1
|
Miller G, Pareek O, Penman SL, Thanos PK. The Effects of Nicotine and Cannabinoids on Cytokines. Curr Pharm Des 2024; 30:2468-2484. [PMID: 38859790 DOI: 10.2174/0113816128293077240529111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people's health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response. OBJECTIVE This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β. METHODS Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024. RESULTS THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act. CONCLUSION This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
Collapse
Affiliation(s)
- Grace Miller
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Ojas Pareek
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Samantha L Penman
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Panayotis K Thanos
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| |
Collapse
|
2
|
Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with Immune Response Markers. Metabolites 2022; 12:metabo12070619. [PMID: 35888743 PMCID: PMC9319897 DOI: 10.3390/metabo12070619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is characterised by a dysregulated immune response, that involves signalling lipids acting as mediators of the inflammatory process along the innate and adaptive phases. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The second publication in a series reports the results of quantitative LC-MS/MS profiling of 63 small lipids including oxylipins, free fatty acids, and endocannabinoids. Compared to samples taken from ward patients, intensive care unit (ICU) patients had 2−4-fold lower levels of arachidonic acid (AA) and its cyclooxygenase-derived prostanoids, as well as lipoxygenase derivatives, exhibiting negative correlations with inflammation markers. The same derivatives showed 2−5-fold increases in recovering ward patients, in paired comparison to early hospitalisation. In contrast, ICU patients showed elevated levels of oxylipins derived from poly-unsaturated fatty acids (PUFA) by non-enzymatic peroxidation or activity of soluble epoxide hydrolase (sEH), and these oxylipins positively correlated with markers of macrophage activation. The deficiency in AA enzymatic products and the lack of elevated intermediates of pro-resolving mediating lipids may result from the preference of alternative metabolic conversions rather than diminished stores of PUFA precursors. Supporting this, ICU patients showed 2-to-11-fold higher levels of linoleic acid (LA) and the corresponding fatty acyl glycerols of AA and LA, all strongly correlated with multiple markers of excessive immune response. Our results suggest that the altered oxylipin metabolism disrupts the expected shift from innate immune response to resolution of inflammation.
Collapse
|
3
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
4
|
Anti-Inflammatory Activity of a CB2 Selective Cannabinoid Receptor Agonist: Signaling and Cytokines Release in Blood Mononuclear Cells. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010064. [PMID: 35011295 PMCID: PMC8746368 DOI: 10.3390/molecules27010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/26/2023]
Abstract
The endocannabinoid system (ECS) exerts immunosuppressive effects, which are mostly mediated by cannabinoid receptor 2 (CBR2), whose expression on leukocytes is higher than CBR1, mainly localized in the brain. Targeted CBR2 activation could limit inflammation, avoiding CBR1-related psychoactive effects. Herein, we evaluated in vitro the biological activity of a novel, selective and high-affinity CBR2 agonist, called JT11, studying its potential CBR2-mediated anti-inflammatory effect. Trypan Blue and MTT assays were used to test the cytotoxic and anti-proliferative effect of JT11 in Jurkat cells. Its pro-apoptotic activity was investigated analyzing both cell cycle and poly PARP cleavage. Finally, we evaluated its impact on LPS-induced ERK1/2 and NF-kB-p65 activation, TNF-α, IL-1β, IL-6 and IL-8 release in peripheral blood mononuclear cells (PBMCs) from healthy donors. Selective CB2R antagonist SR144528 and CBR2 knockdown were used to further verify the selectivity of JT11. We confirmed selective CBR2 activation by JT11. JT11 regulated cell viability and proliferation through a CBR2-dependent mechanism in Jurkat cells, exhibiting a mild pro-apoptotic activity. Finally, it reduced LPS-induced ERK1/2 and NF-kB-p65 phosphorylation and pro-inflammatory cytokines release in human PBMCs, proving to possess in vitro anti-inflammatory properties. JT11 as CBR2 ligands could enhance ECS immunoregulatory activity and our results support the view that therapeutic strategies targeting CBR2 signaling could be promising for the treatment of chronic inflammatory diseases.
Collapse
|
5
|
Rahaman O, Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021; 164:242-252. [PMID: 34053085 DOI: 10.1111/imm.13378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids are key bioactive components of the endocannabinoid system, and the profound influence of endocannabinoids on the modulation of the immune system is being increasingly appreciated. The knowledge of endocannabinoid-immune cell crosstalk will pave the way to therapeutic implications of modulators of this pathway in autoimmune and chronic inflammatory disorders. Endocannabinoids seem to exert both anti-inflammatory and pro-inflammatory effects in specific contexts, based on specific receptor engagement and the downstream signalling pathways involved. In this review, we summarized the biosynthesis, signalling and degradation of two well-studied endocannabinoids-anandamide and 2-arachidonylglycerol in immune cells. Then, we discussed the effects of these two endocannabinoids on the functioning of major innate and adaptive immune cells, along with the choice of receptors employed in such interactions. Finally, we outline our current knowledge on the involvement of anandamide and 2-arachidonylglycerol in context of inflammation, allergies, autoimmunity and metabolic disorders.
Collapse
Affiliation(s)
- Oindrila Rahaman
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipyaman Ganguly
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
6
|
Kienzl M, Kargl J, Schicho R. The Immune Endocannabinoid System of the Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21238929. [PMID: 33255584 PMCID: PMC7728085 DOI: 10.3390/ijms21238929] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the “immune endocannabinoid system” can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
- BioTechMed, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74132; Fax: +43-316-385-79613
| |
Collapse
|
7
|
Kaur I, Behl T, Bungau S, Zengin G, Kumar A, El-Esawi MA, Khullar G, Venkatachalam T, Arora S. The endocannabinoid signaling pathway as an emerging target in pharmacotherapy, earmarking mitigation of destructive events in rheumatoid arthritis. Life Sci 2020; 257:118109. [PMID: 32698072 DOI: 10.1016/j.lfs.2020.118109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis is an inflammatory autoimmune disease, characterized by synovial proliferation, destruction to articular cartilage and severe pain. The cannabinoids obtained from Cannabis sativa exhibited their actions via cannabinoid-1 and -2 receptors, which also provides a platform for endocannabinoids to act. The endocannabinoid system comprises endocannabinoid molecules involved in signaling processes, along with G-protein coupled receptors and enzymes associated with ligand biosynthesis, activation and degradation. The action of endocannabinoid system in immune system regulation, via primary CB2 activation, followed by inhibition of production of pro-inflammatory cytokines, auto-antibodies and MMPs, FLSs proliferation and T-cell mediated immune response, are elaborated as potential therapeutic regimes in rheumatoid arthritis. The involvement of endocannabinoid system in immune cells like, B cells, T cells and macrophages, as well as regulatory actions on sensory noniceptors to ameliorate pain is significantly highlighted in the review, elaborating the actions of endocannabinoid signaling in mitigating the disease events. The review also focuses on enhancement of endocannabinoid tone, either by inhibiting the degradation enzymes, like FAAH, MAGL, COX, CytP450, LOX, etc. or by retarding cellular uptake processes. Moreover, the review portrays the optimizing role of endocannabinoid system, in abbreviating the symptoms and complications of rheumatoid arthritis in patients and mitigating inflammation, pain and immune mediated effects significantly.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., Oradea, Romania
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, Turkey
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Abstract
Non-steroidal anti-inflammatory drugs produce antinociceptive effects mainly through peripheral cyclooxygenase inhibition. In opposition to the classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone exert weak anti-inflammatory activity, their antinociceptive effects appearing to be mostly due to mechanisms other than peripheral cyclooxygenase inhibition. In this review, we classify classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone as “non-opioid analgesics” and discuss the mechanisms mediating participation of the endocannabinoid system in their antinociceptive effects. Non-opioid analgesics and their metabolites may activate cannabinoid receptors, as well as elevate endocannabinoid levels through different mechanisms: reduction of endocannabinoid degradation via fatty acid amide hydrolase and/or cyclooxygenase-2 inhibition, mobilization of arachidonic acid for the biosynthesis of endocannabinoids due to cyclooxygenase inhibition, inhibition of endocannabinoid cellular uptake directly or through the inhibition of nitric oxide synthase production, and induction of endocannabinoid release.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Özgur Gündüz
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Çetin Hakan Karadağ
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Ahmet Ulugöl
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
9
|
Joffre J, Yeh CC, Wong E, Thete M, Xu F, Zlatanova I, Lloyd E, Kobzik L, Legrand M, Hellman J. Activation of CB 1R Promotes Lipopolysaccharide-Induced IL-10 Secretion by Monocytic Myeloid-Derived Suppressive Cells and Reduces Acute Inflammation and Organ Injury. THE JOURNAL OF IMMUNOLOGY 2020; 204:3339-3350. [PMID: 32385136 DOI: 10.4049/jimmunol.2000213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Cannabis sativa and its principal components, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol, are increasingly being used to treat a variety of medical problems, including inflammatory conditions. Although studies suggest that the endocannabinoid system has immunomodulatory properties, there remains a paucity of information on the effects of cannabinoids on immunity and on outcomes of infection and injury. We investigated the effects and mechanism(s) of action of cannabinoid receptor agonists, including Δ9-THC, on inflammation and organ injury in endotoxemic mice. Administration of Δ9-THC caused a dramatic early upregulation of plasma IL-10 levels, reduced plasma IL-6 and CCL-2 levels, led to better clinical status, and attenuated organ injury in endotoxemic mice. The anti-inflammatory effects of Δ9-THC in endotoxemic mice were reversed by a cannabinoid receptor type 1 (CB1R) inverse agonist (SR141716), and by clodronate-induced myeloid-cell depletion, but not by genetic invalidation or blockade of other putative Δ9-THC receptors, including cannabinoid receptor type 2, TRPV1, GPR18, GPR55, and GPR119. Although Δ9-THC administration reduced the activation of several spleen immune cell subsets, the anti-inflammatory effects of Δ9-THC were preserved in splenectomized endotoxemic mice. Finally, using IL-10-GFP reporter mice, we showed that blood monocytic myeloid-derived suppressive cells mediate the Δ9-THC-induced early rise in circulating IL-10. These results indicate that Δ9-THC potently induces IL-10, while reducing proinflammatory cytokines, chemokines, and related organ injury in endotoxemic mice via the activation of CB1R. These data have implications for acute and chronic conditions that are driven by dysregulated inflammation, such as sepsis, and raise the possibility that CB1R-signaling may constitute a novel target for inflammatory disorders.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Che-Chung Yeh
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Erika Wong
- Pediatric Critical Care Division, UCSF Benioff Children's Hospital, San Francisco, CA 94158
| | - Mayuri Thete
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Ivana Zlatanova
- Cardiovascular Research Institute, University of California, San Francisco School of Medicine, San Francisco, CA 94158; and
| | - Elliot Lloyd
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Lester Kobzik
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, CA 94143;
| |
Collapse
|
10
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
11
|
α 2-Adrenoceptor agonist induces peripheral antinociception via the endocannabinoid system. Pharmacol Rep 2020; 72:96-103. [PMID: 32016857 DOI: 10.1007/s43440-019-00053-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/05/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Xylazine is an α2 adrenoceptor agonist that is extensively used in veterinary medicine and animal experimentation procedures to produce analgesia, sedation and muscle relaxation without causing general anesthesia. Considering the lack of knowledge of the mechanisms involved in peripheral antinociception induced by xylazine and the potential interactions between the adrenergic and endocannabinoid systems, the present study investigated the contribution of the latter system in the mechanism of xylazine. METHODS The rat paw pressure test, in which hyperalgesia was induced by the intraplantar injection of prostaglandin E2, was performed. RESULTS Xylazine administered via an intraplantar injection (25, 50 and 100 μg) induced a peripheral antinociceptive effect against prostaglandin E2 (2 μg)-induced hyperalgesia. This effect was blocked by treatment with the selective CB1 cannabinoid antagonist AM251 (20, 40 and 80 μg) but not by the selective CB2 cannabinoid antagonist AM630 (100 μg). The anandamide reuptake inhibitor VDM11 (2.5 μg) intensified the peripheral antinociceptive effect of a submaximal dose of xylazine (25 μg), and the inhibitor of endocannabinoid enzymatic hydrolysis, MAFP (0.5 μg), showed a tendency towards this same effect. In addition, liquid-chromatography mass spectrometric analysis indicated that xylazine (100 μg) treatment was associated with an increase in anandamide levels in the rat paws treated with PGE2. CONCLUSIONS The present results provides evidence that the peripheral antinociceptive effect of the α2 adrenoceptor agonist xylazine probably results from anandamide release and subsequent CB1 cannabinoid receptor activation.
Collapse
|
12
|
Niaz K, Khan F, Maqbool F, Momtaz S, Ismail Hassan F, Nobakht-Haghighi N, Rahimifard M, Abdollahi M. Endo-cannabinoids system and the toxicity of cannabinoids with a biotechnological approach. EXCLI JOURNAL 2017; 16:688-711. [PMID: 28827985 PMCID: PMC5547394 DOI: 10.17179/excli2017-257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Cannabinoids have shown diverse and critical effects on the body systems, which alter the physiological functions. Synthetic cannabinoids are comparatively innovative misuse drugs with respect to their nature of synthesis. Synthetic cannabinoids therapy in healthy, chain smokers, and alcoholic individuals cause damage to the immune and nervous system, eventually leading to intoxication throughout the body. Relevant studies were retrieved using major electronic databases such as PubMed, EMBASE, Medline, Scopus, and Google Scholar. The extensive use of Cannabis Sativa L. (C. Sativa) and its derivatives/analogues such as the nonpsychoactive dimethyl heptyl homolog (CBG-DMH), and tetrahydrocannabivarin (THCV) amongst juveniles and adults have been enhanced in recent years. Cannabinoids play a crucial role in the induction of respiratory, reproductive, immune and carcinogenic effects; however, potential data about mutagenic and developmental effects are still insufficient. The possible toxicity associated with the prolong use of cannabinoids acts as a tumor promoter in animal models and humans. Particular synthetic cannabinoids and analogues have low affinity for CB1 or CB2 receptors, while some synthetic members like Δ9-THC have high affinity towards these receptors. Cannabinoids and their derivatives have a direct or indirect association with acute and long-term toxicity. To reduce/attenuate cannabinoids toxicity, pharmaceutical biotechnology and cloning methods have opened a new window to develop cannabinoids encoding the gene tetrahydrocannabinolic acid (THCA) synthase. Plant revolution and regeneration hindered genetic engineering in C. Sativa. The genetic culture suspension of C. Sativa can be transmuted by the use of Agrobacterium tumefaciens to overcome its toxicity. The main aim of the present review was to collect evidence of the endo-cannabinoid system (ECS), cannabinoids toxicity, and the potential biotechnological approach of cannabinoids synthesis.
Collapse
Affiliation(s)
- Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nobakht-Haghighi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus Mersin 10, Turkey
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators Inflamm 2016; 2016:5831315. [PMID: 27597805 PMCID: PMC4997072 DOI: 10.1155/2016/5831315] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.
Collapse
|
14
|
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15:513-28. [DOI: 10.1016/j.autrev.2016.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
15
|
Crunfli F, Vilela FC, Giusti-Paiva A. Cannabinoid CB1 receptors mediate the effects of dipyrone. Clin Exp Pharmacol Physiol 2015; 42:246-55. [PMID: 25430877 DOI: 10.1111/1440-1681.12347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Dipyrone is a non-steroidal anti-inflammatory drug used primarily as an analgesic and antipyretic. Some hypothesize that dipyrone activity can modulate other pathways, including endocannabinoid signalling. Thus, the aim of the present study was to evaluate the possible role of endocannabinoids in mediating dipyrone activity. This study is based on the tetrad effects of cannabinoids, namely an antinociceptive and cataleptic state, hypolocomotion and hypothermia. Dipyrone (500 mg/kg, i.p.) treatment decreased locomotor activity, increased the latency to a thermal analgesic response and induced a cataleptic and hypothermic state. These reactions are similar to the tetrad effects caused by the cannabinoid agonist WIN 55,212-2 (3 mg/kg, i.p.). The cannabinoid CB1 receptor antagonist AM251 (10 mg/kg, i.p.) reversed the effects of dipyrone on locomotor activity, the cataleptic response and thermal analgesia. Both AM251 (10 mg/kg, i.p.) and the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (10 mg/kg, i.p.) accentuated the reduction in body temperature caused by dipyrone. However, the CB2 receptor antagonist AM630 did not alter the hypothermic response to dipyrone. These results indicate involvement of the endocannabinoid system, especially CB1 receptors, in the analgesic and cataleptic effects of dipyrone, as well as hypolocomotion. However, cannabinoid receptors and TRPV1 were not involved in the hypothermic effects of dipyrone. We hypothesize that the mechanism of action of dipyrone may involve inhibition of cyclo-oxygenase and fatty acid amide hydrolase, which together provide additional arachidonic acid as substrate for endocannabinoid synthesis or other related molecules. This increase in endocannabinoid availability enhances CB1 receptor stimulation, contributing to the observed effects.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG; Graduate Program in Health Biosciences, Federal University of Alfenas, Alfenas, MG
| | | | | |
Collapse
|
16
|
Characterisation of (R)-2-(2-Fluorobiphenyl-4-yl)-N-(3-Methylpyridin-2-yl)Propanamide as a Dual Fatty Acid Amide Hydrolase: Cyclooxygenase Inhibitor. PLoS One 2015; 10:e0139212. [PMID: 26406890 PMCID: PMC4583449 DOI: 10.1371/journal.pone.0139212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known. Methodology/Principal Findings COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM). Conclusions/Significance Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.
Collapse
|
17
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
18
|
Zhuang Y, Ren G, Li H, Tian K, Zhang Y, Qiao W, Nie X, Liu Y, Song Y, Zhu C. In vitro properties of apheresis platelet during extended storage in plasma treated with anandamide. Transfus Apher Sci 2014; 51:58-64. [DOI: 10.1016/j.transci.2014.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
|
19
|
Chouinard F, Turcotte C, Guan X, Larose MC, Poirier S, Bouchard L, Provost V, Flamand L, Grandvaux N, Flamand N. 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 2013; 93:267-76. [PMID: 23242611 PMCID: PMC4995105 DOI: 10.1189/jlb.0412200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoid 2-AG is highly susceptible to its hydrolysis into AA, which activates neutrophils through de novo LTB(4) biosynthesis, independently of CB activation. In this study, we show that 2-AG and AA stimulate neutrophils to release antimicrobial effectors. Supernatants of neutrophils activated with nanomolar concentrations of 2-AG and AA indeed inhibited the infectivity of HSV-1 and RSV. Additionally, the supernatants of 2-AG- and AA-stimulated neutrophils strongly impaired the growth of Escherichia coli and Staphylococcus aureus. This correlated with the release of a large amount (micrograms) of α-defensins, as well as a limited amount (nanograms) of LL-37. All the effects of AA and 2-AG mentioned above were prevented by inhibiting LTB(4) biosynthesis or by blocking BLT(1). Importantly, neither CB(2) receptor agonists nor antagonists could mimic nor prevent the effects of 2-AG, respectively. In fact, qPCR data show that contaminating eosinophils express ∼100-fold more CB(2) receptor mRNA than purified neutrophils, suggesting that CB(2) receptor expression by human neutrophils is limited and that contaminating eosinophils are likely responsible for the previously documented CB(2) expression by freshly isolated human neutrophils. The rapid conversion of 2-AG to AA and their subsequent metabolism into LTB(4) promote 2-AG and AA as multifunctional activators of neutrophils, mainly exerting their effects by activating the BLT(1). Considering that nanomolar concentrations of AA or 2-AG were sufficient to impair viral infectivity, this suggests potential physiological roles for 2-AG and AA as regulators of host defense in vivo.
Collapse
Affiliation(s)
- François Chouinard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Caroline Turcotte
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Xiaochun Guan
- Centre de Recherche du CHUM, Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Marie-Chantal Larose
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Samuel Poirier
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Line Bouchard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Véronique Provost
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Louis Flamand
- Centre de Recherche du CHUQ, Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du CHUM, Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| |
Collapse
|
20
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
21
|
Bambang KN, Lambert DG, Lam PM, Quenby S, Maccarrone M, Konje JC. Immunity and early pregnancy events: are endocannabinoids the missing link? J Reprod Immunol 2012. [DOI: 10.1016/j.jri.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Silva LCR, Romero TRL, Guzzo LS, Duarte IDG. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs. Braz J Med Biol Res 2012; 45:1240-3. [PMID: 22983178 PMCID: PMC3854224 DOI: 10.1590/s0100-879x2012007500153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 08/03/2012] [Indexed: 02/02/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E2 (PGE2, 2 μg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 μg/paw) and AM-630 (100 μg/paw) were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g), 20 μg diclofenac (mean = 4.825 ± 3.850 g) and 40 μg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and indomethacin.
Collapse
Affiliation(s)
- L C R Silva
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
23
|
The endocannabinoid system: a revolving plate in neuro-immune interaction in health and disease. Amino Acids 2012; 45:95-112. [PMID: 22367605 DOI: 10.1007/s00726-012-1252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
Studies of the last 40 years have brought to light an important physiological network, the endocannabinoid system. Endogenous and exogenous cannabinoids mediate their effects through activation of specific cannabinoid receptors. This modulatory homoeostatic system operates in the regulation of brain function and also in the periphery. The cannabinoid system has been shown to be involved in regulating the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are modulated by these agents, thus raising the hypothesis that these compounds may be of value in the management of chronic inflammatory diseases. The special properties of endocannabinoids as neurotransmitters, their pleiotropic effects and the impact on immune function show that the endocannabinoid system represents a revolving plate of neural and immune interactions. In this paper, we outline current information on immune effects of cannabinoids in health and disease.
Collapse
|
24
|
Burstein SH, McQuain CA, Ross AH, Salmonsen RA, Zurier RE. Resolution of inflammation by N-arachidonoylglycine. J Cell Biochem 2012; 112:3227-33. [PMID: 21732409 DOI: 10.1002/jcb.23245] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
N-arachidonoylglycine (NAgly) is an endogenous signaling lipid that is a member of the eicosanoid super family and is related to anandamide. It shows anti-inflammatory activity in vivo in the mouse peritonitis model where it reduces migration of inflammatory leukocytes following injection of pro-inflammatory agents into the peritoneal cavity. Using cell culture models, including GPR18 transfected HEK-293 cells, evidence is presented that the orphan receptor GPR18 is involved in this action. Increases in free arachidonic acid, and robust stimulation of anti-inflammatory eicosanoids were observed at low micromolar concentrations. These included 15-deoxy-delta-13,14-PGJ(2) and lipoxin A(4) both of which are believed to mediate the resolution stage of inflammation. It was further shown that NAgly might act via GPR18 activation in promoting the number of Trypan Blue stained cells, a possible indicator of programmed cell death. Thus, we hypothesize that NAgly induces the death of inflammatory cells, a process that is considered to be important for the resolution of inflammation.
Collapse
Affiliation(s)
- Sumner H Burstein
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, USA.
| | | | | | | | | |
Collapse
|
25
|
Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 2011; 111:5899-921. [PMID: 21923193 PMCID: PMC3191732 DOI: 10.1021/cr2002799] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Carol A Rouzer
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
26
|
Stein C, Machelska H. Modulation of Peripheral Sensory Neurons by the Immune System: Implications for Pain Therapy. Pharmacol Rev 2011; 63:860-81. [DOI: 10.1124/pr.110.003145] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
|
28
|
Signorello MG, Giacobbe E, Passalacqua M, Leoncini G. The anandamide effect on NO/cGMP pathway in human platelets. J Cell Biochem 2011; 112:924-32. [PMID: 21328466 DOI: 10.1002/jcb.23008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study the effect of the endocannabinoid anandamide on platelet nitric oxide (NO)/cGMP pathway was investigated. Data report that anandamide in a dose-and time-dependent manner increased NO and cGMP levels and stimulated endothelial nitric oxide synthase (eNOS) activity. These parameters were significantly reduced by LY294002, selective inhibitor of PI3K and by MK2206, specific inhibitor of AKT. Moreover anandamide stimulated both eNOSser1177 and AKTser473 phosphorylation. Finally the anandamide effect on NO and cGMP levels, eNOS and AKT phosphorylation/activation were inhibited by SR141716, specific cannabinoid receptor 1 antagonist, supporting the involvement of anandamide binding to this receptor. Overall data of this report indicate that low concentrations of anandamide, through PI3K/AKT pathway activation, stimulates eNOS activity and increases NO levels in human platelets. In such way anandamide contributes to extend platelet survival.
Collapse
|
29
|
Bambang KN, Karasu T, Gebeh A, Taylor AH, Marczylo TH, Lam P, Willets JM, Konje JC. From Fertilisation to Implantation in Mammalian Pregnancy-Modulation of Early Human Reproduction by the Endocannabinoid System. Pharmaceuticals (Basel) 2010; 3:2910-2929. [PMID: 27713383 PMCID: PMC4034104 DOI: 10.3390/ph3092910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 12/14/2022] Open
Abstract
There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol) in early reproduction.
Collapse
Affiliation(s)
- Katerina N Bambang
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Tulay Karasu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Alpha Gebeh
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Timothy H Marczylo
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Patricia Lam
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Jonathon M Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| |
Collapse
|
30
|
Taylor AH, Amoako AA, Bambang K, Karasu T, Gebeh A, Lam PMW, Marzcylo TH, Konje JC. Endocannabinoids and pregnancy. Clin Chim Acta 2010; 411:921-30. [PMID: 20302856 DOI: 10.1016/j.cca.2010.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 12/12/2022]
Abstract
Acylethanolamides such as anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol are endocannabinoids that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. These compounds, their various receptors, the purported membrane transporter(s), and related enzymes that synthesize and degrade them are collectively referred to as the "endocannabinoid system (ECS)". Poorly defined cellular and molecular mechanisms control the biological actions of the ECS. Over the last decade evidence has been emerging to suggest that the ECS plays a significant role in various aspects of human reproduction. In this review, we summarize our current understanding of this role especially the involvement of AEA and related ECS elements in regulating oogenesis, embryo oviductal transport, blastocyst implantation, placental development and pregnancy outcomes, and sperm survival, motility, capacitation and acrosome reaction. Additionally, the possibility that plasma and tissue AEA and other cannabinoids may represent reliable diagnostic markers of natural and assisted reproduction and pregnancy outcomes in women will be discussed.
Collapse
Affiliation(s)
- Anthony H Taylor
- Reproductive Sciences Section, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hamza M, Dionne RA. Mechanisms of non-opioid analgesics beyond cyclooxygenase enzyme inhibition. Curr Mol Pharmacol 2010; 2:1-14. [PMID: 19779578 DOI: 10.2174/1874467210902010001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-opioid analgesics including both selective and non-selective cyclooxygenase (COX) inhibitors and acetaminophen are the most widely used treatments for pain. Inhibition of COX is thought to be largely responsible for both the therapeutic and adverse effects of this class of drugs. Accumulating evidence over the past two decades has demonstrated effects of non-opioids beyond the inhibition of COX and prostaglandin synthesis that might also explain their therapeutic and adverse effects. These include their interaction with endocannabinoids, nitric oxide, monoaminergic, and cholinergic systems. Moreover, the recent development of microarray technology that allows the study of human gene expression suggests multiple pathways that may be related to the analgesic and anti-inflammatory effects of non-opioids. The present review will discuss the multiple actions of non-opioids and their interactions with these systems during inflammation and pain, suggesting that COX inhibition is an incomplete explanation for the actions of non-opioids and proposes the involvement of multiple selective targets for their analgesic, as well as, their adverse effects.
Collapse
Affiliation(s)
- May Hamza
- National Institute of Nursing Research, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Greineisen WE, Turner H. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists. Int Immunopharmacol 2010; 10:547-55. [PMID: 20219697 DOI: 10.1016/j.intimp.2010.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/19/2010] [Indexed: 12/20/2022]
Abstract
The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered.
Collapse
Affiliation(s)
- William E Greineisen
- Laboratory of Immunology and Signal Transduction, Department of Biology, Chaminade University, Honolulu, Hawaii 96816, USA
| | | |
Collapse
|
33
|
Endocannabinoids and immune regulation. Pharmacol Res 2009; 60:85-92. [PMID: 19428268 DOI: 10.1016/j.phrs.2009.03.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/24/2009] [Accepted: 03/31/2009] [Indexed: 12/23/2022]
Abstract
Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors. These discoveries have added to our understanding of exogenous and endogenous cannabinoid signaling along with exploring the various pathways of their biosynthesis, molecular structure, inactivation, and anatomical distribution of their receptors throughout the body. The endocannabinoid system is involved in immunoregulation and neuroprotection. In this article, we have reviewed the possible mechanisms of the regulation of the immune response by endocannabinoids which include modulation of immune response in different cell types, effect on cytokine network, induction of apoptosis in immune cells and downregulation of innate and adaptive immune response. Studies from our laboratory have suggested that administration of endocannabinoids or use of inhibitors of enzymes that breakdown the endocannabinoids, leads to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Thus, manipulation of endocannabinoids in vivo may constitute a novel treatment modality against inflammatory disorders.
Collapse
|
34
|
Burstein S. The elmiric acids: biologically active anandamide analogs. Neuropharmacology 2007; 55:1259-64. [PMID: 18187165 DOI: 10.1016/j.neuropharm.2007.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/20/2007] [Accepted: 11/19/2007] [Indexed: 01/01/2023]
Abstract
As chemical entities, lipoamino acids have been known for some time. However, more recently their occurrence and importance in mammalian species has been discovered. They appear to have close relationships with the endocannabinoids not only structurally but also in terms of biological actions. The latter include analgesia, anti-inflammatory effects, inhibition of cell proliferation and calcium ion mobilization. To date about 40 naturally occurring members of this family have been identified and, additionally, several synthetic analogs have been prepared and studied. To facilitate their identity, a nomenclature system has been suggested based on the name elmiric acid (EMA). The prototypic example, N-arachidonoyl glycine, does not bind to CB1, however it does inhibit the glycine transporter GLYT2a and also appears to be a ligand for the orphan G-protein-coupled receptor GPR18. It may also have a role in regulating tissue levels of anandamide by virtue of its inhibitory effect on FAAH the enzyme that mediates inactivation of anandamide. Its concentration in rat brain is several-fold higher than anandamide supporting its possible role as a physiological mediator. Future studies should be aimed at elucidating the actions of all of the members of this interesting family of molecules.
Collapse
Affiliation(s)
- Sumner Burstein
- Department of Biochemistry & Molecular Pharmacology, The University of Massachusetts Medical School Worcester, MA 01605, USA.
| |
Collapse
|
35
|
Alexander SPH, Kendall DA. The complications of promiscuity: endocannabinoid action and metabolism. Br J Pharmacol 2007; 152:602-23. [PMID: 17876303 PMCID: PMC2190010 DOI: 10.1038/sj.bjp.0707456] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/27/2023] Open
Abstract
In this review, we present our understanding of the action and metabolism of endocannabinoids and related endogenous molecules. It is clear that the interactions between the multiple endocannabinoid-like molecules (ECLs) are highly complex, both at the level of signal transduction and metabolism. Thus, ECLs are a group of ligands active at 7-transmembrane and nuclear receptors, as well as transmitter-gated and ion channels. ECLs and their metabolites can converge on common endpoints (either metabolic or signalling) through contradictory or reinforcing pathways. We highlight the complexity of the endocannabinoid system, based on the promiscuous nature of ECLs and their metabolites, as well as the synthetic modulators of the endocannabinoid system.
Collapse
Affiliation(s)
- S P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Nottingham NG7 7LP, UK.
| | | |
Collapse
|
36
|
Abstract
Convincing evidence from preclinical studies demonstrates that cannabinoids can reduce pain responses in a range of inflammatory and neuropathic pain models. The anatomical and functional data reveal cannabinoid receptor-mediated analgesic actions operating at sites concerned with the transmission and processing of nociceptive signals in brain, spinal cord and the periphery. The precise signalling mechanisms by which cannabinoids produce analgesic effects at these sites remain unclear; however, significant clues point to cannabinoid modulation of the functions of neurone and immune cells that mediate nociceptive and inflammatory responses. Intracellular signalling mechanisms engaged by cannabinoid receptors-like the inhibition of calcium transients and adenylate cyclase, and pre-synaptic modulation of transmitter release-have been demonstrated in some of these cell types and are predicted to play a role in the analgesic effects of cannabinoids. In contrast, the clinical effectiveness of cannabinoids as analgesics is less clear. Progress in this area requires the development of cannabinoids with a more favourable therapeutic index than those currently available for human use, and the testing of their efficacy and side-effects in high-quality clinical trials.
Collapse
Affiliation(s)
- I J Lever
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | | |
Collapse
|
37
|
Re G, Barbero R, Miolo A, Di Marzo V. Palmitoylethanolamide, endocannabinoids and related cannabimimetic compounds in protection against tissue inflammation and pain: Potential use in companion animals. Vet J 2007; 173:21-30. [PMID: 16324856 DOI: 10.1016/j.tvjl.2005.10.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endocannabinoids have analgesic/anti-inflammatory properties. The biology of endocannabinoids, their receptors, signalling mechanisms and role in the regulation of physiological processes have been extensively reviewed. This review focuses on the role of palmitoylethanolamide (PEA), an endogenous fatty acid amide analogue of the endocannabinoid anandamide, in tissue protective mechanisms. PEA was first identified almost five decades ago in lipid extracts of various natural products, and its anti-inflammatory and antinociceptive effects were established later. Evidence exists that PEA is synthesised during inflammation and tissue damage and a number of beneficial effects, including the relief of inflammation and pruritus, have been shown to be useful in the control of neurogenic and neuropathic pain. The postulated hypotheses as to the mode of action of PEA include a possible local autacoid-like mediator activity regulating mast-cell activity and putative activation of cannabinoids and vanilloid TRPV1 receptors via "entourage" effects. The large number of scientific investigations into the effects of PEA and PEA-related compounds has given rise to new therapeutic opportunities. In spite of the multitude of therapies currently employed to control inflammation, pain, pruritus and tissue damage, the possibility of using a natural compound, such as PEA to manipulate endogenous protective mechanisms may be considered a beneficial novel therapeutic strategy in veterinary medicine.
Collapse
Affiliation(s)
- G Re
- Department of Animal Pathology, Division of Pharmacology and Toxicology, University of Turin, Via Leonardo da Vinci 44, I-10095 Grugliasco (TO), Italy.
| | | | | | | |
Collapse
|
38
|
Maekawa T, Nojima H, Kuraishi Y, Aisaka K. The cannabinoid CB2 receptor inverse agonist JTE-907 suppresses spontaneous itch-associated responses of NC mice, a model of atopic dermatitis. Eur J Pharmacol 2006; 542:179-83. [PMID: 16824511 DOI: 10.1016/j.ejphar.2006.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/16/2006] [Accepted: 05/19/2006] [Indexed: 11/16/2022]
Abstract
JTE-907, N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide, is a selective cannabinoid CB2 receptor antagonist/inverse agonist. The anti-pruritic activity of JTE-907 was studied in NC mice with chronic dermatitis, a model of atopic dermatitis. The oral dose of JTE-907 (1 and 10 mg/kg/day), an immunosuppressant agent tacrolimus (1 mg/kg/day) and a glucocorticoid betamethasone 17-valerate (1 mg/kg/day) for 20 days suppressed the spontaneous scratching and cutaneous nerve activity of NC mice. JTE-907 (10, but not 1, mg/kg) and tacrolimus, but not betamethasone, tended to alleviate the dermatitis. Betamethasone inhibited the body weight gain. These results suggest that JTE-907 suppresses spontaneous itch-associated responses of NC mice without adverse effects such as weight loss.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Behavior, Animal/drug effects
- Betamethasone Valerate/administration & dosage
- Betamethasone Valerate/pharmacology
- Body Weight/drug effects
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/physiopathology
- Dermatitis, Atopic/prevention & control
- Dioxoles/administration & dosage
- Dioxoles/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glucocorticoids/administration & dosage
- Glucocorticoids/pharmacology
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/pharmacology
- Male
- Mice
- Mice, Inbred Strains
- Pruritus/pathology
- Pruritus/physiopathology
- Pruritus/prevention & control
- Quinolones/administration & dosage
- Quinolones/pharmacology
- Receptor, Cannabinoid, CB2/agonists
- Severity of Illness Index
- Skin/drug effects
- Skin/innervation
- Skin/pathology
- Tacrolimus/administration & dosage
- Tacrolimus/pharmacology
Collapse
Affiliation(s)
- Tatsuya Maekawa
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
39
|
Croxford JL, Yamamura T. Cannabinoids and the immune system: potential for the treatment of inflammatory diseases? J Neuroimmunol 2005; 166:3-18. [PMID: 16023222 DOI: 10.1016/j.jneuroim.2005.04.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 01/24/2023]
Abstract
Since the discovery of the cannabinoid receptors and their endogenous ligands, significant advances have been made in studying the physiological function of the endocannabinoid system. The presence of cannabinoid receptors on cells of the immune system and anecdotal and historical evidence suggesting that cannabis use has potent immuno-modulatory effects, has led to research directed at understanding the function and role of these receptors within the context of immunological cellular function. Studies from chronic cannabis smokers have provided much of the evidence for immunomodulatory effects of cannabis in humans, and animal and in vitro studies of immune cells such as T cells and macrophages have also provided important evidence. Cannabinoids can modulate both the function and secretion of cytokines from immune cells. Therefore, cannabinoids may be considered for treatment of inflammatory disease. This review article will highlight recent research on cannabinoids and how they interact with the immune system and also their potential use as therapeutic agents for a number of inflammatory disorders.
Collapse
Affiliation(s)
- J Ludovic Croxford
- Department of Immunology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
40
|
Kraft B, Kress HG. Indirect CB2Receptor and Mediator-Dependent Stimulation of Human Whole-Blood Neutrophils by Exogenous and Endogenous Cannabinoids. J Pharmacol Exp Ther 2005; 315:641-7. [PMID: 16055676 DOI: 10.1124/jpet.105.084269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immunomodulatory effects of endogenous and exogenous cannabinoids have been investigated in numerous studies, mostly performed with isolated cells or transformed cell lines, but only sparse data exist on human polymorphonuclear neutrophils (PMNs). We therefore investigated the respiratory burst reaction of human whole-blood PMNs under the influence of cannabinoids using flow cytometry. In their natural whole-blood milieu, a CB(2) receptor-dependent stimulation of the PMN respiratory burst was found at nanomolar concentrations of CP55 940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol] and methanandamide after a 3-h incubation period, whereas the short-living and rapidly hydrolyzed endogenous ligand anandamide did not alter the burst reaction of whole-blood PMNs under the same experimental conditions. The stimulatory cannabinoid effect was totally absent in isolated PMNs but could be transferred onto isolated PMNs by adding the cell-free low-molecular mass plasma fraction (<5000 Da) of cannabinoid-incubated blood, indicating an indirect mechanism depending on humoral products or mediators. Results of our further experiments suggest that products of the arachidonic acid metabolism are mediators of the cannabinoid-induced enhancement of the respiratory burst reaction of whole-blood PMNs.
Collapse
Affiliation(s)
- Birgit Kraft
- Department of Anesthesiology and Intensive Care Medicine (B), Medical University of Vienna, Austria.
| | | |
Collapse
|
41
|
Rademacher DJ, Patel S, Ho WSV, Savoie AM, Rusch NJ, Gauthier KM, Hillard CJ. U-46619 but not serotonin increases endocannabinoid content in middle cerebral artery: evidence for functional relevance. Am J Physiol Heart Circ Physiol 2005; 288:H2694-701. [PMID: 15695564 DOI: 10.1152/ajpheart.00978.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral vascular smooth muscle cells express the CB(1) cannabinoid receptor, and CB(1) receptor agonists produce vasodilation of cerebral arteries. The purpose of this study was to determine whether vasoconstriction of rat middle cerebral artery (MCA) results in the local formation of endocannabinoids (eCBs), which, via activation of CB(1) receptors, oppose the vasoconstriction in a feedback manner. The thromboxane A(2) (TXA(2)) mimetic U-46619 significantly increased N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG) content of isolated MCA, whereas 5-hydroxytrypamine (5-HT) decreased AEA and 2-AG content. If eCBs play a feedback role in the regulation of MCA tone, then CB(1) receptor antagonists should enhance the constriction of MCA produced by U-46619 but not 5-HT. U-46619 caused concentration-dependent constrictions of endothelium-denuded MCA. Two CB(1) receptor antagonists SR-141716 and AM-251 decreased the EC(50) value for U-46619 to constrict endothelium-denuded MCA without affecting the maximal effect. A low concentration of CB(1) receptor agonist Win-55212-2 (30 nM) produced vasodilation of MCAs constricted with low but not saturating concentrations of U-46619. SR-141716 had no effect on the 5-HT concentration-contraction relationship. These data suggest that TXA(2) receptor activation increases MCA eCB content, which, via activation of CB(1) receptors, reduces the constriction produced by moderate concentrations of the TXA(2) agonist. Although 5-HT-induced vasoconstriction is reduced by exogenous CB(1) receptor agonist, activation of 5-HT receptors does not increase eCB content. These results suggest that MCA production of eCBs is not regulated by constriction per se but likely via a signaling pathway that is specific for TXA(2) receptors and not 5-HT receptors.
Collapse
Affiliation(s)
- David J Rademacher
- Medical College of Wisconsin, Dept. of Pharmacology and Toxicology, 8701 Watertown Plank Rd., Milwaukee, WI 53226-0509, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The cannabinoid signaling system is composed of cannabinoid (CB) receptors, their endogenous ligands, the endocannabinoids, and the enzymes that produce and inactivate them. It is well known that neurons communicate between each other through this signaling system. Delta 9-tetrahydrocannabinol, the main psychoactive compound of marijuana, interacts with CB receptors, impinging on this communication and inducing profound behavioral effects such as memory impairment and analgesia. Recent evidence suggests that glial cells also express components of the cannabinoid signaling system and marijuana-derived compounds act at CB receptors expressed by glial cells, affecting their functions. This review summarizes this evidence, discusses how glial cells might use the cannabinoid signaling system to communicate with neighboring cells, and argues that nonpsychotropic cannabinoids, both marijuana-derived and synthetic, likely constitute lead compounds for therapy aimed at reducing acute and chronic neuroinflammation, such as occurs in multiple sclerosis.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
43
|
Holt S, Rocksén D, Bucht A, Petersen G, Hansen HS, Valenti M, Di Marzo V, Fowler CJ. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase. Life Sci 2004; 76:461-72. [PMID: 15530507 DOI: 10.1016/j.lfs.2004.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/31/2004] [Indexed: 01/19/2023]
Abstract
The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor alpha into the bronchoalveolar lavage (BAL) fluid, which was not accompanied by epithelial cell injury. The treatment, however, did not change significantly the levels of anandamide and the related compound palmitoylethanolamide in the cell-free fraction of the BAL fluid. The activities of the anandamide synthetic enzymes N-acyltransferase and N-acylphosphatidylethanolamine phospholipase D and the activity of fatty acid amide hydrolase in lung membrane fractions did not change significantly following the exposure to lipopolysaccharide. The non-selective fatty acid amide hydrolase inhibitor phenylmethylsulfonyl fluoride was a less potent inhibitor of lung fatty acid amide hydrolase than expected from the literature, and a dose of 30 mg/kg i.p. of this compound, which produced a complete inhibition of brain anandamide metabolism, only partially inhibited the lung metabolic activity.
Collapse
Affiliation(s)
- Sandra Holt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rockwell CE, Kaminski NE. A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes. J Pharmacol Exp Ther 2004; 311:683-90. [PMID: 15284281 DOI: 10.1124/jpet.104.065524] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arachidonyl ethanolamine, which is commonly known as anandamide, was the first endogenous compound to be identified that binds to the cannabinoid receptors. Anandamide mimics many of the physiological effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), including hypothermia, antinociception, immobility, catalepsy, and immune modulation. In the present studies, we show that anandamide caused a concentration-dependent inhibition of interleukin-2 in primary splenocytes. The CB1 and CB2 antagonists, SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorphenyl)-4-methyl-H-pyrazole-3 carboxyamidehydrochloride] and SR144528 [N-[(1S)-endo-1,3,3,-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide], when used in combination, did not antagonize the inhibition of interleukin-2 by anandamide. Additionally, neither UCM707 [N-(3-furanylmethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide], the inhibitor of the putative anandamide membrane transporter (AMT), nor methyl arachidonoyl fluorophosphonate (MAFP), the inhibitor of fatty acid amidohydrolase (FAAH), were able to affect the inhibitory activity of anandamide upon interleukin-2. Interestingly, arachidonic acid caused a concentration-dependent inhibition of interleukin-2 secretion (IC(50) = 10.3 microM), which was similar to that of structurally related anandamide (IC(50) = 11.4 microM). The inhibition of interleukin-2 by anandamide and arachidonic acid was partially reversed by pretreatment with the nonspecific cyclooxygenase inhibitors, flurbiprofen and piroxicam. Moreover, NS398 [N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide], a cyclooxygenase-2-specific inhibitor, also attenuated the inhibitory effects of anandamide and arachidonic acid upon interleukin-2 secretion. Finally, pretreatment with a peroxisome proliferator-activated receptor gamma (PPARgamma)-specific antagonist, T0070907 [2-chloro-5-nitro-N-4-pyridinyl-benzamide], partially antagonized anandamide-mediated suppression of IL-2 secretion. Collectively, the aforementioned studies suggest that inhibition of interleukin-2 secretion by anandamide is independent of CB1/CB2 and the AMT/FAAH system. Additionally, these studies also suggest that inhibition of interleukin-2 is mediated by a PPARgamma, which is activated by a cyclooxygenase-2 metabolite of anandamide.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, B440 Life Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
45
|
Abstract
Growing evidence suggests that a major physiological function of the cannabinoid signaling system is to modulate neuroinflammation. This review discusses the anti-inflammatory properties of cannabinoid compounds at molecular, cellular and whole animal levels, first by examining the evidence for anti-inflammatory effects of cannabinoids obtained using in vivo animal models of clinical neuroinflammatory conditions, specifically rodent models of multiple sclerosis, and second by describing the endogenous cannabinoid (endocannabinoid) system components in immune cells. Our aim is to identify immune functions modulated by cannabinoids that could account for their anti-inflammatory effects in these animal models.
Collapse
Affiliation(s)
- Lisa Walter
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, U.S.A
- Author for correspondence:
| |
Collapse
|
46
|
Hiley CR, Ford WR. Cannabinoid pharmacology in the cardiovascular system: potential protective mechanisms through lipid signalling. Biol Rev Camb Philos Soc 2004; 79:187-205. [PMID: 15005177 DOI: 10.1017/s1464793103006201] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cannabinoids include not only plant-derived compounds (of which delta9-tetrahydrocannabinol is the primary psychoactive ingredient of cannabis), but also synthetic agents and endogenous substances termed endocannabinoids which include anandamide (2-arachidonoylethanolamide) and 2-arachidonoylglycerol. Cannabinoids act on specific, G-protein-coupled, receptors which are currently divided into two types, CB1 and CB2. Relatively selective agonists and antagonists for these receptors have been developed, although one agent (SR141716A) widely used as an antagonist at CB1 receptors has non-cannabinoid receptor-mediated effects at concentrations which are often used to define the presence of the CB1 receptor. Both cannabinoid receptors are primarily coupled to Gi/o proteins and act to inhibit adenylyl cyclase. Stimulation of CB1 receptors also modulates the activity of K+ and Ca2+ channels and of protein kinase pathways including protein kinase B (Akt) which might mediate effects on apoptosis. CB, receptors may activate the extracellular signal-regulated kinase cascade through ceramide signalling. Cannabinoid actions on the cardiovascular system have been widely interpreted as being mediated by CB1 receptors although there are a growing number of observations, particularly in isolated heart and blood vessel preparations, that suggest that other cannabinoid receptors may exist. Interestingly, the currently identified cannabinoid receptors appear to be related to a wider family of lipid receptor, those for the lysophospholipids, which are also linked to Gi/o protein signalling. Anandamide also activates vanilloid VR1 receptors on sensory nerves and releases the vasoactive peptide, calcitonin gene-related peptide (CGRP), which brings about vasodilatation through its action on CGRP receptors. Current evidence suggests that endocannabinoids have important protective roles in pathophysiological conditions such as shock and myocardial infarction. Therefore, their cardiovascular effects and the receptors mediating them are the subject of increasing investigative interest.
Collapse
Affiliation(s)
- C Robin Hiley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
47
|
Liu J, Batkai S, Pacher P, Harvey-White J, Wagner JA, Cravatt BF, Gao B, Kunos G. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-kappaB independently of platelet-activating factor. J Biol Chem 2003; 278:45034-9. [PMID: 12949078 DOI: 10.1074/jbc.m306062200] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macrophage-derived endocannabinoids have been implicated in endotoxin (lipopolysaccharide (LPS))-induced hypotension, but the endocannabinoid involved and the mechanism of its regulation by LPS are unknown. In RAW264.7 mouse macrophages, LPS (10 ng/ml) increases anandamide (AEA) levels >10-fold via CD14-, NF-kappaB-, and p44/42-dependent, platelet-activating factor-independent activation of the AEA biosynthetic enzymes, N-acyltransferase and phospholipase D. LPS also induces the AEA-degrading enzyme fatty acid amidohydrolase (FAAH), and inhibition of FAAH activity potentiates, whereas actinomycin D or cycloheximide blocks the LPS-induced increase in AEA levels and N-acyltransferase and phospholipase D activities. In contrast, cellular levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are unaffected by LPS but increased by platelet-activating factor. LPS similarly induces AEA, but not 2-AG, in mouse peritoneal macrophages where basal AEA levels are higher, and the LPS-stimulated increase in AEA is potentiated in cells from FAAH-/- as compared with FAAH+/+ mice. Intravenous administration of 107 LPS-treated mouse macrophages to anesthetized rats elicits hypotension, which is much greater in response to FAAH-/- than FAAH+/+ cells and is susceptible to inhibition by SR141716, a cannabinoid CB1 receptor antagonist. We conclude that AEA and 2-AG synthesis are differentially regulated in macrophages, and AEA rather than 2-AG is a major contributor to LPS-induced hypotension.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Melck D, Bisogno T, De Petrocellis L, Beaulieu P, Rice ASC, Di Marzo V. Cannabimimetic eicosanoids in cancer and inflammation: an update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:381-6. [PMID: 12664614 DOI: 10.1007/978-1-4615-0193-0_59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Dominique Melck
- Endocannabinoid Research Group, Istituto per la Chimica di Molecule di Interesse Biologico, Consiglio Nazionale delle Ricerche, Via Toiano 6, 80072 Arco Felice, NA, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Sarker KP, Biswas KK, Yamakuchi M, Lee KY, Hahiguchi T, Kracht M, Kitajima I, Maruyama I. ASK1-p38 MAPK/JNK signaling cascade mediates anandamide-induced PC12 cell death. J Neurochem 2003; 85:50-61. [PMID: 12641726 DOI: 10.1046/j.1471-4159.2003.01663.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.
Collapse
Affiliation(s)
- Krishna Pada Sarker
- Department of Laboratory and Molecular Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Seidel K, Hamza M, Ates M, Gühring H. Flurbiprofen inhibits capsaicin induced calcitonin gene related peptide release from rat spinal cord via an endocannabinoid dependent mechanism. Neurosci Lett 2003; 338:99-102. [PMID: 12566162 DOI: 10.1016/s0304-3940(02)01366-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Calcitonin gene related peptide (CGRP) is involved in nociceptive transmission and modulation at the spinal level. In the spinal superperfusion model, Delta(9) tetrahydrocannabinol inhibited capsaicin induced CGRP release in a concentration dependent manner. Similarly, flurbiprofen (3 microM) inhibited spinal CGRP release. This inhibition was reversed by the CB(1) antagonist AM-251 (1 microM), but not by co-administration of prostaglandin E(2) (PGE(2); 285 nM). AM-251 had no modulatory effect on flurbiprofen-induced cyclooxygenase (COX) inhibiting capacity as shown by PGE(2) levels. Furthermore, the phospholipase A(2) inhibitor palmityl trifluromethyl ketone (15 microM) reversed flurbiprofen's inhibitory effect. In conclusion the present work provides evidence on the shift of arachidonic acid metabolism towards endocannabinoids formation in response to COX inhibition as a mechanism for flurbiprofen inhibitory effect on spinal CGRP release.
Collapse
Affiliation(s)
- Kay Seidel
- Department of Experimental and Clinical Pharmacology and Toxicology, University Erlangen-Nürnberg Fahrstrasse 17, D-91054, Erlangen, Germany
| | | | | | | |
Collapse
|