1
|
Honma S, Kimishima A, Kato S, Horiuchi A, Hokari R, Honsho M, Kojima H, Tokiwa T, Sugawara A, Iwatsuki M, Araki Y, Takahashi T, Chinen T, Usui T, Ito K, Asami Y. The isolation of sclerotinin A as an anti-malarial compound by utilization of a global secondary metabolism regulator, laeA gene. Bioorg Med Chem Lett 2024; 113:129947. [PMID: 39245150 DOI: 10.1016/j.bmcl.2024.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Previously, we successfully introduced laeA gene into a fungal strain in order to significantly increase the production of a bioactive compound, allowing use to discover novel biological activity. To demonstrate the universal applicability of the laeA gene introduction strategy for taping the potential of fungal secondary metabolism, in this present study, we created a library of microorganisms which we had the laeA gene inserted, and from that library we aimed to isolate compounds which are produced at significantly greater quantities compared to the respective wild type strains. From this investigation, we were able to isolate sclerotinin A (1) from Pochonia sp. KTF-0504 strain. We revealed that 1 showed anti-malarial activity against Plasmodium falciparum parasite strains. On the other hands, 1 showed no anti-fungal activity against multidrug-sensitive budding yeast. Our study implies that the utilization of the laeA gene in fungi is a versatile method for the discovery of drug candidates.
Collapse
Affiliation(s)
- Sota Honma
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi Kato
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akari Horiuchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Rei Hokari
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Kojima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiyuki Tokiwa
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akihiro Sugawara
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuko Araki
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda-shii, Chiba 278-0037, Japan
| | - Tadashi Takahashi
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda-shii, Chiba 278-0037, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8572, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8572, Japan
| | - Kotaro Ito
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda-shii, Chiba 278-0037, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
2
|
Honma S, Kimishima A, Kimishima A, Honsho M, Kojima H, Tokiwa T, Nishitomi A, Kato S, Kondo N, Araki Y, Takahashi T, Chinen T, Usui T, Fuji SI, Ito K, Asami Y. Re-discovery of MS-347a as a fungicide candidate through a new drug discovery platform with a multidrug-sensitive Saccharomyces cerevisiae screening system and the introduction of a global secondary metabolism regulator, laeA gene. Biosci Biotechnol Biochem 2024; 88:824-829. [PMID: 38664007 DOI: 10.1093/bbb/zbae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
We found that the culture broth of fungi showed anti-fungal activity against multidrug-sensitive budding yeast. However, we could not identify the anti-fungal compound due to the small quantity. Therefore, we attempted to increase the productivity of the target compound by the introduction of a global secondary metabolism regulator, laeA to the strain, which led to the successful isolation of 10-folds greater amount of MS-347a (1) than Aspergillus sp. FKI-5362. Compound 1 was not effective against Candida albicans and the detailed anti-fungal activity of 1 remains unverified. After our anti-fungal activity screening, 1 was found to inhibit the growth of broad plant pathogenic fungal species belonging to the Ascomycota. It is noteworthy that 1 showed little insecticidal activity against silkworms, suggesting its selective biological activity against plant pathogenic fungi. Our study implies that the combination strategy of multidrug-sensitive yeast and the introduction of laeA is useful for new anti-fungal drug discovery.
Collapse
Affiliation(s)
- Sota Honma
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Atsushi Kimishima
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Hiroki Kojima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Toshiyuki Tokiwa
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Atsuka Nishitomi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Satoshi Kato
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Naozumi Kondo
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Yasuko Araki
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda-shii, Chiba, Japan
| | - Tadashi Takahashi
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda-shii, Chiba, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Shin-Ichi Fuji
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita, Japan
| | - Kotaro Ito
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda-shii, Chiba, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| |
Collapse
|
3
|
Jordan EN, Shirali Hossein Zade R, Pillay S, van Lent P, Abeel T, Kayser O. Integrated omics of Saccharomyces cerevisiae CENPK2-1C reveals pleiotropic drug resistance and lipidomic adaptations to cannabidiol. NPJ Syst Biol Appl 2024; 10:63. [PMID: 38821949 PMCID: PMC11143246 DOI: 10.1038/s41540-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S. cerevisiae CENPK2-1C yeast cultures. We treated the experimental group with 0.5 mM CBD and monitored CENPK2-1C cultures. We observed a latent-stationary phase post-diauxic shift in the experimental group and harvested samples in the inflection point of this growth phase for transcriptomic and metabolomic analysis. We compared the transcriptomes of the CBD-treated yeast and the positive control, identifying eight significantly overexpressed genes with a log fold change of at least 1.5 and a significant adjusted p-value. Three notable genes were PDR5 (an ABC-steroid and cation transporter), CIS1, and YGR035C. These genes are all regulated by pleiotropic drug resistance linked promoters. Knockout and rescue of PDR5 showed that it is a causal factor in the post-diauxic shift phenotype. Metabolomic analysis revealed 48 significant spectra associated with CBD-fed cell pellets, 20 of which were identifiable as non-CBD compounds, including fatty acids, glycerophospholipids, and phosphate-salvage indicators. Our results suggest that mitochondrial regulation and lipidomic remodeling play a role in yeast's response to CBD, which are employed in tandem with pleiotropic drug resistance (PDR). We conclude that bioengineers should account for off-target product C-flux, energy use from ABC-transport, and post-stationary phase cell growth when developing cannabinoid-biosynthetic yeast strains.
Collapse
Affiliation(s)
- Erin Noel Jordan
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| | - Ramin Shirali Hossein Zade
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Paul van Lent
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| |
Collapse
|
4
|
Buechel ER, Pinkett HW. Activity of the pleiotropic drug resistance transcription factors Pdr1p and Pdr3p is modulated by binding site flanking sequences. FEBS Lett 2024; 598:169-186. [PMID: 37873734 PMCID: PMC10843404 DOI: 10.1002/1873-3468.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleiotropic drug resistance (PDR) in Saccharomyces cerevisiae via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3p can differentially regulate PDR.
Collapse
Affiliation(s)
- Evan R. Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Krska T, Twaruschek K, Valente N, Mitterbauer R, Moll D, Wiesenberger G, Berthiller F, Adam G. Development of a fumonisin-sensitive Saccharomyces cerevisiae indicator strain and utilization for activity testing of candidate detoxification genes. Appl Environ Microbiol 2023; 89:e0121123. [PMID: 38054733 PMCID: PMC10746191 DOI: 10.1128/aem.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.
Collapse
Affiliation(s)
- Tamara Krska
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Nina Valente
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Dieter Moll
- dsm-firmenich ANH Research Center Tulln, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Franz Berthiller
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
6
|
Lavilla-Puerta M, Latter R, Bellè F, Cervelli T, Galli A, Perata P, Chini A, Flashman E, Giuntoli B. Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen. J Biol Chem 2023; 299:105366. [PMID: 37863264 PMCID: PMC10692734 DOI: 10.1016/j.jbc.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.
Collapse
Affiliation(s)
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Beatrice Giuntoli
- Plantlab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
7
|
Buechel ER, Pinkett HW. Unraveling the Half and Full Site Sequence Specificity of the Saccharomyces cerevisiae Pdr1p and Pdr3p Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553033. [PMID: 37609128 PMCID: PMC10441396 DOI: 10.1101/2023.08.11.553033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleotropic drug resistance (PDR) in Saccharomyces cerevisiae , via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3 can differentially regulate PDR.
Collapse
|
8
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
9
|
Wang F, Kong L, Guo J, Song X, Tao B, Han Y. RNA-sequencing analysis of the Diquat-degrading yeast strain Meyerozyma guilliermondii Wyslmt and the discovery of Diquat degrading genes. Front Microbiol 2022; 13:993721. [PMID: 36118229 PMCID: PMC9478375 DOI: 10.3389/fmicb.2022.993721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Diquat is used in agricultural contexts to control the growth of broadleaf and grassy weeds in both terrestrial and aquatic areas. Diquat can be readily absorbed by the soil and can remain therein for extended periods of time, altering the local microenvironment. In this study, the Meyerozyma guilliermondii Wyslmt yeast strain, which has the capacity to degrade Diquat, was isolated from soil exposed to long-term Diquat treatment. Over a 7-day incubation period, this strain was able to remove 42.51% of available Diquat (100 mg/L). RNA-Seq was performed to assess changes in gene expression in this yeast strain over the course of Diquat degradation, revealing 63 and 151 upregulated and downregulated genes, respectively. KEGG pathway enrichment analysis revealed these genes to be most highly enriched in the carbohydrate metabolism pathway. Through functional annotation and gene expression analyses, we identified seven genes were predicted to be involved in Diquat biodegradation. Results of qRT-PCR assays indicated that the relative mRNA expression levels of these seven genes were significantly higher relative to the control group. Together these analyses led to the identification of DN676 as a candidate Diquat-degrading gene. When a pET-DN676 vector was expressed in E. coli BL21, this strain was able to remove 12.49% of provided Diquat (100 mg/L) over the course of a 7-day incubation. These results thus confirmed that the DN676 gene can promote Diquat degradation, with these studies having yielded an engineered BL21-pET-DN676 bacterial strain capable of degrading Diquat.
Collapse
Affiliation(s)
- Fangyuan Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Lingwei Kong
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Jing Guo
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Xiuli Song
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Bo Tao
- College of Agronomy, Northeast Agricultural University, Harbin, China
- *Correspondence: Bo Tao,
| | - Yujun Han
- College of Agronomy, Northeast Agricultural University, Harbin, China
- Yujun Han,
| |
Collapse
|
10
|
Lu X, Zhang L, Wang G, Huang S. Functional analysis of ABCG2 gene in pigment transport of Neocaridina denticulata sinensis. Gene X 2022; 844:146810. [PMID: 35985411 DOI: 10.1016/j.gene.2022.146810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023] Open
Abstract
Many strains of Neocaridina denticulata sinensis (cherry shrimp) possess vivid body colors.However, the molecular underpinnings of these various body colors are scarcely understood. To study the role of the ABCG2 gene in the pigmentation of cherry shrimp, four strains (red, yellow, blue, and wild strains) were sampled. The sequence and expression pattern of ABCG2in tissues and embryos were analyzed, and the distribution of ABCG2 was also explored via WFISH (whole mount flurescence in situ hybridization). And further, RNA interference (RNAi) was used to explore the role of ABCG2 in body color deposition. The results showed that the ABCG2 sequence contained the conserved motif of Walker A, Walker B, Q-loop, d-loop, and H-loop. In tissues, ABCG2 was highly expressed in the epidermis of the four strains. During development stages, it was first expressed at the cleavage stage, then decreased at the gastrula stage, with the lowest expression at the pre-nauplius stage. From the metanauplius stage, its expression level was significantly upregulated until it reached the highest level at the membrane-zoea stage. WFISH showed that ABCG2 was first expressed at the cleavage stage in all four strains, and its distribution was similar from the cleavage stage to the before-zoea stage. The strongest positive signals were observed at the membrane-zoea stage, which was consistent with the qPCR results. Moreover, at the membrane-zoea stage, the positive signals of the four strains were mainly distributed in the compound eye and appendages. RNAi knockdown of ABCG2 encumbered the development of compound eye pigment cells (CEPCs) and erythrophores. It had effects on the expressions of other genes related to body color. These results suggest that ABCG2 is involved in the development of compound eye and the proliferation of erythrophores. This study provides new ideas for the cultivation of novel body colors in cherry shrimp at the molecular level.
Collapse
Affiliation(s)
- Xiqin Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
11
|
Chen J, Han S, Li S, Wang M, Zhu H, Qiao T, Lin T, Zhu T. Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Neofusicoccum parvum in Walnut. Front Microbiol 2022; 13:926620. [PMID: 35910616 PMCID: PMC9335079 DOI: 10.3389/fmicb.2022.926620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
Neofusicoccum parvum can cause stem and branch blight of walnut (Juglans spp.), resulting in great economic losses and ecological damage. A total of two strains of N. parvum were subjected to RNA-sequencing after being fed on different substrates, sterile water (K1/K2), and walnut (T1/T2), and the function of ABC1 was verified by gene knockout. There were 1,834, 338, and 878 differentially expressed genes (DEGs) between the K1 vs. K2, T1 vs. K1, and T2 vs. K2 comparison groups, respectively. The expression changes in thirty DEGs were verified by fluorescent quantitative PCR. These thirty DEGs showed the same expression patterns under both RNA-seq and PCR. In addition, ΔNpABC1 showed weaker virulence due to gene knockout, and the complementary strain NpABC1c showed the same virulence as the wild-type strain. Compared to the wild-type and complemented strains, the relative growth of ΔNpABC1 was significantly decreased when grown with H2O2, NaCl, Congo red, chloramphenicol, MnSO4, and CuSO4. The disease index of walnuts infected by the mutants was significantly lower than those infected by the wild-type and complementary strains. This result indicates that ABC1 gene is required for the stress response and virulence of N. parvum and may be involved in heavy metal resistance.
Collapse
Affiliation(s)
- Jie Chen
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Ming Wang
- Ecological Institute, Academy of Sichuan Forestry and Grassland Inventory and Planning, Chengdu, China
| | - Hanmingyue Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianmin Qiao
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
González-Tobón J, Childers RR, Rodríguez A, Fry W, Myers KL, Thompson JR, Restrepo S, Danies G. Searching for the Mechanism that Mediates Mefenoxam-Acquired Resistance in Phytophthora infestans and How It Is Regulated. PHYTOPATHOLOGY 2022; 112:1118-1133. [PMID: 34763530 DOI: 10.1094/phyto-07-21-0280-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora infestans, the causal agent of late blight disease of potatoes, is mainly controlled by the use of fungicides. Isolates that are resistant to commonly used fungicides have been reported. Also, several studies show that originally mefenoxam-sensitive isolates acquire resistance to this fungicide when exposed to sublethal concentrations. This phenomenon, termed "mefenoxam-acquired resistance," has been observed in different Phytophthora species and seems to be unique to mefenoxam. In this study, we aimed to elucidate the molecular mechanism mediating this type of resistance as well as a possible regulatory process behind it. A combination of computational analyses and experimental approaches was used to identify differentially expressed genes with a potential association to the phenomenon. These genes were classified into seven functional groups. Most of them seem to be associated with a pleiotropic drug resistance (PDR) phenotype, typically involved in the expulsion of diverse metabolites, drugs, or other substances out of the cell. Despite the importance of RNA Polymerase I for the constitutive resistance of P. infestans to mefenoxam, our results indicate no clear interaction between this protein and the acquisition of mefenoxam resistance. Several small non-coding RNAs were found to be differentially expressed and specifically related to genes mediating the PDR phenotype, thus suggesting a possible regulatory process. We propose a model of the molecular mechanisms acting within the cell when P. infestans acquires resistance to mefenoxam after exposed to sublethal concentrations of the fungicide. This study provides important insights into P. infestans' cellular and regulatory functionalities.
Collapse
Affiliation(s)
- Juliana González-Tobón
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 111711
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | | | - Alejandra Rodríguez
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 111711
| | - William Fry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - Kevin L Myers
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - Jeremy R Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1072, New Zealand
| | - Silvia Restrepo
- Department of Food and Chemical Engineering, Universidad de los Andes, Bogotá, Colombia 111711
| | - Giovanna Danies
- Department of Design, Universidad de los Andes, Bogotá, Colombia 111711
| |
Collapse
|
13
|
Durability of Adult Plant Resistance Gene Yr18 in Partial Resistance Behavior of Wheat (Triticum aestivum) Genotypes with Different Degrees of Tolerance to Stripe Rust Disease, Caused by Puccinia striiformis f. sp. tritici: A Five-Year Study. PLANTS 2021; 10:plants10112262. [PMID: 34834622 PMCID: PMC8620947 DOI: 10.3390/plants10112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers. Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 ‘R’.
Collapse
|
14
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Mioka T, Guo T, Wang S, Tsuji T, Kishimoto T, Fujimoto T, Tanaka K. Characterization of micron-scale protein-depleted plasma membrane domains in phosphatidylserine-deficient yeast cells. J Cell Sci 2021; 135:261783. [PMID: 34000034 DOI: 10.1242/jcs.256529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane phase separation to form micron-scale domains of lipids and proteins occurs in artificial membranes; however, a similar large-scale phase separation has not been reported in the plasma membrane of the living cells. We show here that a stable micron-scale protein-depleted region is generated in the plasma membrane of yeast mutants lacking phosphatidylserine at high temperatures. We named this region the 'void zone'. Transmembrane proteins and certain peripheral membrane proteins and phospholipids are excluded from the void zone. The void zone is rich in ergosterol, and requires ergosterol and sphingolipids for its formation. Such properties are also found in the cholesterol-enriched domains of phase-separated artificial membranes, but the void zone is a novel membrane domain that requires energy and various cellular functions for its formation. The formation of the void zone indicates that the plasma membrane in living cells has the potential to undergo phase separation with certain lipid compositions. We also found that void zones were frequently in contact with vacuoles, in which a membrane domain was also formed at the contact site.
Collapse
Affiliation(s)
- Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Tian Guo
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Shiyao Wang
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Takuma Tsuji
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| | - Toyoshi Fujimoto
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
16
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
17
|
Identification of prognostic and metastasis-related alternative splicing signatures in hepatocellular carcinoma. Biosci Rep 2021; 40:225701. [PMID: 32627826 PMCID: PMC7364508 DOI: 10.1042/bsr20201001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
As the most common neoplasm in digestive system, hepatocellular carcinoma (HCC) is one of the most important leading cause of cancer deaths worldwide. Its high-frequency metastasis and relapse rate lead to the poor survival of HCC patients. However, the mechanism of HCC metastasis is still unclear. Alternative splicing events (ASEs) have a great effect in cancer development, progression and metastasis. We downloaded RNA sequencing and seven types of ASEs data of HCC samples, in order to explore the mechanism of ASEs underlying tumorigenesis and metastasis of HCC. The data were taken from the The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases. Univariate Cox regression analysis was used to determine a total of 3197 overall survival-related ASEs (OS-SEs). And based on five OS-SEs screened by Lasso regression, we constructed a prediction model with the Area Under Curve of 0.765. With a good reliability of the model, the risk score was also proved to be an independent predictor. Among identified 390 candidate SFs, Y-box protein 3 (YBX3) was significantly correlated with OS and metastasis. Among 177 ASEs, ATP-binding cassette subfamily A member 6 (ABCA6)-43162-AT and PLIN5-46808-AT were identified both associated with OS, bone metastasis and co-expressed with SFs. Then we identified primary bile acid biosynthesis as survival-related (KEGG) pathway by Gene Set Variation Analysis (GSVA) and univariate regression analysis, which was correlated with ABCA6-43162-AT and PLIN5-46808-AT. Finally, we proposed that ABCA6-43162-AT and PLIN5-46808-AT may contribute to HCC poor prognosis and metastasis under the regulation of aberrant YBX3 through the pathway of primary bile acid biosynthesis.
Collapse
|
18
|
Ren C, Teng Y, Chen X, Shen Y, Xiao H, Wang H. Impacts of earthworm introduction and cadmium on microbial communities composition and function in soil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103606. [PMID: 33545380 DOI: 10.1016/j.etap.2021.103606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal contamination of soil has become a public concern. Earthworms are key players in the functioning and service of soil ecosystems, with comprehension of their introduction in the polluted soil offering new insights into the protection of soil resources. In the present study, we evaluated the effects of earthworm (Eisenia fetida) introduction and Cd (0, 10, 30, and 60 mg kg-1 of Cd) exposure upon soil microbial community using 16S rRNA gene amplicon sequencing. Our research demonstrated that Gemmatimonadetes and Deinococcus-Thermus upregulated significantly, while Chryseolinea showed an obvious decreasing trend after earthworm introduction. In Cd contaminated soil, many genera exhibited a greater presence of Cd-dependent bacteria, namely Cd-tolerant bacteria such as Altererythrobacter and Luteimonas, and a decrease of sensitive bacteria, such as Amaricoccus and Haliangium. Moreover, functional prediction analysis of soil microbiota indicated that earthworm introduction and Cd exposure changed functional pathways of soil microorganisms. The results obtained in this study are beneficial for understanding soil microbial community impacted by earthworm, and for exploring Cd resistant or tolerant bacteria, with potentially significant findings for soil biodiversity and Cd bioremediation.
Collapse
Affiliation(s)
- Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoyan Chen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
19
|
Swagatika S, Tomar RS. ABC transporter Pdr5 is required for cantharidin resistance in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2021; 553:141-147. [PMID: 33770579 DOI: 10.1016/j.bbrc.2021.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023]
Abstract
Cantharidin is a potent anti-cancer drug and is known to exert its cytotoxic effects in several cancer cell lines. Although we have ample knowledge about its mode of action, we still know a little about cantharidin associated drug resistance mechanisms which dictates the efficacy and cytotoxic potential of this drug. In this direction, in the present study we employed Sacharomyces cerevisiae as a model organism and screened mutants of pleiotropic drug resistance network of genes for their susceptibility to cantharidin. We show that growth of pdr1Δ and pdr1Δpdr3Δ was severely reduced in presence of cantharidin whereas that of pdr3Δ remain unaffected when compared to wildtype. Loss of one of the PDR1 target genes PDR5, encoding an ABC membrane efflux pump, rendered the cells hypersensitive whereas overexpression of it conferred resistance. Additionally, cantharidin induced the upregulation of both PDR1 and PDR5 genes. Interestingly, pdr1Δpdr5Δ double deletion mutants were hypersensitive to cantharidin showing a synergistic effect in its cellular detoxification. Furthermore, transcriptional activation of PDR5 post cantharidin treatment was majorly dependent on the presence of Pdr1 and less significantly of Pdr3 transcription factors. Altogether our findings suggest that Pdr1 acts to increase cantharidin resistance by elevating the level of Pdr5 which serves as a major detoxification safeguard under CAN stress.
Collapse
Affiliation(s)
- Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, MP, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, MP, India.
| |
Collapse
|
20
|
Bereketoglu C, Nacar G, Sari T, Mertoglu B, Pradhan A. Transcriptomic analysis of nonylphenol effect on Saccharomyces cerevisiae. PeerJ 2021; 9:e10794. [PMID: 33614281 PMCID: PMC7882136 DOI: 10.7717/peerj.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Nonylphenol (NP) is a bioaccumulative environmental estrogen that is widely used as a nonionic surfactant. We have previously examined short-term effects of NP on yeast cells using microarray technology. In the present study, we investigated the adaptive response of Saccharomyces cerevisiae BY4742 cells to NP exposure by analyzing genome-wide transcriptional profiles using RNA-sequencing. We used 2 mg/L NP concentration for 40 days of exposure. Gene expression analysis showed that a total of 948 genes were differentially expressed. Of these, 834 genes were downregulated, while 114 genes were significantly upregulated. GO enrichment analysis revealed that 369 GO terms were significantly affected by NP exposure. Further analysis showed that many of the differentially expressed genes were associated with oxidative phosphorylation, iron and copper acquisition, autophagy, pleiotropic drug resistance and cell cycle progression related processes such as DNA and mismatch repair, chromosome segregation, spindle checkpoint activity, and kinetochore organization. Overall, these results provide considerable information and a comprehensive understanding of the adaptive response to NP exposure at the gene expression level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
| | - Gozde Nacar
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Tugba Sari
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
21
|
Grechko V, Podolsky D, Cheshchevik V. Identification new potential multidrug resistance proteins of Saccharomyces cerevisiae. J Microbiol Methods 2020; 176:106029. [DOI: 10.1016/j.mimet.2020.106029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
22
|
Chanarat S, Svasti J. Stress-induced upregulation of the ubiquitin-relative Hub1 modulates pre-mRNA splicing and facilitates cadmium tolerance in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118565. [PMID: 31666190 DOI: 10.1016/j.bbamcr.2019.118565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/09/2023]
|
23
|
Hou D, Zhang P, Zhang J, Zhou Y, Yang Y, Mao Q, Tsang DCW, Núñez-Delgado A, Luo L. Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109542. [PMID: 31569024 DOI: 10.1016/j.jenvman.2019.109542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Microbial community is sensitive to the variations of environment, and it plays an important role in biogeochemical cycling in acid mine drainage (AMD). In this study, an integrated high-throughput absolute abundance quantification (iHAAQ) method was applied to study the dynamics of microbial community and the characteristics of microorganism. The results showed a significant difference in bacterial community with diversity being higher in watershed area. The main influential factors for bacterial communities in watershed were physicochemical properties (e.g., pH and potassium), while in mining areas the main driving factors were metals/metalloids (e.g., As, Zn, and Pb). Notably, the major functions of microbial community were transporter and ABC transporter in mining area, while two-component system was more abundant in watershed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis (level 3). In particular, Phyllobacterium, Bacteroides, and Sulfurovum were demonstrated to be potentially useful bacterial species for bioremediation, which should be a good choice for future studies. These results could facilitate our understanding of microbial diversity in different sediments of mining areas and identify microbial communities for bioremediation projects.
Collapse
Affiliation(s)
- Dongmei Hou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Pan Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Qiming Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Universidade de Santiago de Compostela, Galicia, Spain
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China.
| |
Collapse
|
24
|
Gupta BB, Selter LL, Baranwal VK, Arora D, Mishra SK, Sirohi P, Poonia AK, Chaudhary R, Kumar R, Krattinger SG, Chauhan H. Updated inventory, evolutionary and expression analyses of G (PDR) type ABC transporter genes of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:429-439. [PMID: 31419645 DOI: 10.1016/j.plaphy.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
ABC transporters constitute the largest family of transporter proteins in living organisms and divided into eight subfamilies, from A-H. ABCG members, specific to plants and fungi, belong to subfamily G. In this study, we provide updated inventory, detailed account of phylogeny, gene structure characteristics, and expression profiling during reproductive development, abiotic and biotic stresses of members of ABCG gene family in rice along with reannotation and cloning of FL-cDNA of OsABCG50/PDR23. We observed that of the 22 ABCGs/PDRs, four genes evolved as a result of gene duplication events and their expression pattern changed after duplication. Analysis of expression revealed seed and developmental stage preferential expression of five ABCG/PDR members. Transcript levels of eight ABCGs/PDRs were affected by abiotic and biotic stresses. Expression of seven ABCG/PDR genes was also altered by hormonal elicitors. The modulated expression is nicely correlated with the presence of tissue/stress specific cis-acting elements present in putative promoter region.
Collapse
Affiliation(s)
| | - Liselotte L Selter
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vinay K Baranwal
- Swami Devanand Post Graduate College, Math-Lar, Deoria, U. P, India
| | - Deepanksha Arora
- Indian Institute of Technology Roorkee, India; VIB Department of Plant Systems Biology, Ghent University, Belgium
| | | | | | | | | | - Rahul Kumar
- School of Life Sciences, University of Hyderabad, India
| | - Simon G Krattinger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland; King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | | |
Collapse
|
25
|
Han TT, Liu WC, Lu YT. General control non-repressible 20 (GCN20) functions in root growth by modulating DNA damage repair in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:274. [PMID: 30419826 PMCID: PMC6233562 DOI: 10.1186/s12870-018-1444-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/27/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Most ABC transporters are engaged in transport of various compounds, but its subfamily F lacks transmembrane domain essential for chemical transportation. Thus the function of subfamily F remains further elusive. RESULTS Here, we identified General Control Non-Repressible 20 (GCN20), a member of subfamily F, as new factor for DNA damage repair in root growth. While gcn20-1 mutant had a short primary root with reduced meristem size and cell number, similar primary root lengths were assayed in both wild-type and GCN20::GCN20 gcn20-1 plants, indicating the involvement of GCN20 in root elongation. Further experiments with EdU incorporation and comet assay demonstrated that gcn20-1 displays increased cell cycle arrest at G2/M checkpoint and accumulates more damaged DNA. This is possible due to impaired ability of DNA repair in gcn20-1 since gcn20-1 seedlings are hypersensitive to DNA damage inducers MMC and MMS compared with the wild type plants. This note was further supported by the observation that gcn20-1 is more sensitive than the wild type when subjected to UV treatment in term of changes of both fresh weight and survival rate. CONCLUSIONS Our study indicates that GCN20 functions in primary root growth by modulating DNA damage repair in Arabidopsis. Our study will be useful to understand the functions of non-transporter ABC proteins in plant growth.
Collapse
Affiliation(s)
- Tong-Tong Han
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
26
|
Sayyed K, Le Vée M, Chamieh H, Fardel O, Abdel-Razzak Z. Cigarette smoke condensate alters Saccharomyces cerevisiae efflux transporter mRNA and activity and increases caffeine toxicity. Toxicology 2018; 409:129-136. [DOI: 10.1016/j.tox.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
|
27
|
Sakai K, Hirose T, Iwatsuki M, Chinen T, Kimura T, Suga T, Nonaka K, Nakashima T, Sunazuka T, Usui T, Asami Y, O Mura S, Shiomi K. Pestynol, an Antifungal Compound Discovered Using a Saccharomyces cerevisiae 12geneΔ0HSR-iERG6-Based Assay. JOURNAL OF NATURAL PRODUCTS 2018; 81:1604-1609. [PMID: 29975062 DOI: 10.1021/acs.jnatprod.8b00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The multidrug-sensitive budding yeast, Saccharomyces cerevisiae 12geneΔ0HSR-iERG6, is very useful in antifungal screens. A novel compound, named pestynol (1), was discovered from a culture of the fungus Pestalotiopsis humus FKI-7473 using the multidrug-sensitive yeast. The structure of 1 was elucidated by NMR studies and modified Mosher's method as (1 R,2 R,3 R,4 R)-( E)-5-(7,11-dimethyl-3-methylenedodeca-6,10-dien-1-yn-1-yl)cyclohex-5-ene-1,2,3,4-tetraol. Compound 1 showed antimicrobial activity against the Gram-positive bacteria, Klebsiella pneumoniae, and S. cerevisiae 12geneΔ0HSR-iERG6 and Mucor racemosus, but displayed only weak cytotoxicity against various human cancer cell lines. Compound 1 displayed antifungal activities against S. cerevisiae 12geneΔ0HSR-iERG6 and Mucor racemosus at 10 μg/disc.
Collapse
Affiliation(s)
- Katsuyuki Sakai
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Takumi Chinen
- Graduate School of Life and Environmental Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba 305-8572 , Ibaraki , Japan
| | - Toru Kimura
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Takuya Suga
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba 305-8572 , Ibaraki , Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Satoshi O Mura
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
- Kitasato Institute for Life Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku, Tokyo 108-8641 , Japan
| |
Collapse
|
28
|
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel) 2018; 9:genes9070332. [PMID: 30004464 PMCID: PMC6071111 DOI: 10.3390/genes9070332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.
Collapse
|
29
|
Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H, Wei W, Wang M, Zhao Y. Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol 2018; 18:11. [PMID: 29439665 PMCID: PMC5812035 DOI: 10.1186/s12866-018-1152-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 02/07/2018] [Indexed: 11/25/2022] Open
Abstract
Background Soil contaminated with the heavy metal Cadmium (Cd) is a widespread problem in many parts of the world. Based on metagenomic analysis, we investigated the functional potential and structural diversity of the microbial community in Cd-contaminated and non-contaminated soil samples and we explored the associated metabolic pathway network in cluster of orthologous groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results The results showed that microorganisms in these soils were quite abundant, and many of them possessed numerous physiological functions. However, Cd-contamination has the potential to reduce the microbial diversity and further alter the community structure in the soil. Notably, function analysis of the crucial microorganisms (e. g. Proteobacteria, Sulfuricella and Thiobacillus) indicated that these bacteria and their corresponding physiological functions were important for the community to cope with Cd pollution. The COG annotation demonstrated that the predominant category was the microbial metabolism cluster in both soil samples, while the relative abundance of metabolic genes was increased in the Cd-contaminated soil. The KEGG annotation results exhibited that the non-contaminated soil had more genes, pathways, modules, orthologies and enzymes involved in metabolic pathways of microbial communities than the Cd-contaminated soil. The relative abundance of some dominant KEGG pathways increased in the Cd contaminated soil, and they were mostly enriched to the metabolism, biosynthesis and degradation of amino acids, fatty acids and nucleotides, which was related to Cd tolerance of the microorganisms. Conclusions Cd-contamination can decrease the taxonomic species of microbes in soil and change the soil microbial composition. The functional pathways involved in the soil change with microbial structure variation, many of which are related to the heavy metal tolerance of soil microbes. The Cd-contaminated soil microbes is a potential resource for exploring cadmium resistant or tolerant bacteria. Electronic supplementary material The online version of this article (10.1186/s12866-018-1152-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Tian Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jiuyuan Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Lin Tang
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850002, China
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of life sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
30
|
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiol Genomics 2017; 49:549-566. [PMID: 28887370 DOI: 10.1152/physiolgenomics.00034.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey; .,Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University; Baglarbasi, Gumushane, Turkey; and
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| |
Collapse
|
31
|
Baral B. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters. ADVANCES IN GENETICS 2017; 98:117-154. [PMID: 28942792 DOI: 10.1016/bs.adgen.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases.
Collapse
|
32
|
Ben Jabeur M, Somai-Jemmali L, Hamada W. Thyme essential oil as an alternative mechanism: biofungicide-causing sensitivity ofMycosphaerella graminicola. J Appl Microbiol 2017; 122:932-939. [DOI: 10.1111/jam.13408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- M. Ben Jabeur
- Laboratory of Genetic and plant amelioration; National Institute of Agronomy; Tunis Tunisia
| | - L. Somai-Jemmali
- Laboratory of Genetic and plant amelioration; National Institute of Agronomy; Tunis Tunisia
| | - W. Hamada
- Laboratory of Genetic and plant amelioration; National Institute of Agronomy; Tunis Tunisia
- Higher School of Agriculture of Kef; Le Kef Tunisia
| |
Collapse
|
33
|
Kovalchuk A, Lee YH, Asiegbu FO. Diversity and evolution of ABC proteins in basidiomycetes. Mycologia 2017; 105:1456-70. [DOI: 10.3852/13-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University Seoul 151-921, Korea
| | - Fred O. Asiegbu
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Wang M, Deng WW, Zhang ZZ, Yu O. Engineering an ABC Transporter for Enhancing Resistance to Caffeine in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7973-7978. [PMID: 27696877 DOI: 10.1021/acs.jafc.6b03980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In addressing caffeine toxicity to the producing cells, engineering a transporter that can move caffeine from cytoplasm across the cell membrane to the extracellular space, thus enhancing caffeine resistance and potentially increasing the yield in yeast, is important. An ABC-transporter bfr1 from Schizosaccharomyces pombe was cloned and transformed into S. cerevisiae, resulting in enhancing caffeine resistance. Afterward, a library of randomly mutagenized bfr1 mutants through error-prone PCR was generated. One mutant was identified with drastically increased caffeine resistance (15 mg/mL). Sequencing and structural analysis illustrated that many of the mutations occurred at the cytosolic domain. Site-directed mutagenesis of these mutations confirmed at least one amino acid that conferred enhancing caffeine resistance in the mutated bfr1. These data demonstrated engineering ABC-transporters can be an efficient way to reduce product toxicity in heterologous systems.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
- Wuxi NewWay Biotechnology , 100 Konggang Road, Wuxi, Jiangsu 214145, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Oliver Yu
- Conagen Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
- Wuxi NewWay Biotechnology , 100 Konggang Road, Wuxi, Jiangsu 214145, China
| |
Collapse
|
35
|
Suresh S, Schlecht U, Xu W, Bray W, Miranda M, Davis RW, Nislow C, Giaever G, Lokey RS, St Onge RP. Systematic Mapping of Chemical-Genetic Interactions in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top077701. [PMID: 27587783 DOI: 10.1101/pdb.top077701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines.
Collapse
Affiliation(s)
- Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Weihong Xu
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Walter Bray
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Molly Miranda
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| |
Collapse
|
36
|
Coorey NVC, Matthews JH, Bellows DS, Atkinson PH. Pleiotropic drug-resistance attenuated genomic library improves elucidation of drug mechanisms. MOLECULAR BIOSYSTEMS 2016; 11:3129-36. [PMID: 26381459 DOI: 10.1039/c5mb00406c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identifying Saccharomyces cerevisiae genome-wide gene deletion mutants that confer hypersensitivity to a xenobiotic aids the elucidation of its mechanism of action (MoA). However, the biological activities of many xenobiotics are masked by the pleiotropic drug resistance (PDR) network which effluxes xenobiotics that are PDR substrates. The PDR network in S. cerevisiae is almost entirely under the control of two functionally homologous transcription factors Pdr1p and Pdr3p. Herein we report the construction of a PDR-attenuated haploid non-essential DMA (PA-DMA), lacking PDR1 and PDR3, which permits the MoA elucidation of xenobiotics that are PDR substrates at low concentrations. The functionality of four key cellular processes commonly activated in response to xenobiotic stress: oxidative stress response, general stress response, unfolded stress response and calcium signalling pathways were assessed in the absence of PDR1 and PDR3 genes and were found to unaltered, therefore, these key chemogenomic signatures are not lost when using the PA-DMA. Efficacy of the PA-DMA was demonstrated using cycloheximide and latrunculin A at low nanomolar concentrations to attain chemical genetic profiles that were more specific to their known main mechanisms. We also found a two-fold increase in the number of compounds that are bioactive in the pdr1Δpdr3Δ compared to the wild type strain in screening the commercially available LOPAC(1280) library. The PA-DMA should be particularly applicable to mechanism determination of xenobiotics that have limited availability, such as natural products.
Collapse
Affiliation(s)
- Namal V C Coorey
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Kelburn, Wellington, 6011, New Zealand.
| | | | | | | |
Collapse
|
37
|
Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A. Curr Genet 2016; 63:253-274. [DOI: 10.1007/s00294-016-0633-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023]
|
38
|
Watanasrisin W, Iwatani S, Oura T, Tomita Y, Ikushima S, Chindamporn A, Niimi M, Niimi K, Lamping E, Cannon RD, Kajiwara S. Identification and characterization ofCandida utilismultidrug efflux transporterCuCdr1p. FEMS Yeast Res 2016; 16:fow042. [DOI: 10.1093/femsyr/fow042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/12/2022] Open
|
39
|
Kawano-Kawada M, Pongcharoen P, Kawahara R, Yasuda M, Yamasaki T, Akiyama K, Sekito T, Kakinuma Y. Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2016; 80:279-87. [DOI: 10.1080/09168451.2015.1083401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Pongsanat Pongcharoen
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Rieko Kawahara
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Mayu Yasuda
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Takashi Yamasaki
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Koichi Akiyama
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| |
Collapse
|
40
|
Bioinformatic survey of ABC transporters in dermatophytes. Gene 2016; 576:466-75. [DOI: 10.1016/j.gene.2015.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
|
41
|
High-Copy Overexpression Screening Reveals PDR5 as the Main Doxorubicin Resistance Gene in Yeast. PLoS One 2015; 10:e0145108. [PMID: 26690737 PMCID: PMC4687100 DOI: 10.1371/journal.pone.0145108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin is one of the most potent anticancer drugs used in the treatment of various cancer types. The efficacy of doxorubicin is influenced by the drug resistance mechanisms and its cytotoxicity. In this study, we performed a high-copy screening analysis to find genes that play a role in doxorubicin resistance and found several genes (CUE5, AKL1, CAN1, YHR177W and PDR5) that provide resistance. Among these genes, overexpression of PDR5 provided a remarkable resistance, and deletion of it significantly rendered the tolerance level for the drug. Q-PCR analyses suggested that transcriptional regulation of these genes was not dependent on doxorubicin treatment. Additionally, we profiled the global expression pattern of cells in response to doxorubicin treatment and highlighted the genes and pathways that are important in doxorubicin tolerance/toxicity. Our results suggest that many efflux pumps and DNA metabolism genes are upregulated by the drug and required for doxorubicin tolerance.
Collapse
|
42
|
ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV. Genetics 2015; 202:619-38. [PMID: 26596346 DOI: 10.1534/genetics.115.182485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023] Open
Abstract
Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5.
Collapse
|
43
|
Chinen T, Nagumo Y, Usui T. Construction of a genetic analysis-available multidrug sensitive yeast strain by disruption of the drug efflux system and conditional repression of the membrane barrier system. J GEN APPL MICROBIOL 2015; 60:160-2. [PMID: 25273990 DOI: 10.2323/jgam.60.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takumi Chinen
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | | | | |
Collapse
|
44
|
Fry WE, Birch PRJ, Judelson HS, Grünwald NJ, Danies G, Everts KL, Gevens AJ, Gugino BK, Johnson DA, Johnson SB, McGrath MT, Myers KL, Ristaino JB, Roberts PD, Secor G, Smart CD. Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen. PHYTOPATHOLOGY 2015; 105:966-81. [PMID: 25760519 DOI: 10.1094/phyto-01-15-0005-fi] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytophthora infestans has been a named pathogen for well over 150 years and yet it continues to "emerge", with thousands of articles published each year on it and the late blight disease that it causes. This review explores five attributes of this oomycete pathogen that maintain this constant attention. First, the historical tragedy associated with this disease (Irish potato famine) causes many people to be fascinated with the pathogen. Current technology now enables investigators to answer some questions of historical significance. Second, the devastation caused by the pathogen continues to appear in surprising new locations or with surprising new intensity. Third, populations of P. infestans worldwide are in flux, with changes that have major implications to disease management. Fourth, the genomics revolution has enabled investigators to make tremendous progress in terms of understanding the molecular biology (especially the pathogenicity) of P. infestans. Fifth, there remain many compelling unanswered questions.
Collapse
Affiliation(s)
- W E Fry
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - P R J Birch
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - H S Judelson
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - N J Grünwald
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - G Danies
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - K L Everts
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - A J Gevens
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - B K Gugino
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - D A Johnson
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - S B Johnson
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - M T McGrath
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - K L Myers
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - J B Ristaino
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - P D Roberts
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - G Secor
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| | - C D Smart
- First, fifth, and twelfth authors: Cornell University, Section of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Bldg., Ithaca, NY 14850; second author: Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, Dundee, DD2 4DA, UK; third author: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; fourth author: Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 3420 NW Orchard Ave., Corvallis, OR 97330; sixth author: Plant Pathology Department, University of Maryland, 27664 Nanticoke Rd., Salisbury 21801; seventh author: University of Wisconsin Department of Plant Pathology, 1630 Linden Dr., Madison 53706-1598; eighth author: Department of Plant Pathology and Environmental Microbiology, College of Agricultural Sciences, The Pennsylvania State University, 219 Buckhout Lab, University Park 16802; ninth author: Department of Plant Pathology, Washington State University, PO Box 646430, Pullman; tenth author: University of Maine Cooperative Extension, 57 Houlton Road, Presque Isle 04769; eleventh author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, NY 11901-1098; thirteenth author: Department of Plant Pathology, Room 2419 Gardner Hall, NC State University, Raleigh 27695; fourteenth author: Department of Plant Pathology, University of Florida, Southwest Florida Research and Education Center, 2685 SR 29 N, Immokalee 34142-9515; fifteenth author: Department of Plant Pathology, North Dakota State University, 328 Walster Hall, Dept. 7660, PO Box6050, Fargo 58108-6050; and sixteenth author: Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Barton Lab, NYSAES, 630 West North Street, Geneva, NY 14456
| |
Collapse
|
45
|
Combined effects of benomyl and environmental factors on growth and expression of the fumonisin biosynthetic genes FUM1 and FUM19 by Fusarium verticillioides. Int J Food Microbiol 2014; 191:17-23. [DOI: 10.1016/j.ijfoodmicro.2014.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
|
46
|
Identification of genomic binding sites for Candida glabrata Pdr1 transcription factor in wild-type and ρ0 cells. Antimicrob Agents Chemother 2014; 58:6904-12. [PMID: 25199772 DOI: 10.1128/aac.03921-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The fungal pathogen Candida glabrata is an emerging cause of candidiasis in part owing to its robust ability to acquire tolerance to the major clinical antifungal drug fluconazole. Similar to the related species Candida albicans, C. glabrata most typically gains azole tolerance via transcriptional induction of a suite of resistance genes, including a locus encoding an ABCG-type ATP-binding cassette (ABC) transporter that is referred to as CDR1 in Candida species. In C. glabrata, CDR1 expression is controlled primarily by the activity of a transcriptional activator protein called Pdr1. Strains exhibiting reduced azole susceptibility often contain substitution mutations in PDR1 that in turn lead to elevated mRNA levels of target genes with associated azole resistance. Pdr1 activity is also induced upon loss of the mitochondrial genome status and upon challenge by azole drugs. While extensive analyses of the transcriptional effects of Pdr1 have identified a number of genes that are regulated by this factor, we cannot yet separate direct from indirect target genes. Here we used chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) to identify the promoters and associated genes directly regulated by Pdr1. These genes include many that are shared with the yeast Saccharomyces cerevisiae but others that are unique to C. glabrata, including the ABC transporter-encoding locus YBT1, genes involved in DNA repair, and several others. These data provide the outline for understanding the primary response genes involved in production of Pdr1-dependent azole resistance in C. glabrata.
Collapse
|
47
|
Construction of Multidrug-Sensitive Yeast with High Sporulation Efficiency. Biosci Biotechnol Biochem 2014; 75:1588-93. [DOI: 10.1271/bbb.110311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Iwaki T, Fujita Y, Tanaka N, Giga-Hama Y, Takegawa K. Mitochondrial ABC Transporter Atm1p Is Required for Protection against Oxidative Stress and Vacuolar Functions inSchizosaccharomyces pombe. Biosci Biotechnol Biochem 2014; 69:2109-16. [PMID: 16306692 DOI: 10.1271/bbb.69.2109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A potential correlation between mitochondrial and vacuolar functions is known to exit in yeast. Fission yeast atm1(+), SPAC15A10.01, encodes a putative half-type ABC transporter with an N-terminal mitochondrial-targeting signal. In an attempt to evaluate the possible involvement of mitochondrion in vacuole function, a functional analysis of atm1(+) was performed by gene disruption. Growth of the atm1 mutant was inhibited in the presence of oxidizing agents, and S. cerevisiae Atm1p was found to complement this growth defect. atm1Delta cells exhibited defects in fluid-phase endocytosis and vacuolar fusion under hypotonic stress. GFP-tagged Atm1p was observed to be localized in the mitochondria. These data strongly suggest that fission yeast Atm1p was not only involved in protection against oxidative stress, but also played a role in vacuolar functions.
Collapse
Affiliation(s)
- Tomoko Iwaki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Japan
| | | | | | | | | |
Collapse
|
49
|
Charlebois DA, Balázsi G, Kærn M. Coherent feedforward transcriptional regulatory motifs enhance drug resistance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052708. [PMID: 25353830 PMCID: PMC5749921 DOI: 10.1103/physreve.89.052708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 05/25/2023]
Abstract
Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.
Collapse
Affiliation(s)
- Daniel A Charlebois
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Gábor Balázsi
- Department of Systems Biology-Unit 950, University of Texas MD Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77054, USA
| | - Mads Kærn
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
50
|
Paul S, Moye-Rowley WS. Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 2014; 5:143. [PMID: 24795641 PMCID: PMC3997011 DOI: 10.3389/fphys.2014.00143] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|