1
|
Lee SH, Kim JR, Shin JK, Lee JS, Kim YM, Kwak JH, Kim HS. Dendropanoxide Attenuates High Glucose-induced Oxidative Damage in NRK-52E Cells via AKT/mTOR Signaling Pathway. PLANTA MEDICA 2024; 90:256-266. [PMID: 38040033 DOI: 10.1055/a-2220-9301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.
Collapse
Affiliation(s)
- Song Hee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Ju Ri Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Jeong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| |
Collapse
|
2
|
Tukhovskaya EA, Shaykhutdinova ER, Pakhomova IA, Slashcheva GA, Goryacheva NA, Sadovnikova ES, Rasskazova EA, Kazakov VA, Dyachenko IA, Frolova AA, Brovkin AN, Kaluzhsky VE, Beburov MY, Murashev AN. AICAR Improves Outcomes of Metabolic Syndrome and Type 2 Diabetes Induced by High-Fat Diet in C57Bl/6 Male Mice. Int J Mol Sci 2022; 23:ijms232415719. [PMID: 36555360 PMCID: PMC9778872 DOI: 10.3390/ijms232415719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to investigate the effect of AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on the consequences of metabolic syndrome and type 2 diabetes induced by the consumption of a high-fat diet (HFD) in male C57Bl/6 mice. Additionally, the animals from group 6 were administered Methotrexate (MTX) at a dose of 1 mg/kg in parallel with AICAR, which slows down the metabolism of AICAR. The animals were recorded with signs of metabolic syndrome and type 2 diabetes mellitus by recording their body weights, glucose and insulin levels, and the calculating HOMA-IRs. At the end of the study, at the end of the 13th week, during necropsy, the internal organs were assessed, the masses of the organs were recorded, and special attention was paid to visceral fat, assessing its amount and the mass of the fat surrounding epididymis. The biochemical parameters and histology of the internal organs and tissues were assessed. The animals showed signs of metabolic syndrome and type 2 diabetes, namely, weight gain, hyperglycemia, hyperinsulinemia, an increase in the amount and mass of abdominal fat, and metabolic disorders, all expressed in a pathological change in biochemical parameters and pathological changes in internal organs. The AICAR treatment led to a decrease in body weight, a decrease in the amount and mass of abdominal fat, and an improvement in the pathomorphological picture of internal organs. However, some hepatotoxic effects were observed when the animals, on a received standard diet (STD), were treated with AICAR starting from the first day of the study. The additional administration of MTX, an AICAR metabolic inhibitor, did not improve its efficacy. Thus, AICAR has therapeutic potential for the treatment of metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Elena A. Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
- Correspondence:
| | - Elvira R. Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Irina A. Pakhomova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Gulsara A. Slashcheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Natalya A. Goryacheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Elena S. Sadovnikova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Ekaterina A. Rasskazova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Vitaly A. Kazakov
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Igor A. Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| | - Alina A. Frolova
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Alexey N. Brovkin
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Vasiliy E. Kaluzhsky
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Mikhail Yu. Beburov
- LLC “OKA-BIOTECH”, Novatorov St., d. 34, bldg. 7, apt. 42, 119421 Moscow, Russia
| | - Arkady N. Murashev
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
3
|
McFaline-Figueroa J, Schifino AG, Nichenko AS, Lord MN, Hunda ET, Winders EA, Noble EE, Greising SM, Call JA. Pharmaceutical Agents for Contractile-Metabolic Dysfunction After Volumetric Muscle Loss. Tissue Eng Part A 2022; 28:795-806. [PMID: 35620911 PMCID: PMC9634984 DOI: 10.1089/ten.tea.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Impact statement Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.
Collapse
Affiliation(s)
- Jennifer McFaline-Figueroa
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Albino G. Schifino
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Anna S. Nichenko
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Magen N. Lord
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Edward T. Hunda
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | | | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Tomiga Y, Higaki Y, Anzai K, Takahashi H. Behavioral defects and downregulation of hippocampal BDNF and nNOS expression in db/db mice did not improved by chronic TGF-β2 treatment. Front Physiol 2022; 13:969480. [PMID: 36091357 PMCID: PMC9452698 DOI: 10.3389/fphys.2022.969480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence suggests that there is a link between diabetes and mood disorders, such as depression and anxiety. Although peripheral or central inflammation may explain this link, the molecular mechanisms are not fully understood and few effective treatments for diabetes or mood disorders are available. In the present study, we aimed to determine whether transforming growth factor (TGF)-β2, an anti-inflammatory substance, might represent a potential therapeutic agent for diabetes-related mood behaviors. TGF-β2 expression in the hippocampus is affected by anxiolytic drugs and stress exposure, it is able to cross the blood-brain barrier, and it is as an exercise-induced physiological adipokine that regulates glucose homeostasis. Therefore, we hypothesized that a chronic TGF-β2 infusion would ameliorate diabetes-related glucose intolerance and mood dysregulation. To determine the effects of the chronic administration of TGF-β2 on diabetes, we implanted osmotic pumps containing TGF-β2 into type 2 diabetic mice (db/db mice), and age-matched non-diabetic control wild type mice and db/db mice were infused with vehicle (PBS), for 12 consecutive days. To assess anxiety-like behaviors and glucose homeostasis, the mice underwent elevated plus maze testing and intraperitoneal glucose tolerance testing. Hippocampal and perigonadal visceral white adipose tissue perigonadal white adipose tissue samples were obtained 12 days later. Contrary to our hypothesis, TGF-β2 infusion had no effect on diabetes-related glucose intolerance or diabetes-related behavioral defects, such as inactivity. In db/db mice, the expression of inflammatory markers was high in pgWAT, but not in the hippocampus, and the former was ameliorated by TGF-β2 infusion. The expression of brain-derived neurotrophic factor and neuronal nitric oxide synthase, important regulators of anxiety-like behaviors, was low in db/db mice, but TGF-β2 infusion did not affect their expression. We conclude that although TGF-β2 reduces the expression of pro-inflammatory markers in the adipose tissue of diabetic mice, it does not ameliorate their obesity or mood dysregulation.
Collapse
Affiliation(s)
- Yuki Tomiga
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- *Correspondence: Yuki Tomiga,
| | - Yasuki Higaki
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga, Japan
| |
Collapse
|
5
|
Tsai JL, Chen CH, Wu MJ, Tsai SF. New Approaches to Diabetic Nephropathy from Bed to Bench. Biomedicines 2022; 10:biomedicines10040876. [PMID: 35453626 PMCID: PMC9031931 DOI: 10.3390/biomedicines10040876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage kidney disease (ESKD). DN-related ESKD has the worst prognosis for survival compared with other causes. Due to the complex mechanisms of DN and the heterogeneous presentations, unmet needs exist for the renal outcome of diabetes mellitus. Clinical evidence for treating DN is rather solid. For example, the first Kidney Disease: Improving Global Outcomes (KDIGO) guideline was published in October 2020: KDIGO Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. In December of 2020, the International Society of Nephrology published 60 (+1) breakthrough discoveries in nephrology. Among these breakthroughs, four important ones after 1980 were recognized, including glomerular hyperfiltration theory, renal protection by renin-angiotensin system inhibition, hypoxia-inducible factor, and sodium-glucose cotransporter 2 inhibitors. Here, we present a review on the pivotal and new mechanisms of DN from the implications of clinical studies and medications.
Collapse
Affiliation(s)
- Jun-Li Tsai
- Division of Family Medicine, Cheng Ching General Hospital, Taichung 407, Taiwan;
- Division of Family Medicine, Cheng Ching Rehabilitation Hospital, Taichung 407, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Lieu CV, Loganathan N, Belsham DD. Mechanisms Driving Palmitate-Mediated Neuronal Dysregulation in the Hypothalamus. Cells 2021; 10:3120. [PMID: 34831343 PMCID: PMC8617942 DOI: 10.3390/cells10113120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus maintains whole-body homeostasis by integrating information from circulating hormones, nutrients and signaling molecules. Distinct neuronal subpopulations that express and secrete unique neuropeptides execute the individual functions of the hypothalamus, including, but not limited to, the regulation of energy homeostasis, reproduction and circadian rhythms. Alterations at the hypothalamic level can lead to a myriad of diseases, such as type 2 diabetes mellitus, obesity, and infertility. The excessive consumption of saturated fatty acids can induce neuroinflammation, endoplasmic reticulum stress, and resistance to peripheral signals, ultimately leading to hyperphagia, obesity, impaired reproductive function and disturbed circadian rhythms. This review focuses on the how the changes in the underlying molecular mechanisms caused by palmitate exposure, the most commonly consumed saturated fatty acid, and the potential involvement of microRNAs, a class of non-coding RNA molecules that regulate gene expression post-transcriptionally, can result in detrimental alterations in protein expression and content. Studying the involvement of microRNAs in hypothalamic function holds immense potential, as these molecular markers are quickly proving to be valuable tools in the diagnosis and treatment of metabolic disease.
Collapse
Affiliation(s)
- Calvin V. Lieu
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
- Departments of Obstetrics/Gynecology and Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Morán-Costoya A, Proenza AM, Gianotti M, Lladó I, Valle A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid Redox Signal 2021; 35:753-774. [PMID: 33736456 DOI: 10.1089/ars.2021.0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Nonalcoholic fatty liver disease (NAFLD) is a hepatic and systemic disorder with a complex multifactorial pathogenesis. Owing to the rising incidence of obesity and diabetes mellitus, the prevalence of NAFLD and its impact on global health care are expected to increase in the future. Differences in NAFLD exist between males and females, and among females depending on their reproductive status. Clinical and preclinical data show that females in the fertile age are more protected against NAFLD, and studies in postmenopausal women and ovariectomized animal models support a protective role for estrogens. Recent Advances: An efficient crosstalk between the liver and adipose tissue is necessary to regulate lipid and glucose metabolism, protecting the liver from steatosis and insulin resistance contributing to NALFD. New advances in the knowledge of sexual dimorphism in liver and adipose tissue are providing interesting clues about the sex differences in NAFLD pathogenesis that could inspire new therapeutic strategies. Critical Issues: Sex hormones influence key master regulators of lipid metabolism and oxidative stress in liver and adipose tissue. All these sex-biased metabolic adjustments shape the crosstalk between liver and adipose tissue, contributing to the higher protection of females to NAFLD. Future Directions: The development of novel drugs based on the protective action of estrogens, but without its feminizing or undesired side effects, might provide new therapeutic strategies for the management of NAFLD. Antioxid. Redox Signal. 35, 753-774.
Collapse
Affiliation(s)
- Andrea Morán-Costoya
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana M Proenza
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Magdalena Gianotti
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Isabel Lladó
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Adamo Valle
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
8
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Camici M, Allegrini S, Tozzi MG. Interplay between adenylate metabolizing enzymes and AMP-activated protein kinase. FEBS J 2018; 285:3337-3352. [PMID: 29775996 DOI: 10.1111/febs.14508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Abstract
Purine nucleotides are involved in a variety of cellular functions, such as energy storage and transfer, and signalling, in addition to being the precursors of nucleic acids and cofactors of many biochemical reactions. They can be generated through two separate pathways, the de novo biosynthesis pathway and the salvage pathway. De novo purine biosynthesis leads to the formation of IMP, from which the adenylate and guanylate pools are generated by two additional steps. The salvage pathways utilize hypoxanthine, guanine and adenine to generate the corresponding mononucleotides. Despite several decades of research on the subject, new and surprising findings on purine metabolism are constantly being reported, and some aspects still need to be elucidated. Recently, purine biosynthesis has been linked to the metabolic pathways regulated by AMP-activated protein kinase (AMPK). AMPK is the master regulator of cellular energy homeostasis, and its activity depends on the AMP : ATP ratio. The cellular energy status and AMPK activation are connected by AMP, an allosteric activator of AMPK. Hence, an indirect strategy to affect AMPK activity would be to target the pathways that generate AMP in the cell. Herein, we report an up-to-date review of the interplay between AMPK and adenylate metabolizing enzymes. Some aspects of inborn errors of purine metabolism are also discussed.
Collapse
|
10
|
Borck PC, Vettorazzi JF, Branco RCS, Batista TM, Santos-Silva JC, Nakanishi VY, Boschero AC, Ribeiro RA, Carneiro EM. Taurine supplementation induces long-term beneficial effects on glucose homeostasis in ob/ob mice. Amino Acids 2018; 50:765-774. [DOI: 10.1007/s00726-018-2553-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
|
11
|
Arha D, Ramakrishna E, Gupta AP, Rai AK, Sharma A, Ahmad I, Riyazuddin M, Gayen JR, Maurya R, Tamrakar AK. Isoalantolactone derivative promotes glucose utilization in skeletal muscle cells and increases energy expenditure in db/db mice via activating AMPK-dependent signaling. Mol Cell Endocrinol 2018; 460:134-151. [PMID: 28736255 DOI: 10.1016/j.mce.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 01/07/2023]
Abstract
Augmenting glucose utilization and energy expenditure in skeletal muscle via AMP-activated protein kinase (AMPK) is an imperative mechanism for the management of type 2 diabetes. Chemical derivatives (2a-2h, 3, 4a-4d, 5) of the isoalantolactone (K007), a bioactive molecule from roots of Inula racemosa were synthesized to optimize the bioactivity profile to stimulate glucose utilization in skeletal muscle cells. Interestingly, 4a augmented glucose uptake, driven by enhanced translocation of glucose transporter 4 (GLUT4) to cell periphery in L6 rat skeletal muscle cells. The effect of 4a was independent to phosphatidylinositide-3-kinase (PI-3-K)/Akt pathway, but mediated through Liver kinase B1 (LKB1)/AMPK-dependent signaling, leading to activation of downstream targets acetyl coenzyme A carboxylase (ACC) and sterol regulatory element binding protein 1c (SREBP-1c). In db/db mice, 4a administration decreased blood glucose level and improved body mass index, lipid parameters and glucose tolerance associated with elevation of GLUT4 expression in skeletal muscle. Moreover, 4a increased energy expenditure via activating substrate utilization and upregulated the expression of thermogenic transcription factors and mitochondrial proteins in skeletal muscle, suggesting the regulation of energy balance. These findings suggest the potential implication of isoalantolactone derivatives for the management of diabetes.
Collapse
Affiliation(s)
- Deepti Arha
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - E Ramakrishna
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anand P Gupta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit K Rai
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aditya Sharma
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ishbal Ahmad
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammed Riyazuddin
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jiaur R Gayen
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akhilesh K Tamrakar
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110001, India.
| |
Collapse
|
12
|
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Collapse
|
13
|
Myers RW, Guan HP, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Gonzalez Trotter D, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, LaFranco Scheuch L, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 2017; 357:507-511. [PMID: 28705990 DOI: 10.1126/science.aah5582] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.
Collapse
Affiliation(s)
- Robert W Myers
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | - Hong-Ping Guan
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Juliann Ehrhart
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Aleksandr Petrov
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Srinivasa Prahalada
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Effie Tozzo
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Xiaodong Yang
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Marc M Kurtz
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Maria Trujillo
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Dinko Gonzalez Trotter
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Danqing Feng
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Shiyao Xu
- PPDM Preclinical ADME Departments, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - George Eiermann
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Marie A Holahan
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Daniel Rubins
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Stacey Conarello
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Xiaoda Niu
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Sandra C Souza
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Corin Miller
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Jinqi Liu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ku Lu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Wen Feng
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ying Li
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ronald E Painter
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - James A Milligan
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Huaibing He
- PPDM Preclinical ADME Departments, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Franklin Liu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Aimie Ogawa
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Douglas Wisniewski
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Rory J Rohm
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Liyang Wang
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Michelle Bunzel
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Ying Qian
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Wei Zhu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Hongwu Wang
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Bindu Bennet
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Lisa LaFranco Scheuch
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Guillermo E Fernandez
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Cai Li
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Michael Klimas
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Gaochao Zhou
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Margaret van Heek
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Tesfaye Biftu
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ann Weber
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - David E Kelley
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Nancy Thornberry
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Mark D Erion
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Daniel M Kemp
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Iyassu K Sebhat
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| |
Collapse
|
14
|
Kim JW, You YH, Ham DS, Yang HK, Yoon KH. The Paradoxical Effects of AMPK on Insulin Gene Expression and Glucose-Induced Insulin Secretion. J Cell Biochem 2016; 117:239-46. [PMID: 26105159 DOI: 10.1002/jcb.25271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/19/2015] [Indexed: 12/23/2022]
Abstract
The activation of AMP-activated protein kinase (AMPK) is known to repress the expression of the insulin gene and glucose-stimulated insulin secretion (GSIS). However, the mechanisms by which this occurs, as well as the effects of AMPK activation on glucolipotoxicity-induced β-cell dysfunction, have not been elucidated. To investigate the effects of 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) and peroxisome proliferator-activated receptorγ-coactivator-1α (PGC-1α) on β-cell-specific genes under glucolipotoxic conditions, we performed real-time PCR and measured insulin secretion by primary islets. To study these effects in vivo, we administered AICAR for 10 days (1 mg/g body weight) to 90% pancreatectomized hyperglycemic mice. The exposure of isolated rat and human islets to glucolipotoxic conditions and the overexpression of PGC-1α suppressed insulin and NEUROD1 mRNA expression. However, the expression of these genes was preserved by AICAR treatment and by PGC-1α inhibition. Exposure of isolated islets to glucolipotoxic conditions for 3 days decreased GSIS, which was also well maintained by AICAR treatment and by PGC-1α inhibition. The administration of AICAR to 90% pancreatectomized hyperglycemic mice improved glucose tolerance and insulin secretion. These results indicate that treatment of islets with an AMPK agonist under glucolipotoxic conditions protects against glucolipotoxicity-induced β-cell dysfunction. A better understanding of the functions of molecules such as PGC-1α and AMPK, which play key roles in intracellular fuel regulation, could herald a new era for the treatment of patients with type 2 diabetes mellitus by providing protection against glucolipotoxicity.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Endocrinology & Metabolism, The Catholic University of Korea, Seoul, 137-040, Korea
| | - Young-Hye You
- Department of Endocrinology & Metabolism, The Catholic University of Korea, Seoul, 137-040, Korea
| | - Dong-Sik Ham
- Department of Endocrinology & Metabolism, The Catholic University of Korea, Seoul, 137-040, Korea
| | - Hae Kyung Yang
- Department of Endocrinology & Metabolism, The Catholic University of Korea, Seoul, 137-040, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology & Metabolism, The Catholic University of Korea, Seoul, 137-040, Korea
| |
Collapse
|
15
|
Llano-Diez M, Sinclair J, Yamada T, Zong M, Fauconnier J, Zhang SJ, Katz A, Jardemark K, Westerblad H, Andersson DC, Lanner JT. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome. PLoS One 2016; 11:e0167090. [PMID: 27907040 PMCID: PMC5131978 DOI: 10.1371/journal.pone.0167090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS). Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice). We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Jon Sinclair
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Takashi Yamada
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Mei Zong
- Karolinska University Hospital, Rheumatology unit, CMM, Stockholm Sweden
| | - Jeremy Fauconnier
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Shi-Jin Zhang
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Abram Katz
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Kent Jardemark
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Håkan Westerblad
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | | | - Johanna T. Lanner
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
16
|
Habib SL, Yadav A, Kidane D, Weiss RH, Liang S. Novel protective mechanism of reducing renal cell damage in diabetes: Activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage. Cell Cycle 2016; 15:3048-3059. [PMID: 27611085 DOI: 10.1080/15384101.2016.1231259] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser792 and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy.
Collapse
Affiliation(s)
- Samy L Habib
- a Department of Cellular and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA.,b Geriatric Research, Education and Clinical Department , South Texas Veterans Health Care System , San Antonio , TX , USA
| | - Anamika Yadav
- a Department of Cellular and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Dawit Kidane
- c Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute , Austin , TX , USA
| | - Robert H Weiss
- d Division of Nephrology and Cancer Center, University of California at Davis , Davis , CA , USA
| | - Sitai Liang
- a Department of Cellular and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| |
Collapse
|
17
|
Abstract
AMPK is an evolutionary conserved energy sensor involved in the regulation of energy metabolism. Based on biochemical studies, AMPK has brought much of interest in recent years due to its potential impact on metabolic disorders. Suitable animal models are therefore essential to promote our understanding of the molecular and functional roles of AMPK but also to bring novel information for the development of novel therapeutic strategies. The organism systems include pig (Sus scrofa), mouse (Mus musculus), fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and fish (Danio rerio) models. These animal models have provided reliable experimental evidence demonstrating the crucial role of AMPK in the regulation of metabolism but also of cell polarity, autophagy, and oxidative stress. In this chapter, we update the new development in the generation and application of animal models for the study of AMPK biology. We also discuss recent breakthroughs from studies in mice, flies, and worms showing how AMPK has a primary role in initiating or promoting pathological or beneficial impact on health.
Collapse
Affiliation(s)
- Benoit Viollet
- INSERM U1016, Institut Cochin, Paris, France. .,CNRS UMR 8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marc Foretz
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
18
|
Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2014; 58:2-29. [PMID: 25122135 DOI: 10.1021/jm401994c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | | | | |
Collapse
|
19
|
Abstract
The PRKAA1 gene encodes the catalytic α-subunit of 5′ AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor that maintains energy homeostasis within the cell and is activated when the AMP/ATP ratio increases. When activated, AMPK increases catabolic processes that increase ATP synthesis and inhibit anabolic processes that require ATP. Additionally, AMPK also plays a role in activating autophagy and inhibiting energy consuming processes, such as cellular growth and proliferation. Due to its role in energy metabolism, it could act as a potential target of many therapeutic drugs that could be useful in the treatment of several diseases, for example, diabetes. Moreover, AMPK has been shown to be involved in inhibiting tumour growth and metastasis, and has also been implicated in the pathology of neurodegenerative and cardiac disorders. Hence, a better understanding of AMPK and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target.
Collapse
|
20
|
Liu W, Zhai X, Li H, Ji L. Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise. J Affect Disord 2014; 156:171-7. [PMID: 24388462 DOI: 10.1016/j.jad.2013.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/20/2022]
Abstract
Major depressive disorder (MDD) and type II diabetes mellitus (T2DM) are highly co-morbid, and there may be a bi-directional connection between the two. Herein, we have described a mouse model of a depression-like and insulin-resistant (DIR) state induced by the co-treatment of high-fat diet (HFD) and corticosterone (CORT). 5-Aminoimidazole-4-carboxamide-1-β-d- ribofuranoside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), was originally used to improve insulin resistance (IR). Interestingly, our results show a clear potential for AICAR as a putative antidepressant with a chronic action on the DIR mice. In contrast to the traditional antidepressants, AICAR as a promising antidepressant avoids reducing insulin actions of skeletal muscle in the context of long-term HFD. Exercise also produced antidepressant effects. Our data suggest that the effects of AICAR and exercise on DIR may further increase our understanding on the link between depression and diabetes.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Xiaofeng Zhai
- Department of Traditional Chinese Medicine, Changhai Hospital, Shanghai 200438, China
| | - Haipeng Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liu Ji
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Sinnett SE, Brenman JE. Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators. Pharmacol Ther 2014; 143:111-8. [PMID: 24583089 DOI: 10.1016/j.pharmthera.2014.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Neurobiology Curriculum, University of North Carolina at Chapel Hill (UNC), United States
| | - Jay E Brenman
- UNC Neuroscience Center, United States; Department of Cell Biology and Physiology, UNC, United States.
| |
Collapse
|
22
|
Li YY, Yu LF, Zhang LN, Qiu BY, Su MB, Wu F, Chen DK, Pang T, Gu M, Zhang W, Ma WP, Jiang HW, Li JY, Nan FJ, Li J. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice. Toxicol Appl Pharmacol 2013; 273:325-34. [PMID: 24055643 DOI: 10.1016/j.taap.2013.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 01/01/2023]
Abstract
AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013; 123:2764-72. [PMID: 23863634 DOI: 10.1172/jci67227] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) and hyperinsulinemia are hallmarks of the metabolic syndrome, as are central adiposity, dyslipidemia, and a predisposition to type 2 diabetes, atherosclerotic cardiovascular disease, hypertension, and certain cancers. Regular exercise and calorie restriction have long been known to increase insulin sensitivity and decrease the prevalence of these disorders. The subsequent identification of AMP-activated protein kinase (AMPK) and its activation by exercise and fuel deprivation have led to studies of the effects of AMPK on both IR and metabolic syndrome-related diseases. In this review, we evaluate this body of literature, with special emphasis on the hypothesis that dysregulation of AMPK is both a pathogenic factor for these disorders in humans and a target for their prevention and therapy.
Collapse
Affiliation(s)
- Neil B Ruderman
- Diabetes and Metabolism Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
24
|
Zimmermann C, Cederroth CR, Bourgoin L, Foti M, Nef S. Prevention of diabetes in db/db mice by dietary soy is independent of isoflavone levels. Endocrinology 2012; 153:5200-11. [PMID: 22962258 DOI: 10.1210/en.2012-1490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent evidence points towards the beneficial use of soy proteins and isoflavones to improve glucose control and slow the progression of type 2 diabetes. Here, we used diabetic db/db mice fed a high soy-containing diet (SD) or a casein soy-free diet to investigate the metabolic effects of soy and isoflavones consumption on glucose homeostasis, hepatic glucose production, and pancreatic islet function. Male db/db mice fed with a SD exhibited a robust reduction in hyperglycemia (50%), correlating with a reduction in hepatic glucose production and preserved pancreatic β-cell function. The rapid decrease in fasting glucose levels resulted from an inhibition of gluconeogenesis and an increase in glycolysis in the liver of db/db mice. Soy consumption also prevented the loss of pancreatic β-cell mass and thus improved glucose-stimulated insulin secretion (3-fold), which partly accounted for the overall improvements in glucose homeostasis. Comparison of SD effects on hyperglycemia with differing levels of isoflavones or with purified isoflavones indicate that the beneficial physiological effects of soy are not related to differences in their isoflavone content. Overall, these findings suggest that consumption of soy is beneficial for improving glucose homeostasis and delaying the progression of diabetes in the db/db mice but act independently of isoflavone concentration.
Collapse
Affiliation(s)
- Céline Zimmermann
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Methotrexate Increases Skeletal Muscle GLUT4 Expression and Improves Metabolic Control in Experimental Diabetes. J Nutr Metab 2012; 2012:132056. [PMID: 22778921 PMCID: PMC3384889 DOI: 10.1155/2012/132056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/10/2012] [Accepted: 04/14/2012] [Indexed: 11/17/2022] Open
Abstract
Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue concentrations can be increased, in vivo, by low doses of methotrexate (MTX) through the inhibition of the enzyme AICAR transformylase. We report here the first evidence that, in experimental type 2 diabetes, chronic treatment with low doses of MTX increases skeletal muscle GLUT4 expression and improves metabolic control. MTX (0.5 mg/kg body weight) or vehicle was administered intraperitoneally, once a week for 4 weeks, to genetically diabetic female C57BL/KsJ-m(+)/(+)Lept(db) mice (db(+)/db(+)) and their normoglycemic littermates (db(+)/(+)m). In the db(+)/db(+) mice, MTX treatment was associated with a ∼2-fold increase in skeletal muscle GLUT4 protein concentration and a >4-fold increase in GLUT4 mRNA expression (P < 0.01, all), as compared to vehicle-treated mice; no significant differences were noted in controls. MTX treatment was also associated with a significant reduction of glucose and insulin serum concentrations in diabetic mice (P < 0.001), and glucose levels only (P < 0.05) in controls. These data indicate a different route to increase skeletal muscle GLUT4 expression, through the potential inhibition of the enzyme AICAR transformylase.
Collapse
|
26
|
Zhang Y, Wang Z, Zhao Y, Zhao M, Wang S, Hua Z, Zhang J. The plasma 5'-AMP acts as a potential upstream regulator of hyperglycemia in type 2 diabetic mice. Am J Physiol Endocrinol Metab 2012; 302:E325-33. [PMID: 22068600 DOI: 10.1152/ajpendo.00424.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Increased plasma free fatty acid (FFA) level is a hallmark of type 2 diabetes. However, the underlying molecular basis for FFA-caused hyperglycemia remains unclear. Here we identified plasma 5'-adenosine monophosphate (pAMP) markedly elevated in the plasma of type 2 diabetic mice. High levels of FFAs induced damage in vein endothelial cells and contributed to an increase in pAMP. Administration of synthetic 5'-AMP caused hyperglycemia and impaired insulin action in lean wild-type mice. 5'-AMP elevated blood glucose in mice deficient in adenosine receptors with equal efficiency as wild-type mice. The function of pAMP was initiated by the elevation of cellular adenosine levels, directly stimulating G-6-Pase enzyme activity, attenuating insulin-dependent GLUT4 translocation in skeletal muscle, and displaying a rapid and steep increase in blood glucose and a decrease in hepatic glycogen level. It was followed by an increase in the gene expression of hepatic Foxo1 and its targeting gene Pepck and G6Pase, which was similar to diabetic phenotype in db/db mice. Our results suggest that pAMP is a potential upstream regulator of hyperglycemia in type 2 diabetes.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Monophosphate/blood
- Adenosine Monophosphate/chemistry
- Adenosine Monophosphate/metabolism
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Fatty Acids, Nonesterified/adverse effects
- Fatty Acids, Nonesterified/blood
- Female
- Glycogenolysis
- Human Umbilical Vein Endothelial Cells/enzymology
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Hyperglycemia/etiology
- Insulin Resistance
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Muscle, Skeletal/metabolism
- Necrosis
- Protein Isoforms/genetics
- Receptors, Purinergic P1/genetics
Collapse
Affiliation(s)
- Ying Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Kulkarni SS, Karlsson HKR, Szekeres F, Chibalin AV, Krook A, Zierath JR. Suppression of 5'-nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle. J Biol Chem 2011; 286:34567-74. [PMID: 21873433 PMCID: PMC3186409 DOI: 10.1074/jbc.m111.268292] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/18/2011] [Indexed: 11/06/2022] Open
Abstract
The 5'-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr(172)), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser(79)) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5'-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Håkan K. R. Karlsson
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ferenc Szekeres
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Alexander V. Chibalin
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Krook
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Juleen R. Zierath
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
28
|
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13:1016-23. [PMID: 21892142 DOI: 10.1038/ncb2329] [Citation(s) in RCA: 2185] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the central regulators of cellular and organismal metabolism in eukaryotes is AMP-activated protein kinase (AMPK), which is activated when intracellular ATP production decreases. AMPK has critical roles in regulating growth and reprogramming metabolism, and has recently been connected to cellular processes such as autophagy and cell polarity. Here we review a number of recent breakthroughs in the mechanistic understanding of AMPK function, focusing on a number of newly identified downstream effectors of AMPK.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
29
|
Walter I, Hegarty B, Seebacher F. AMP-activated protein kinase controls metabolism and heat production during embryonic development in birds. ACTA ACUST UNITED AC 2010; 213:3167-76. [PMID: 20802119 DOI: 10.1242/jeb.043349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During embryonic and early juvenile development, endotherms must balance energy allocation between growth and heat production. Failure to either match the ATP demand of growing tissue or produce heat at the correct developmental stage will lead to damage of the organism. We tested the hypothesis that AMP-activated protein kinase (AMPK) is involved in the regulation of energy metabolism and heat production during development in the chicken (Gallus gallus). We show that mRNA concentrations of regulatory and catalytic AMPK subunits, AMPK total protein, and AMPK phosphorylation increase during development [3 days (-3 days) and one day (-1 day) before hatching, and +1 day and +8 days after hatching] in liver, and to a lesser extent in skeletal muscle. Chronic stimulation with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) significantly increases AMPK phosphorylation in skeletal muscle and in liver. This increase was paralleled by significant increases in heat production, glucose utilization, and liver and skeletal muscle mitochondrial capacity (citrate synthase activity). The effects of AMPK are likely to be mediated by inhibition of acetyl CoA carboxylase (ACC) after hatching, when ACC protein concentration increases significantly, and by a significant AMPK-induced increase in PGC-1alpha mRNA concentration (at +1 day), but not in NRF-1 mRNA concentration. AMPK phosphorylation is under the control of thyroid hormone, and AMPK phosphorylation decreases significantly following the induction of hypothyroidism. We propose AMPK as a principal regulatory mechanism during the transition from ectothermy to endothermy in birds, and show that AMPK function in birds is similar to that observed in mammals.
Collapse
Affiliation(s)
- Isabel Walter
- School of Biological Sciences A08, Integrative Physiology, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
30
|
Saha AK, Xu XJ, Lawson E, Deoliveira R, Brandon AE, Kraegen EW, Ruderman NB. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes 2010; 59:2426-34. [PMID: 20682696 PMCID: PMC3279521 DOI: 10.2337/db09-1870] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 07/12/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Branched-chain amino acids, such as leucine and glucose, stimulate protein synthesis and increase the phosphorylation and activity of the mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase (p70S6K). We examined in skeletal muscle whether the effects of leucine and glucose on these parameters and on insulin resistance are mediated by the fuel-sensing enzyme AMP-activated protein kinase (AMPK). RESEARCH DESIGN AND METHODS Rat extensor digitorum longus (EDL) muscle was incubated with different concentrations of leucine and glucose with or without AMPK activators. Muscle obtained from glucose-infused rats was also used as a model. RESULTS In the EDL, incubation with 100 or 200 μmol/l leucine versus no added leucine suppressed the activity of the α2 isoform of AMPK by 50 and 70%, respectively, and caused concentration-dependent increases in protein synthesis and mTOR and p70S6K phosphorylation. Very similar changes were observed in EDL incubated with 5.5 or 25 mmol/l versus no added glucose and in muscle of rats infused with glucose in vivo. Incubation of the EDL with the higher concentrations of both leucine and glucose also caused insulin resistance, reflected by a decrease in insulin-stimulated Akt phosphorylation. Coincubation with the AMPK activators AICAR and α-lipoic acid substantially prevented all of those changes and increased the phosphorylation of specific sites of mTOR inhibitors raptor and tuberous sclerosis complex 2 (TSC2). In contrast, decreases in AMPK activity induced by leucine and glucose were not associated with a decrease in raptor or TSC2 phosphorylation. CONCLUSIONS The results indicate that both leucine and glucose modulate protein synthesis and mTOR/p70S6 and insulin signaling in skeletal muscle by a common mechanism. They also suggest that the effects of both molecules are associated with a decrease in AMPK activity and that AMPK activation prevents them.
Collapse
Affiliation(s)
- Asish K Saha
- Diabetes Research Unit, Division of Endocrinology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Drake JC, Alway SE, Hollander JM, Williamson DL. AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1546-54. [PMID: 20844264 DOI: 10.1152/ajpregu.00337.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to determine the effect of 14 days of 5-aminoimidazole-4-carboxamide-1β-4-ribofuranoside (AICAR) treatment on mammalian target of rapamycin (mTOR) signaling and mTOR-regulated processes (i.e., translation initiation) in obese mouse skeletal muscle. Our hypothesis was that daily treatment (14 days) with AICAR would normalize obesity-induced alterations in skeletal muscle mTOR signaling and mTOR-regulated processes to lean levels and positively affect muscle mass. Fourteen-week-old male, lean (L; 31.3 g body wt) wild-type and ob/ob (O; 59.6 g body wt) mice were injected with the AMP-activated kinase (AMPK) activator AICAR (A) at 0.5 mg·g body wt(-1)·day(-1) or saline control (C) for 14 days. At 24 h after the last injection (including a 12-h fast), all mice were killed, and the plantar flexor complex muscle (gastrocnemius, soleus, and plantaris) was excised for analysis. Muscle mass was lower in OC (159 ± 12 mg) than LC, LA, and OA (176 ± 10, 178 ± 9, and 166 ± 16 mg, respectively) mice, independent of a body weight change. A decrease in obese muscle mass corresponded with higher muscle cross section staining intensity for lipid and glycogen, higher blood glucose and insulin levels, and lower nuclear-enriched fractions for peroxisome proliferator-activated receptor-γ coactivator-1α protein expression in OC skeletal muscle, which was normalized with AICAR treatment. AMPK and acetyl-cocarboxylase phosphorylation was reduced in OC mice and augmented by AICAR treatment in OA mice. Conversely, OC mice displayed higher activation of downstream targets (S6 kinase-1 and ribosomal protein S6) of mTOR and lower raptor-associated mTOR than LC mice, which were reciprocally altered after 14 days of AICAR treatment. Dysregulation of translational capacity was improved in OA mice, as assessed by sucrose density gradient fractionation of ribosomes, total and ribosome-associated RNA content, eukaryotic initiation factor 4F complex formation, and eukaryotic initiation factor 4G phosphorylation. These data show that short-term (14 days) AMPK agonist treatment augments regulatory processes in atrophic obese mouse skeletal muscle through the normalization of mTOR signaling and mRNA translation closer to lean levels.
Collapse
Affiliation(s)
- Joshua C Drake
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | |
Collapse
|
32
|
Escherichia coli expression, purification and characterization of functional full-length recombinant alpha2beta2gamma3 heterotrimeric complex of human AMP-activated protein kinase. Protein Expr Purif 2010; 73:189-97. [PMID: 20451617 DOI: 10.1016/j.pep.2010.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine protein kinase that plays a central role in whole-body energy homeostasis. AMPK is a heterotrimeric enzyme with a catalytic (alpha) subunit and two regulatory (beta and gamma) subunits. The muscle-specific AMPK heterotrimeric complex (alpha2beta2gamma3) is involved in glucose and fat metabolism in skeletal muscle and therefore has emerged as an attractive target for drug development for diabetes and metabolic syndrome. To date, expression of recombinant full-length human AMPK alpha2beta2gamma3 has not been reported. Here we describe the expression, purification and biochemical characterization of functional full-length AMPK alpha2beta2gamma3 heterotrimeric complex using an Escherichia coli expression system. All three subunits of AMPK alpha2beta2gamma3 were transcribed as a single tricistronic transcript driven by the T7 RNA polymerase promoter, allowing spontaneous formation of the heterotrimeric complex in the bacterial cytosol. The self-assembled trimeric complex was purified from the cell lysate by nickel-ion chromatography using the hexahistidine tag fused exclusively at the N-terminus of the alpha 2 domain. The un-assembled beta 2 and gamma 3 domains were removed by extensive washing of the column. Further purification of the heterotrimer was performed using size exclusion chromatography. The final yield of the recombinant AMPK alpha2beta2gamma3 complex was 1.1mg/L culture in shaker flasks. The E. coli expressed enzyme was catalytically inactive after purification, but was activated in vitro by upstream kinases such as CaMKKbeta and LKB1. The kinase activity of activated AMPK alpha2beta2gamma3 complex was significantly enhanced by AMP (an allosteric activator) but not by thienopyridone A-769662, a known small molecule activator of AMPK. Mass spectrometric characterization of recombinant AMPK alpha2beta2gamma3 showed significant heterogeneity before and after activation that could potentially hamper crystallographic studies of this complex.
Collapse
|
33
|
Mayer CM, Belsham DD. Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5' monophosphate-activated protein kinase activation. Endocrinology 2010; 151:576-85. [PMID: 19952270 DOI: 10.1210/en.2009-1122] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypothalamic insulin signaling is essential to the maintenance of glucose and energy homeostasis. During pathological states, such as obesity and type 2 diabetes mellitus, insulin signaling is impaired. One key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. We used a hypothalamic, neuronal cell model, mHypoE-44, to understand how the highly prevalent nonesterified fatty acid, palmitate, affects neuronal insulin signaling. Through Western blot analysis, we discerned that prolonged exposure to palmitate impairs insulin activation, as assessed by phosphorylation of Akt. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cellular insulin resistance and apoptosis in peripheral tissues. Palmitate treatment induced ER stress through a c-Jun N-terminal kinase (JNK)-dependent pathway because a selective JNK inhibitor blocked palmitate activation of the ER stress pathways eIF2 alpha and X-box binding protein-1. Interestingly, JNK inhibition did not prevent the palmitate-mediated cleaved caspase-3 increase, an apoptotic marker, or insulin signaling attenuation. However, pretreatment with the AMP kinase activator, aminoimidazole carboxamide ribonucleotide, blocked JNK phosphorylation and importantly prevented caspase-3 cleavage and restored insulin signaling during short-term exposure to palmitate. Thus, activation of AMP kinase prevents the deleterious effects of palmitate on hypothalamic neurons by inhibiting the onset of insulin resistance and apoptosis.
Collapse
|
34
|
Gruzman A, Babai G, Sasson S. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a New Target for Antidiabetic Drugs: A Review on Metabolic, Pharmacological and Chemical Considerations. Rev Diabet Stud 2009; 6:13-36. [PMID: 19557293 DOI: 10.1900/rds.2009.6.13] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In view of the epidemic nature of type 2 diabetes and the substantial rate of failure of current oral antidiabetic drugs the quest for new therapeutics is intensive. The adenosine monophosphate-activated protein kinase (AMPK) is an important regulatory protein for cellular energy balance and is considered a master switch of glucose and lipid metabolism in various organs, especially in skeletal muscle and liver. In skeletal muscles, AMPK stimulates glucose transport and fatty acid oxidation. In the liver, it augments fatty acid oxidation and decreases glucose output, cholesterol and triglyceride synthesis. These metabolic effects induced by AMPK are associated with lowering blood glucose levels in hyperglycemic individuals. Two classes of oral antihyperglycemic drugs (biguanidines and thiazolidinediones) have been shown to exert some of their therapeutic effects by directly or indirectly activating AMPK. However, side effects and an acquired resistance to these drugs emphasize the need for the development of novel and efficacious AMPK activators. We have recently discovered a new class of hydrophobic D-xylose derivatives that activates AMPK in skeletal muscles in a non insulin-dependent manner. One of these derivatives (2,4;3,5-dibenzylidene-D-xylose-diethyl-dithioacetal) stimulates the rate of hexose transport in skeletal muscle cells by increasing the abundance of glucose transporter-4 (GLUT-4) in the plasma membrane through activation of AMPK. This compound reduces blood glucose levels in diabetic mice and therefore offers a novel strategy of therapeutic intervention strategy in type 2 diabetes. The present review describes various classes of chemically-related compounds that activate AMPK by direct or indirect interactions and discusses their potential for candidate antihyperglycemic drug development.
Collapse
Affiliation(s)
- Arie Gruzman
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | | | |
Collapse
|
35
|
Guigas B, Sakamoto K, Taleux N, Reyna SM, Musi N, Viollet B, Hue L. Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators. IUBMB Life 2009; 61:18-26. [PMID: 18798311 DOI: 10.1002/iub.135] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICA riboside) has been extensively used in vitro and in vivo to activate the AMP-activated protein kinase (AMPK), a metabolic sensor involved in both cellular and whole body energy homeostasis. However, it has been recently highlighted that AICA riboside also exerts AMPK-independent effects, mainly on AMP-regulated enzymes and mitochondrial oxidative phosphorylation (OXPHOS), leading to the conclusion that new compounds with reduced off target effects are needed to specifically activate AMPK. Here, we review recent findings on newly discovered AMPK activators, notably on A-769662, a nonnucleoside compound from the thienopyridone family. We also report that A-769662 is able to activate AMPK and stimulate glucose uptake in both L6 cells and primary myotubes derived from human satellite cells. In addition, A-769662 increases AMPK activity and phosphorylation of its main downstream targets in primary cultured rat hepatocytes but, by contrast with AICA riboside, does neither affect mitochondrial OXPHOS nor change cellular AMP:ATP ratio. We conclude that A-769662 could be one of the new promising chemical agents to activate AMPK with limited AMPK-independent side effects.
Collapse
Affiliation(s)
- Bruno Guigas
- Hormone and Metabolic Research Unit, Université catholique de Louvain and de Duve Institute, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
36
|
Hutchinson DS, Summers RJ, Bengtsson T. Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: Potential utility in treatment of diabetes and heart disease. Pharmacol Ther 2008; 119:291-310. [DOI: 10.1016/j.pharmthera.2008.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 12/25/2022]
|
37
|
Winder WW, Thomson DM. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 2007; 47:332-47. [PMID: 17652779 DOI: 10.1007/s12013-007-0008-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is an energy sensing/signaling protein that, when activated, increases ATP production by stimulating glucose uptake and fatty acid oxidation while at the same time inhibiting ATP = consuming processes such as protein synthesis. Chronic activation of AMPK inhibits expression of lipogenic enzymes in the liver and enhances expression of mitochondrial oxidative enzymes in skeletal muscle. Deficiency of muscle LKB1, the upstream kinase of AMPK, results in greater fluctuation in energy charge during muscle contraction and decreased capacity for exercise at higher work rates. Because AMPK enhances both glucose uptake and fatty acid oxidation in skeletal muscle, it has become a target for prevention and treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- William W Winder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
38
|
Kim JW, Cho JH, Ko SH, Park HS, Ha J, Song KH, Son HY, Kim SS, Yoon KH, Suh-Kim H. Transcriptional mechanism of suppression of insulin gene expression by AMP-activated protein kinase activator 5-amino-4-imidazolecarboxamide riboside (AICAR) in beta-cells. Biochem Biophys Res Commun 2007; 365:614-20. [PMID: 18035054 DOI: 10.1016/j.bbrc.2007.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/04/2007] [Indexed: 11/29/2022]
Abstract
It is well known that the activation of AMP-activated protein kinase (AMPK) represses insulin gene expression and glucose-stimulated insulin secretion. However, how this effect is achieved and the effects of AMPK activation on glucolipotoxicity-induced beta-cell dysfunction have not been elucidated. We investigate whether BETA2 gene expression are involved in the AMPK-mediated regulation of insulin gene expression in normal and dysfunctional beta-cells. BETA2 gene expression and protein levels were significantly decreased by AICAR treatment and those were associated with the suppression of BETA2 promoter activity and DNA binding activity. These results demonstrate that the expressions of BETA2 and insulin gene are positively regulated by glucose and negatively by AMPK. Therefore, AMPK may function as a key molecule, which conveys extracellular metabolic signals into the cells and finely tunes expression of beta-cell specific transcription factors in response to glucose level.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Endocrinology and Metabolism, The Catholic University of Korea, 505, Ban-po-Dong, Seocho-Gu, Seoul 137-090, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fujii N, Jessen N, Goodyear LJ. AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab 2006; 291:E867-77. [PMID: 16822958 DOI: 10.1152/ajpendo.00207.2006] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by acute increases in the cellular [AMP]/[ATP] ratio. In skeletal and/or cardiac muscle, AMPK activity is increased by stimuli such as exercise, hypoxia, ischemia, and osmotic stress. There are many lines of evidence that increasing AMPK activity in skeletal muscle results in increased rates of glucose transport. Although similar to the effects of insulin to increase glucose transport in muscle, it is clear that the underlying mechanisms for AMPK-mediated glucose transport involve proximal signals that are distinct from that of insulin. Here, we discuss the evidence for AMPK regulation of glucose transport in skeletal and cardiac muscle and describe research investigating putative signaling mechanisms mediating this effect. We also discuss evidence that AMPK may play a role in enhancing muscle and whole body insulin sensitivity for glucose transport under conditions such as exercise, as well as the use of the AMPK activator AICAR to reverse insulin-resistant conditions. The identification of AMPK as a novel glucose transport mediator in skeletal muscle is providing important insights for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Nobuharu Fujii
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
40
|
Abstract
The stress-signaling protein, adenosine monophosphate-activated protein kinase (AMPK), regulates a variety of pathways in cells that 1) increase the provision and utilization of energy-providing substrates such as glucose and fatty acids, 2) inhibit energy-requiring pathways such as cholesterol biosynthesis and protein synthesis, and 3) increase the transcription of genes involved in energy metabolism and mitochondrial biogenesis. In the heart, AMPK therefore becomes very important in protecting against ischemia-reperfusion injury and regulating substrate metabolism in the face of changes in workload. This review summarizes the regulation of AMPK activity in the heart and discusses the effects of AMPK activation.
Collapse
Affiliation(s)
- Raymond Russell
- Section of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, FMP 3, New Haven, CT 06510, USA.
| |
Collapse
|
41
|
Sell H, Dietze-Schroeder D, Eckardt K, Eckel J. Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone. Biochem Biophys Res Commun 2006; 343:700-6. [PMID: 16563350 DOI: 10.1016/j.bbrc.2006.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/02/2006] [Indexed: 01/04/2023]
Abstract
Adipose tissue is an active endocrine organ producing a variety of cytokines and chemokines, which may be involved in the deregulation of glucose and lipid homeostasis as well as in the inflammatory state observed in obesity. We have shown previously that differentiated human adipocytes secrete a variety of cytokines which are able to induce skeletal muscle insulin resistance. However, the regulation of these factors by anti-diabetic drugs has remained mainly undefined. Secretion of IL-6, IL-8, MIP-1alpha/beta, and MCP-1 by adipocytes was found to be downregulated by adiponectin. In parallel to adiponectin, the AMPK activator AICAR also decreased the secretion of most of the measured cytokines including IL-6 and MIP-1alpha/beta but not IL-8. In contrast, the thiazolidinedione troglitazone only slightly reduced cytokine secretion despite increasing the phosphorylation of AMPK. In conclusion, we show that adipocyte secretion is strongly inhibited by the anti-diabetic adipocyte hormone adiponectin, an effect that can also be mimicked by the AMPK activator AICAR. However, the PPARgamma agonist troglitazone is much less effective in reducing cytokine secretion.
Collapse
Affiliation(s)
- Henrike Sell
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | | | | | | |
Collapse
|
42
|
Longnus SL, Ségalen C, Giudicelli J, Sajan MP, Farese RV, Van Obberghen E. Insulin signalling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo. Diabetologia 2005; 48:2591-601. [PMID: 16283248 DOI: 10.1007/s00125-005-0016-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/11/2005] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS 5'AMP-activated protein kinase (AMPK) and insulin stimulate glucose transport in heart and muscle. AMPK acts in an additive manner with insulin to increase glucose uptake, thereby suggesting that AMPK activation may be a useful strategy for ameliorating glucose uptake, especially in cases of insulin resistance. In order to characterise interactions between the insulin- and AMPK-signalling pathways, we investigated the effects of AMPK activation on insulin signalling in the rat heart in vivo. METHODS Male rats (350-400 g) were injected with 1 g/kg 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) or 250 mg/kg metformin in order to activate AMPK. Rats were administered insulin 30 min later and after another 30 min their hearts were removed. The activities and phosphorylation levels of components of the insulin-signalling pathway were subsequently analysed in individual rat hearts. RESULTS AICAR and metformin administration activated AMPK and enhanced insulin signalling downstream of protein kinase B in rat hearts in vivo. Insulin-induced phosphorylation of glycogen synthase kinase 3 (GSK3) beta, p70 S6 kinase (p70S6K)(Thr389) and IRS1(Ser636/639) were significantly increased following AMPK activation. To the best of our knowledge, this is the first report of heightened insulin responses of GSK3beta and p70S6K following AMPK activation. In addition, we found that AMPK inhibits insulin stimulation of IRS1-associated phosphatidylinositol 3-kinase activity, and that AMPK activates atypical protein kinase C and extracellular signal-regulated kinase in the heart. CONCLUSIONS/INTERPRETATIONS Our data are indicative of differential effects of AMPK on the activation of components in the cardiac insulin-signalling pathway. These intriguing observations are critical for characterisation of the crosstalk between AMPK and insulin signalling.
Collapse
Affiliation(s)
- S L Longnus
- INSERM U145, IFR 50, Faculty of Medicine, Avenue de Valombrose, 06107,, Nice Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
43
|
Mulligan JD, Gonzalez AA, Kumar R, Davis AJ, Saupe KW. Aging elevates basal adenosine monophosphate-activated protein kinase (AMPK) activity and eliminates hypoxic activation of AMPK in mouse liver. J Gerontol A Biol Sci Med Sci 2005; 60:21-7. [PMID: 15741278 DOI: 10.1093/gerona/60.1.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the central role of adenosine monophosphate-activated protein kinase (AMPK) in the cellular stress response, it is unknown whether age-related changes in AMPK activity play a role in the diminished stress tolerance that is characteristic of aging. To address this question, we determined in the mouse liver how normal aging affects 1) basal AMPK activity, and 2) the degree to which AMPK activity is increased by in vivo hypoxia. We found that the basal activity of AMPK alpha1, but not alpha2, was higher in livers from 24-month-old mice compared to those from 5-month-old mice. Furthermore, while hypoxia elevated AMPK alpha1 and alpha2 activities in livers from 5-month-old mice, hypoxia failed to increase the activity of either isoform of AMPK in 24-month-old mice. These findings suggest that age-associated changes in hepatic AMPK activity may play a role in the physiological changes that occur in the liver with normal aging.
Collapse
Affiliation(s)
- Jacob D Mulligan
- 1630 Medical Sciences Center, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
44
|
Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005; 54:1331-9. [PMID: 15855317 DOI: 10.2337/diabetes.54.5.1331] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Collapse
Affiliation(s)
- Marc Foretz
- Institut Cochin, Département de Génétique, Développement et Pathologie Moléculaire, Université René Descartes Paris 5, Institut National de la Santé et de la Recherche Medicale U567, Centre National de la Recherche Scientifique UMR8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pencek RR, Shearer J, Camacho RC, James FD, Lacy DB, Fueger PT, Donahue EP, Snead W, Wasserman DH. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes 2005; 54:355-60. [PMID: 15677492 DOI: 10.2337/diabetes.54.2.355] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The infusion of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) causes a rise in tissue concentrations of the AMP analog 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranotide (ZMP), which mimics an elevation of cellular AMP levels. The purpose of this work was to determine the effect of raising hepatic ZMP levels on hepatic insulin action in vivo. Dogs had sampling and infusion catheters as well as flow probes implanted 16 days before an experiment. After an 18-h fast, blood glucose was 82 +/- 1 mg/dl and basal net hepatic glucose output 1.5 +/- 0.2 mg . kg(-1) . min(-1). Dogs received portal venous glucose (3.2 mg . kg(-1) . min(-1)), peripheral venous somatostatin, and basal portal venous glucagon infusions from -90 to 60 min. Physiological hyperinsulinemia was established with a portal insulin infusion (1.2 mU . kg(-1) . min(-1)). Peripheral venous glucose infusion was used to clamp arterial blood glucose at 150 mg/dl. Starting at t = 0 min, dogs received portal venous AICAR infusions of 0, 1, or 2 mg . kg(-1) . min(-1). Net hepatic glucose uptake was 2.4 +/- 0.5 mg . kg(-1) . min(-1) (mean of all groups) before t = 0 min. In the absence of AICAR, net hepatic glucose uptake was 1.9 +/- 0.4 mg . kg(-1) . min(-1) at t = 60 min. The lower-dose AICAR infusion caused a complete suppression of net hepatic glucose uptake (-1.0 +/- 1.7 mg . kg(-1) . min(-1) at t = 60 min). The higher AICAR dose resulted in a profound shift in hepatic glucose balance from net uptake to a marked net output (-6.1 +/- 1.9 mg . kg(-1) . min(-1) at t = 60 min), even in the face of hyperglycemia and hyperinsulinemia. These data show that elevations in hepatic ZMP concentrations, induced by portal venous AICAR infusion, cause acute hepatic insulin resistance. These findings have important implications for the targeting of AMP kinase for the treatment of insulin resistance, using AMP analogs.
Collapse
Affiliation(s)
- R Richard Pencek
- Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lihn AS, Jessen N, Pedersen SB, Lund S, Richelsen B. AICAR stimulates adiponectin and inhibits cytokines in adipose tissue. Biochem Biophys Res Commun 2004; 316:853-8. [PMID: 15033479 DOI: 10.1016/j.bbrc.2004.02.139] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Indexed: 10/26/2022]
Abstract
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) can be used as an experimental tool to activate 5'-AMP-activated protein kinase (AMPK) and has been shown to improve insulin sensitivity. In parallel adiponectin also seems to activate AMPK and to improve insulin sensitivity. We have investigated the effects of AICAR on the gene expression of adiponectin and on gene expression and release of cytokines in human adipose tissue in vitro. AICAR stimulated AMPK alpha1 activity 3-4-fold (p<0.001), and dose-dependently increased adiponectin mRNA levels with significant stimulation (2-4-fold) at AICAR concentrations of 0.5-2mM (p<0.05). The adipose tissue protein release of tumor necrosis factor-alpha (TNF- alpha) and interleukin-6 (IL-6) was decreased by AICAR (p<0.05). In conclusion, AICAR stimulated adipose tissue AMPK alpha1 activity and adiponectin gene expression, while attenuating the release of TNF-alpha and IL-6. Reduced concentrations of these cytokines and increased levels of adiponectin might play a role for the insulin sensitizing effects of AICAR.
Collapse
Affiliation(s)
- Aina S Lihn
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Tage Hansensgade 2, Aarhus Sygehus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG, Frenguelli BG. AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 2004; 88:1272-82. [PMID: 15009683 DOI: 10.1046/j.1471-4159.2003.02253.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5-Aminoimidazole-4-carboxamide riboside (AICA riboside; Acadesine) activates AMP-activated protein kinase (AMPK) in intact cells, and is reported to exert protective effects in the mammalian CNS. In rat cerebrocortical brain slices, AMPK was activated by metabolic stress (ischaemia > hypoxia > aglycaemia) and AICA riboside (0.1-10 mm). Activation of AMPK by AICA riboside was greatly attenuated by inhibitors of equilibrative nucleoside transport. AICA riboside also depressed excitatory synaptic transmission in area CA1 of the rat hippocampus, which was prevented by an adenosine A1 receptor antagonist and reversed by application of adenosine deaminase. However, AICA riboside was neither a substrate for adenosine deaminase nor an agonist at adenosine receptors. We conclude that metabolic stress and AICA riboside both stimulate AMPK activity in mammalian brain, but that AICA riboside has an additional effect, i.e. competition with adenosine for uptake by the nucleoside transporter. This results in an increase in extracellular adenosine and subsequent activation of adenosine receptors. Neuroprotection by AICA riboside could be mediated by this mechanism as well as, or instead of, by AMPK activation. Caution should therefore be exercised in ascribing an effect of AICA riboside to AMPK activation, especially in systems where inhibition of adenosine re-uptake has physiological consequences.
Collapse
Affiliation(s)
- Anne E Gadalla
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pilon G, Dallaire P, Marette A. Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 2004; 279:20767-74. [PMID: 14985344 DOI: 10.1074/jbc.m401390200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK), an energy-sensing enzyme that is activated in response to cellular stress, is a critical signaling molecule for the regulation of multiple metabolic processes. AMPK has recently emerged as an attractive novel target for the treatment of obesity and type 2 diabetes because its activation increases fatty acid oxidation and improves glucose homeostasis. Here we show that pharmacological activation of AMPK by insulin-sensitizing drugs markedly inhibits inducible nitric-oxide synthase (iNOS), a proinflammatory mediator in endotoxic shock and in chronic inflammatory states including obesity-linked diabetes. AMPK-mediated iNOS inhibition was observed in several cell types (myocytes, adipocytes, macrophages) and primarily resulted from post-transcriptional regulation of the iNOS protein. AMPK activation in vivo also blunted iNOS induction in muscle and adipose tissues of endotoxin-challenged rats. Reduction of AMPK expression by small interfering RNA reversed the inhibitory effects of AMPK activators on iNOS expression and nitric oxide production in myocytes. These results indicate that AMPK is a novel anti-inflammatory signaling pathway and thus represents a promising therapeutic target for immune-inflammatory disorders.
Collapse
Affiliation(s)
- Geneviève Pilon
- Department of Anatomy and Physiology, and Lipid Research Unit, Laval University Hospital Research Center, 2705 Laurier Boulevard, Sainte-Foy, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Stuart A Ross
- Department of Cardiovascular and Metabolic Diseases, Mail Zone T2E, Pharmacia Corporation, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA
| | | | | |
Collapse
|
50
|
Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JFP. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 2003; 279:1070-9. [PMID: 14573616 DOI: 10.1074/jbc.m306205200] [Citation(s) in RCA: 436] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We investigated the importance of the two catalytic alpha-isoforms of the 5'-AMP-activated protein kinase (AMPK) in 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and contraction-induced glucose uptake in skeletal muscle. Incubated soleus and EDL muscle from whole-body alpha2- or alpha1-AMPK knockout (KO) and wild type (WT) mice were incubated with 2.0 mm AICAR or electrically stimulated to contraction. Both AICAR and contraction increased 2DG uptake in WT muscles. KO of alpha2, but not alpha1, abolished AICAR-induced glucose uptake, whereas neither KO affected contraction-induced glucose uptake. AICAR and contraction increased alpha2- and alpha1-AMPK activity in wild type (WT) muscles. During AICAR stimulation, the remaining AMPK activity in KO muscles increased to the same level as in WT. During contraction, the remaining AMPK activity in alpha2-KO muscles was elevated by 100% probably explained by a 2-3-fold increase in alpha1-protein. In alpha1-KO muscles, alpha2-AMPK activity increased to similar levels as in WT. Both interventions increased total AMPK activity, as expressed by AMPK-P and ACCbeta-P, in WT muscles. During AICAR stimulation, this was dramatically reduced in alpha2-KO but not in alpha1-KO, whereas during contraction, both measurements were essentially similar to WT in both KO-muscles. The results show that alpha2-AMPK is the main donor of basal and AICAR-stimulated AMPK activity and is responsible for AICAR-induced glucose uptake. In contrast, during contraction, the two alpha-isoforms seem to substitute for each other in terms of activity, which may explain the normal glucose uptake despite the lack of either alpha2- or alpha1-AMPK. Alternatively, neither alpha-isoform of AMPK is involved in contraction-induced muscle glucose uptake.
Collapse
Affiliation(s)
- Sebastian B Jørgensen
- Copenhagen Muscle Research Centre, Department of Human Physiology, 13 Universitetsparken, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|