1
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
2
|
Rox K, Kühne A, Herrmann J, Jansen R, Hüttel S, Bernecker S, Hagos Y, Brönstrup M, Stadler M, Hesterkamp T, Müller R. Interaction of the Atypical Tetracyclines Chelocardin and Amidochelocardin with Renal Drug Transporters. ACS Pharmacol Transl Sci 2024; 7:2093-2109. [PMID: 39022358 PMCID: PMC11249637 DOI: 10.1021/acsptsci.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against E. coli. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.
Collapse
Affiliation(s)
- Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Annett Kühne
- PortaCellTec
Biosciences GmbH, 37079 Göttingen, Germany
| | - Jennifer Herrmann
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Natural Products, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Department of Pharmacy, Saarland
University, 66123 Saarbrücken, Germany
| | - Rolf Jansen
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Stephan Hüttel
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Steffen Bernecker
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | | | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Marc Stadler
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Translational
Product Management Office, German Center
for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Rolf Müller
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Natural Products, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Department of Pharmacy, Saarland
University, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Cheng Z, Chen Y, Schnabl B, Chu H, Yang L. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets. J Adv Res 2024; 59:173-187. [PMID: 37356804 PMCID: PMC11081971 DOI: 10.1016/j.jare.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) has been the second most common cause of liver transplantation in the United States. To date, NASH pathogenesis has not been fully elucidated but is multifactorial, involving insulin resistance, obesity, metabolic disorders, diet, dysbiosis, and gene polymorphism. An effective and approved therapy for NASH has also not been established. Bile acid is long known to have physiological detergent function in emulsifying and absorbing lipids and lipid-soluble molecules within the intestinal lumen. With more and more in-depth understandings of bile acid, it has been deemed to be a pivotal signaling molecule, which is capable of regulating lipid and glucose metabolism, liver inflammation, and fibrosis. In recent years, a plethora of studies have delineated that disrupted bile acid homeostasis is intimately correlated with NASH disease severity. AIMS The review aims to clarify the role of bile acid in hepatic lipid and glucose metabolism, liver inflammation, as well as liver fibrosis, and discusses the safety and efficacy of some pharmacological agents targeting bile acid and its associated pathways for NASH. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acid has a salutary effect on hepatic metabolic disorders, which can ameliorate liver fat accumulation and insulin resistance mainly through activating Takeda G-protein coupled receptor 5 and farnesoid X receptor. Moreover, bile acid also exerts anti-inflammation and anti-fibrosis properties. Furthermore, bile acid has great potential in nonalcoholic liver disease stratification and treatment of NASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Yixiong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
4
|
Mazza T, Roumeliotis TI, Garitta E, Drew D, Rashid ST, Indiveri C, Choudhary JS, Linton KJ, Beis K. Structural basis for the modulation of MRP2 activity by phosphorylation and drugs. Nat Commun 2024; 15:1983. [PMID: 38438394 PMCID: PMC10912322 DOI: 10.1038/s41467-024-46392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid. The autoinhibited state exhibits an unusual conformation for this class of transporter in which the regulatory domain is folded within the transmembrane domain cavity. In vitro phosphorylation, mass spectrometry and transport assays show that phosphorylation of the regulatory domain relieves this autoinhibition and enhances rMrp2 transport activity. The in vitro data is confirmed in human hepatocyte-like cells, in which inhibition of endogenous kinases also reduces human MRP2 transport activity. The drug-bound state reveals two probenecid binding sites that suggest a dynamic interplay with autoinhibition. Mapping of the Dubin-Johnson mutations onto the rodent structure indicates that many may interfere with the transition between conformational states.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Theodoros I Roumeliotis
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elena Garitta
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, E1 2A, London, UK
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - S Tamir Rashid
- Department of Metabolism, Digestion & Reproduction, Imperial College London, W12 0NN, London, UK
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), 70126, Bari, Italy
| | - Jyoti S Choudhary
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kenneth J Linton
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, E1 2A, London, UK
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK.
| |
Collapse
|
5
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
6
|
Nagai K, Tamura M, Murayama R, Fukuno S, Ito T, Konishi H. Development of multi-drug resistance to anticancer drugs in HepG2 cells due to MRP2 upregulation on exposure to menthol. PLoS One 2023; 18:e0291822. [PMID: 37733713 PMCID: PMC10513270 DOI: 10.1371/journal.pone.0291822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Menthol exerts relaxing, antibacterial, and anti-inflammatory activities, and is marketed as a functional food and therapeutic drug. AIM In the present study, the effects of menthol on the expression of multidrug resistance associated protein 2 (MRP2) and its association with the cytotoxicity of epirubicin (EPI) and cisplatin (CIS) were examined using HepG2 cells. METHODS The expression levels of target genes were examined by real-time PCR. The intracellular concentration of incorporated EPI was measured by high-performance liquid chromatography. Cell viability was evaluated by MTT analysis. RESULTS The expression of MRP2 mRNA was increased by exposing HepG2 cells to menthol for 24 hr. Consistent with a previous report suggesting an inverse correlation between MRP2 and Akt behavior, increased expression of MRP2 was also observed on suppression of the Akt function. Intracellular accumulation of EPI was significantly decreased by exposure of HepG2 cells to menthol, and a significant decrease in the intracellular concentration of EPI remaining was observed in HepG2 cells exposed to menthol. The decreased intracellular accumulation of EPI was significantly suppressed by treatment with MK-571, but not verapamil. Both EPI and CIS exerted cytocidal effects on HepG2 cells, but the decrease in cell viability was significantly attenuated by 24-hr menthol pre-exposure. CONCLUSION These results demonstrate that menthol causes hepatocellular carcinoma to acquire resistance to anticancer drugs such as EPI and CIS by MRP2 induction.
Collapse
Affiliation(s)
- Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Mayuko Tamura
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Ryuga Murayama
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Shuhei Fukuno
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Hiroki Konishi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| |
Collapse
|
7
|
Cook I, Leyh TS. Sulfotransferase 2B1b, Sterol Sulfonation, and Disease. Pharmacol Rev 2023; 75:521-531. [PMID: 36549865 PMCID: PMC10158503 DOI: 10.1124/pharmrev.122.000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The primary function of human sulfotransferase 2B1b (SULT2B1b) is to sulfonate cholesterol and closely related sterols. SULT2B1b sterols perform a number of essential cellular functions. Many are signaling molecules whose activities are redefined by sulfonation-allosteric properties are switched "on" or "off," agonists are transformed into antagonists, and vice versa. Sterol sulfonation is tightly coupled to cholesterol homeostasis, and sulfonation imbalances are causally linked to cholesterol-related diseases including certain cancers, Alzheimer disease, and recessive X-linked ichthyosis-an orphan skin disease. Numerous studies link SULT2B1b activity to disease-relevant molecular processes. Here, these multifaceted processes are integrated into metabolic maps that highlight their interdependence and how their actions are regulated and coordinated by SULT2B1b oxysterol sulfonation. The maps help explain why SULT2B1b inhibition arrests the growth of certain cancers and make the novel prediction that SULT2B1b inhibition will suppress production of amyloid β (Aβ) plaques and tau fibrils while simultaneously stimulating Aβ plaque phagocytosis. SULT2B1b harbors a sterol-selective allosteric site whose structure is discussed as a template for creating inhibitors to regulate SULT2B1b and its associated biology. SIGNIFICANCE STATEMENT: Human sulfotransferase 2B1b (SULT2B1b) produces sterol-sulfate signaling molecules that maintain the homeostasis of otherwise pro-disease processes in cancer, Alzheimer disease, and X-linked ichthyosis-an orphan skin disease. The functions of sterol sulfates in each disease are considered and codified into metabolic maps that explain the interdependencies of the sterol-regulated networks and their coordinate regulation by SULT2B1b. The structure of the SULT2B1b sterol-sensing allosteric site is discussed as a means of controlling sterol sulfate biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
8
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
9
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
10
|
Lu Q, Chen W, Ji Y, Liu Y, Xue X. Ursolic Acid Enhances Cytotoxicity of Doxorubicin-Resistant Triple-Negative Breast Cancer Cells via ZEB1-AS1/miR-186-5p/ ABCC1 Axis. Cancer Biother Radiopharm 2022; 37:673-683. [PMID: 33493421 DOI: 10.1089/cbr.2020.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is the most serious subtype of breast cancer (BC) and has been a great health threat to females. Although chemotherapeutic agent contributes a lot to TNBC treatment, drug resistance has been a great obstacle for chemotherapies. Ursolic acid (UA), a pentacyclic triterpenoid compound, was reported to reverse paclitaxel resistance in BC. However, whether UA could affect the resistance of TNBC cells to other drugs such as doxorubicin (DOX) remains to be discovered. Materials and Methods: MTT assay, EdU assay, colony formation assay, and flow cytometry analysis were implemented to detect the viability, proliferation, and apoptosis of DOX-resistant MDA-MB-468 and MDA-MB-436 cells with or without UA treatment. Mechanism assays including RIP, RNA pull-down, and luciferase reporter assays verified the interaction between RNAs. Results: UA treatment hindered the growth and mitigated the DOX resistance of DOX-resistant MDA-MB-468 and MDA-MB-436 cells. Mechanistically, multidrug resistance-associated protein 1 (ABCC1) expression was downregulated by UA treatment. MiR-186-5p was verified to target ABCC1. Further, UA-inhibited ZEB1-AS1 (zinc finger E-box binding homeobox 1 antisense RNA 1) was verified as a competitive endogenous RNA (ceRNA) to upregulate ABCC1 through sponging miR-186-5p. Importantly, UA treatment impaired the malignant phenotypes of DOX-resistant MDA-MB-468 and MDA-MB-436 cells through ZEB1-AS1/ABCC1 axis. Conclusion: UA promotes TNBC cell sensitivity to DOX through inactivating ZEB1-AS1/miR-186-5p/ABCC1 signaling.
Collapse
Affiliation(s)
- Qing Lu
- Department of Breast Surgery, Yueyang Hospital of Intergrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weili Chen
- Department of Breast Surgery, Yueyang Hospital of Intergrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yajie Ji
- Department of Breast Surgery, Yueyang Hospital of Intergrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Liu
- Department of Breast Surgery, Yueyang Hospital of Intergrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohong Xue
- Department of Breast Surgery, Yueyang Hospital of Intergrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Noh K, Chow ECY, Quach HP, Groothuis GMM, Tirona RG, Pang KS. Significance of the Vitamin D Receptor on Crosstalk with Nuclear Receptors and Regulation of Enzymes and Transporters. AAPS J 2022; 24:71. [PMID: 35650371 DOI: 10.1208/s12248-022-00719-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
The vitamin D receptor (VDR), in addition to other nuclear receptors, the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), is involved in the regulation of enzymes, transporters and receptors, and therefore intimately affects drug disposition, tissue health, and the handling of endogenous and exogenous compounds. This review examines the role of 1α,25-dihydroxyvitamin D3 or calcitriol, the natural VDR ligand, on activation of the VDR and its crosstalk with other nuclear receptors towards the regulation of enzymes and transporters, notably many of the cytochrome P450s including CYP3A4 and sulfotransferase 2A1 (SULT2A1) as well as cholesterol 7α-hydroxylase (CYP7A1). Moreover, the VDR upregulates the intestinal channel, TRPV6, for calcium absorption, LDL receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) in brain for β-amyloid peptide efflux and influx, the sodium phosphate transporters (NaPi), the apical sodium-dependent bile acid transporter (ASBT) and organic solute transporters (OSTα-OSTβ) for bile acid absorption and efflux, respectively, the renal organic anion transporter 3 (OAT3) and several of the ATP-binding cassette protein transporters-the multidrug resistance protein 1 (MDR1) and the multidrug resistance-associated proteins (MRPs). Hence, the role of the VDR is increasingly being recognized for its therapeutic potential and pharmacologic activity, giving rise to drug-drug interactions (DDI). Therapeutically, ligand-activated VDR shows anti-inflammatory effects towards the suppression of inflammatory mediators, improves cognition by upregulating amyloid-beta (Aβ) peptide clearance in brain, and maintains phosphate, calcium, and parathyroid hormone (PTH) balance and kidney function and bone health, demonstrating the crucial roles of the VDR in disease progression and treatment of diseases.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.,Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts, 02142, USA
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.,Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Geny M M Groothuis
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
13
|
Peng S, Song Z, Wang C, Liang D, Wan X, Liu Z, Lu A, Ning Z. Frankincense vinegar-processing improves the absorption of boswellic acids by regulating bile acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153931. [PMID: 35104761 DOI: 10.1016/j.phymed.2022.153931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Boswellic acids in Olibanum (known as frankincense) are potent anti-inflammatory properties in treating ulcerative colitis (UC), but its low bioavailability limited drug development. Evidence accumulated that vinegar processing of frankincense exerts positive effects on improving absorption of compositions. The underlying mechanism is unknown. In recent decades, spectacular growth and multidisciplinary integration of metabolic application were witnessed. The relationship between drug absorption and curative effect has been more or less established. However, it remains a knowledge gap in the field between drug absorption and endocrine metabolism. PURPOSE To investigate the enhancement mechanism of vinegar processing in the absorption of boswellic acids via the aspect of bile acid metabolism. METHODS The effects of raw frankincense (RF) and processed frankincense (PF) were compared by the UC model of rats. The plasma concentration of boswellic acids and the hepatic and colonic bile acids contents were quantified by UPLC-TQ-MS. The levels of mRNA and protein associated with bile acid metabolism were also compared. RESULTS The results showed that PF exhibited re-markable mitigating effects on UC with the elevated plasma level of boswellic acid and upregulated expression of the absorption-related protein multidrug resistance-associated protein 2 (MRP2) and organic anion transporting polypeptide 1B3 (OATP1B3) in the liver and colon. It improved colonic lithocholic acid (LCA), which promoted the expression of bile acid nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), resulting in the upregulation of MRP2 and OATP1B3. CONCLUSION This paper revealed the mechanisms behind the absorption promotion effects of processing. Bile acids metabolism exhibits potential status in pharmaceutical development. The results shed light on the interdisciplinary collaboration between the metabolism and drug absorption fields.
Collapse
Affiliation(s)
- Shitao Peng
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China
| | - Zhiqian Song
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China
| | - Chun Wang
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China
| | - Dongrui Liang
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China
| | - Xiaoying Wan
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China
| | - Zhenli Liu
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 00825, China.
| | - Zhangchi Ning
- China Academy of Chinese Medical Sciences, Institute of Basic Theory for Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
14
|
Drug combination study of novel oxorhenium(V) complexes. J Inorg Biochem 2022; 231:111807. [DOI: 10.1016/j.jinorgbio.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
|
15
|
Yang H, Zhai B, Wang M, Fan Y, Wang J, Cheng J, Zou J, Zhang X, Shi Y, Guo D, Tang Z. The influence of rhein on the absorption of rehmaionoside D: In vivo, in situ, in vitro, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114650. [PMID: 34536515 DOI: 10.1016/j.jep.2021.114650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese Medicine, Rehmannia glutinosa (Gaertn.) DC., as the principle herb of ShengDiHuang Decotion (SDHD), has the effect of cooling blood and hemostasis, and tonifying the yin and kidney. Rheum L., as adjuvant herbs, assist Rehmannia glutinosa (Gaertn.) DC. to promote blood circulation to remove blood stasis. AIM OF STUDY To study the mechanism of Rhein (RH) involved in the promotion of Rehmannioside D (RD) absorption by pharmacokinetic studies, single-pass intestinal perfusion, Caco-2 cell models, molecular docking technique and western blotting. MATERIALS AND METHODS Initially, the intestinal absorption of RD in the presence or absence of RH was conducted through pharmacokinetic studies. Thereafter, the intestinal absorption of RD and RH was studied using the single-pass intestinal perfusion and Caco-2 cell models. Finally, using molecular docking technique and western blotting. RESULTS We found that the promotion of RD absorption by RH was mediated by breast cancer resistance and multidrug resistance-associated protein 2, thereby affecting the permeability of the intestinal epithelium. Additionally, RH and RD can competitively bind to breast cancer resistance and multidrug resistance-associated protein 2, and that RH inhibits the expression of breast cancer resistance and multidrug resistance-associated protein 2 in the ileum to promote the intestinal absorption of RD. CONCLUSION This study reveals the mechanisms associated with the RH-mediated promotion of RD absorption and provides a basis for further exploring the synergistic effect of Rehmannia glutinosa (Gaertn.) DC and rhubarb.
Collapse
Affiliation(s)
- Hui Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mei Wang
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yu Fan
- School of Basic Medical Science, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiangxue Cheng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Zhishu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Xianyang, 712046, China.
| |
Collapse
|
16
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
17
|
Mizoi K, Kobayashi M, Mashimo A, Matsumoto E, Masuda N, Itoh M, Ueno T, Tachiki H, Ishida S, Ogihara T. Directional Drug Transport through Membrane-Supported Monolayers of Human Liver-Derived Cell Lines. Biol Pharm Bull 2022; 45:150-153. [PMID: 34980776 DOI: 10.1248/bpb.b21-00583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work is to develop a new assay system for screening biliary excretion drugs. When monolayers of human liver-derived cell lines HepG2 and Huh-7 were grown on an insert membrane, the efflux ratio (ER: ratio of the apparent permeability coefficient in the basal-to-apical direction (Papp,B-to-A) to that in the apical to basal direction (Papp,A-to-B)) of sulfobromophthalein (BSP), a model substrate of multidrug resistance-associated protein 2 (MRP2), was greater than 1.0, indicating transport of BSP in the efflux direction. The efflux transport was significantly suppressed by MK-571, an inhibitor of MRPs, in both cell lines. Expression of MRP2 mRNA in HepG2 and Huh-7 was 3.5- and 1.4-fold higher, respectively, than in primary human hepatocytes, while expression of P-glycoprotein and breast cancer resistance protein mRNAs was markedly lower, supporting the idea that MRP2 is the main mediator of directional BSP transport in this assay system. The advantage of our system is the potential to quantitatively evaluate biliary excretion of MRP2 substrates in vitro.
Collapse
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | | | - Arisa Mashimo
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Eiko Matsumoto
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Norio Masuda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | | | | | - Seiichi Ishida
- Center for Biological Safety and Research, National Institute of Health Sciences.,Department of Applied Life Science, Graduate School of Engineering, Sojo University
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare.,Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
18
|
Utoh R, Enomoto S, Yamada M, Yamanaka K, Yajima Y, Furusawa K, Seki M. Polyanion-induced, microfluidic engineering of fragmented collagen microfibers for reconstituting extracellular environments of 3D hepatocyte culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112417. [PMID: 34579926 DOI: 10.1016/j.msec.2021.112417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Artificial biological scaffolds made of extracellular matrix (ECM) components, such as type I collagen, provide ideal physicochemical cues to various cell culture platforms. However, it remains a challenge to fabricate micrometer-sized ECM materials with precisely controlled morphologies that could reconstitute the 3-dimensional (3D) microenvironments surrounding cells. In the present study, we proposed a unique process to fabricate fragmented collagen microfibers using a microfluidic laminar-flow system. The continuous flow of an acidic collagen solution was neutralized to generate solid fibers, which were subsequently fragmented by applying a gentle shear stress in a polyanion-containing phosphate buffer. The morphology of the fiber fragment was controllable in a wide range by changing the type and/or concentration of the polyanion and by tuning the applied shear stress. The biological benefits of the fragmented fibers were investigated through the formation of multicellular spheroids composed of primary rat hepatocytes and microfibers on non-cell-adhesive micro-vessels. The microfibers enhanced the survival and functions of the hepatocytes and reproduced proper cell polarity, because the fibers facilitated the formation of cell-cell and cell-matrix interactions while modulating the close packing of cells. These results clearly indicated that the microengineered fragmented collagen fibers have great potential to reconstitute extracellular microenvironments for hepatocytes in 3D culture, which will be of significant benefit for cell-based drug testing and bottom-up tissue engineering.
Collapse
Affiliation(s)
- Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sakiko Enomoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Keigo Yamanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kazuya Furusawa
- Department of Applied Chemistry and Food Science, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
19
|
Qu F, Ai Z, Liu S, Zhang H, Chen Y, Wang Y, Ni D. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer. Drug Deliv 2021; 28:1737-1747. [PMID: 34463173 PMCID: PMC8409943 DOI: 10.1080/10717544.2021.1949074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study aimed to clarify the bioavailability mechanism of theaflavins by using the Caco-2 monolayer in vitro model. Prior to the transport of theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3'-gallate (TF3'G), and theaflavin-3, 3'-digallate (TFDG), we found the cytotoxicity of theaflavins was in the order of TF3'G > TFDG > TF3G > TF, suggesting the galloyl moiety enhances the cytotoxicity of theaflavins. Meantime, the galloyl moiety made theaflavins unstable, with the stability in the order of TF > TFDG > TF3G/TF3'G. Four theaflavins showed poor bioavailability with the Papp values ranging from 0.44 × 10-7 to 3.64 × 10-7 cm/s in the absorptive transport. All the theaflavins showed an efflux ratio of over 1.24. And it is further confirmed that P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs) and breast cancer resistance protein (BCRP) were all shown to contribute to the efflux transport of four theaflavins, with P-gp playing the most important role, followed by MRPs and BCRP. Moreover, theaflavins increased the expression of P-gp, MRP1, MPR3, and BCRP while decreased the expression of MRP2 at the transcription and translation levels. Additionally, the gallated theaflavins were degraded into simple theaflavins and gallic acids when transported through Caco-2 monolayers. Overall, the structural instability, efflux transporters, and cell metabolism were all responsible for the low bioavailability of four theaflavins in Caco-2 monolayers.
Collapse
Affiliation(s)
- Fengfeng Qu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shuyuan Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haojie Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaomin Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
van Gelder T. How cyclosporin reduces mycophenolic acid exposure by 40% while other calcineurin inhibitors do not. Kidney Int 2021; 100:1185-1189. [PMID: 34284043 DOI: 10.1016/j.kint.2021.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
The most frequently used immunosuppressive treatment in kidney transplant recipients is the combination therapy of a calcineurin inhibitor and mycophenolate mofetil (MMF), with or without corticosteroids. Cyclosporin and tacrolimus are the two calcineurin inhibitors registered for this indication. Also in the treatment of glomerular diseases calcineurin inhibitors and mycophenolic acid are being used on a worldwide scale, either alone or as combined treatment. In January 2021 the U.S. Food and Drug Administration (FDA) has approved voclosporin, a novel calcineurin inhibitor for the treatment of adult patients with active lupus nephritis. There is a clinically relevant drug-drug interaction between cyclosporin and mycophenolate. As a result of cyclosporin-induced inhibition of the enterohepatic recirculation of mycophenolate, the mycophenolic acid-AUC is significantly lower (40%) in case of cyclosporin co-administration as compared to cotreatment with either tacrolimus or voclosporin (or no CNI co-treatment). The aim of this mini review is to summarize this potential drug-drug interaction and explain how cyclosporin affects the pharmacokinetics of mycophenolate. The optimal dose of MMF is likely to depend on the calcineurin inhibitor with which it is co-administered. Furthermore clinical implications are discussed, including the potential emergence of mycophenolic acid (MPA)-related side effects after discontinuation of cyclosporin co-treatment.
Collapse
Affiliation(s)
- Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands Albinusdreef 2 2333 ZA Leiden The Netherlands
| |
Collapse
|
21
|
Triggers of benign recurrent intrahepatic cholestasis and its pathophysiology: a review of literature. Acta Gastroenterol Belg 2021; 84:477-486. [PMID: 34599573 DOI: 10.51821/84.3.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benign recurrent intrahepatic cholestasis (BRIC) is a rare genetic disorder that is characterized by episodes of cholestasis followed by complete resolution. The episodic nature of BRIC raises concerns about its possible trigger factors. Indeed, case reports of this orphan disease have associated BRIC to some triggers. In the absence of any reviews, we reviewed BRIC trigger factors and its pathophysiology. The study consisted of a systematic search for case reports using PubMed. Articles describing a clear case of BRIC associated with a trigger were included resulting in 22 articles that describe 35 patients. Infection was responsible for 54.3% of triggered episodes, followed by hormonal, drugs, and miscellaneous causes reporting as 30%, 10%, and 5.7% respectively. Females predominated with 62.9%. The longest episode ranged between 3 months to 2 years with a mean of 32.37 weeks. The mean age of the first episode was 14.28 ranging between 3 months to 48 years. Winter and autumn were the major seasons during which episodes happened. Hence, BRIC is potentially triggered by infection, which is most commonly a viral infection, hormonal disturbances as seen in oral contraceptive pills and pregnancy state, and less commonly by certain drugs and other causes. The appearance of cholestasis during the first two trimesters of pregnancy compared to intrahepatic cholestasis of pregnancy could help to differentiate between the two conditions. The possible mechanism of BRIC induction implicates a role of BSEP and ATP8B1. While estrogen, drugs, and cytokines are known to affect BSEP, less is known about their action on ATP8B1.
Collapse
|
22
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
23
|
Nethathe B, Abera A, Naidoo V. Expression and phylogeny of multidrug resistance protein 2 and 4 in African white backed vulture (Gyps africanus). PeerJ 2020; 8:e10422. [PMID: 33344079 PMCID: PMC7718797 DOI: 10.7717/peerj.10422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac toxicity in old world vultures is well described in the literature by both the severity of the toxicity induced and the speed of death. While the mechanism of toxicity remains unknown at present, the necropsy signs of gout suggests primary renal involvement at the level of the uric acid excretory pathways. From information in the chicken and man, uric acid excretion is known to be a complex process that involves a combination of glomerular filtration and active tubular excretion. For the proximal convoluted tubules excretion occurs as a two-step process with the basolateral cell membrane using the organic anion transporters and the apical membrane using the multidrug resistant protein to transport uric acid from the blood into the tubular fluid. With uric acid excretion seemingly inhibited by diclofenac, it becomes important to characterize these transporter mechanism at the species level. With no information being available on the molecular characterization/expression of MRPs of Gyps africanus, for this study we used next generation sequencing, and Sanger sequencing on the renal tissue of African white backed vulture (AWB), as the first step to establish if the MRPs gene are expressed in AWB. In silico analysis was conducted using different software to ascertain the function of the latter genes. The sequencing results revealed that the MRP2 and MRP4 are expressed in AWB vultures. Phylogeny of avian MRPs genes confirms that vultures and eagles are closely related, which could be attributed to having the same ancestral genes and foraging behavior. In silico analysis confirmed the transcribed proteins would transports anionic compounds and glucose.
Collapse
Affiliation(s)
- Bono Nethathe
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.,Department of Food Science and Technology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Aron Abera
- Inqaba Biotechnology, Sunnyside, Pretoria, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
24
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Tarhini H, Husain M, Poey N, Lariven S, Lescure FX, Yazdanpanah Y, Gervais A. Jaundice in a patient treated with Anakinra in a context of Covid-19. Infect Dis Now 2020; 51:217-218. [PMID: 33010355 PMCID: PMC7526624 DOI: 10.1016/j.medmal.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023]
Affiliation(s)
- H Tarhini
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France.
| | - M Husain
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France
| | - N Poey
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France
| | - S Lariven
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France
| | - F-X Lescure
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France; Infections Antimicrobials Modeling Evolution (IAME) UMR 1137, University of Paris, Paris, France
| | - Y Yazdanpanah
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France; Infections Antimicrobials Modeling Evolution (IAME) UMR 1137, University of Paris, Paris, France
| | - A Gervais
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France
| |
Collapse
|
26
|
Stofan M, Guo GL. Bile Acids and FXR: Novel Targets for Liver Diseases. Front Med (Lausanne) 2020; 7:544. [PMID: 33015098 PMCID: PMC7516013 DOI: 10.3389/fmed.2020.00544] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol and have been shown to be essential for lipid homeostasis. BAs regulate a variety of metabolic functions via modulating nuclear and membrane receptors. Farnesoid X receptor (FXR) is the most important nuclear receptor for maintaining BA homeostasis. FXR plays a tissue-specific role in suppressing BA synthesis and promoting BA enterohepatic circulation. Disruption of FXR in mice have been implicated in liver diseases commonly occurring in humans, including cholestasis, non-alcoholic fatty liver diseases, and hepatocellular carcinoma. Strategically targeting FXR activity has been rapidly used to develop novel therapies for the prevention and/or treatment of cholestasis and non-alcoholic steatohepatitis. This review provides an updated literature review on BA homeostasis and FXR modulator development.
Collapse
Affiliation(s)
- Mary Stofan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ, United States
| |
Collapse
|
27
|
Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 2020; 16:809-822. [PMID: 32729746 DOI: 10.1080/17425255.2020.1801634] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) lower cholesterol synthesis in patients with hypercholesterolemia. Increased statin exposure is an important risk factor for skeletal muscle toxicity. Potent inhibitors of cytochrome P450 (CYP) 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin, and atorvastatin. Fluvastatin is metabolized by CYP2C9, whereas pravastatin, rosuvastatin, and pitavastatin are unaffected by inhibition by either CYP. Statins also have different affinities for membrane transporters involved in processes such as intestinal absorption, hepatic absorption, biliary excretion, and renal excretion. AREAS COVERED In this review, the pharmacokinetic aspects of drug-drug interactions with statins and genetic polymorphisms of CYPs and drug transporters involved in the pharmacokinetics of statins are discussed. EXPERT OPINION Understanding the mechanisms underlying statin interactions can help minimize drug interactions and reduce the adverse side effects caused by statins. Since recent studies have shown the involvement of drug transporters such as OATP and BCRP as well as CYPs in statin pharmacokinetics, further clinical studies focusing on the drug transporters are necessary. The establishment of biomarkers based on novel mechanisms, such as the leakage of microRNAs into the peripheral blood associated with the muscle toxicity, is important for the early detection of statin side effects.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Yuito Fujita
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
28
|
Gupta SK, Singh P, Ali V, Verma M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol Rev 2020; 14:448. [PMID: 32676170 PMCID: PMC7358983 DOI: 10.4081/oncol.2020.448] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major problems being faced by researchers and clinicians in leukemic treatment is the development of multidrug resistance (MDR) which restrict the action of several tyrosine kinase inhibitors (TKIs). MDR is a major obstacle to the success of cancer chemotherapy. The mechanism of MDR involves active drug efflux transport of ABC superfamily of proteins such as Pglycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that weaken the effectiveness of chemotherapeutics and negative impact on the future of anticancer therapy. In this review, the authors aim to provide an overview of various multidrug resistance (MDR) mechanisms observed in cancer cells as well as the various strategies developed to overcome these MDR. Extensive studies have been carried out since last several years to enhance the efficacy of chemotherapy by defeating these MDR mechanisms with the use of novel anticancer drugs that could escape from the efflux reaction, MDR modulators or chemosensitizers, multifunctional nanotechnology, and RNA interference (RNAi) therapy.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Priyanka Singh
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Villayat Ali
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| | - Malkhey Verma
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Punjab, India
| |
Collapse
|
29
|
Shafi S, Khan S, Hoda F, Fayaz F, Singh A, Khan MA, Ali R, Pottoo FH, Tariq S, Najmi AK. Decoding Novel Mechanisms and Emerging Therapeutic Strategies in Breast Cancer Resistance. Curr Drug Metab 2020; 21:199-210. [DOI: 10.2174/1389200221666200303124946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC), an intricate and highly heterogeneous disorder, has presently afflicted 2.09 million females globally. Chemoresistance remains a paramount challenge in the treatment of BC. Owing to its assorted nature, the chemoresistant mechanisms of BC still need intensive research. Accumulating evidence suggests that abnormalities related to the biogenesis of cancer stem cells (CSCs) and microRNAs (miRNAs) are associated with BC progression and chemoresistance. The presently available interventions are inadequate to target chemoresistance, therefore more efficient alternatives are urgently needed to improvise existing therapeutic regimens. A myriad of strategies is being explored, such as immunotherapy, gene therapy, and combination treatment to surmount chemoresistance. Additionally, nanoparticles as chemotherapeutic carriers put forward the options to encapsulate numerous drugs, alone as well as in combination for cancer theranostics. This review summarizes the chemoresistance mechanisms of miRNAs and CSCs as well as the most recently documented therapeutic approaches for the treatment of chemoresistance in BC. By unraveling the underpinning mechanism of BC chemoresistance, researchers could possibly develop more efficient treatment strategies towards BC.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sana Tariq
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi 110017, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
30
|
Székely V, Patik I, Ungvári O, Telbisz Á, Szakács G, Bakos É, Özvegy-Laczka C. Fluorescent probes for the dual investigation of MRP2 and OATP1B1 function and drug interactions. Eur J Pharm Sci 2020; 151:105395. [PMID: 32473861 DOI: 10.1016/j.ejps.2020.105395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Detoxification in hepatocytes is a strictly controlled process, in which the governed action of membrane transporters involved in the uptake and efflux of potentially dangerous molecules has a crucial role. Major transporters of hepatic clearance belong to the ABC (ATP Binding Cassette) and Solute Carrier (SLC) protein families. Organic anion-transporting polypeptide OATP1B1 (encoded by the SLCO1B1 gene) is exclusively expressed in the sinusoidal membrane of hepatocytes, where it mediates the cellular uptake of bile acids, bilirubin, and also that of various drugs. The removal of toxic molecules from hepatocytes to the bile is accomplished by several ABC transporters, including P-glycoprotein (ABCB1), MRP2 (ABCC2) and BCRP (ABCG2). Owing to their pharmacological relevance, monitoring drug interaction with OATP1B1/3 and ABC proteins is recommended. Our aim was to assess the interaction of recently identified fluorescent OATP substrates (various dyes used in cell viability assays, pyranine, Cascade Blue hydrazide (CB) and sulforhodamine 101 (SR101)) (Bakos et al., 2019; Patik et al., 2018) with MRP2 and ABCG2 in order to find fluorescent probes for the simultaneous characterization of both uptake and efflux processes. Transport by MRP2 and ABCG2 was investigated in inside-out membrane vesicles (IOVs) allowing a fast screen of the transport of membrane impermeable substrates by efflux transporters. Next, transcellular transport of shared OATP and ABC transporter substrate dyes was evaluated in MDCKII cells co-expressing OATP1B1 and MRP2 or ABCG2. Our results indicate that pyranine is a general substrate of OATP1B1, OATP1B3 and OATP2B1, and we find that the dye Live/Dead Violet and CB are good tools to investigate ABCG2 function in IOVs. Besides their suitability for MRP2 functional tests in the IOV setup, pyranine, CB and SR101 are the first dual probes that can be used to simultaneously measure OATP1B1 and MRP2 function in polarized cells by a fluorescent method.
Collapse
Affiliation(s)
- Virág Székely
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
| | - Izabel Patik
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Orsolya Ungvári
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Ágnes Telbisz
- Biomembrane research group, Institute of Enzymology, RCNS, H-1117 Budapest, Hungary
| | - Gergely Szakács
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Wien, Austria
| | - Éva Bakos
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
31
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
32
|
Bruhn O, Lindsay M, Wiebel F, Kaehler M, Nagel I, Böhm R, Röder C, Cascorbi I. Alternative Polyadenylation of ABC Transporters of the C-Family (ABCC1, ABCC2, ABCC3) and Implications on Posttranscriptional Micro-RNA Regulation. Mol Pharmacol 2020; 97:112-122. [PMID: 31757862 DOI: 10.1124/mol.119.116590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a large group of efflux pumps that are strongly involved in the pharmacokinetics of various drugs and nutrient distribution. It was recently shown that micro-RNAs (miRNAs) may significantly alter their expression as proven, e.g., for miR-379 and ABCC2 However, alternative mRNA polyadenylation may result in expression of 3'-untranslated regions (3'-UTRs) with varying lengths. Thus, length variants may result in presence or absence of miRNA binding sites for regulatory miRNAs with consequences on posttranscriptional control. In the present study, we report on 3'-UTR variants of ABCC1, ABCC2, and ABCC3 mRNA. Applying in vitro luciferase reporter gene assays, we show that expression of short ABCC2 3'-UTR variants leads to a significant loss of miR-379/ABCC2 interaction and subsequent upregulation of ABCC2 expression. Furthermore, we show that expression of ABCC2 3'-UTR lengths varies significantly between human healthy tissues but is not directly correlated to the respective protein level in vivo. In conclusion, the presence of altered 3'-UTR lengths in ABC transporters could lead to functional consequences regarding posttranscriptional gene expression, potentially regulated by alternative polyadenylation. Hence, 3'-UTR length variability may be considered as a further mechanism contributing to variability of ABCC transporter expression and subsequent drug variation in drug response. SIGNIFICANCE STATEMENT: micro-RNA (miRNA) binding to 3'-untranslated region (3'-UTR) plays an important role in the control of ATP-binding cassette (ABC)-transporter mRNA degradation and translation into proteins. We disclosed various 3'-UTR length variants of ABCC1, C2, and C3 mRNA, with loss of mRNA seed regions partly leading to varying and tissue-dependent interaction with miRNAs, as proven by reporter gene assays. Alternative 3'-UTR lengths may contribute to variable ABCC transporter expression and potentially explains inconsistent findings in miRNA studies.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marie Lindsay
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Friederike Wiebel
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ruwen Böhm
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christian Röder
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
33
|
Török G, Erdei Z, Lilienberg J, Apáti Á, Homolya L. The importance of transporters and cell polarization for the evaluation of human stem cell-derived hepatic cells. PLoS One 2020; 15:e0227751. [PMID: 31971960 PMCID: PMC6977753 DOI: 10.1371/journal.pone.0227751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
One of the most promising applications of human pluripotent stem cells is their utilization for human-based pharmacological models. Despite the fact that membrane transporters expressed in the liver play pivotal role in various hepatic functions, thus far only little attention was devoted to the membrane transporter composition of the stem cell-derived liver models. In the present work, we have differentiated HUES9, a human embryonic stem cell line, toward the hepatic lineage, and monitored the expression levels of numerous differentiation marker and liver transporter genes with special focus on ABC transporters. In addition, the effect of bile acid treatment and polarizing culturing conditions on hepatic maturation has been assessed. We found that most transporter genes crucial for hepatic functions are markedly induced during hepatic differentiation; however, as regards the transporter composition the end-stage cells still exhibited dual, hepatocyte and cholangiocyte character. Although the bile acid treatment and sandwich culturing only slightly influenced the gene expressions, the stimulated cell polarization resulted in formation of bile canaliculi and proper localization of transporters. Our results point to the importance of membrane transporters in human stem cell-derived hepatic models and demonstrate the relevance of cell polarization in generation of applicable cellular models with correctly localized transporters. On the basis of our observations we suggest that conventional criteria for the evaluation of the quality of stem cell-derived hepatocyte-like cells ought to be augmented with additional elements, such as polarized and functional expression of hepatic transporters.
Collapse
Affiliation(s)
- György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Zsuzsa Erdei
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Julianna Lilienberg
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ágota Apáti
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
- * E-mail:
| |
Collapse
|
34
|
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John's wort drug interactions revisited. Br J Pharmacol 2020; 177:1212-1226. [PMID: 31742659 PMCID: PMC7056460 DOI: 10.1111/bph.14936] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
The first clinically relevant reports of preparations of St. John's wort (SJW), a herbal medicine with anti‐depressant effects, interacting with other drugs, altering their bioavailability and efficacy, were published about 20 years ago. In 2000, a pharmacokinetic interaction between SJW and cyclosporine caused acute rejection in two heart transplant patients. Since then, subsequent research has shown that SJW altered the pharmacokinetics of drugs such as digoxin, tacrolimus, indinavir, warfarin, alprazolam, simvastatin, or oral contraceptives. These interactions were caused by pregnane‐X‐receptor (PXR) activation. Preparations of SJW are potent activators of PXR and hence inducers of cytochrome P450 enzymes (most importantly CYP3A4) and P‐glycoprotein. The degree of CYP3A4 induction correlates significantly with the hyperforin content in the preparation. Twenty years after the first occurrence of clinically relevant pharmacokinetic drug interactions with SJW, this review revisits the current knowledge of the mechanisms of action and on how pharmacokinetic drug interactions with SJW could be avoided. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Simon Nicolussi
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | | | | |
Collapse
|
35
|
Nakata Y, Okada H, Itoh S, Kusaka T. Developmental changes in urinary coproporphyrin ratio in premature infants. Pediatr Int 2020; 62:65-69. [PMID: 31628881 DOI: 10.1111/ped.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/04/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Premature infants have a high concentration of conjugated bilirubin in their blood, although they have a poor glucuronide conjugation of bilirubin. This may be due to developmental changes in the function of adenosine triphosphate binding cassette subfamily C member 2, which is involved in the cellular export of conjugated bilirubin. In the present study, we examined the developmental changes in the urinary coproporphyrin I/(urinary coproporphyrin I+ urinary coproporphyrin III) ratio (UCP (I/ [I + III])), a known biomarker for adenosine triphosphate binding cassette subfamily C member 2 function, in premature infants. METHOD Twenty-one premature infants born between 25 and 32 weeks of gestation were included in the study. Urine samples were collected within 24 h of birth, and at 1 week and 3-4 weeks after birth. The samples were analyzed by high-performance liquid chromatography to calculate UCP (I/ [I + III]) to examine its association with postnatal age and corrected gestational age. Subjects were excluded if they had liver dysfunction, cholestasis, urinary tract infection, or chromosomal abnormalities. RESULTS The average UCP (I/ [I + III]) within 24 h of birth, at 1 week, and at 3-4 weeks after birth was 0.84, 0.61, and 0.65, respectively. The UCP (I/ [I + III]) within 24 h of birth was significantly higher than that measured at 1 week or 3-4 weeks after birth. There was no significant correlation between UCP (I/ [I + III]) and the corrected gestational age. CONCLUSION The UCP (I/ [I + III]) was higher within 24 h of birth. It decreased 1 week after birth and remained low without any significant changes for up to 4 weeks after birth.
Collapse
Affiliation(s)
- Yusei Nakata
- Department of Pediatrics, Kochi Health Science Center, Kochi-City, Kochi, Japan.,Department of Pediatrics, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hitoshi Okada
- Department of Pediatrics, Kagawa University, Kita-gun, Kagawa, Japan
| | - Susumu Itoh
- Department of Pediatrics, Kagawa University, Kita-gun, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
36
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
37
|
Koehn LM, Dziegielewska KM, Møllgård K, Saudrais E, Strazielle N, Ghersi-Egea JF, Saunders NR, Habgood MD. Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Sci Rep 2019; 9:5998. [PMID: 30979952 PMCID: PMC6461637 DOI: 10.1038/s41598-019-42402-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Many pregnant women and prematurely born infants require medication for clinical conditions including cancer, cardiac defects and psychiatric disorders. In adults drug transfer from blood into brain is mostly restricted by efflux mechanisms (ATP-binding cassette, ABC transporters). These mechanisms have been little studied during brain development. Here expression of eight ABC transporters (abcb1a, abcb1b, abcg2, abcc1, abcc2, abcc3, abcc4, abcc5) and activity of conjugating enzyme glutathione-s-transferase (GST) were measured in livers, brain cortices (blood-brain-barrier) and choroid plexuses (blood-cerebrospinal fluid, CSF, barrier) during postnatal rat development. Controls were compared to animals chronically injected (4 days, 200 mg/kg/day) with known abcb1a inducer diallyl sulfide (DAS). Results reveal both tissue- and age-dependent regulation. In liver abcb1a and abcc3 were up-regulated at all ages. In cortex abcb1a/b, abcg2 and abcc4/abcc5 were up-regulated in adults only, while in choroid plexus abcb1a and abcc2 were up-regulated only at P14. DAS treatment increased GST activity in livers, but not in cortex or choroid plexuses. Immunocytochemistry of ABC transporters at the CSF-brain interface showed that PGP and BCRP predominated in neuroepithelium while MRP2/4/5 were prominent in adult ependyma. These results indicate an age-related capacity of brain barriers to dynamically regulate their defence mechanisms when chronically challenged by xenobiotic compounds.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kjeld Møllgård
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elodie Saudrais
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Nathalie Strazielle
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France.,Brain-I, Lyon, France
| | - Jean-Francois Ghersi-Egea
- IBIP facility and Fluid team, Lyon Neuroscience Research center, NSERM U1028 CNRS UMR5292, Université de Lyon-1, Lyon, France
| | - Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Meng LL, Qiu JW, Lin WX, Song YZ. [Clinical features and ABCC2 genotypic analysis of an infant with Dubin-Johnson syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019. [PMID: 30675866 DOI: 10.7499/j.issn.1008-8830.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dubin-Johnson syndrome (DJS) is an autosomal recessive disorder resulting from biallelic mutations of ABCC2 gene, with long-term or intermittent conjugated hyperbilirubinemia being the main clinical manifestation. This paper aims to report the clinical features and ABCC2 genotypes of an infant with DJS. A 9.5-month-old male infant was referred to the hospital due to abnormal liver function discovered over 9 months. The major clinical presentation was prolonged jaundice since neonatal period. A series of biochemistry analysis revealed markedly elevated total bilirubin, conjugated bilirubin and total bile acids. The patient had been managed in different hospitals, but the therapeutic effects were unsatisfactory due to undetermined etiology. Physical examination revealed jaundiced skin and sclera, and a palpable liver 3 cm below the right subcostal margin with medium texture. The spleen was not enlarged. Genetic analysis revealed a splice-site variant c.3988-2A>T and a nonsense variant c.3825C>G (p.Y1275X) in the ABCC2 gene of the infant, which were inherited from his mother and father respectively. The former had not been previously reported. Then ursodeoxycholic acid and phenobarbital were given orally. Half a month later, as a result, his jaundice disappeared and the biochemistry indices improved. However, the long-term outcome needs to be observed. Literature review revealed that neonates/infants with DJS presented with cholestatic jaundice soon after birth as the major clinical feature, and the ABCC2 variants exhibited marked heterogeneity.
Collapse
Affiliation(s)
- Lu-Lu Meng
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
39
|
Fang Y, Cao W, Liang F, Xia M, Pan S, Xu X. Structure affinity relationship and docking studies of flavonoids as substrates of multidrug-resistant associated protein 2 (MRP2) in MDCK/MRP2 cells. Food Chem 2019; 291:101-109. [PMID: 31006447 DOI: 10.1016/j.foodchem.2019.03.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
This study was aimed to determine the relationship of flavonoid structures to their affinity for an important efflux transporter, multidrug-resistant associated protein 2 (MRP2). The cellular uptake (CU) of 35 flavonoids was investigated in MRP2 overexpression MDCK/MRP2 cells. Resulting data identified 8 flavonoids as MRP2 substrates based on their high CUMK with MK-571 in MDCK/MRP2 cells. Also, three substrates showed better CUMD in MDCK cells than did CUMRP in MDCK/MRP2 cells. Docking analyses showed a good correlation (R = 0.926, p = 0.003) between efflux-fold of flavonoid substrates and their docking S_scoring with the MRP2 model, indicating consistency between in silico and in vitro approaches. A structure affinity relationship (SAR) study indicated that 3-OH, 5-OH, 6-OH, 3'-OH, and 4'-OCH3 substituents were favourable while, 8-OCH3, 2'-OH, 3'-OCH3, 4'-OH and 5'-OH were unfavourable for flavonoid affinity to MRP2. Our study provides valuable information for dietary application of flavonoids with specific structures for high absorption.
Collapse
Affiliation(s)
- Yajing Fang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Mengmeng Xia
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| |
Collapse
|
40
|
Fleddermann J, Susewind J, Peuschel H, Koch M, Tavernaro I, Kraegeloh A. Distribution of SiO 2 nanoparticles in 3D liver microtissues. Int J Nanomedicine 2019; 14:1411-1431. [PMID: 30863069 PMCID: PMC6390853 DOI: 10.2147/ijn.s189888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction Nanoparticles (NPs) are used in numerous products in technical fields and biomedicine; their potential adverse effects have to be considered in order to achieve safe applications. Besides their distribution in tissues, organs, and cellular localization, their impact and penetration during the process of tissue formation occurring in vivo during liver regeneration are critical steps for establishment of safe nanomaterials. Materials and methods In this study, 3D cell culture of human hepatocarcinoma cells (HepG2) was used to generate cellular spheroids, serving as in vitro liver microtissues. In order to determine their differential distribution and penetration depth in HepG2 spheroids, SiO2 NPs were applied either during or after spheroid formation. The NP penetration was comprehensively studied using confocal laser scanning microscopy and scanning electron microscopy. Results Spheroids were exposed to 100 µg mL−1 SiO2 NPs either at the beginning of spheroid formation, or during or after formation of spheroids. Microscopy analyses revealed that NP penetration into the spheroid is limited. During and after spheroid formation, SiO2 NPs penetrated about 20 µm into the spheroids, corresponding to about three cell layers. In contrast, because of the addition of SiO2 NPs simultaneously to cell seeding, NP agglomerates were located also in the spheroid center. Application of SiO2 NPs during the process of spheroid formation had no impact on final spheroid size. Conclusion Understanding the distribution of NPs in tissues is essential for biomedical applications. The obtained results indicate that NPs show only limited penetration into already formed tissue, which is probably caused by the alteration of the tissue structure and cell packing density during the process of spheroid formation.
Collapse
Affiliation(s)
- Jana Fleddermann
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | | | - Henrike Peuschel
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | | | | |
Collapse
|
41
|
The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression in human airway epithelial cells. Sci Rep 2019; 9:153. [PMID: 30655622 PMCID: PMC6336805 DOI: 10.1038/s41598-018-36248-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
ABC transporters are conserved in prokaryotes and eukaryotes, with humans expressing 48 transporters divided into 7 classes (ABCA, ABCB, ABCC, ABCD, ABDE, ABCF, and ABCG). Throughout the human body, ABC transporters regulate cAMP levels, chloride secretion, lipid transport, and anti-oxidant responses. We used a bioinformatic approach complemented with in vitro experimental methods for validation of the 48 known human ABC transporters in airway epithelial cells using bronchial epithelial cell gene expression datasets available in NCBI GEO from well-characterized patient populations of healthy subjects and individuals that smoke cigarettes, or have been diagnosed with COPD or asthma, with validation performed in Calu-3 airway epithelial cells. Gene expression data demonstrate that ABC transporters are variably expressed in epithelial cells from different airway generations, regulated by cigarette smoke exposure (ABCA13, ABCB6, ABCC1, and ABCC3), and differentially expressed in individuals with COPD and asthma (ABCA13, ABCC1, ABCC2, ABCC9). An in vitro cell culture model of cigarette smoke exposure was able to recapitulate select observed in situ changes. Our work highlights select ABC transporter candidates of interest and a relevant in vitro model that will enable a deeper understanding of the contribution of ABC transporters in the respiratory mucosa in lung health and disease.
Collapse
|
42
|
Farina M, Aschner M. Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochim Biophys Acta Gen Subj 2019; 1863:129285. [PMID: 30659883 DOI: 10.1016/j.bbagen.2019.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
Methylmercury (MeHg) is a toxic chemical compound naturally produced mainly in the aquatic environment through the methylation of inorganic mercury catalyzed by aquatic microorganisms. MeHg is biomagnified in the aquatic food chain and, consequently, piscivorous fish at the top of the food chain possess huge amounts of MeHg (at the ppm level). Some populations that have fish as main protein's source can be exposed to exceedingly high levels of MeHg and develop signs of toxicity. MeHg is toxic to several organs, but the central nervous system (CNS) represents a preferential target, especially during development (prenatal and early postnatal periods). Though the biochemical events involved in MeHg-(neuro)toxicity are not yet entirely comprehended, a vast literature indicates that its pro-oxidative properties explain, at least partially, several of its neurotoxic effects. As result of its electrophilicity, MeHg interacts with (and oxidize) nucleophilic groups, such as thiols and selenols, present in proteins or low-molecular weight molecules. It is noteworthy that such interactions modify the redox state of these groups and, therefore, lead to oxidative stress and impaired function of several molecules, culminating in neurotoxicity. Among these molecules, glutathione (GSH; a major thiol antioxidant) and thiol- or selenol-containing enzymes belonging to the GSH antioxidant system represent key molecular targets involved in MeHg-neurotoxicity. In this review, we firstly present a general overview concerning the neurotoxicity of MeHg. Then, we present fundamental aspects of the GSH-antioxidant system, as well as the effects of MeHg on this system.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
43
|
Kerimi A, Williamson G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid Redox Signal 2018; 29:1633-1659. [PMID: 28826224 PMCID: PMC6207159 DOI: 10.1089/ars.2017.7086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for mechanistic studies, with the results extrapolated to tissues in vivo. Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols (epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could retard cancer progression in vivo in animal models as well as in tumor cell models. CRITICAL ISSUES Extrapolation from in vitro and animal models to humans is not straightforward given both the extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well as the heterogeneous metabolism of different tumors. FUTURE DIRECTIONS Comparison of data from studies on primary cells or in vivo are essential not only to validate results obtained from cultured cell models, but also to highlight whether any differences may be further exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool to study the effects of flavonoids, provided that the limitations of each model are understood and taken into account in interpretation of the data.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| |
Collapse
|
44
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
45
|
Jabir RS, Ho GF, Annuar MABA, Stanslas J. Association of Allelic Interaction of Single Nucleotide Polymorphisms of Influx and Efflux Transporters Genes With Nonhematologic Adverse Events of Docetaxel in Breast Cancer Patients. Clin Breast Cancer 2018; 18:e1173-e1179. [PMID: 29885788 DOI: 10.1016/j.clbc.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/19/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Nonhematologic adverse events (AEs) of docetaxel constitute an extra burden in the treatment of cancer patients and necessitate either a dose reduction or an outright switch of docetaxel for other regimens. These AEs are frequently associated with genetic polymorphisms of genes encoding for proteins involved docetaxel disposition. Therefore, we investigated that association in Malaysian breast cancer patients. MATERIALS AND METHODS A total of 110 Malaysian breast cancer patients were enrolled in the present study, and their blood samples were investigated for different single nucleotide polymorphisms using polymerase chain reaction restriction fragment length polymorphism. AEs were evaluated using the Common Terminology Criteria for Adverse Events, version 4.0. RESULTS Fatigue, nausea, oral mucositis, and vomiting were the most common nonhematologic AEs. Rash was associated with heterozygous and mutant genotypes of ABCB1 3435C>T (P < .05). Moreover, patients carrying the GG genotype of ABCB1 2677G>A/T reported more fatigue than those carrying the heterozygous genotype GA (P < .05). The presence of ABCB1 3435-T, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-G alleles was significantly associated with nausea and oral mucositis. The coexistence of ABCB1 3435-C, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-A was significantly associated with vomiting (P < .05). CONCLUSION The prevalence of nonhematologic AEs in breast cancer patients treated with docetaxel has been relatively high. The variant allele of ABCB1 3435C>T polymorphism could be a potential predictive biomarker of docetaxel-induced rash, and homozygous wild-type ABCB1 2677G>A/T might predict for a greater risk of fatigue. In addition, the concurrent presence of specific alleles could be predictive of vomiting, nausea, and oral mucositis.
Collapse
Affiliation(s)
- Rafid Salim Jabir
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Gwo Fuang Ho
- Clinical Oncology Unit, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Azrif Bin Ahmad Annuar
- Department of Radiotherapy and Oncology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
46
|
Holmstock N, Oorts M, Snoeys J, Annaert P. MRP2 Inhibition by HIV Protease Inhibitors in Rat and Human Hepatocytes: A Quantitative Confocal Microscopy Study. Drug Metab Dispos 2018; 46:697-703. [PMID: 29523599 DOI: 10.1124/dmd.117.079467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/07/2018] [Indexed: 02/13/2025] Open
Abstract
Hepatic drug transporters play a pivotal role in the excretion of drugs from the body, in drug-drug interactions, as well as in drug-induced liver toxicity. Hepatocytes cultured in sandwich configuration are an advantageous model to investigate the interactions of drug candidates with apical efflux transporters in a biorelevant manner. However, the commonly used "offline" assays (i.e., that rely on measuring intracellular accumulated amounts after cell lysis) are time- and resource-consuming, and the data output is often highly variable. In the present study, we used confocal microscopy to investigate the inhibitory effect of all marketed HIV protease inhibitors (10 μM) on the apical efflux transporter multidrug resistance-associated protein 2 (MRP2; ABCC2) by visualizing the biliary accumulation of the fluorescent substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDF). This method was applied with sandwich-cultured human and rat hepatocytes. Alterations in the biliary excretion index of CDF were calculated on the basis of quantitative analysis of fluorescence intensities in the confocal images. In human hepatocytes, lopinavir followed by tipranavir, saquinavir, atazanavir, and darunavir were the most potent inhibitors of MRP2-mediated efflux of CDF. In rat hepatocytes, tipranavir inhibited Mrp2-mediated CDF efflux most potently, followed by lopinavir and nelfinavir. In conclusion, a comparison of these findings with previously published data generated in offline transporter inhibition assays indicates that this microscopy-based approach enables investigation of the inhibitory effect of drugs on efflux transporters in a very sensitive but nondestructive manner.
Collapse
Affiliation(s)
- Nico Holmstock
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| | - Marlies Oorts
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| | - Jan Snoeys
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium (N.H., M.O., P.A.) and Janssen Research and Development, Beerse, Belgium (J.S.)
| |
Collapse
|
47
|
Gao B, Lu Y, Nieuweboer AJM, Xu H, Beesley J, Boere I, de Graan AJM, de Bruijn P, Gurney H, J Kennedy C, Chiew YE, Johnatty SE, Beale P, Harrison M, Luccarini C, Conroy D, Mathijssen RHJ, R Harnett P, Balleine RL, Chenevix-Trench G, Macgregor S, de Fazio A. Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer. Sci Rep 2018; 8:1508. [PMID: 29367611 PMCID: PMC5784122 DOI: 10.1038/s41598-018-19590-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying single nucleotide polymorphisms (SNPs) that influence chemotherapy disposition may help to personalize cancer treatment and limit toxicity. Genome-wide approaches are unbiased, compared with candidate gene studies, but usually require large cohorts. As most chemotherapy is given cyclically multiple blood sampling is required to adequately define drug disposition, limiting patient recruitment. We found that carboplatin and paclitaxel disposition are stable phenotypes in ovarian cancer patients and tested a genome-wide association study (GWAS) design to identify SNPs associated with chemotherapy disposition. We found highly significant SNPs in ABCC2, a known carboplatin transporter, associated with carboplatin clearance (asymptotic P = 5.2 × 106, empirical P = 1.4 × 10−5), indicating biological plausibility. We also identified novel SNPs associated with paclitaxel disposition, including rs17130142 with genome-wide significance (asymptotic P = 2.0 × 10−9, empirical P = 1.3 × 10−7). Although requiring further validation, our work demonstrated that GWAS of chemotherapeutic drug disposition can be effective, even in relatively small cohorts, and can be adopted in drug development and treatment programs.
Collapse
Affiliation(s)
- Bo Gao
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yi Lu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - Ingrid Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Catherine J Kennedy
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yoke-Eng Chiew
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | | | | | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge University, Cambridge, UK
| | - Don Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge University, Cambridge, UK
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paul R Harnett
- The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.,Sydney West Translational Cancer Research Centre, Sydney, Australia
| | - Rosemary L Balleine
- The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia.,Sydney West Translational Cancer Research Centre, Sydney, Australia.,Pathology West, Institute for Clinical Pathology and Medical Research (ICPMR), Westmead, Sydney, Australia
| | | | | | - Anna de Fazio
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia. .,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia. .,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia. .,Sydney West Translational Cancer Research Centre, Sydney, Australia.
| |
Collapse
|
48
|
Bierwolf J, Volz T, Lütgehetmann M, Allweiss L, Riecken K, Warlich M, Fehse B, Kalff JC, Dandri M, Pollok JM. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer. Tissue Eng Part A 2017; 22:742-53. [PMID: 27068494 PMCID: PMC4876526 DOI: 10.1089/ten.tea.2015.0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo.
Collapse
Affiliation(s)
- Jeanette Bierwolf
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Tassilo Volz
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Marc Lütgehetmann
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lena Allweiss
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kristoffer Riecken
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Michael Warlich
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Boris Fehse
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Joerg C Kalff
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Maura Dandri
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,5 German Center for Infection Research , Hamburg-Lübeck-Borstel Partner Site, Hamburg, Germany
| | - Joerg-Matthias Pollok
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| |
Collapse
|
49
|
Reznicek J, Ceckova M, Ptackova Z, Martinec O, Tupova L, Cerveny L, Staud F. MDR1 and BCRP Transporter-Mediated Drug-Drug Interaction between Rilpivirine and Abacavir and Effect on Intestinal Absorption. Antimicrob Agents Chemother 2017; 61:e00837-17. [PMID: 28696229 PMCID: PMC5571350 DOI: 10.1128/aac.00837-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/24/2017] [Indexed: 01/11/2023] Open
Abstract
Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir.
Collapse
Affiliation(s)
- Josef Reznicek
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| | - Zuzana Ptackova
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| | - Ondrej Martinec
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| | - Lenka Tupova
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| | - Lukas Cerveny
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Hradec Kralove, Czech Republic
| |
Collapse
|
50
|
Muhrez K, Largeau B, Emond P, Montigny F, Halimi JM, Trouillas P, Barin-Le Guellec C. Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions. Biochem Pharmacol 2017; 140:124-138. [DOI: 10.1016/j.bcp.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023]
|