1
|
Jiang X, Zai CC, Dimick MK, Kennedy JL, Young LT, Birmaher B, Goldstein BI. Psychiatric Polygenic Risk Scores Across Youth With Bipolar Disorder, Youth at High Risk for Bipolar Disorder, and Controls. J Am Acad Child Adolesc Psychiatry 2024; 63:1149-1157. [PMID: 38340895 DOI: 10.1016/j.jaac.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE There is a pronounced gap in knowledge regarding polygenic underpinnings of youth bipolar disorder (BD). This study aimed to compare polygenic risk scores (PRSs) in youth with BD, youth at high clinical and/or familial risk for BD (HR), and controls. METHOD Participants were 344 youths of European ancestry (13-20 years old), including 136 youths with BD, 121 HR youths, and 87 controls. PRSs for BD, schizophrenia, major depressive disorder, and attention-deficit/hyperactivity disorder were constructed using independent genome-wide summary statistics from adult cohorts. Multinomial logistic regression was used to examine the association between each PRS and diagnostic status (BD vs HR vs controls). All genetic analyses controlled for age, sex, and 2 genetic principal components. RESULTS The BD group showed significantly higher BD-PRS than the control group (odds ratio = 1.54, 95% CI = 1.13-2.10, p = .006), with the HR group numerically intermediate. BD-PRS explained 7.9% of phenotypic variance. PRSs for schizophrenia, major depressive disorder, and attention-deficit/hyperactivity disorder were not significantly different among groups. In the BD group, BD-PRS did not significantly differ in relation to BD subtype, age of onset, psychosis, or family history of BD. CONCLUSION BD-PRS derived from adult genome-wide summary statistics is elevated in youth with BD. Absence of significant between-group differences in PRSs for other psychiatric disorders supports the specificity of BD-PRS in youth. These findings add to the biological validation of BD in youth and could have implications for early identification and diagnosis. To enhance clinical utility, future genome-wide association studies that focus specifically on early-onset BD are warranted, as are studies integrating additional genetic and environmental factors. PLAIN LANGUAGE SUMMARY Polygenic risk scores estimate an individual's genetic susceptibility to develop a disorder, such as bipolar disorder (BD). In this study, the authors constructed polygenic risk scores from previous adult studies. Youth with BD had elevated polygenic risk scores for BD compared to youth without bipolar disorder. Youth at high risk for BD had intermediate polygenic risk scores. To evaluate the specificity of polygenic risk scores for BD, the authors estimated risk scores for other mental health disorders including schizophrenia, major depressive disorder, and attention-deficit/hyperactivity disorder. These other polygenic risk scores did not differ between youth with and without BD. These findings support the biological validation of BD in youth, with potential implications for early identification and diagnosis. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; University of Toronto, Toronto, Ontario, Canada; Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - James L Kennedy
- University of Toronto, Toronto, Ontario, Canada; Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - L Trevor Young
- University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Boris Birmaher
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Jiang X, Zai C, Mio M, Dimick MK, Sultan AA, Young LT, Goldstein BI. Neurocognitive correlates of polygenic risk for bipolar disorder among youth with and without bipolar disorder. J Affect Disord 2024; 369:845-853. [PMID: 39426505 DOI: 10.1016/j.jad.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION There is well-established evidence of reduced neurocognitive performance in adults and youth with bipolar disorder (BD). However, little is known about the polygenic underpinnings of neurocognition in individuals with BD, particularly in youth. The current study aimed to examine the association between polygenic risk score for BD (BD-PRS) and neurocognition among youth with BD and healthy controls (HC). METHODS 129 youth of European ancestry (72 BD, 57 HC), ages 13-20 years, were included. Six neurocognitive tasks within the Cambridge Neuropsychological Test Automated Battery were assessed. General linear models were used to examine the association between BD-PRS and neurocognitive composite scores, controlling for age, sex, IQ, and two genetic principal components. RESULTS In the overall sample, higher BD-PRS was associated with significantly poorer affective processing (β = -0.25, p = 0.01), decision-making (β = -0.23, p = 0.02), and sustained attention (β = -0.28, p = 0.002). Secondary analyses revealed that higher BD-PRS was associated with significantly poorer sustained attention within the BD group (β = -0.27, p = 0.04), and with significantly poorer affective processing within the HC group (β = -0.29, p = 0.04). LIMITATIONS Cross-sectional design. Modest sample size may have reduced power to detect smaller effect sizes. CONCLUSION The current study found that higher BD-PRS generated based on adult GWAS was associated with poorer neurocognitive performance in youth with BD and HC. Future longitudinal studies incorporating repeated neurocognitive assessments would further inform whether the associations of BD-PRS with neurocognition vary from youth to adulthood, and whether BD-PRS is associated with differential neurodevelopmental trajectories in individuals with and without BD.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Clement Zai
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Megan Mio
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - Alysha A Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - L Trevor Young
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Pawlak J, Szczepankiewicz A, Skibińska M, Narożna B, Kapelski P, Zakowicz P, Gattner K, Spałek D, Mech Ł, Dmitrzak-Węglarz M. Transcriptome profiling as a biological marker for bipolar disorder sub-phenotypes. Adv Med Sci 2024; 69:61-69. [PMID: 38368745 DOI: 10.1016/j.advms.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/14/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE Bipolar affective disorder (BP) causes major functional impairment and reduced quality of life not only for patients, but also for many close relatives. We aimed to investigate mRNA levels in BP patients to find differentially expressed genes linked to specific clinical course variants; assuming that several gene expression alterations might indicate vulnerability pathways for specific course and severity of the disease. MATERIALS We searched for up- and down-regulated genes comparing patients with diagnosis of BP type I (BPI) vs type II (BPII), history of suicide attempts, psychotic symptoms, predominance of manic/hypomanic episodes, and history of numerous episodes and comorbidity of substance use disorders or anxiety disorders. RNA was extracted from peripheral blood mononuclear cells and analyzed with use of microarray slides. RESULTS Differentially expressed genes (DEGs) were found in all disease characteristics compared. The lowest number of DEGs were revealed when comparing BPI and BPII patients (18 genes), and the highest number when comparing patients with and without psychotic symptoms (3223 genes). Down-regulated genes identified here with the use of the DAVID database were among others linked to cell migration, defense response, and inflammatory response. CONCLUSIONS The most specific transcriptome profile was revealed in BP with psychotic symptoms. Differentially expressed genes in this variant include, among others, genes involved in inflammatory and immune processes. It might suggest the overlap of biological background between BP with a history of psychotic features and schizophrenia.
Collapse
Affiliation(s)
- Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Szczepankiewicz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland; Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Beata Narożna
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland; Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Przemysław Zakowicz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland; Center for Child and Adolescent Treatment in Zabór, Zielona Góra, Poland
| | - Karolina Gattner
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland; HCP Medical Center, Poznań, Poland
| | - Dominik Spałek
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland; Regional Hospital for Psychiatric and Neurological Patients, Gniezno, Poland
| | - Łukasz Mech
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznań, Poland; Regional Hospital for Psychiatric and Neurological Patients, Gniezno, Poland
| | | |
Collapse
|
4
|
Jiang X, Zai CC, Sultan AA, Dimick MK, Nikolova YS, Felsky D, Young LT, MacIntosh BJ, Goldstein BI. Association of polygenic risk for bipolar disorder with resting-state network functional connectivity in youth with and without bipolar disorder. Eur Neuropsychopharmacol 2023; 77:38-52. [PMID: 37717349 DOI: 10.1016/j.euroneuro.2023.08.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Little is known regarding the polygenic underpinnings of anomalous resting-state functional connectivity (rsFC) in youth bipolar disorder (BD). The current study examined the association of polygenic risk for BD (BD-PRS) with whole-brain rsFC at the large-scale network level in youth with and without BD. 99 youth of European ancestry (56 BD, 43 healthy controls [HC]), ages 13-20 years, completed resting-state fMRI scans. BD-PRS was calculated using summary statistics from the latest adult BD genome-wide association study. Data-driven independent component analyses of the resting-state fMRI data were implemented to examine the association of BD-PRS with rsFC in the overall sample, and separately in BD and HC. In the overall sample, higher BD-PRS was associated with lower rsFC of the salience network and higher rsFC of the frontoparietal network with frontal and parietal regions. Within the BD group, higher BD-PRS was associated with higher rsFC of the default mode network with orbitofrontal cortex, and altered rsFC of the visual network with frontal and occipital regions. Within the HC group, higher BD-PRS was associated with altered rsFC of the frontoparietal network with frontal, temporal and occipital regions. In conclusion, the current study found that BD-PRS generated based on adult genetic data was associated with altered rsFC patterns of brain networks in youth. Our findings support the usefulness of BD-PRS to investigate genetically influenced neuroimaging markers of vulnerability to BD, which can be observed in youth with BD early in their course of illness as well as in healthy youth.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alysha A Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Totonto, ON, Canada
| | - L Trevor Young
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Yang R, Zhao Y, Tan Z, Lai J, Chen J, Zhang X, Sun J, Chen L, Lu K, Cao L, Liu X. Differentiation between bipolar disorder and major depressive disorder in adolescents: from clinical to biological biomarkers. Front Hum Neurosci 2023; 17:1192544. [PMID: 37780961 PMCID: PMC10540438 DOI: 10.3389/fnhum.2023.1192544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background Mood disorders are very common among adolescents and include mainly bipolar disorder (BD) and major depressive disorder (MDD), with overlapping depressive symptoms that pose a significant challenge to realizing a rapid and accurate differential diagnosis in clinical practice. Misdiagnosis of BD as MDD can lead to inappropriate treatment and detrimental outcomes, including a poorer ultimate clinical and functional prognosis and even an increased risk of suicide. Therefore, it is of great significance for clinical management to identify clinical symptoms or features and biological markers that can accurately distinguish BD from MDD. With the aid of bibliometric analysis, we explore, visualize, and conclude the important directions of differential diagnostic studies of BD and MDD in adolescents. Materials and methods A literature search was performed for studies on differential diagnostic studies of BD and MDD among adolescents in the Web of Science Core Collection database. All studies considered for this article were published between 2004 and 2023. Bibliometric analysis and visualization were performed using the VOSviewer and CiteSpace software. Results In total, 148 publications were retrieved. The number of publications on differential diagnostic studies of BD and MDD among adolescents has been generally increasing since 2012, with the United States being an emerging hub with a growing influence in the field. Boris Birmaher is the top author in terms of the number of publications, and the Journal of Affective Disorders is the most published journal in the field. Co-occurrence analysis of keywords showed that clinical characteristics, genetic factors, and neuroimaging are current research hotspots. Ultimately, we comprehensively sorted out the current state of research in this area and proposed possible research directions in future. Conclusion This is the first-ever study of bibliometric and visual analyses of differential diagnostic studies of BD and MDD in adolescents to reveal the current research status and important directions in the field. Our research and analysis results might provide some practical sources for academic scholars and clinical practice.
Collapse
Affiliation(s)
- Ruilan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmeng Zhao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Zewen Tan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juan Lai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kangrong Lu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuemei Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yan NE, Dimick MK, Kennedy KG, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Vascular Endothelial Growth Factor Polymorphism rs699947 Is Associated with Neurostructural Phenotypes in Youth with Bipolar Disorder. J Child Adolesc Psychopharmacol 2023; 33:243-254. [PMID: 37459144 DOI: 10.1089/cap.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Background: Vascular endothelial growth factor (VEGF) may be relevant to bipolar disorder (BD) and brain structure. We evaluated VEGF rs699947 single-nucleotide polymorphism in relation to structural neuroimaging phenotypes in youth BD. Methods: We collected 3 T anatomical magnetic resonance images from 154 youth (79 BD and 75 healthy control [HC]) genotyped for VEGF rs699947. The participants were age (BD = 17.28 ± 1.40 and HC = 17.01 ± 1.83, t = -1.02, p = 0.31) and sex (BD = 63.3% females and HC = 52.0% females, χ2 = 2.01, p = 0.16) matched. Cortical thickness, surface area (SA), and volume were examined by region-of-interest (ROI) and vertex-wise analyses using general linear models (GLMs). ROI investigations selected for the prefrontal cortex (PFC), amygdala, and hippocampus. Vertex-wise analyses controlled for age, sex, and intracranial volume. Results: ROI results found lower PFC SA (p = 0.003, ηp2 = 0.06) and volume (p = 0.04, ηp2 = 0.03) in BD and a main effect of rs699947 on hippocampal volume (p = 0.03, ηp2 = 0.05). The latter two findings did not survive multiple comparisons. Vertex-wise analyses found rs699947 main effects on left postcentral gyrus volume (p < 0.001), right rostral anterior cingulate SA (p = 0.004), and right superior temporal gyrus thickness (p = 0.004). There were significant diagnosis-by-genotype interactions in the left superior temporal, left caudal middle frontal, left superior frontal, right fusiform, and right lingual gyri, and the left insular cortex. Posthoc analyses revealed the AA allele was associated with larger brain structures among HC, but smaller brain structures in BD for most clusters. Conclusions: Overall, we found preliminary evidence of divergent associations between BD and HC youth in terms of neurostructural correlates of VEGF rs699947 encompassing highly relevant frontotemporal regions.
Collapse
Affiliation(s)
- Nicole E Yan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Integrity of cerebellar tracts associated with the risk of bipolar disorder. Transl Psychiatry 2022; 12:335. [PMID: 35977925 PMCID: PMC9385641 DOI: 10.1038/s41398-022-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study examined the structural brain differences across individuals of different BD stages and the risks of developing bipolar disorder (BD) associated with these brain differences. A total of 221 participants who were recruited from the Guangzhou Brain Hospital and the community were categorized into four groups: NC (healthy control) (N = 77), high risk (HR) (N = 42), ultra-high risk (UHR) (N = 38), and bipolar disorder (BD) (N = 64) based on a list of criteria. Their demographics, clinical characteristics, and diffusion magnetic resonance imaging (dMRI) data were collected. ANCOVA results showed that the HR group had significantly reduced mean diffusivity (MD) (p = 0.043) and radial diffusivity (RD) (p = 0.039) of the left portico-ponto-cerebellar tracts when compared with the BD group. Moreover, logistic regression results showed that the specific diffusivity measures of cerebellar tracts (e.g., cortico-ponto-cerebellar tract), particularly the RD and MD revealed differences between groups at different BD stages after controlling for the covariates. The findings suggested that specific diffusivity (RD and MD) of cerebellar tracts (e.g., cortico-ponto-cerebellar tract) revealed differences between groups at different BD stages which is helpful in detecting the trajectory changes in BD syndromes in the early stages of BD, particularly when the BD syndromes start from HR stage.
Collapse
|
9
|
Lei W, Xiao Q, Wang C, Gao W, Xiao Y, Dai Y, Lu G, Su L, Zhong Y. Cell-type-specific genes associated with cortical structural abnormalities in pediatric bipolar disorder. PSYCHORADIOLOGY 2022; 2:56-65. [PMID: 38665968 PMCID: PMC11044809 DOI: 10.1093/psyrad/kkac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 04/28/2024]
Abstract
Background Pediatric bipolar disorder (PBD) has been proven to be related to abnormal brain structural connectivity, but how the abnormalities in PBD correlate with gene expression is debated. Objective This study aims at identification of cell-type-specific gene modules based on cortical structural differences in PBD. Methods Morphometric similarity networks (MSN) were computed as a marker of interareal cortical connectivity based on MRI data from 102 participants (59 patients and 43 controls). Partial least squares (PLS) regression was used to calculate MSN differences related to transcriptomic data in AHBA. The biological processes and cortical cell types associated with this gene expression profile were determined by gene enrichment tools. Results MSN analysis results demonstrated differences of cortical structure between individuals diagnosed with PBD and healthy control participants. MSN differences were spatially correlated with the PBD-related weighted genes. The weighted genes were enriched for "trans-synaptic signaling" and "regulation of ion transport", and showed significant specific expression in excitatory and inhibitory neurons. Conclusions This study identified the genes that contributed to structural network aberrations in PBD. It was found that transcriptional changes of excitatory and inhibitory neurons might be associated with abnormal brain structural connectivity in PBD.
Collapse
Affiliation(s)
- Wenkun Lei
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| | - Qian Xiao
- The Mental Health Centre of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun Wang
- The Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weijia Gao
- The Children's Hospital affiliated to the Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yiwen Xiao
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| | - Yingliang Dai
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| | - Guangming Lu
- The Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Linyan Su
- The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- Nanjing Normal University, Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu 210097, China
| |
Collapse
|
10
|
Cazes J, Dimick MK, Kennedy KG, Fiksenbaum L, Zai CC, Patel R, Islam AH, Tampakeras M, Freeman N, Kennedy JL, MacIntosh BJ, Goldstein BI. Structural neuroimaging phenotypes of a novel multi-gene risk score in youth bipolar disorder. J Affect Disord 2021; 289:135-143. [PMID: 33979723 DOI: 10.1016/j.jad.2021.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is among the most heritable psychiatric disorders, particularly in early-onset cases, owing to multiple genes of small effect. Here we examine a multi-gene risk score (MGRS), to address the gap in multi-gene research in early-onset BD. METHODS MGRS was derived from 34 genetic variants relevant to neuropsychiatric diseases and related systemic processes. Multiple MGRS were calculated across a spectrum of inclusion p-value thresholds, based on allelic associations with BD. Youth participants (123 BD, 103 healthy control [HC]) of European descent were included, of which 101 participants (58 BD, 43 HC) underwent MRI T1-weighted structural neuroimaging. Hierarchical regressions examined for main effects and MGRS-by-diagnosis interaction effects on 6 regions-of-interest (ROIs). Vertex-wise analysis also examined MGRS-by-diagnosis interactions. RESULTS MGRS based on allelic association p≤0.60 was most robust, explaining 6.8% of variance (t(226)=3.46, p=.001). There was an MGRS-by-diagnosis interaction effect on ventrolateral prefrontal cortex surface area (vlPFC; β=.21, p=.0007). Higher MGRS was associated with larger vlPFC surface area in BD vs. HC. There were 8 significant clusters in vertex-wise analyses, primarily in fronto-temporal regions, including vlPFC. LIMITATIONS Cross-sectional design, modest sample size. CONCLUSIONS There was a diagnosis-by-MGRS interaction effect on vlPFC surface area, a region involved in emotional processing, emotional regulation, and reward response. Vertex-wise analysis also identified several clusters overlapping this region. This preliminary study provides an example of an approach to imaging-genetics that is intermediate between candidate gene and genome-wide association studies, enriched for genetic variants with established relevance to neuropsychiatric diseases.
Collapse
Affiliation(s)
| | - Mikaela K Dimick
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kody G Kennedy
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lisa Fiksenbaum
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Clement C Zai
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Harvard T.H. Chan School of Public Health, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Ronak Patel
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alvi H Islam
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria Tampakeras
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie Freeman
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- University of Toronto, Toronto, ON, Canada; Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benjamin I Goldstein
- University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
11
|
Soler J, Lera-Miguel S, Lázaro L, Calvo R, Ferentinos P, Fañanás L, Fatjó-Vilas M. Familial aggregation analysis of cognitive performance in early-onset bipolar disorder. Eur Child Adolesc Psychiatry 2020; 29:1705-1716. [PMID: 32052174 DOI: 10.1007/s00787-020-01486-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023]
Abstract
We analysed the familial aggregation (familiality) of cognitive dimensions and explored their role as liability markers for early-onset bipolar disorder (EOBD). The sample comprised 99 subjects from 26 families, each with an offspring diagnosed with EOBD. Four cognitive dimensions were assessed: reasoning skills; attention and working memory; memory; and executive functions. Their familiality was investigated in the total sample and in a subset of healthy relatives. The intra-family resemblance score (IRS), a family-based index of the similarity of cognitive performance among family members, was calculated. Familiality was detected for the attention and working memory (AW) dimension in the total sample (ICC = 0.37, p = 0.0004) and in the subsample of healthy relatives (ICC = 0.37, p = 0.016). The IRS reflected that there are families with similar AW mean scores (either high or low) and families with heterogeneous scores. Families with the most common background for the AW dimension (IRS > 0) were selected and dichotomized in two groups according to the mean family AW score. This allowed differentiating families whose members had similar high scores than those with similar low scores: both patients (t = - 4.82, p = 0.0005) and relatives (t = - 5.04, p < 0.0001) of the two groups differed in their AW scores. AW dimension showed familial aggregation, suggesting its putative role as a familial vulnerability marker for EOBD. The IRS estimation allowed the identification of families with homogeneous scores for this dimension. This represents a first step towards the investigation of the underlying mechanisms of AW dimension and the identification of etiological subgroups.
Collapse
Affiliation(s)
- Jordi Soler
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Lera-Miguel
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Luisa Lázaro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Calvo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Lourdes Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
| |
Collapse
|
12
|
Proof-of-concept study of a multi-gene risk score in adolescent bipolar disorder. J Affect Disord 2020; 262:211-222. [PMID: 31727397 DOI: 10.1016/j.jad.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Few studies have examined multiple genetic variants concurrently for the purpose of classifying bipolar disorder (BD); the literature among youth is particularly sparse. We selected 35 genetic variants, previously implicated in BD or associated characteristics, from which to identify the most robustly predictive group of genes. METHODS 215 Caucasian adolescents (114 BD and 101 healthy controls (HC), ages 13-20 years) were included. Psychiatric diagnoses were determined based on semi-structured diagnostic interviews. Genomic DNA was extracted from saliva for genotyping. Two models were used to calculate a multi-gene risk score (MGRS). Model 1 used forward and backward regressions, and model 2 used a PLINK generated method. RESULTS In model 1, GPX3 rs3792797 was significant in the forward regression, DRD4 exonIII was significant in the backward regression; IL1β rs16944 and DISC1 rs821577 were significant in both the forward and backward regressions. These variants are involved in dopamine neurotransmission; inflammation and oxidative stress; and neuronal development. Model 1 MGRS did not significantly discriminate between BD and HC. In model 2, ZNF804A rs1344706 was significantly associated with BD; however, this association did not predict diagnosis when entered into the weighted model. LIMITATIONS This study was limited by the number of genetic variants examined and the modest sample size. CONCLUSIONS Whereas regression approaches identified four genetic variants that significantly discriminated between BD and HC, those same variants no longer discriminated between BD and HC when computed as a MGRS. Future larger studies are needed evaluating intermediate phenotypes such as neuroimaging and blood-based biomarkers.
Collapse
|
13
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1606883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Banerjee N, Liu SK, Sinha VK, Jayaswal M, Desarkar P. Attention Deficits in a Comorbidity-Free Sample of Euthymic Pediatric Bipolar Disorder. Front Psychiatry 2019; 10:148. [PMID: 30949082 PMCID: PMC6437072 DOI: 10.3389/fpsyt.2019.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
Attention deficits are considered one of the potential endophenotypic markers of Bipolar Disorder (BD). Pediatric bipolar disorder (PBD) likely has stronger genetic underpinnings than adult onset BD; therefore, demonstrating attention deficits in PBD can be both strategic and convincing in attesting their status as one of the potential endophenotypic markers of BD. However, unlike adult literature, uncertainty exists regarding the magnitude of attention deficits in PBD. In this regard, one key unresolved question is the potential impact of attention deficit hyperactivity disorder (ADHD). The main goal of the study was to examine attention deficits in a comorbidity-free sample of euthymic PBD patients. Thirty (21 boys, 9 girls) remitted PBD patients without co-morbidity and thirty age (<17 years), sex, handedness, and Full-Scale IQ matched control subjects were compared on performance on attention tasks. Working memory (WM), which might potentially confound with the attention task performances, was also examined. Compared to controls, PBD patients performed poorly on various tests of attention, but not on any WM tasks. Further, it was found that observed attention deficits were independent of residual mood symptoms, medication effect or illness characteristics. Such attention deficits in this comorbidity-free PBD sample further endorses its status as an endophenotypic marker of bipolar disorders and establishes continuity with deficits found in adult bipolar patients.
Collapse
Affiliation(s)
| | - Shi-Kai Liu
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Meera Jayaswal
- Department of Psychology, Ranchi University, Ranchi, India
| | - Pushpal Desarkar
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Lee HA, Kim JS, Lee YJ, Heo NH, Shim SH, Kwon YJ. Differences in Psychopathology between Offspring of Parents with Bipolar I Disorder and Those with Bipolar II Disorder: A Cross-Sectional Study. Psychiatry Investig 2018; 15:1135-1143. [PMID: 30360028 PMCID: PMC6318491 DOI: 10.30773/pi.2018.10.22.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate differences in psychopathology between offspring of parents with bipolar I disorder (BP-I) and those with bipolar II disorder (BP-II). METHODS The sample included 201 offspring between 6 and 17 years of age who had at least one parent with BP-I or BP-II. The offspring were diagnostically evaluated using the Korean Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. Psychopathology and Clinical characteristics were evaluated, including lifetime DSM-5 diagnoses, depression, and childhood trauma. Lifetime DSM-5 diagnoses were also compared between schoolchildren aged 6 to 11 years and adolescents aged 12 to 17 years. RESULTS In lifetime DSM-5 diagnoses, offspring of parents with BP-I had significantly increased risk of developing MDD and BP-I than those with BP-II. Regarding clinical characteristics, ADHD rating scale and childhood trauma scale were significantly higher in offspring of parents with BP-I than that in those with BP-II. CONCLUSION The present study supports that BP-I may be etiologically distinct from BP-II by a possible genetic liability. Our findings indicate that additional research related to bipolar offspring is needed to enhance understanding of differences between BP-I and BP-II.
Collapse
Affiliation(s)
- Hyeon-Ah Lee
- Department of Psychiatry, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ji-Sun Kim
- Department of Psychiatry, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Yeon-Jung Lee
- Department of Psychiatry, Seoul Hospital, College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Nam-Hun Heo
- Department of Psychiatry, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Se-Hoon Shim
- Department of Psychiatry, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Young-Joon Kwon
- Department of Psychiatry, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
16
|
Malhi GS, Morris G, Hamilton A, Outhred T, Mannie Z. Is "early intervention" in bipolar disorder what it claims to be? Bipolar Disord 2017; 19:627-636. [PMID: 29268003 DOI: 10.1111/bdi.12576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The notion of early intervention is understandably appealing for conditions such as bipolar disorder (BD), a chronic life-long illness that increases risk of suicide and diminishes quality of life. It is purported that intervening early in the course of the illness with suitable interventions could substantially alter the trajectory of BD and improve outcomes. However, while there are obvious benefits to the prompt commencement of treatment, it is important to consider the gaps in our understanding regarding the aetiopathogenesis of bipolar disorder-upon which the paradigm of early intervention is predicated. METHODS A literature search was undertaken using recognized search engines: PubMed, PsycINFO Medline, and Scopus, along with auxiliary manual searches. RESULTS This review first examines how the unpredictable nature of BD creates substantial difficulties when determining an optimal therapeutic target for early intervention. Second, the challenges with identifying appropriate populations and apposite times for early intervention strategies is discussed. Finally, the risks associated with intervening early are examined, highlighting the potential harmful effects of initiating medication. CONCLUSION Early intervention for BD is a potentially useful strategy that warrants investigation, but until the emergence and trajectory of the illness are definitive, and a clear view of key targets is achieved, a more conservative approach to treating nascent BD and its antecedent symptoms is needed.
Collapse
Affiliation(s)
- Gin S Malhi
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW, , Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW,, Australia
| | - Grace Morris
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW, , Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW,, Australia
| | - Amber Hamilton
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW, , Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW,, Australia
| | - Tim Outhred
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW, , Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW,, Australia
| | - Zola Mannie
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW, , Australia.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW,, Australia
| |
Collapse
|
17
|
van Hulzen KJ, Scholz CJ, Franke B, Ripke S, Klein M, McQuillin A, Sonuga-Barke EJ, Kelsoe JR, Landén M, Andreassen OA, Lesch KP, Weber H, Faraone SV, Arias-Vasquez A, Reif A. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biol Psychiatry 2017; 82:634-641. [PMID: 27890468 PMCID: PMC7027938 DOI: 10.1016/j.biopsych.2016.08.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BPD) are frequently co-occurring and highly heritable mental health conditions. We hypothesized that BPD cases with an early age of onset (≤21 years old) would be particularly likely to show genetic covariation with ADHD. METHODS Genome-wide association study data were available for 4609 individuals with ADHD, 9650 individuals with BPD (5167 thereof with early-onset BPD), and 21,363 typically developing controls. We conducted a cross-disorder genome-wide association study meta-analysis to identify whether the observed comorbidity between ADHD and BPD could be due to shared genetic risks. RESULTS We found a significant single nucleotide polymorphism-based genetic correlation between ADHD and BPD in the full and age-restricted samples (rGfull = .64, p = 3.13 × 10-14; rGrestricted = .71, p = 4.09 × 10-16). The meta-analysis between the full BPD sample identified two genome-wide significant (prs7089973 = 2.47 × 10-8; prs11756438 = 4.36 × 10-8) regions located on chromosomes 6 (CEP85L) and 10 (TAF9BP2). Restricting the analyses to BPD cases with an early onset yielded one genome-wide significant association (prs58502974 = 2.11 × 10-8) on chromosome 5 in the ADCY2 gene. Additional nominally significant regions identified contained known expression quantitative trait loci with putative functional consequences for NT5DC1, NT5DC2, and CACNB3 expression, whereas functional predictions implicated ABLIM1 as an allele-specific expressed gene in neuronal tissue. CONCLUSIONS The single nucleotide polymorphism-based genetic correlation between ADHD and BPD is substantial, significant, and consistent with the existence of genetic overlap between ADHD and BPD, with potential differential genetic mechanisms involved in early and later BPD onset.
Collapse
Affiliation(s)
- Kimm J.E. van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Claus J. Scholz
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | | | | | | - John R. Kelsoe
- Department of Psychiatry, University of California, San Diego, USA
| | - Mikael Landén
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ole A. Andreassen
- NORMENT - KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Stephen V. Faraone
- Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA,K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
18
|
Croarkin PE, Luby JL, Cercy K, Geske JR, Veldic M, Simonson M, Joshi PT, Wagner KD, Walkup JT, Nassan MM, Cuellar-Barboza AB, Casuto L, McElroy SL, Jensen PS, Frye MA, Biernacka JM. Genetic Risk Score Analysis in Early-Onset Bipolar Disorder. J Clin Psychiatry 2017; 78:1337-1343. [PMID: 28199072 PMCID: PMC5818996 DOI: 10.4088/jcp.15m10314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In this study, we performed a candidate genetic risk score (GRS) analysis of early-onset bipolar disorder (BD). METHODS Treatment of Early Age Mania (TEAM) study enrollment and sample collection took place from 2003 to 2008. Mayo Clinic Bipolar Biobank samples were collected from 2009 to 2013. Genotyping and analyses for the present study took place from 2013 to 2014. The diagnosis of BD was based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. Eight single-nucleotide polymorphisms (SNPs), previously reported in genome-wide association studies to be associated with BD, were chosen for GRS analysis in early-onset bipolar disease. These SNPs map to 3 genes: CACNA1C (calcium channel, voltage-dependent, L type, alpha 1C subunit), ANK3 (ankyrin-3, node of Ranvier [ankyrin G]), and ODZ4 (teneurin transmembrane protein 4 [formerly "odz, odd Oz/10-m homolog 4 {Drosophila}, ODZ4"]). The 8 candidate SNPs were genotyped in patients from the TEAM study (n = 69); adult patients with BD (n = 732), including a subset with early-onset illness (n = 192); and healthy controls (n = 776). GRS analyses were performed to compare early-onset cases with controls. In addition, associations of early-onset BD with individual SNPs and haplotypes were explored. RESULTS GRS analysis revealed associations of the risk score with early-onset BD (P = .01). Gene-level haplotype analysis comparing TEAM patients with controls suggested association of early-onset BD with a CACNA1C haplotype (global test, P = .01). At the level of individual SNPs, comparison of TEAM cases with healthy controls provided nominally significant evidence for association of SNP rs10848632 in CACNA1C with early-onset BD (P = .017), which did not remain significant after correction for multiple comparisons. CONCLUSIONS These preliminary analyses suggest that previously identified BD risk loci, especially CACNA1C, have a role in early-onset BD, possibly with stronger effects than for late-onset BD.
Collapse
Affiliation(s)
- Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First St SW, Rochester, MN 55905.
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kelly Cercy
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer R Geske
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Marin Veldic
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Simonson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Paramjit T Joshi
- Department of Psychiatry and Behavioral Sciences, Children's National Medical Center, Washington, DC, USA
| | - Karen Dineen Wagner
- Department of Psychiatry and Behavioral Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| | - John T Walkup
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, USA
| | - Malik M Nassan
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Mark A Frye
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna M Biernacka
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Kennedy KP, Cullen KR, DeYoung CG, Klimes-Dougan B. The genetics of early-onset bipolar disorder: A systematic review. J Affect Disord 2015; 184:1-12. [PMID: 26057335 PMCID: PMC5552237 DOI: 10.1016/j.jad.2015.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Early-onset bipolar disorder has been associated with a significantly worse prognosis than late-onset BD and has been hypothesized to be a genetically homogenous subset of BD. A sizeable number of studies have investigated early-onset BD through linkage-analyses, candidate-gene association studies, genome-wide association studies (GWAS), and analyses of copy number variants (CNVs), but this literature has not yet been reviewed. METHODS A systematic review was conducted using the PubMed database on articles published online before January 15, 2015 and after 1990. Separate searches were made for linkage studies, candidate gene-association studies, GWAS, and studies on CNVs. RESULTS Seventy-three studies were included in our review. There is a lack of robust positive findings on the genetics of early-onset BD in any major molecular genetics method. LIMITATIONS Early-onset populations were quite small in some studies. Variance in study methods hindered efforts to interpret results or conduct meta-analysis. CONCLUSIONS The field is still at an early phase for research on early-onset BD. The largely null findings mirror the results of most genetics research on BD. Although most studies were underpowered, the null findings could mean that early-onset BD may not be as genetically homogenous as has been hypothesized or even that early-onset BD does not differ genetically from adult-onset BD. Nevertheless, clinically the probabilistic developmental risk trajectories associated with early-onset that may not be primarily genetically determined continued to warrant scrutiny. Future research should dramatically expand sample sizes, use atheoretical research methods like GWAS, and standardize methods.
Collapse
|
20
|
Roybal DJ, Barnea-Goraly N, Kelley R, Bararpour L, Howe ME, Reiss AL, Chang KD. Widespread white matter tract aberrations in youth with familial risk for bipolar disorder. Psychiatry Res 2015; 232:184-92. [PMID: 25779034 PMCID: PMC6147249 DOI: 10.1016/j.pscychresns.2015.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 11/15/2022]
Abstract
Few studies have examined multiple measures of white matter (WM) differences in youth with familial risk for bipolar disorder (FR-BD). To investigate WM in the FR-BD group, we used three measures of WM structure and two methods of analysis. We used fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) to analyze diffusion tensor imaging (DTI) findings in 25 youth with familial risk for bipolar disorder, defined as having both a parent with BD and mood dysregulation, and 16 sex-, age-, and IQ-matched healthy controls. We conducted a whole brain voxelwise analysis using tract based spatial statistics (TBSS). Subsequently, we conducted a complementary atlas-based, region-of-interest analysis using Diffeomap to confirm results seen in TBSS. When TBSS was used, significant widespread between-group differences were found showing increased FA, increased AD, and decreased RD in the FR-BD group in the bilateral uncinate fasciculus, cingulum, cingulate, superior fronto-occipital fasciculus (SFOF), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus, and corpus callosum. Atlas-based analysis confirmed significant between-group differences, with increased FA and decreased RD in the FR-BD group in the SLF, cingulum, and SFOF. We found significant widespread WM tract aberrations in youth with familial risk for BD using two complementary methods of DTI analysis.
Collapse
Affiliation(s)
- Donna J Roybal
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine(,) Stanford University, Stanford, CA, USA.
| | - Naama Barnea-Goraly
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan Kelley
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Layla Bararpour
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Meghan E Howe
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine(,) Stanford University, Stanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kiki D Chang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine(,) Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Sucksdorff D, Chudal R, Suominen A, Jokiranta E, Brown AS, Sourander A. Bipolar disorder and parental psychopathology. Soc Psychiatry Psychiatr Epidemiol 2014; 49:1973-84. [PMID: 24791657 DOI: 10.1007/s00127-014-0885-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE Few population-based studies have examined the association between parental psychopathology and bipolar disorder (BPD) in offspring. One limitation is lack of control for potential confounding by indicators of parental socio-economic status or maternal smoking during pregnancy. Furthermore, none of them included analyses restricted to parental diagnoses received prior to the birth of the offspring. Associations could not be affected by child-related factors affecting the parent in such analyses. This study explores associations between those parental psychiatric disorders diagnosed at any point of time as well as those diagnosed before offspring birth, and BPD in offspring. METHODS In this nested case-control study, we identified 1,861 cases, age up to 25 years, 3,643 matched controls, and their parents from Finnish national registers. The associations were examined using conditional logistic regression, calculating odds ratios (OR) and adjusting for region of birth, parental age and education and mother's smoking during pregnancy. RESULTS Anytime diagnosed parental disorders associating with BPD in offspring (95% confidence interval) were BPD [OR (maternal) 5.2 (2.52-10.62); OR (paternal) 8.1 (3.77-17.26)], schizophrenia and related psychoses [OR (maternal) 3.1 (1.69-5.84); OR (paternal) 4.5 (1.97-10.27)], other affective disorders [OR (maternal) 3.0 (2.08-4.21); OR (paternal) 3.0 (1.97-4.47)] and maternal anxiety disorders OR 2.6 (1.08-6.42). Statistically significant associations were also found for parental schizophrenia and related psychoses, and other affective disorders, diagnosed before offspring birth. CONCLUSIONS BPD is associated with many parental psychiatric disorders, particularly BPD and schizophrenia and related psychoses. The associations must be partially due to child-independent factors. Covariate adjustments had only a minor impact on the associations.
Collapse
Affiliation(s)
- Dan Sucksdorff
- Department of Child Psychiatry, Faculty of Medicine, Research Centre for Child Psychiatry, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 3/Teutori (3rd floor), 20014, Turku, Finland,
| | | | | | | | | | | |
Collapse
|
22
|
Mitchell RH, Goldstein BI. High Psychiatric and Medical Comorbidity in Youth with Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder. Psychiatr Ann 2014. [DOI: 10.3928/00485713-20141003-04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Malhi GS, Bargh DM, Coulston CM, Das P, Berk M. Predicting bipolar disorder on the basis of phenomenology: implications for prevention and early intervention. Bipolar Disord 2014; 16:455-70. [PMID: 24636153 DOI: 10.1111/bdi.12133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Bipolar disorder is a multifaceted illness and there is often a substantial delay between the first onset of symptoms and diagnosis. Early detection has the potential to curtail illness progression and disorder-associated burden but it requires a clear understanding of the initial bipolar prodrome. This article summarizes the phenomenology of bipolar disorder with an emphasis on the initial prodrome, the evolution of the illness, and the implications for prevention and early intervention. METHODS A literature review was undertaken using Medline, Web of Science, and a hand search of relevant literature using keywords (e.g., phenomenology, initial or early symptoms, risk factors, and predictors/prediction). Findings from the literature were reviewed and synthesized and have been put into a clinical context. RESULTS Bipolar disorder is a recurrent, persistent, and disabling illness that typically develops in adolescence or early adulthood. The literature search yielded 28 articles, in which mood lability, nonspecific, non-mood symptoms, and cyclothymic temperament were the most cited prodromal features. CONCLUSIONS A small number of key prospective studies have provided evidence in support of an initial bipolar prodrome; however, methodological differences across studies have prohibited its clear delineation. It is, therefore, not currently possible to anticipate those who will develop bipolar disorder solely on the basis of early phenomenology. Accurate characterization of the bipolar disorder prodrome through high-quality, prospective research studies with adequate control groups will ultimately facilitate prompt and accurate diagnosis.
Collapse
Affiliation(s)
- Gin S Malhi
- Department of Psychiatry, CADE Clinic, Royal North Shore Hospital, Sydney, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
24
|
Renk K, White R, Lauer BA, McSwiggan M, Puff J, Lowell A. Bipolar disorder in children. PSYCHIATRY JOURNAL 2014; 2014:928685. [PMID: 24800202 PMCID: PMC3994906 DOI: 10.1155/2014/928685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/21/2013] [Indexed: 12/31/2022]
Abstract
Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005). Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered.
Collapse
Affiliation(s)
- Kimberly Renk
- University of Central Florida, P.O. Box 161390, Orlando, FL 32816, USA
| | - Rachel White
- University of Central Florida, P.O. Box 161390, Orlando, FL 32816, USA
| | - Brea-Anne Lauer
- University of Central Florida, P.O. Box 161390, Orlando, FL 32816, USA
| | - Meagan McSwiggan
- University of Central Florida, P.O. Box 161390, Orlando, FL 32816, USA
| | - Jayme Puff
- University of Central Florida, P.O. Box 161390, Orlando, FL 32816, USA
| | - Amanda Lowell
- University of Central Florida, P.O. Box 161390, Orlando, FL 32816, USA
| |
Collapse
|
25
|
Geoffroy PA, Etain B, Scott J, Henry C, Jamain S, Leboyer M, Bellivier F. Reconsideration of bipolar disorder as a developmental disorder: Importance of the time of onset. ACTA ACUST UNITED AC 2013; 107:278-85. [DOI: 10.1016/j.jphysparis.2013.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Can pediatric bipolar-I disorder be diagnosed in the context of posttraumatic stress disorder? A familial risk analysis. Psychiatry Res 2013; 208:215-24. [PMID: 23790757 PMCID: PMC3728676 DOI: 10.1016/j.psychres.2013.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/06/2013] [Accepted: 05/12/2013] [Indexed: 01/17/2023]
Abstract
Despite ongoing concerns that traumatized children with severe symptoms of emotional dysregulation may be inappropriately receiving a diagnosis of pediatric bipolar-I (BP-I) disorder, this issue has not been adequately examined in the literature. Because both pediatric BP-I disorder and posttraumatic stress disorder (PTSD) are familial disorders, if children with both BP-I and PTSD were to be truly affected with BP-I disorder, their relatives would be at high risk for BP-I disorder. To this end, we compared patterns of familial aggregation of BP-I disorder in BP-I children with and without PTSD with age and sex matched controls. Participants were 236 youths with BP-I disorder and 136 controls of both sexes along with their siblings. Participants completed a large battery of measures designed to assess psychiatric disorders, psychosocial, educational, and cognitive parameters. Familial risk analysis revealed that relatives of BP-I probands with and without PTSD had similar elevated rates of BP-I disorder that significantly differed from those of relatives of controls. Pediatric BP-I disorder is similarly highly familial in probands with and without PTSD indicating that their co-occurrence is not due to diagnostic error.
Collapse
|
27
|
Frey BN, Andreazza AC, Houenou J, Jamain S, Goldstein BI, Frye MA, Leboyer M, Berk M, Malhi GS, Lopez-Jaramillo C, Taylor VH, Dodd S, Frangou S, Hall GB, Fernandes BS, Kauer-Sant'Anna M, Yatham LN, Kapczinski F, Young LT. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatry 2013; 47:321-32. [PMID: 23411094 DOI: 10.1177/0004867413478217] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the etiology of bipolar disorder remains uncertain, multiple studies examining neuroimaging, peripheral markers and genetics have provided important insights into the pathophysiologic processes underlying bipolar disorder. Neuroimaging studies have consistently demonstrated loss of gray matter, as well as altered activation of subcortical, anterior temporal and ventral prefrontal regions in response to emotional stimuli in bipolar disorder. Genetics studies have identified several potential candidate genes associated with increased risk for developing bipolar disorder that involve circadian rhythm, neuronal development and calcium metabolism. Notably, several groups have found decreased levels of neurotrophic factors and increased pro-inflammatory cytokines and oxidative stress markers. Together these findings provide the background for the identification of potential biomarkers for vulnerability, disease expression and to help understand the course of illness and treatment response. In other areas of medicine, validated biomarkers now inform clinical decision-making. Although the findings reviewed herein hold promise, further research involving large collaborative studies is needed to validate these potential biomarkers prior to employing them for clinical purposes. Therefore, in this positional paper from the ISBD-BIONET (biomarkers network from the International Society for Bipolar Disorders), we will discuss our view of biomarkers for these three areas: neuroimaging, peripheral measurements and genetics; and conclude the paper with our position for the next steps in the search for biomarkers for bipolar disorder.
Collapse
Affiliation(s)
- Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moreno DH, Bio DS, Petresco S, Petresco D, Gutt EK, Soeiro-de-Souza MG, Moreno RA. Burden of maternal bipolar disorder on at-risk offspring: a controlled study on family planning and maternal care. J Affect Disord 2012; 143:172-8. [PMID: 22877968 DOI: 10.1016/j.jad.2012.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 05/09/2012] [Accepted: 05/30/2012] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a highly incapacitating disease typically associated with high rates of familial dysfunction. Despite recent literature suggesting that maternal care is an important environmental factor in the development of behavioral disorders, it is unclear how much maternal care is dysfunctional in BD subjects. OBJECTIVE The objective of this study was to characterize maternal care in DSM-IV/SCID diagnosed BD type I subjects compared to healthy controls with (PD) and without (NPD) other psychiatric diagnoses. MATERIALS AND METHODS Thirty-four BD mothers and 106 controls underwent an interview about family planning and maternal care, obstetrical complications, and mother-child interactions. K-SADS-PL questions about violence exposure were used to ascertain domestic violence and physical/sexual abuse. RESULTS BD mothers were less likely to have stable unions (45.5%; p<0.01) or to live with the biological father of their children (33.3%; p<0.01), but had higher educational level and higher rates of social security use/retirement. They also had fewer children and used less contraceptive methods than controls. Children of BD women had higher rates of neonatal anoxia, and reported more physical abuse (16.1%; p=0.02) than offspring of NPD mothers. Due to BD mothers' symptoms, 33.3% of offspring suffered physical and/or psychological abuse. LIMITATIONS Post hoc analysis, and the use of questions as a surrogate of symptoms as opposed to validated instruments. CONCLUSION This is one of few reports confirming that maternal care given by BD women is dysfunctional. BD psychopathology can lead to poor maternal care and both should be considered important environmental risk factors in BD, suggesting that BD psychoeducation should include maternal care orientation.
Collapse
Affiliation(s)
- Doris Hupfeld Moreno
- Mood Disorders Unit, Department and Institute of Psychiatry, Clinical Hospital, School of Medicine, University of Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
29
|
Van Meter AR, Youngstrom EA. Cyclothymic disorder in youth: why is it overlooked, what do we know and where is the field headed? ACTA ACUST UNITED AC 2012; 2:509-519. [PMID: 23544035 DOI: 10.2217/npy.12.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cyclothymic disorder is a chronic and impairing subtype of bipolar disorder, largely neglected in pediatric research. Consequently, it is rarely diagnosed clinically despite potentially being the most prevalent form of bipolar disorder. Lack of attention has added to confusion about the diagnosis and clinical presentation of cyclothymic disorder. In pediatric studies, cyclothymic disorder is commonly grouped with 'subthreshold' presentations of bipolar disorder under the undifferentiated label 'bipolar disorder not otherwise specified'. However, research indicates that cyclothymic disorder can be reliably distinguished from the other forms of bipolar disorder and from other childhood disorders. Importantly, cyclothymic disorder may be a diathesis for more acute presentations of bipolar disorder, warranting a prominent role in dimensional models of mood and psychopathology. Current evidence suggests that cyclothymic disorder has the potential to make unique contributions to our understanding of the risk factors and outcomes associated with bipolar disorder. This potential has yet to be fully realized, limiting our knowledge and ability to intervene in a meaningful way with youth who are exhibiting symptoms of a major mood disorder. Including cyclothymic disorder in future research studies of children - particularly longitudinal outcome studies - is essential for understanding the developmental trajectory of bipolar spectrum disorders and learning how to accurately diagnosis and treat the full spectrum of bipolar disorders.
Collapse
|
30
|
Wozniak J, Faraone SV, Martelon M, McKillop HN, Biederman J. Further evidence for robust familiality of pediatric bipolar I disorder: results from a very large controlled family study of pediatric bipolar I disorder and a meta-analysis. J Clin Psychiatry 2012; 73:1328-34. [PMID: 23140652 PMCID: PMC3734541 DOI: 10.4088/jcp.12m07770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the risk for bipolar I disorder in first-degree relatives of children with DSM-IV bipolar I disorder via meta-analysis and expanded controlled study. DATA SOURCES AND EXTRACTION For the meta-analysis, PubMed was searched for scientific articles published in the world literature in English through 2011. The keywords searched were bipolar disorder, first-degree relatives, family study, and control. All online abstracts were reviewed, and relevant full manuscripts were collected and reviewed. Citations were also examined for other potentially relevant articles. The analysis included only controlled family studies that examined rates of bipolar I disorder in all first-degree relatives (parents and siblings) of pediatric bipolar I probands and that had age- and sex-matched controls. Family history studies were excluded, as were studies that were not in English, did not report bipolar I rates for all first-degree relatives, or reported only bipolar spectrum rates. Also excluded were family studies that included only adult probands. A meta-analysis was conducted of the 5 controlled family studies of pediatric bipolar I probands that met the search criteria using the random-effects model of DerSimonian and Laird. METHOD For the family study, our previous sample of DSM-IV bipolar I probands was greatly expanded using structured diagnostic interviews. The new study included 239 children aged 6-17 years who satisfied full DSM-IV diagnostic criteria for bipolar I disorder (n = 726 first-degree relatives), 162 attention-deficit/hyperactivity disorder (ADHD) probands (without bipolar I disorder; n = 511 first-degree relatives), and 136 healthy control probands (without ADHD or bipolar I disorder; n = 411 first-degree relatives). The Kaplan-Meier cumulative failure function was used to calculate survival curves and cumulative lifetime risk in relatives. Cox proportional hazard models were used to calculate the risk of bipolar I disorder in relatives. RESULTS The pooled odds ratio for bipolar I disorder in relatives was estimated to be 6.96 (95% confidence interval [CI], 4.8-10.1). First-degree relatives of bipolar I probands were also significantly more likely than first-degree relatives of both ADHD probands (hazard ratio [HR] = 3.02; 95% CI, 1.85-4.93; P < .001) and control probands (HR = 2.83; 95% CI, 1.65-4.84; P < .001) to have bipolar I disorder. CONCLUSIONS Our results document an increased familial risk for bipolar I disorder in relatives of pediatric probands with DSM-IV bipolar I disorder.
Collapse
Affiliation(s)
- Janet Wozniak
- Massachusetts General Hospital, 55 Fruit St, Yawkey 6A, Boston, MA 02114, USA.
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience & Physiology, SUNY Upstate Medical University
| | - MaryKate Martelon
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital
| | - Hannah N. McKillop
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital
| | - Joseph Biederman
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital,Department of Psychiatry at Harvard Medical School
| |
Collapse
|
31
|
Dizier MH, Etain B, Lajnef M, Lathrop M, Grozeva D, Craddock N, Henry C, Gard S, Jamain S, Leboyer M, Bellivier F, Mathieu F. Genetic heterogeneity according to age at onset in bipolar disorder: a combined positional cloning and candidate gene approach. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:653-9. [PMID: 22628130 DOI: 10.1002/ajmg.b.32069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/02/2012] [Indexed: 01/06/2023]
Abstract
This study is the first that formally tests for genetic heterogeneity of bipolar disorder (BD) according to age at onset (AAO) sub-groups by combining positional cloning and candidate gene approaches. Our previous genome-wide linkage-scan identified five genomic regions linked to early-onset form of BD. The present study uses association analysis to test genetic heterogeneity of candidate genes located in these five regions in a sample of 443 unrelated bipolar patients and 1,731 controls. The study involved the following steps: (1) test of heterogeneity by comparing early-onset BD patients versus later-onset BD patients; and (2) for significant results in step 1, comparison of early-onset BD patients and later-onset BD patients separately to controls. Two types of analyses were used: the single SNP test and the gene-based association test. We provide evidence for genetic heterogeneity within the ADRB2 (beta-2adrenoreceptor) gene region that is specifically associated with the early onset form of BD with an OR of 1.8. Unfortunately, the genotyping coverage of ADRB2 in the Wellcome Trust Case Control Consortium sample meant undermined our efforts to undertake a replication. However, as the ADRB2 gene product directly interacts with the CACNA1C gene product, and is known to be implicated in BD susceptibility, we conclude that further exploration of the relationships between ADRB2 and BD needs to be undertaken.
Collapse
|
32
|
Martelon M, Wilens TE, Anderson JP, Morrison NR, Wozniak J. Are obstetrical, perinatal, and infantile difficulties associated with pediatric bipolar disorder? Bipolar Disord 2012; 14:507-14. [PMID: 22642419 PMCID: PMC3407277 DOI: 10.1111/j.1399-5618.2012.01027.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Despite increasing acknowledgement of bipolar disorder (BD) in childhood, there is a paucity of literature that has investigated obstetrical, perinatal, and infantile difficulties and their potential link with BD. To this end, we examined difficulties during delivery, immediate post-birth, and infancy and the association with BD in childhood. METHODS From two similarly designed, ongoing, longitudinal, case-control family studies of pediatric BD (N = 327 families), we analyzed 338 children and adolescents [mean (± standard deviation) age: 12.00 ± 3.37 years]. We stratified them into three groups: healthy controls (N = 98), BD probands (N = 120), and their non-affected siblings (N = 120). All families were comprehensively assessed with a structured psychiatric diagnostic interview for psychopathology and substance use. Mothers were directly questioned regarding the pregnancy, delivery, and infancy difficulties that occurred with each child using a module from the Diagnostic Interview for Children and Adolescents-Parent Version (DICA-P). RESULTS Mothers of BD subjects were more likely to report difficulties during infancy than mothers of controls [odds ratio (95% confidence interval) = 6.6 (3.0, 14.6)]. Specifically, children with BD were more likely to have been reported as a stiffened infant [7.2 (1.1, 47.1)] and more likely to have experienced 'other' infantile difficulties [including acting colicky; 4.9 (1.3, 18.8)] compared to controls. We found no significant differences between groups in regards to obstetrical or perinatal difficulties (all p values > 0.05). CONCLUSIONS While our results add to previous literature on obstetrical and perinatal difficulties and BD, they also highlight characteristics in infancy that may be prognostic indicators for pediatric BD.
Collapse
Affiliation(s)
- Marykate Martelon
- Massachusetts General Hospital, Pediatric Psychopharmacology Unit, Boston, MA, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
OBJECTIVE Recent theories regarding the neuropathology of bipolar disorder suggest that both neurodevelopmental and neurodegenerative processes may play a role. While magnetic resonance imaging has provided significant insight into the structural, functional, and connectivity abnormalities associated with bipolar disorder, research assessing longitudinal changes has been more limited. However, such research is essential to elucidate the pathophysiology of the disorder. The aim of our review is to examine the extant literature for developmental and progressive structural and functional changes in individuals with and at risk for bipolar disorder. METHODS We conducted a literature review using MEDLINE and the following search terms: bipolar disorder, risk, child, adolescent, bipolar offspring, MRI, fMRI, DTI, PET, SPECT, cross-sectional, longitudinal, progressive, and developmental. Further relevant articles were identified by cross-referencing with identified manuscripts. CONCLUSIONS There is some evidence for developmental and progressive neurophysiological alterations in bipolar disorder, but the interpretation of correlations between neuroimaging findings and measures of illness exposure or age in cross-sectional studies must be performed with care. Prospective longitudinal studies placed in the context of normative developmental and atrophic changes in neural structures and pathways thought to be involved in bipolar disorder are needed to improve our understanding of the neurodevelopmental underpinnings and progressive changes associated with bipolar disorder.
Collapse
Affiliation(s)
- Marguerite Reid Schneider
- Physician Scientist Training Program, Neuroscience Graduate Program Department, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0516, USA
| | | | | | | | | |
Collapse
|
34
|
Van Meter AR, Youngstrom EA, Findling RL. Cyclothymic disorder: A critical review. Clin Psychol Rev 2012; 32:229-43. [DOI: 10.1016/j.cpr.2012.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/01/2012] [Accepted: 02/03/2012] [Indexed: 12/13/2022]
|
35
|
Further understanding of the comorbidity between Attention-Deficit/Hyperactivity Disorder and bipolar disorder in adults: an MRI study of cortical thickness. Psychiatry Res 2012; 202:1-11. [PMID: 22640688 PMCID: PMC3380145 DOI: 10.1016/j.pscychresns.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022]
Abstract
Although Attention-Deficit/Hyperactivity Disorder (ADHD) and Bipolar Disorder (BPD) frequently co-occur and represent a particularly morbid clinical form of both disorders, neuroimaging research addressing this comorbidity is scarce. Our aim was to evaluate cortical thickness in ADHD and BPD, testing the hypothesis that comorbid subjects (ADHD+BPD) would have neuroanatomical correlates of both disorders. Magnetic Resonance Imaging (MRI) findings were compared between 31 adults with ADHD+BPD, 18 with BPD, 26 with ADHD, and 23 healthy controls. Cortical thickness analysis of regions of interest was estimated as a function of ADHD and BPD status, using linear regression models. BPD was associated with significantly thicker cortices in 13 regions, independently of ADHD status and ADHD was associated with significantly thinner neocortical gray matter in 28 regions, independent of BPD. In the comorbid state of ADHD plus BPD, the profile of cortical abnormalities consisted of structures that are altered in both disorders individually. Results support the hypothesis that ADHD and BPD independently contribute to cortical thickness alterations of selective and distinct brain structures, and that the comorbid state represents a combinatory effect of the two. Attention to comorbidity is necessary to help clarify the heterogeneous neuroanatomy of both BPD and ADHD.
Collapse
|
36
|
Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry 2012; 17:421-32. [PMID: 21358712 DOI: 10.1038/mp.2011.8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used genome-wide single nucleotide polymorphism (SNP) data to search for the presence of copy number variants (CNVs) in 882 patients with bipolar disorder (BD) and 872 population-based controls. A total of 291 (33%) patients had an early age-at-onset < or =21 years (AO < or =21 years). We systematically filtered for CNVs that cover at least 30 consecutive SNPs and which directly affect at least one RefSeq gene. We tested whether (a) the genome-wide burden of these filtered CNVs differed between patients and controls and whether (b) the frequency of specific CNVs differed between patients and controls. Genome-wide burden analyses revealed that the frequency and size of CNVs did not differ substantially between the total samples of BD patients and controls. However, separate analysis of patients with AO < or =21 years and AO>21 years showed that the frequency of microduplications was significantly higher (P=0.0004) and the average size of singleton microdeletions was significantly larger (P=0.0056) in patients with AO < or =21 years compared with controls. A search for specific BD-associated CNVs identified two common CNVs: (a) a 160 kb microduplication on 10q11 was overrepresented in AO < or = 21 years patients (9.62%) compared with controls (3.67%, P=0.0005) and (b) a 248 kb microduplication on 6q27 was overrepresented in the AO< or = 21 years subgroup (5.84%) compared with controls (2.52%, P=0.0039). These data suggest that CNVs have an influence on the development of early-onset, but not later-onset BD. Our study provides further support for previous hypotheses of an etiological difference between early-onset and later-onset BD.
Collapse
|
37
|
Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148:1223-41. [PMID: 22424231 PMCID: PMC3351385 DOI: 10.1016/j.cell.2012.02.039] [Citation(s) in RCA: 593] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 12/21/2022]
Abstract
The genetic bases of neuropsychiatric disorders are beginning to yield to scientific inquiry. Genome-wide studies of copy number variation (CNV) have given rise to a new understanding of disease etiology, bringing rare variants to the forefront. A proportion of risk for schizophrenia, bipolar disorder, and autism can be explained by rare mutations. Such alleles arise by de novo mutation in the individual or in recent ancestry. Alleles can have specific effects on behavioral and neuroanatomical traits; however, expressivity is variable, particularly for neuropsychiatric phenotypes. Knowledge from CNV studies reflects the nature of rare alleles in general and will serve as a guide as we move forward into a new era of whole-genome sequencing.
Collapse
Affiliation(s)
- Dheeraj Malhotra
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 1020103, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Cellular Molecular and Molecular Medicine, University of California, San Diego, La Jolla, CA 1020103, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 1020103, USA
| |
Collapse
|
38
|
Reich W, Neuman RJ, Volk HE, Joyner CA, Todd RD. Comorbidity Between ADHD and Symptoms of Bipolar Disorder in a Community Sample of Children and Adolescents. Twin Res Hum Genet 2012. [DOI: 10.1375/twin.8.5.459] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe prevalence and frequency of comorbidity of possible bipolar disorder was examined with attention-deficit hyperactivity disorder (ADHD) in a nonreferred population of twins. Children and adolescents aged 7 to 18 years with a history of manic symptoms were identified from a population-based twin sample obtained from state birth records (n = 1610). The sample was enriched for ADHD; however, there was also a random control sample (n = 466), which allowed a look at the population prevalence of the disorder. Juveniles with threshold or below threshold manic episodes were further assessed for comorbidity with Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV; American Psychiatric Association, 1994) and population-defined ADHD subtypes (from latent class analysis) using Fisher's exact test. Nine juveniles who exhibited DSM-IV manic (n = 1), hypomanic (n = 2) or below threshold episodes (n = 6) were identified. The population prevalence of broadly defined mania in the random sample was 0.2%. The possible manic episodes showed significant comorbidity with population-defined severe combined and talkative ADHD subtypes. It can be concluded that there is a significant association of bipolar symptoms with two population-defined subtypes of ADHD. Episodes of possible bipolar disorders as defined by DSM-IV are uncommon in this nonreferred sample. Children and adolescents with ADHD appear to be only modestly at increased risk for bipolar disorders.
Collapse
|
39
|
Kerner B, Lambert CG, Muthén BO. Genome-wide association study in bipolar patients stratified by co-morbidity. PLoS One 2011; 6:e28477. [PMID: 22205951 PMCID: PMC3244396 DOI: 10.1371/journal.pone.0028477] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/09/2011] [Indexed: 01/08/2023] Open
Abstract
Background Bipolar disorder is a severe psychiatric disorder with high heritability. Co-morbid conditions are common and might define latent subgroups of patients that are more homogeneous with respect to genetic risk factors. Methodology In the Caucasian GAIN bipolar disorder sample of 1000 cases and 1034 controls, we tested the association of single nucleotide polymorphisms with patient subgroups defined by co-morbidity. Results Bipolar disorder with psychosis and/or substance abuse in the absence of alcohol dependence was associated with the rare variant rs1039002 in the vicinity of the gene phosphodiesterase 10A (PDE10A) on chromosome 6q27 (p = 1.7×10−8). PDE10A has been implicated in the pathophysiology of psychosis. Antagonists to the encoded protein are currently in clinical testing. Another rare variant, rs12563333 (p = 5.9×10−8) on chromosome 1q41 close to the MAP/microtubule affinity-regulating kinase 1 (MARK1) gene, approached the genome-wide level of significance in this subgroup. Homozygotes for the minor allele were present in cases and absent in controls. Bipolar disorder with alcohol dependence and other co-morbidities was associated with SNP rs2727943 (p = 3.3×10−8) on chromosome 3p26.3 located between the genes contactin-4 precursor (BIG-2) and contactin 6 (CNTN6). All three associations were found under the recessive genetic model. Bipolar disorder with low probability of co-morbid conditions did not show significant associations. Conclusion Conceptualizing bipolar disorder as a heterogeneous disorder with regard to co-morbid conditions might facilitate the identification of genetic risk alleles. Rare variants might contribute to the susceptibility to bipolar disorder.
Collapse
Affiliation(s)
- Berit Kerner
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | |
Collapse
|
40
|
Wozniak J, Petty CR, Schreck M, Moses A, Faraone SV, Biederman J. High level of persistence of pediatric bipolar-I disorder from childhood onto adolescent years: a four year prospective longitudinal follow-up study. J Psychiatr Res 2011; 45:1273-82. [PMID: 21683960 PMCID: PMC3183254 DOI: 10.1016/j.jpsychires.2010.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/02/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To examine the longitudinal course of pediatric bipolar (BP)-I disorder in youth transitioning from childhood into adolescence. METHODS We conducted a four year prospective follow-up study of 78 youth with BP-I disorder 6-17 years old at ascertainment followed up into adolescent years (13.4 ± 3.9 years). All subjects were comprehensively assessed with structured diagnostic interviews, neuropsychological testing, psychosocial, educational and treatment history assessments. BP disorder was considered persistent if subjects met full criteria for DSM-IV BP-I disorder at follow-up. RESULTS Of 78 BP-I participating youth subjects, 57 (73.1%), continued to meet full diagnostic criteria for BP-I Disorder. Of those with a non-persistent course, only 6.4% (n = 5) were euthymic (i.e., syndromatic and symptomatic remission) at the 4-year follow-up and were not receiving pharmacotherapy for the disorder. The other non-persistent cases either continued to have subthreshold BP-I disorder (n = 5, 6.4%), met full (n = 3, 3.8%) or subthreshold (n = 1, 1.3%) criteria for major depression, or were euthymic but were treated for the disorder (n = 7, 9.0%). Full persistence was associated with higher rates of major depression and disruptive behavior disorders at the follow-up assessment and higher use of stimulant medicines at the baseline assessment. Non-Peristent BP-I was also characterized by high levels of dysfunction and morbidity. CONCLUSIONS This four year follow-up shows that the majority of BP-I disorder youth continue to experience persistent disorder into their mid and late adolescent years and its persistence is associated with high levels of morbidity and disability. Persistence of subsyndromal forms of bipolar disorder was also associated with dysfunction and morbidity.
Collapse
Affiliation(s)
- Janet Wozniak
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital, Boston, MA 02114, United States.
| | | | | | | | | | | |
Collapse
|
41
|
Tozzi F, Manchia M, Galwey NW, Severino G, Del Zompo M, Day R, Matthews K, Strauss J, Kennedy JL, McGuffin P, Vincent JB, Farmer A, Muglia P. Admixture analysis of age at onset in bipolar disorder. Psychiatry Res 2011; 185:27-32. [PMID: 20580841 DOI: 10.1016/j.psychres.2009.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 11/27/2022]
Abstract
The aim of this study was to identify whether age at onset (AAO) identifies Bipolar Disorder (BD) subtypes, and to test whether the subgroups were confirmed by different clinical profiles. Admixture analysis was applied to determine a model that best fit the observed distribution of AAO in 964 BD patients. Three distributions of AAO were identified, and age means were 16.1 (S.D. 4.2), 25.4 (S.D. 2.5) and 32.2 (S.D. 9.5) years. A significant increased rate of suicide attempts, Bipolar I (BD I) caseness, and depressive onset was observed in the early-onset group when compared to those with later-onset by means of χ². Findings from extant studies and our results are remarkably consistent in showing that BD can be subdivided into three groups based on AAO distributions, and that early-onset is associated with higher rates of suicide attempts.
Collapse
|
42
|
Zappitelli MC, Bordin IA, Hatch JP, Caetano SC, Zunta-Soares G, Olvera RL, Soares JC. Lifetime psychopathology among the offspring of Bipolar I parents. Clinics (Sao Paulo) 2011; 66:725-30. [PMID: 21789371 PMCID: PMC3109366 DOI: 10.1590/s1807-59322011000500003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated high rates of psychopathology in the offspring of parents with bipolar disorder. The aim of this study was to identify psychiatric diagnoses in a sample of children of bipolar parents. METHOD This case series comprised 35 children and adolescents aged 6 to 17 years, with a mean age of 12.5 ± 2.9 years (20 males and 15 females), who had at least one parent with bipolar disorder type I. The subjects were assessed using the Schedule for Affective Disorders and Schizophrenia for School-Age Children - Present and Lifetime version (K-SADS-PL). Family psychiatric history and demographics were also evaluated. RESULTS Of the offspring studied, 71.4% had a lifetime diagnosis of at least one psychiatric disorder (28.6% with a mood disorder, 40% with a disruptive behavior disorder and 20% with an anxiety disorder). Pure mood disorders (11.4%) occurred less frequently than mood disorders comorbid with attention deficit hyperactivity disorder (17.1%). Psychopathology was commonly reported in second-degree relatives of the offspring of parents with bipolar disorder (71.4%). CONCLUSIONS Our results support previous findings of an increased risk for developing psychopathology, predominantly mood and disruptive disorders, in the offspring of bipolar individuals. Prospective studies with larger samples are needed to confirm and expand these results.
Collapse
|
43
|
Mathieu F, Dizier MH, Etain B, Jamain S, Rietschel M, Maier W, Albus M, McKeon P, Roche S, Blackwood D, Muir WJ, Henry C, Malafosse A, Preisig M, Ferrero F, Cichon S, Schumacher J, Ohlraun S, Propping P, Abou Jamra R, Schulze TG, Zelenica D, Charon C, Marusic A, Dernovsek MC, Gurling H, Nöthen M, Lathrop M, Leboyer M, Bellivier F. European collaborative study of early-onset bipolar disorder: Evidence for genetic heterogeneity on 2q14 according to age at onset. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1425-33. [PMID: 20886542 DOI: 10.1002/ajmg.b.31121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 08/03/2010] [Indexed: 02/04/2023]
Abstract
Bipolar disorder has a genetic component, but the mode of inheritance remains unclear. A previous genome scan conducted in 70 European families led to detect eight regions linked to bipolar disease. Here, we present an investigation of whether the phenotypic heterogeneity of the disorder corresponds to genetic heterogeneity in these regions using additional markers and an extended sample of families. The MLS statistic was used for linkage analyses. The predivided sample test and the maximum likelihood binomial methods were used to test genetic homogeneity between early-onset bipolar type I (cut-off of 22 years) and other types of the disorder (later onset of bipolar type I and early-onset bipolar type II), using a total of 138 independent bipolar-affected sib-pairs. Analysis of the extended sample of families supports linkage in four regions (2q14, 3p14, 16p23, and 20p12) of the eight regions of linkage suggested by our previous genome scan. Heterogeneity testing revealed genetic heterogeneity between early and late-onset bipolar type I in the 2q14 region (P = 0.0001). Only the early form of the bipolar disorder but not the late form appeared to be linked to this region. This region may therefore include a genetic factor either specifically involved in the early-onset bipolar type I or only influencing the age at onset (AAO). Our findings illustrate that stratification according to AAO may be valuable for the identification of genetic vulnerability polymorphisms. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Flavie Mathieu
- INSERM, U 955, IMRB, Department of Medical Genetics, Psychiatry Genetics, Creteil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Youngstrom EA, Arnold LE, Frazier TW. Bipolar and ADHD Comorbidity: Both Artifact and Outgrowth of Shared Mechanisms. ACTA ACUST UNITED AC 2010; 17:350-359. [PMID: 21278822 DOI: 10.1111/j.1468-2850.2010.01226.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Published rates of comorbidity between pediatric bipolar disorder (PBD) and attention-deficit/hyperactivity disorder (ADHD) have been higher than would be expected if they were independent conditions, but also dramatically different across different studies. This review examines processes that could artificially create the appearance of comorbidity or substantially bias estimates of the ADHD-BPD comorbidity rate, including: categorization of dimensional constructs, overlap among diagnostic criteria, over-splitting, developmental sequencing, and referral or surveillance biases. Evidence also suggests some mechanisms for "true" BPD-ADHD comorbidity, including shared risk factors, distinct subtypes, and weak causal relationships. Keys to differential diagnosis include focusing on episodic presentation and non-overlapping symptoms unique to mania.
Collapse
|
45
|
McNamara RK, Nandagopal JJ, Strakowski SM, DelBello MP. Preventative strategies for early-onset bipolar disorder: towards a clinical staging model. CNS Drugs 2010; 24:983-96. [PMID: 21090835 DOI: 10.2165/11539700-000000000-00000] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bipolar disorder is a chronic and typically recurring illness with significant psychosocial morbidity. Although the aetiological factors that contribute to the onset of mania, and by definition bipolar I disorder, are poorly understood, it most commonly occurs during the adolescent period. Putative risk factors for developing bipolar disorder include having a first-degree relative with a mood disorder, physical/sexual abuse and other psychosocial stressors, substance use disorders, psychostimulant and antidepressant medication exposure and omega-3 fatty acid deficiency. Prominent prodromal clinical features include episodic symptoms of depression, anxiety, hypomania, anger/irritability and disturbances in sleep and attention. Because prodromal mood symptoms precede the onset of mania by an average of 10 years, and there is low specificity of risk factors and prodromal features for mania, interventions initiated prior to onset of the disorder (primary prevention) or early in the course of the disorder (early or secondary prevention) must be safe and well tolerated upon long-term exposure. Indeed, antidepressant and psychostimulant medications may precipitate the onset of mania. Although mood stabilizers and atypical antipsychotic medications exhibit efficacy in youth with bipolar I disorder, their efficacy for the treatment of prodromal mood symptoms is largely unknown. Moreover, mood stabilizers and atypical antipsychotics are associated with prohibitive treatment-emergent adverse effects. In contrast, omega-3 fatty acids have neurotrophic and neuroprotective properties and have been found to be efficacious, safe and well tolerated in the treatment of manic and depressive symptoms in children and adolescents. Together, extant evidence endorses a clinical staging model in which subjects at elevated risk for developing mania are treated with safer interventions (i.e. omega-3 fatty acids, family-focused therapy) in the prodromal phase, followed by pharmacological agents with potential adverse effects for nonresponsive cases and secondary prevention. This approach warrants evaluation in prospective longitudinal trials in youth determined to be at ultra-high risk for bipolar I disorder.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
46
|
Etain B, Dumaine A, Mathieu F, Chevalier F, Henry C, Kahn JP, Deshommes J, Bellivier F, Leboyer M, Jamain S. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 2010; 15:748-55. [PMID: 19125158 PMCID: PMC2937032 DOI: 10.1038/mp.2008.148] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is one of the most common and persistent psychiatric disorders. Early-onset BD has been shown to be the most severe and familial form. We recently carried out a whole-genome linkage analysis on sibpairs affected by early-onset BD and showed that the 20p12 region was more frequently shared in our families than expected by chance. The synaptosomal-associated protein SNAP25 is a presynaptic plasma membrane protein essential for the triggering of vesicular fusion and neurotransmitter release, and for which abnormal protein levels have been reported in postmortem studies of bipolar patients. We hypothesised that variations in the gene encoding SNAP25, located on chromosome 20p12, might influence the susceptibility to early-onset BD. We screened SNAP25 for mutations and performed a case-control association study in 197 patients with early-onset BD, 202 patients with late-onset BD and 136 unaffected subjects. In addition, we analysed the expression level of the two SNAP25 isoforms in 60 brains. We showed that one variant, located in the promoter region, was associated with early-onset BD but not with the late-onset subgroup. In addition, individuals homozygous for this variant showed a significant higher SNAP25b expression level in prefrontal cortex. These results show that variations in SNAP25, associated with an increased gene expression level in prefrontal cortex, might predispose to early-onset BD. Further analyses of this gene, as well as analysis of genes encoding for the SNAP25 protein partners, are required to understand the impact of such molecular mechanisms in BD.
Collapse
Affiliation(s)
- Bruno Etain
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Anne Dumaine
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Flavie Mathieu
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Fabien Chevalier
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Chantal Henry
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Jean-Pierre Kahn
- Service de psychiatrie et psychologie clinique
CHU NancyHôpital Jeanne-d'ArcNancy,FR
| | - Jasmine Deshommes
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Frank Bellivier
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Marion Leboyer
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Stéphane Jamain
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,* Correspondence should be adressed to: Stéphane Jamain
| |
Collapse
|
47
|
Pfeifer JC, Kowatch RA, DelBello MP. Pharmacotherapy of bipolar disorder in children and adolescents: recent progress. CNS Drugs 2010; 24:575-93. [PMID: 20441242 DOI: 10.2165/11533110-000000000-00000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Child and adolescent bipolar disorder (BPD) is a serious psychiatric disorder that often causes significant impairment in functioning. Pharmacological intervention is the cornerstone of treatment for bipolar youth, although psychotherapeutic interventions may be beneficial as adjunctive treatment. Medications used for the treatment of BPD in adults are still commonly used for bipolar children and adolescents. With the recent US FDA indication of risperidone, aripiprazole, quetiapine and olanzapine for the treatment of bipolar youth, the atypical antipsychotics are rapidly becoming a first-line treatment option. However, these agents are associated with adverse effects such as increased appetite, weight gain and type II diabetes mellitus. Although several evidence-based medications are now available for the treatment of BPD in younger populations, additional studies to evaluate the short- and long-term efficacy and potential for adverse events of these and other medications are needed.
Collapse
Affiliation(s)
- Jonathan C Pfeifer
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
48
|
Wozniak J, Faraone SV, Mick E, Monuteaux M, Coville A, Biederman J. A controlled family study of children with DSM-IV bipolar-I disorder and psychiatric co-morbidity. Psychol Med 2010; 40:1079-88. [PMID: 19891803 PMCID: PMC3077106 DOI: 10.1017/s0033291709991437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND To estimate the spectrum of familial risk for psychopathology in first-degree relatives of children with unabridged DSM-IV bipolar-I disorder (BP-I). METHOD We conducted a blinded, controlled family study using structured diagnostic interviews of 157 children with BP-I probands (n=487 first-degree relatives), 162 attention deficit hyperactivity disorder (ADHD) (without BP-I) probands (n=511 first-degree relatives), and 136 healthy control (without ADHD or BP-I) probands (n=411 first-degree relatives). RESULTS The morbid risk (MR) of BP-I disorder in relatives of BP-I probands (MR=0.18) was increased 4-fold [95% confidence interval (CI) 2.3-6.9, p<0.001] over the risk to relatives of control probands (MR=0.05) and 3.5-fold (95% CI 2.1-5.8, p<0.001) over the risk to relatives of ADHD probands (MR=0.06). In addition, relatives of children with BP-I disorder had high rates of psychosis, major depression, multiple anxiety disorders, substance use disorders, ADHD and antisocial disorders compared with relatives of control probands. Only the effect for antisocial disorders lost significance after accounted for by the corresponding diagnosis in the proband. Familial rates of ADHD did not differ between ADHD and BP-I probands. CONCLUSIONS Our results document an increased familial risk for BP-I disorder in relatives of pediatric probands with DSM-IV BP-I. Relatives of probands with BP-I were also at increased risk for other psychiatric disorders frequently associated with pediatric BP-I. These results support the validity of the diagnosis of BP-I in children as defined by DSM-IV. More work is needed to better understand the nature of the association between these disorders in probands and relatives.
Collapse
Affiliation(s)
- J Wozniak
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD at Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
OBJECTIVE The literature on bipolar in children and adolescents was reviewed to provide an update for clinicians. REVIEW PROCESS Literature of particular relevance to evidence-based practice was selected for critical review. OUTCOMES An up-to-date overview of clinical features, epidemiology, prognosis, aetiology, assessment and intervention was provided. CONCLUSIONS Bipolar disorder in children and adolescence is a relatively common, multifactorially determined and recurring problem which persists into adulthood. Psychometrically robust screening questionnaires and structured interviews facilitate reliable assessment. Multimodal chronic care programmes involving medication (notably lithium) and family-oriented psychotherapy are currently the treatment of choice.
Collapse
Affiliation(s)
- Alan Carr
- University College Dublin, Belfield, Ireland.
| |
Collapse
|
50
|
Usher J, Leucht S, Falkai P, Scherk H. Correlation between amygdala volume and age in bipolar disorder - a systematic review and meta-analysis of structural MRI studies. Psychiatry Res 2010; 182:1-8. [PMID: 20226638 DOI: 10.1016/j.pscychresns.2009.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/17/2009] [Accepted: 09/18/2009] [Indexed: 10/19/2022]
Abstract
The amygdala has gained special interest regarding the neuropathology of bipolar disorder (BD). Structural magnetic resonance imaging (MRI) studies with patients suffering from BD have yielded quite inconsistent results with respect to amygdala volume. We performed a meta-analysis of structural MRI studies that investigated right and left amygdala volume in pediatric and adult patients with BD. The aim was to assess the heterogeneous findings and to investigate whether a correlation between amygdala volume and the patient's age exists. Studies were searched for in "Pub Med" (last search June 2007), and data for right and left amygdala volume in cm(3) were extracted and combined in a meta-analysis. Thirteen studies with 389 scans of patients and 488 scans of healthy control subjects (HC) were included. The impact of age on the difference in amygdala volume between patients and HC was assessed by meta-regression. The amygdala volume was bilaterally reduced in the overall sample of patients with BD and the pediatric subsample. The results of the adult studies were less homogeneous, and on average, no significant difference between adult patients and HC was found. A meta-regression analysis revealed a positive correlation between mean age and amygdala volume in patients with BD. We speculate that amygdala volume is reduced at the onset of the disease and increases with age.
Collapse
Affiliation(s)
- Juliana Usher
- Department of Psychiatry and Psychotherapy, Georg-August-University Goettingen, Germany
| | | | | | | |
Collapse
|