of these compounds for the protection of the plant and their medicinal value, the content of these lactones and the profile of the compounds present within individual elements of florets and flower heads have not been studied so far, and attempts to localize these compounds in flower tissues have also not been conducted. The three studied Arnica taxa synthesize SLs only in the aerial parts of plants, and the highest content of these substances was found in A. montana cv. Arbo; it was lower in wild species, and a very small amount of H was produced by A. chamissonis. Analysis of dissected fragments of whole inflorescences revealed a specific distribution pattern of these compounds. The lactones content in single florets increased from the top of the corolla to the ovary, with the pappus calyx being a significant source of their production. Histochemical tests for terpenes and methylene ketones indicated the colocalization of lactones with inulin vacuoles.
Collapse
Affiliation(s)
- Agata Parafiniuk
- Laboratory of Tissue Cultures, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Krystyna Kromer
- Laboratory of Tissue Cultures, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
| | - Mariusz G Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Agnieszka Kreitschitz
- Department of Plant Development Biology, Faculty of Biological Sciences, University of Wroclaw, ul. Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
7
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
8
|
Lee JS, Park E, Oh H, Choi WI, Koo H. Levan nanoparticles with intrinsic CD44-targeting ability for tumor-targeted drug delivery. Int J Biol Macromol 2023; 234:123634. [PMID: 36773871 DOI: 10.1016/j.ijbiomac.2023.123634] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Existing anticancer therapeutics exhibit short half-lives, non-specificity, and severe side effects. To address this, active-targeting nanoparticles have been developed; however, the complex fabrication procedures, scale-up, and low reproducibility delay FDA approval, particularly for functionalized nanoparticles. We developed levan nanoparticles via simple one-pot nanoprecipitation for specific anticancer drug delivery. Levan is a plant polysaccharide which has a binding affinity to CD44 receptors and amphiphilicity. The nanoparticles are self-assembled and enable active-targeting without chemical modifications. The paclitaxel-loaded levan nanoparticles (PTX@LevNP) demonstrated a sustained PTX release and long-term stability. The LevNP can bind CD44 receptors on cancer cells, and PTX@LevNP showed enhanced anticancer activity in CD44-positive cells (SCC7 cells). In SCC7 tumor-bearing mice, the accumulation of LevNP in tumor tissue was 3.7 times higher than that of the free-dye, resulting in improved anticancer efficacy of PTX@LevNP. This new strategy using levan can produce nanoparticles for effective cancer treatment without complex fabrication procedures.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eunyoung Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
9
|
Hasan S, Karal MAS, Akter S, Ahmed M, Ahamed MK, Ahammed S. Influence of sugar concentration on the vesicle compactness, deformation and membrane poration induced by anionic nanoparticles. PLoS One 2022; 17:e0275478. [PMID: 36174090 PMCID: PMC9521927 DOI: 10.1371/journal.pone.0275478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Sugar plays a vital role in the structural and functional characteristics of cells. Hence, the interaction of NPs with cell membranes in the presence of sugar concentrations is important for medicinal and pharmacological innovations. This study integrated three tools: giant unilamellar vesicles (GUVs), anionic magnetite nanoparticles (NPs), and sugar concentrations, to understand a simplified mechanism for interactions between the vesicle membranes and NPs under various sugar concentrations. We focused on changing the sugar concentration in aqueous solution; more precisely, sucrose inside the GUVs and glucose outside with equal osmolarity. 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used to prepare the charged membranes of 40mole%DOPG/60mole%DOPC-GUVs, whereas only DOPC was used to prepare the neutral membranes. Phase contrast fluorescence microscopy shows that the adherence of 18 nm magnetite NPs with anionic charge depends on the sugar concentration. The alterations of GUVs induced by the NPs are characterized in terms of i) vesicle compactness, ii) deformation, and iii) membrane poration. The presence of sugar provides additional structural stability to the GUVs and reduces the effects of the NPs with respect to these parameters; more precisely, the higher the sugar concentration, the smaller the alteration induced by the NPs. The differences in NPs effects are explained by the change in the type of interaction between sugar molecules and lipid membranes, namely enthalpy and entropy-driven interaction, respectively. In addition, such alterations are influenced by the surface charge density of the lipid bilayer. The surface pressure of membranes due to the adsorption of NPs is responsible for inducing the poration in membranes. The differences in deformation and poration in charged and neutral GUVs under various sugar concentrations are discussed based on the structure of the head of lipid molecules.
Collapse
Affiliation(s)
- Sharif Hasan
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Salma Akter
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
10
|
Fifty Years of the Fluid–Mosaic Model of Biomembrane Structure and Organization and Its Importance in Biomedicine with Particular Emphasis on Membrane Lipid Replacement. Biomedicines 2022; 10:biomedicines10071711. [PMID: 35885016 PMCID: PMC9313417 DOI: 10.3390/biomedicines10071711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/29/2022] Open
Abstract
The Fluid–Mosaic Model has been the accepted general or basic model for biomembrane structure and organization for the last 50 years. In order to establish a basic model for biomembranes, some general principles had to be established, such as thermodynamic assumptions, various molecular interactions, component dynamics, macromolecular organization and other features. Previous researchers placed most membrane proteins on the exterior and interior surfaces of lipid bilayers to form trimolecular structures or as lipoprotein units arranged as modular sheets. Such membrane models were structurally and thermodynamically unsound and did not allow independent lipid and protein lateral movements. The Fluid–Mosaic Membrane Model was the only model that accounted for these and other characteristics, such as membrane asymmetry, variable lateral movements of membrane components, cis- and transmembrane linkages and dynamic associations of membrane components into multimolecular complexes. The original version of the Fluid–Mosaic Membrane Model was never proposed as the ultimate molecular description of all biomembranes, but it did provide a basic framework for nanometer-scale biomembrane organization and dynamics. Because this model was based on available 1960s-era data, it could not explain all of the properties of various biomembranes discovered in subsequent years. However, the fundamental organizational and dynamic aspects of this model remain relevant to this day. After the first generation of this model was published, additional data on various structures associated with membranes were included, resulting in the addition of membrane-associated cytoskeletal, extracellular matrix and other structures, specialized lipid–lipid and lipid–protein domains, and other configurations that can affect membrane dynamics. The presence of such specialized membrane domains has significantly reduced the extent of the fluid lipid membrane matrix as first proposed, and biomembranes are now considered to be less fluid and more mosaic with some fluid areas, rather than a fluid matrix with predominantly mobile components. However, the fluid–lipid matrix regions remain very important in biomembranes, especially those involved in the binding and release of membrane lipid vesicles and the uptake of various nutrients. Membrane phospholipids can associate spontaneously to form lipid structures and vesicles that can fuse with various cellular membranes to transport lipids and other nutrients into cells and organelles and expel damaged lipids and toxic hydrophobic molecules from cells and tissues. This process and the clinical use of membrane phospholipid supplements has important implications for chronic illnesses and the support of healthy mitochondria, plasma membranes and other cellular membrane structures.
Collapse
|
11
|
Sarkar MK, Karal MAS, Levadny V, Belaya M, Ahmed M, Ahamed MK, Ahammed S. Effects of sugar concentration on the electroporation, size distribution and average size of charged giant unilamellar vesicles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:401-412. [PMID: 35716178 DOI: 10.1007/s00249-022-01607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effects of sugar concentration on the electroporation, size distribution and average size of giant unilamellar vesicles (GUVs). GUVs were prepared from 40 mol% of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 60 mol% of 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. Pulsed electric field was applied to the 40%DOPG/60%DOPC-GUVs and it induced lateral electric tension (σc) in the membranes of vesicles. The σc-induced probability of rupture (Ppore) and the rate constant of rupture (kp) of GUVs under the sugar concentration, c = 40, 100 and 300 mM, were determined. Both the Ppore and kp increased with the increase of σc, but higher tension was required to generate the same values of Ppore and kp with increasing c. We also investigated average sizes of GUVs from the size distribution of vesicles under various sugar concentrations. With the increase of c, the peak of the size distribution histograms shifted to the region of smaller vesicles. The average size decreased 1.6-fold when c increased from 10 to 300 mM. These investigations help to understand various biomedical, biophysical, and biochemical processes in vesicles and cells. Electroporation, size distribution and average size of charged GUVs were investigated under various sugar concentrations. The sugar concentration influences the electroporation of vesicles and the average size of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Victor Levadny
- Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 117977, Russia
| | - Marina Belaya
- Department of Mathematics, Russian State University for the Humanities, GSP-3, Moscow, 125993, Russia
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
12
|
Fernández-Lainez C, Logtenberg MJ, Tang X, Schols HA, López-Velázquez G, de Vos P. β(2→1) chicory and β(2→1)-β(2→6) agave fructans protect the human intestinal barrier function in vitro in a stressor-dependent fashion. Food Funct 2022; 13:6737-6748. [PMID: 35665791 DOI: 10.1039/d2fo00534d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary fibers such as fructans can protect the intestinal epithelial barrier integrity, but the mechanisms underlying this protection are not completely understood. We aimed to study the protective effect of β(2→1)-β(2→6) branched graminan-type fructans (GTFs) on gut epithelial barrier function that was disrupted by three different agents which impact the barrier function via different cellular mechanisms. The effects of GTFs were compared with those of linear β(2→1) inulin-type fructans (ITFs). T84 intestinal epithelial monolayers were incubated with GTFs and ITFs. Afterwards, the monolayers were challenged with the barrier disruptors calcium ionophore A23187, 12-myristate 13-acetate (PMA) and deoxynivalenol (DON). Transepithelial resistance was measured with an electric cell-substrate impedance sensing system. All fructans studied prevented the barrier disruption induced by A23187. ITF II protected from the disruptive effects of PMA. However, none of the studied fructans influenced the disruption induced by DON. As a measure of disruption-induced inflammation, interleukin-8 (IL-8) production by the intestinal epithelium was determined by ELISA. The production of IL-8 induced by A23187 was decreased by all fructans, whereas IL-8 production induced by DON decreased only upon pre-treatment with ITF II. None of the studied fructans prevented PMA induced IL-8 production. GTFs just like ITFs can influence the barrier function and inflammatory processes in gut epithelial cells in a structure-dependent fashion. These distinct protective effects are dependent on the different signaling pathways that lead to gut barrier disruption.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Av. Iman 1, 04530, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Edificio D, 1° Piso. Circuito de Posgrados, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Madelon J Logtenberg
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Xin Tang
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Av. Iman 1, 04530, Cuidad de México, Mexico.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
13
|
|
14
|
Liu R, Jiao T, Zhang Z, Yao Z, Li Z, Wang S, Xin H, Li Y, Wang A, Zhu J. Ectopic Expression of the Allium cepa 1-SST Gene in Cotton Improves Drought Tolerance and Yield Under Drought Stress in the Field. FRONTIERS IN PLANT SCIENCE 2022; 12:783134. [PMID: 35095957 PMCID: PMC8790044 DOI: 10.3389/fpls.2021.783134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In some plants, sucrose: sucrose 1-fructosyltransferase (1-SST) is the first irreversible key enzyme in fructan biosynthesis. Studies have shown that fructan accumulation enhances abiotic stress tolerance of plants. To investigate the role of 1-SST in drought stress responses, a total of 37 cotton plants expressing a 1-SST gene from Allium cepa were developed by Agrobacterium-mediated transformation. Under drought stress in the field, compared with wild-type, ectopic expression of Ac1-SST in cotton resulted in significantly higher soluble sugars (especially 1-kestose), proline and relative water contents, as well as decreased malondialdehyde content, which contributed to maintaining intracellular osmoregulation and reducing membrane damage. In addition, ectopic expression of Ac1-SST in cotton significantly improved the photosynthesis rate, performance of PSII (including Pn, Fv/Fm, WUE, ΦPSII, and PItotal) and plant growth under drought stress. Furthermore, compared with the wild-type, under the droughted field, the yield loss per square meter of transgenic cotton was reduced by an average of 20.9% over two consecutive years. Our results indicate that the Ac1-SST gene can be used to improve drought tolerance and yield of cotton varieties, and might also be a promising drought-resistant gene for improving other crop varieties.
Collapse
Affiliation(s)
- RuiNa Liu
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - TianQi Jiao
- Woda Agricultural Technology Co., Ltd, Shihezi, China
| | - ZeXing Zhang
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Zhang Yao
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - ZhongQing Li
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Saisai Wang
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongliang Xin
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - YuXia Li
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - AiYing Wang
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - JianBo Zhu
- The Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Kirtil E, Kurtkaya E, Svitova T, Radke CJ, Oztop MH, Sahin S. Examination of interfacial properties of quince seed extract on a sunflower oil-water interface. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
17
|
Vitkova V, Yordanova V, Staneva G, Petkov O, Stoyanova-Ivanova A, Antonova K, Popkirov G. Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. MEMBRANES 2021; 11:membranes11110847. [PMID: 34832076 PMCID: PMC8623822 DOI: 10.3390/membranes11110847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Simple carbohydrates are associated with the enhanced risk of cardiovascular disease and adverse changes in lipoproteins in the organism. Conversely, sugars are known to exert a stabilizing effect on biological membranes, and this effect is widely exploited in medicine and industry for cryopreservation of tissues and materials. In view of elucidating molecular mechanisms involved in the interaction of mono- and disaccharides with biomimetic lipid systems, we study the alteration of dielectric properties, the degree of hydration, and the rotational order parameter and dipole potential of lipid bilayers in the presence of sugars. Frequency-dependent deformation of cell-size unilamellar lipid vesicles in alternating electric fields and fast Fourier transform electrochemical impedance spectroscopy are applied to measure the specific capacitance of phosphatidylcholine lipid bilayers in sucrose, glucose and fructose aqueous solutions. Alteration of membrane specific capacitance is reported in sucrose solutions, while preservation of membrane dielectric properties is established in the presence of glucose and fructose. We address the effect of sugars on the hydration and the rotational order parameter for 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3- phosphocholine (SOPC). An increased degree of lipid packing is reported in sucrose solutions. The obtained results provide evidence that some small carbohydrates are able to change membrane dielectric properties, structure, and order related to membrane homeostasis. The reported data are also relevant to future developments based on the response of lipid bilayers to external physical stimuli such as electric fields and temperature changes.
Collapse
Affiliation(s)
- Victoria Vitkova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
- Correspondence:
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (V.Y.); (G.S.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (V.Y.); (G.S.)
| | - Ognyan Petkov
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Angelina Stoyanova-Ivanova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Krassimira Antonova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Georgi Popkirov
- Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria;
| |
Collapse
|
18
|
Hafeez MN, Khan MA, Sarwar B, Hassan S, Ali Q, Husnain T, Rashid B. Mutant Gossypium universal stress protein-2 (GUSP-2) gene confers resistance to various abiotic stresses in E. coli BL-21 and CIM-496-Gossypium hirsutum. Sci Rep 2021; 11:20466. [PMID: 34650178 PMCID: PMC8516947 DOI: 10.1038/s41598-021-99900-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Gossypium arboreum is considered a rich source of stress-responsive genes and the EST database revealed that most of its genes are uncharacterized. The full-length Gossypium universal stress protein-2 (GUSP-2) gene (510 bp) was cloned in E. coli and Gossypium hirsutum, characterized and point mutated at three positions, 352–354, Lysine to proline (M1-usp-2) & 214–216, aspartic acid to serine (M2-usp-2) & 145–147, Lysine to Threonine (M3-usp-2) to study its role in abiotic stress tolerance. It was found that heterologous expression of one mutant (M1-usp-2) provided enhanced tolerance against salt and osmotic stresses, recombinant cells have higher growth up to 10-5dilution in spot assay as compared to cells expressing W-usp-2 (wild type GUSP-2), M2-usp-2 and M3-usp-2 genes. M1-usp-2 gene transcript profiling exhibited significant expression (8.7 fold) in CIM-496-Gossypium hirsutum transgenic plants and enhance drought tolerance. However, little tolerance against heat and cold stresses in bacterial cells was observed. The results from our study concluded that the activity of GUSP-2 was enhanced in M1-usp-2 but wipe out in M2-usp-2 and M3-usp-2 response remained almost parallel to W-usp-2. Further, it was predicted through in silico analysis that M1-usp-2, W-usp-2 and M3-usp-2 may be directly involved in stress tolerance or function as a signaling molecule to activate the stress adaptive mechanism. However, further investigation will be required to ascertain its role in the adaptive mechanism of stress tolerance.
Collapse
Affiliation(s)
- Muhammad Nadeem Hafeez
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan. .,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. .,School of PhD Program in Cellular and Molecular Biotechnology, University of Teramo, Teramo, Italy. .,Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Chieti, Italy.
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Bilal Sarwar
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Sameera Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan. .,Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| |
Collapse
|
19
|
Romano N, Marro M, Marsal M, Loza-Álvarez P, Gomez-Zavaglia A. Fructose derived oligosaccharides prevent lipid membrane destabilization and DNA conformational alterations during vacuum-drying of Lactobacillus delbrueckii subsp. bulgaricus. Food Res Int 2021; 143:110235. [PMID: 33992348 DOI: 10.1016/j.foodres.2021.110235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 11/26/2022]
Abstract
Dehydration of lactic acid bacteria for technological purposes conducts to multilevel damage of bacterial cells. The goal of this work was to determine at which molecular level fructose-oligosaccharides (FOS) and sucrose protect Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 during the vacuum-drying process. To achieve this aim, the cultivability and metabolic activity of vacuum-dried bacteria were firstly determined (plate counting and absorbance kinetics). Then, the membrane integrity and fluidity were assessed using propidium iodide and Laurdan probes (general polarization -GP-), respectively. Finally, bacterial structural alterations were determined using high throughput methods (fluorescence confocal microscopy and Raman spectroscopy coupled to Multivariate Curve Resolution analysis -MCR-). The vacuum-drying process directly affected the microorganism's cultivability and membrane integrity. Non-dehydrated cells and sugar protected bacteria (both with FOS or sucrose) presented high GP values typical from the gel state, as well as phospholipids microdomains laterally organized along the cytoplasmic membrane. On the contrary, bacteria dehydrated without protectants presented low GP values and greater water penetration, associated with membrane destabilization. Raman spectroscopy of vacuum-dried cells revealed DNA conformational changes, B-DNA conformations being associated to non-dehydrated or sugar protected bacteria, and A-DNA conformations being higher in bacteria vacuum-dried without protectants. These results support the role of FOS and sucrose as protective compounds, not only acting at the membrane organizational level but also preventing conformational alterations of intracellular structures, like DNA.
Collapse
Affiliation(s)
- Nelson Romano
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina.
| | - Monica Marro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Maria Marsal
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Álvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina
| |
Collapse
|
20
|
Zhang Z, Xiao W, Qiu J, Xin Y, Liu Q, Chen H, Fu Y, Ma H, Chen W, Huang Y, Ruan S, Yan J. Nystose regulates the response of rice roots to cold stress via multiple signaling pathways: A comparative proteomics analysis. PLoS One 2020; 15:e0238381. [PMID: 32881942 PMCID: PMC7470417 DOI: 10.1371/journal.pone.0238381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/15/2020] [Indexed: 11/18/2022] Open
Abstract
Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways.
Collapse
Affiliation(s)
- Zijie Zhang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Wenfei Xiao
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jieren Qiu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Xin
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qinpo Liu
- College of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Huizhe Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yaping Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Ma
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wenyue Chen
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqin Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
- * E-mail: (SR); (JY)
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (SR); (JY)
| |
Collapse
|
21
|
Janse van Rensburg HC, Takács Z, Freynschlag F, Toksoy Öner E, Jonak C, Van den Ende W. Fructans Prime ROS Dynamics and Botrytis cinerea Resistance in Arabidopsis. Antioxidants (Basel) 2020; 9:E805. [PMID: 32882794 PMCID: PMC7555011 DOI: 10.3390/antiox9090805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Naturally derived molecules can be used as priming or defense stimulatory agents to protect against biotic stress. Fructans have gained strong interest due to their ability to induce resistance in a number of crop species. In this study, we set out to establish the role of fructan-induced immunity against the fungal pathogen Botrytis cinerea in Arabidopsis thaliana. We show that both inulin- and levan-type fructans from different sources can enhance Arabidopsis resistance against B. cinerea. We found that inulin from chicory roots and levan oligosaccharides from the exopolysaccharide-producing bacterium Halomonas smyrnensis primed the NADPH-oxidase-mediated reactive oxygen species (ROS) burst in response to the elicitors flg22, derived from the bacterial flagellum, and oligogalacturonides (OGs), derived from the host cell wall. Neither induced a direct ROS burst typical of elicitors. We also found a primed response after infection with B. cinerea for H2O2 accumulation and the activities of ascorbate peroxidase and catalase. Sucrose accumulated as a consequence of fructan priming, and glucose and sucrose levels increased in fructan-treated plants after infection with B. cinerea. This study shows that levan-type fructans, specifically from bacterial origin, can prime plant defenses and that both inulin and levan oligosaccharide-mediated priming is associated with changes in ROS dynamics and sugar metabolism. Establishing fructan-induced immunity in Arabidopsis is an important step to further study the underlying mechanisms since a broad range of biological resources are available for Arabidopsis.
Collapse
Affiliation(s)
| | - Zoltan Takács
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Florentina Freynschlag
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Ebru Toksoy Öner
- IBSB, Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, 34722 Istanbul, Turkey;
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
22
|
Bernard L, Decau ML, Morvan-Bertrand A, Lavorel S, Clément JC. Water-soluble carbohydrates in Patzkea paniculata (L.): a plant strategy to tolerate snowpack reduction and spring drought in subalpine grasslands. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:441-449. [PMID: 31834979 DOI: 10.1111/plb.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
In subalpine grasslands of the central French Alps, cessation of traditional mowing promotes dominance of Patzkea paniculata (L.) G.H.Loos (Poaceae) tussocks, with high biomass but low fodder quality. Mowing limits P. paniculata abundance through the depletion of its water-soluble carbohydrate (WSC) reserves, which sustain early spring growth initiation. However, the effectiveness of mowing effects is modulated by grassland functional composition, fertilization and climate change, as WSC compounds, and notably fructans, support plant physiological responses to climate stresses such as drought or frost. To characterize the mechanisms underpinning the control of P. paniculata under global change, we tested the effects of climate manipulation (combined snow removal and drought) and management (cutting and fertilization) alone or in combination on P. paniculata WSC storage in assembled grassland communities of varying functional composition. Management and climate treatments individually decreased seasonal fructan storage, with neither additive nor synergic effects between them, primarily due to the dominance of management over climate effects. Fructan amounts were higher in individuals growing in unmanaged exploitative communities compared to unmanaged conservative communities, regardless of climate treatments, but management overrode these differences. Our findings suggest that reduction by combined snow removal and drought of P. paniculata carbon allocation to WSC storage may similarly limit its dominance to that in current mowing practices.
Collapse
Affiliation(s)
- L Bernard
- CNRS, LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France
| | - M-L Decau
- INRA, EVA, Normandie Université, Caen, France
| | | | - S Lavorel
- CNRS, LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France
| | - J-C Clément
- CNRS, LECA, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France
- INRA, CARRTEL, Univ. Savoie Mont Blanc, Thonon-les-Bains, France
| |
Collapse
|
23
|
Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance. Sci Rep 2020; 10:4489. [PMID: 32161322 PMCID: PMC7066199 DOI: 10.1038/s41598-020-61081-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Perennial grasses will account for approximately 16 billion gallons of renewable fuels by the year 2022, contributing significantly to carbon and nitrogen sequestration. However, perennial grasses productivity can be limited by severe freezing conditions in some geographical areas, although these risks could decrease with the advance of climate warming, the possibility of unpredictable early cold events cannot be discarded. We conducted a study on the model perennial grass Brachypodium sylvaticum to investigate the molecular mechanisms that contribute to cold and freezing adaption. The study was performed on two different B. sylvaticum accessions, Ain1 and Osl1, typical to warm and cold climates, respectively. Both accessions were grown under controlled conditions with subsequent cold acclimation followed by freezing stress. For each treatment a set of morphological parameters, transcription, metabolite, and lipid profiles were measured. State-of-the-art algorithms were employed to analyze cross-component relationships. Phenotypic analysis revealed higher adaption of Osl1 to freezing stress. Our analysis highlighted the differential regulation of the TCA cycle and the GABA shunt between Ain1 and Osl1. Osl1 adapted to freezing stress by repressing the GABA shunt activity, avoiding the detrimental reduction in fatty acid biosynthesis and the concomitant detrimental effects on membrane integrity.
Collapse
|
24
|
Mukherjee S, Sengupta S, Mukherjee A, Basak P, Majumder AL. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. PLANTA 2019; 249:891-912. [PMID: 30465114 DOI: 10.1007/s00425-018-3046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Expression of the Galactinol synthase genes in rice is regulated through post-transcriptional intron retention in response to abiotic stress and may be linked to Raffinose Family Oligosaccharide synthesis in osmotic perturbation. Galactinol synthase (GolS) is the first committed enzyme in raffinose family oligosaccharide (RFO) synthesis pathway and synthesizes galactinol from UDP-galactose and inositol. Expression of GolS genes has long been implicated in abiotic stress, especially drought and salinity. A non-canonical regulation mechanism controlling the splicing and maturation of rice GolS genes was identified in rice photosynthetic tissue. We found that the two isoforms of Oryza sativa GolS (OsGolS) gene, located in chromosomes 3(OsGolS1) and 7(OsGolS2) are interspersed by conserved introns harboring characteristic premature termination codons (PTC). During abiotic stress, the premature and mature transcripts of both isoforms were found to accumulate in a rhythmic manner for very small time-windows interrupted by phases of complete absence. Reporter gene assay using GolS promoters under abiotic stress does not reflect this accumulation profile, suggesting that this regulation occurs post-transcriptionally. We suggest that this may be due to a surveillance mechanism triggering the degradation of the premature transcript preventing its accumulation in the cell. The suggested mechanism fits the paradigm of PTC-induced Nonsense-Mediated Decay (NMD). In support of our hypothesis, when we pharmacologically blocked NMD, the full-length pre-mRNAs were increasingly accumulated in cell. To this end, our work suggests that a combined transcriptional and post transcriptional control exists in rice to regulate GolS expression under stress. Concurrent detection and processing of prematurely terminating transcripts coupled to repressed splicing can be described as a form of Regulated Unproductive Splicing and Translation (RUST) and may be linked to the stress adaptation of the plant, which is an interesting future research possibility.
Collapse
Affiliation(s)
- Sritama Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
- Botany Department, Bethune College, Kolkata, West Bengal, 700006, India
| | - Sonali Sengupta
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India.
- School of Plant Environment and Soil Sciences, LSUAg Center, Baton Rouge, LA, 70803, USA.
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
| | - Papri Basak
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India.
| |
Collapse
|
25
|
Ni D, Xu W, Zhu Y, Zhang W, Zhang T, Guang C, Mu W. Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnol Adv 2019; 37:306-318. [DOI: 10.1016/j.biotechadv.2019.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
|
26
|
Tarkowski ŁP, Van de Poel B, Höfte M, Van den Ende W. Sweet Immunity: Inulin Boosts Resistance of Lettuce ( Lactuca sativa) against Grey Mold ( Botrytis cinerea) in an Ethylene-Dependent Manner. Int J Mol Sci 2019; 20:E1052. [PMID: 30823420 PMCID: PMC6429215 DOI: 10.3390/ijms20051052] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
The concept of "Sweet Immunity" postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.
Collapse
Affiliation(s)
- Łukasz Paweł Tarkowski
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, UGhent, 9000 Ghent, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
27
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Speranza B, Bevilacqua A, Campaniello D, Sinigaglia M, Musaico D, Corbo MR, Lamacchia C. The Impact of Gluten Friendly Flour on the Functionality of an Active Drink: Viability of Lactobacillus acidophilus in a Fermented Milk. Front Microbiol 2018; 9:2042. [PMID: 30214438 PMCID: PMC6125350 DOI: 10.3389/fmicb.2018.02042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The Gluten FriendlyTM Technology is an innovative method that induces structural changes in gluten proteins. In this paper a synbiotic fermented milk, containing Lactobacillus acidophilus La-5 and Gluten Friendly Flour (GFF), was proposed. A mixture design was used to combine flour, temperature and probiotic to study the effects of these variables on the acidification. The experiments were done on both GFF and control flour (CF). Thus, the following conditions were chosen to produce the fermented milk: L. acidophilus at 6.5 log cfu/ml; flour at 2.5 g/l; temperature at 37°C. Then, the fermented milk was produced and stored at 4°C for 90 days. The most important result was the positive effect of GFF on the viability of the probiotic, with a prolongation of the shoulder length to 20 days (12–13 days in the control). Moreover, GFF did not act on the sensory scores and on the physico-chemical parameters.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Daniela Musaico
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Maria R Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Carmela Lamacchia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1290-1299. [PMID: 29444312 DOI: 10.1093/pcp/pcy037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
The sessile lifestyle of higher plants is accompanied by their remarkable ability to tolerate unfavorable environmental conditions. This is because, during evolution, plants developed a sophisticated repertoire of molecular and metabolic reactions to cope with changing biotic and abiotic challenges. In particular, the abiotic factors light intensity and ambient temperature are characterized by altering their amplitude within comparably short periods of time and are causative for onset of dynamic plant responses. These rapid responses in plants are also classified as 'acclimation reactions' which differ, due to their reversibility and duration, from non-reversible 'adaptation reactions'. In this review, we demonstrate the remarkable importance of stress-induced changes in carbohydrate homeostasis of plants exposed to high light or low temperatures. These changes represent a co-ordinated process comprising modifications of (i) the concentrations of selected sugars; (ii) starch turnover; (iii) intracellular sugar compartmentation; and (iv) corresponding gene expression patterns. The critical importance of these individual processes has been underlined in the recent past by the analyses of a large number of mutant plants. The outcome of these analyses raised our understanding of acclimation processes in plants per se but might even become instrumental to develop new concepts for directed breeding approaches with the aim to increase abiotic stress tolerance of crop species, which in most cases have high stress sensitivity. The latter direction of plant research is of special importance since abiotic stress stimuli strongly impact on crop productivity and are expected to become even more pronounced because of human activities which alter environmental conditions rapidly.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Frank Ludewig
- Department of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | - Jelena Cvetkovic
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Oliver Trentmann
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Patrick A W Klemens
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| |
Collapse
|
30
|
Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1704-1724. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon, TQ12 4SG, UK
| |
Collapse
|
31
|
Barker M, Kennedy A. Disruption of gel phase lipid packing efficiency by sucralose studied with merocyanine 540. Colloids Surf B Biointerfaces 2017; 152:214-219. [DOI: 10.1016/j.colsurfb.2017.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/23/2016] [Accepted: 01/14/2017] [Indexed: 11/30/2022]
|
32
|
Gallovic MD, Montjoy DG, Collier MA, Do C, Wyslouzil BE, Bachelder EM, Ainslie KM. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant. Biomater Sci 2017; 4:483-93. [PMID: 26753184 DOI: 10.1039/c5bm00451a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.
Collapse
Affiliation(s)
- Matthew D Gallovic
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas G Montjoy
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Collier
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Clement Do
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Barbara E Wyslouzil
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA and Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eric M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kristy M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Differential fructan accumulation and expression of fructan biosynthesis, invertase and defense genes is induced in Agave tequilana plantlets by sucrose or stress-related elicitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Romano N, Schebor C, Mobili P, Gómez-Zavaglia A. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus. Food Res Int 2016; 90:251-258. [DOI: 10.1016/j.foodres.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
35
|
Shahryar N, Maali-Amiri R. Metabolic acclimation of tetraploid and hexaploid wheats by cold stress-induced carbohydrate accumulation. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:44-53. [PMID: 27500556 DOI: 10.1016/j.jplph.2016.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Metabolic acclimation of plants to cold stress may be of great importance for their growth, survival and crop productivity. The accumulation carbohydrates associated with cold tolerance (CT), transcript levels for genes encoding related enzymes along with damage indices were comparatively studied in three genotypes of bread and durum wheats differing in sensitivity. Two (Norstar, bread wheat and Gerdish, durum wheat) were tolerant and the other, SRN (durum wheat), was susceptible to cold stress. During cold stress (-5°C for 24h), the contents of electrolyte leakage index (ELI) in Norstar and then Gerdish plants were lower than that of SRN plants, particularly in cold acclimated (CA) plants (4°C for 14days), confirming lethal temperature 50 (LT50) under field conditions. Increased carbohydrate abundances in the cases of sucrose, glucose, fructose, hexose phosphates, fructan, raffinose, arabinose resulted in different intensities of oxidative stress in bread (Norstar) plants compared to durum plants (SRN and Gerdish) plants as well as in CA plants compared to non-acclimated (NA) ones under cold, indicating metabolic/regulatory capacity along with a decrease in ELI content and enhanced defense activities. A significant decrease in these carbohydrates, particularly sucrose, under cold in NA plants showed an elevated level of cell damage (confirmed by ELI) compared to CA plants. On the other hand, an increase in hexose phosphates, particularly in NA plants, indicated sucrose degradation along with greater production of glucose and fructose compared to CA plants. Under such conditions, a significant increase in transcript levels of sucrose synthase and acidic invertase confirmed these results. Under cold, the high ABA-containing genotypes like Norstar and then Gerdish, which were obvious in CA plants, partly induced relative acclimation of cells for acquisition of CT compared to SRN. These results reveal an important role of carbohydrate metabolism in creating CT in durum wheats (particularly in Gerdish) as well as bread wheat with possible responsive components in metabolic and transcript levels.
Collapse
Affiliation(s)
- Negin Shahryar
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran; Department of Agronomy and Plant Breeding, Faculty of Agriculture, Science and Research Campus, Azad Islamic University, Karaj Branch, 31876-44511, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| |
Collapse
|
36
|
Kim SJ, Chung BH. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydr Polym 2016; 150:400-7. [DOI: 10.1016/j.carbpol.2016.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/08/2016] [Indexed: 12/23/2022]
|
37
|
Sosa-Herrera MG, Martínez-Padilla LP, Delgado-Reyes VA, Torres-Robledo A. Effect of agave fructans on bulk and surface properties of sodium caseinate in aqueous media. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress. PLoS One 2016; 11:e0159819. [PMID: 27454873 PMCID: PMC4959688 DOI: 10.1371/journal.pone.0159819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/09/2016] [Indexed: 11/19/2022] Open
Abstract
Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.
Collapse
|
39
|
Bevilacqua A, Corbo MR, Sinigaglia M, Speranza B, Campaniello D, Altieri C. Effects of inulin, fructooligosaccharides/glucose and pH on the shape of the death kinetic ofLactobacillus reuteriDSM 20016. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Barbara Speranza
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Clelia Altieri
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| |
Collapse
|
40
|
Sharma KD, Nayyar H. Regulatory Networks in Pollen Development under Cold Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:402. [PMID: 27066044 PMCID: PMC4814731 DOI: 10.3389/fpls.2016.00402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Cold stress modifies anthers' metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA) metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs), GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here, we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.
Collapse
Affiliation(s)
- Kamal D. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
41
|
Van den Ende W, Coopman M, Vergauwen R, Van Laere A. Presence of Inulin-Type Fructo-Oligosaccharides and Shift from Raffinose Family Oligosaccharide to Fructan Metabolism in Leaves of Boxtree (Buxus sempervirens). FRONTIERS IN PLANT SCIENCE 2016; 7:209. [PMID: 26973663 PMCID: PMC4771763 DOI: 10.3389/fpls.2016.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/06/2016] [Indexed: 05/26/2023]
Abstract
Fructans are known to occur in 15% of flowering plants and their accumulation is often associated with stress responses. Typically, particular fructan types occur within particular plant families. The family of the Buxaceae, harboring Pachysandra terminalis, an accumulator of graminan- and levan-type fructans, also harbors boxtree (Buxus sempervirens), a cold and drought tolerant species. Surprisingly, boxtree leaves do not accumulate the expected graminan- and levan-type fructans, but small inulin fructo-oligosaccharides (FOS: 1-kestotriose and nystose) and raffinose family oligosaccharides (RFOs: raffinose and stachyose) instead. The seasonal variation in concentrations of glucose, fructose, sucrose, FOS and RFOs were followed. Raffinose and stachyose peaked during the winter months, while FOS peaked at a very narrow time-interval in spring, immediately preceded by a prominent sucrose accumulation. Sucrose may function as a reserve carbohydrate in winter and early spring leaves. The switch from RFO to fructan metabolism in spring strongly suggests that fructans and RFOs fulfill distinct roles in boxtree leaves. RFOs may play a key role in the cold acclimation of winter leaves while temporal fructan biosynthesis in spring might increase sink strength to sustain the formation of new shoots.
Collapse
|
42
|
Altieri C, Iorio MC, Bevilacqua A, Sinigaglia M. Influence of prebiotics on Lactobacillus reuteri death kinetics under sub-optimal temperatures and pH. Int J Food Sci Nutr 2016; 67:92-8. [PMID: 26804428 DOI: 10.3109/09637486.2015.1136905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eaten foodstuffs are usually fortified with prebiotic ingredients, such as inulin and oligofructose (FOS). The main goal of this study was to evaluate the combined effects of inulin and FOS with either suboptimal pH or storage temperature on the viability of Lactobacillus reuteri DSM 20016. Data were modeled through Weibull equation for the evaluation of the microbiological shelf life and the survival time. Prebiotics enhanced the microbiological shelf life and enhanced the survival time of the target bacterium. The use of the factorial ANOVA highlighted that inulin and FOS exerted a different effect as a function of pH and temperature. Inulin prolonged survival time under acidic conditions, while the effect of glucose + FOS was significant at pH 8. Finally, temperature could act by increasing or decreasing the effect of prebiotics, as they could exert a protective effect at 30 °C but not at 44 °C. As the main output of this research, we could suggest that the effect of prebiotics on L. reuteri could be significantly affected by pH and temperature, thus pinpointing that the design of a symbiotic food should also rely on these factors.
Collapse
Affiliation(s)
- Clelia Altieri
- a Department of the Science of Agriculture , Food and Environment, University of Foggia , Foggia , Italy
| | - Maria Clara Iorio
- a Department of the Science of Agriculture , Food and Environment, University of Foggia , Foggia , Italy
| | - Antonio Bevilacqua
- a Department of the Science of Agriculture , Food and Environment, University of Foggia , Foggia , Italy
| | - Milena Sinigaglia
- a Department of the Science of Agriculture , Food and Environment, University of Foggia , Foggia , Italy
| |
Collapse
|
43
|
Bustamante CA, Monti LL, Gabilondo J, Scossa F, Valentini G, Budde CO, Lara MV, Fernie AR, Drincovich MF. Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:1478. [PMID: 27746802 PMCID: PMC5044465 DOI: 10.3389/fpls.2016.01478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 05/18/2023]
Abstract
Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp, and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI.
Collapse
Affiliation(s)
- Claudia A. Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Laura L. Monti
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - Federico Scossa
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la FrutticolturaRome, Italy
| | - Gabriel Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - Claudio O. Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología AgropecuariaSan Pedro, Argentina
| | - María V. Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - María F. Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
- *Correspondence: María F. Drincovich
| |
Collapse
|
44
|
Gasperl A, Morvan-Bertrand A, Prud’homme MP, van der Graaff E, Roitsch T. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1154. [PMID: 26734049 PMCID: PMC4686730 DOI: 10.3389/fpls.2015.01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/04/2015] [Indexed: 05/16/2023]
Abstract
Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.
Collapse
Affiliation(s)
- Anna Gasperl
- Institute of Plant Sciences, Karl-Franzens-Universität GrazGraz, Austria
| | - Annette Morvan-Bertrand
- Normandie Université, CaenFrance
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Université de Caen NormandieCaen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCSCaen, France
| | - Marie-Pascale Prud’homme
- Normandie Université, CaenFrance
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Université de Caen NormandieCaen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCSCaen, France
| | | | - Thomas Roitsch
- Institute of Plant Sciences, Karl-Franzens-Universität GrazGraz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
45
|
Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr Polym 2015; 134:418-28. [DOI: 10.1016/j.carbpol.2015.08.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
|
46
|
Zwicke M, Picon-Cochard C, Morvan-Bertrand A, Prud'homme MP, Volaire F. What functional strategies drive drought survival and recovery of perennial species from upland grassland? ANNALS OF BOTANY 2015; 116:1001-15. [PMID: 25851134 PMCID: PMC4640119 DOI: 10.1093/aob/mcv037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Extreme climatic events such as severe droughts are expected to increase with climate change and to limit grassland perennity. The present study aimed to characterize the adaptive responses by which temperate herbaceous grassland species resist, survive and recover from a severe drought and to explore the relationships between plant resource use and drought resistance strategies. METHODS Monocultures of six native perennial species from upland grasslands and one Mediterranean drought-resistant cultivar were compared under semi-controlled and non-limiting rooting depth conditions. Above- and below-ground traits were measured under irrigation in spring and during drought in summer (50 d of withholding water) in order to characterize resource use and drought resistance strategies. Plants were then rehydrated and assessed for survival (after 15 d) and recovery (after 1 year). KEY RESULTS Dehydration avoidance through water uptake was associated with species that had deep roots (>1·2 m) and high root mass (>4 kg m(-3)). Cell membrane stability ensuring dehydration tolerance of roots and meristems was positively correlated with fructan content and negatively correlated with sucrose content. Species that survived and recovered best combined high resource acquisition in spring (leaf elongation rate >9 mm d(-1) and rooting depth >1·2 m) with both high dehydration avoidance and tolerance strategies. CONCLUSIONS Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events.
Collapse
Affiliation(s)
- Marine Zwicke
- INRA, UR874, Grassland Ecosystem Research Team, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France
| | - Catherine Picon-Cochard
- INRA, UR874, Grassland Ecosystem Research Team, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France,
| | - Annette Morvan-Bertrand
- Normandie Université, France, UCBN, UMR 950 Ecophysiologie Végétale and Agronomie, Nutritions NCS, F-14032 Caen, France, INRA, UMR 950 EVA, F-14032 Caen, France and
| | - Marie-Pascale Prud'homme
- Normandie Université, France, UCBN, UMR 950 Ecophysiologie Végétale and Agronomie, Nutritions NCS, F-14032 Caen, France, INRA, UMR 950 EVA, F-14032 Caen, France and
| | - Florence Volaire
- INRA, USC 1338, CEFE UMR 5175, Université de Montpellier-Université Paul Valéry-EPHE, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| |
Collapse
|
47
|
Bondarenko OM, Ivask A, Kahru A, Vija H, Titma T, Visnapuu M, Joost U, Pudova K, Adamberg S, Visnapuu T, Alamäe T. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydr Polym 2015; 136:710-20. [PMID: 26572404 DOI: 10.1016/j.carbpol.2015.09.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
Levan, fructose-composed biopolymer of bacterial origin, has potential in biotechnology due to its prebiotic and immunostimulatory properties. In this study levan synthesized by levansucrase from Pseudomonas syringae was thoroughly characterized and used as multifunctional biocompatible coating material for microelement-nanoparticles (NPs) of selenium, iron and cobalt. Transmission electron microscopy (TEM), hydrodynamic size measurements (DLS) and X-ray photoelectron spectroscopy (XPS) showed the interaction of levan with NPs. Levan stabilized the dispersions of NPs, decreased their toxicity and had protective effect on human intestinal cells Caco-2. In addition, levan attached to cobalt NPs remained accessible as a substrate for the colon bacteria Bacteroides thetaiotaomicron. We suggest that the combination of levan and nutritionally important microelements in the form of NPs serves as a first step towards a novel "2 in 1" approach for food supplements to provide safe and efficient delivery of microelements for humans and support beneficial gut microbiota with nutritional oligosaccharides.
Collapse
Affiliation(s)
- Olesja M Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Tiina Titma
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Meeri Visnapuu
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia.
| | - Urmas Joost
- Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia.
| | - Ksenia Pudova
- Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; Competence Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
| | - Signe Adamberg
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
| | - Triinu Visnapuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tiina Alamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
48
|
Tarkowski ŁP, Van den Ende W. Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. FRONTIERS IN PLANT SCIENCE 2015; 6:203. [PMID: 25926837 PMCID: PMC4396355 DOI: 10.3389/fpls.2015.00203] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 05/20/2023]
|
49
|
Kim SJ, Bae PK, Chung BH. Self-assembled levan nanoparticles for targeted breast cancer imaging. Chem Commun (Camb) 2015; 51:107-10. [DOI: 10.1039/c4cc07679f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report on the targeted imaging of breast cancer using self-assembled levan nanoparticles.
Collapse
Affiliation(s)
- Sun-Jung Kim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 305-806
- Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center
- Daejeon 305-806
- Republic of Korea
| | - Bong Hyun Chung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 305-806
- Republic of Korea
- BioNano Health Guard Research Center
| |
Collapse
|
50
|
The Relationship Between Bound Water and Carbohydrate Reserves in Association with Cellular Integrity in Fragaria vesca Stored Under Different Conditions. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1449-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|