1
|
Pérez MJ, Carden TR, Dos Santos Claro PA, Silberstein S, Páez PM, Cheli VT, Correale J, Pasquini JM. Transferrin Enhances Neuronal Differentiation. ASN Neuro 2023; 15:17590914231170703. [PMID: 37093743 PMCID: PMC10134178 DOI: 10.1177/17590914231170703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Although transferrin (Tf) is a glycoprotein best known for its role in iron delivery, iron-independent functions have also been reported. Here, we assessed apoTf (aTf) treatment effects on Neuro-2a (N2a) cells, a mouse neuroblastoma cell line which, once differentiated, shares many properties with neurons, including process outgrowth, expression of selective neuronal markers, and electrical activity. We first examined the binding of Tf to its receptor (TfR) in our model and verified that, like neurons, N2a cells can internalize Tf from the culture medium. Next, studies on neuronal developmental parameters showed that Tf increases N2a survival through a decrease in apoptosis. Additionally, Tf accelerated the morphological development of N2a cells by promoting neurite outgrowth. These pro-differentiating effects were also observed in primary cultures of mouse cortical neurons treated with aTf, as neurons matured at a higher rate than controls and showed a decrease in the expression of early neuronal markers. Further experiments in iron-enriched and iron-deficient media showed that Tf preserved its pro-differentiation properties in N2a cells, with results hinting at a modulatory role for iron. Moreover, N2a-microglia co-cultures revealed an increase in IL-10 upon aTf treatment, which may be thought to favor N2a differentiation. Taken together, these findings suggest that Tf reduces cell death and favors the neuronal differentiation process, thus making Tf a promising candidate to be used in regenerative strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- María Julia Pérez
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Tomas Roberto Carden
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Paula Ayelen Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBIoBA), CONICET-Partner Institute of The Max Plank Society, Buenos Aires, Argentina
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBIoBA), CONICET-Partner Institute of The Max Plank Society, Buenos Aires, Argentina
| | - Pablo Martin Páez
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, New York, USA
| | - Veronica Teresita Cheli
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jorge Correale
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | - Juana M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Benedikt J, Malpica-Nieves CJ, Rivera Y, Méndez-González M, Nichols CG, Veh RW, Eaton MJ, Skatchkov SN. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules 2022; 12:biom12121812. [PMID: 36551240 PMCID: PMC9775384 DOI: 10.3390/biom12121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium.
Collapse
Affiliation(s)
- Jan Benedikt
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Christian J. Malpica-Nieves
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| | - Yomarie Rivera
- Department of Chiropractic, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | | | - Colin G. Nichols
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Charité, 10115 Berlin, Germany
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| |
Collapse
|
3
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
4
|
Liu J, Qu C, Han C, Chen MM, An LJ, Zou W. Potassium channels and their role in glioma: A mini review. Mol Membr Biol 2020; 35:76-85. [PMID: 32067536 DOI: 10.1080/09687688.2020.1729428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
K+ channels regulate a multitude of biological processes and play important roles in a variety of diseases by controlling potassium flow across cell membranes. They are widely expressed in the central and peripheral nervous system. As a malignant tumor derived from nerve epithelium, glioma has the characteristics of high incidence, high recurrence rate, high mortality rate, and low cure rate. Since glioma cells show invasive growth, current surgical methods cannot completely remove tumors. Adjuvant chemotherapy is still needed after surgery. Because the blood-brain barrier and other factors lead to a lower effective concentration of chemotherapeutic drugs in the tumor, the recurrence rate of residual lesions is extremely high. Therefore, new therapeutic methods are needed. Numerous studies have shown that different K+ channel subtypes are differentially expressed in glioma cells and are involved in the regulation of the cell cycle of glioma cells to arrest them at different stages of the cell cycle. Increasing evidence suggests that K+ channels express in glioma cells and regulate glioma cell behaviors such as cell cycle, proliferation and apoptosis. This review article aims to summarize the current knowledge on the function of K+ channels in glioma, suggests K+ channels participating in the development of glioma.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Meng Chen
- Company of Qingdao Re-Store Life Sciences, Qingdao, China
| | - Li-Jia An
- School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science, Technology, Dalian University of Technology, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China.,Company of Qingdao Re-Store Life Sciences, Qingdao, China
| |
Collapse
|
5
|
Kuzmin VS, Egorov YV, Rozenshtraukh LV. [Electrhopysiological Effect of the Polyamine Spermine in Normoxic and Ischemic Ventricular Myocardium]. ACTA ACUST UNITED AC 2019; 59:43-51. [PMID: 30990140 DOI: 10.18087/cardio.2019.3.10240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 11/18/2022]
Abstract
Cytoplasmic polyamines (PA) are involved in control of many cellular functions and are well known as regulators of so called inward-rectifier potassium ion channels. Nevertheless, functional significance of extracellular PA in the heart is poorly elucidated. Aim of this study was to study effects of endogenous PA spermine in the ventricular myocardium. Effects of the extracellular spermine were investigated in isolated multicellular preparations of rabbit and rat ventricular myocardium. Langendorff-perfused isolated rat and rabbit hearts were also used. Action potential (APs) duration and pattern of excitation in ventricular myocardium were estimated using standard microelectrode technique and optical mapping. Functional refractory periods were assessed in Langendorff perfused hearts with the help of programmedelectrical stimulation of the ventricle. In this study extracellular PA spermine (0.1-5 mM) induced shortening of the APs in multicellular preparations of rat ventricular myocardium registered using sharp microelectrode technique. However, spermine caused only weak effect in preparations of ventricular myocardium from rabbit heart: highest tested concentration of spermine (5 mM) induced 4.7 % APs shortening. Similarly, 0.1-1 mM of spermine was unable to alter substantially ventricular effective refractory periods in isolated perfused rabbit hearts. In two animal species tested (rat and rabbit) 0.1-1 mM of spermine failed to affect conduction velocity and activation pattern in ventricles of isolated Langendorff-perfused hearts under normoxia. However, in the rat no-flow model of ischemia-reperfusion extracellular spermine improved conduction of excitation in ventricles. Our results allow suggesting that extracellular spermine can prevent ischemia-induced proarrhythmic changes in ventricular myocardium probably due to reduction of calcium accumulation, but this effect is significant only when PA is applied in millimolar concentrations. Also, potential anti-ischemic effect of the PA may be species specific.
Collapse
Affiliation(s)
| | - Yu V Egorov
- Institute of Experimental Cardiology of National Medical Research Center for Cardiology
| | - L V Rozenshtraukh
- Institute of Experimental Cardiology of National Medical Research Center for Cardiology
| |
Collapse
|
6
|
Usui Y, Aramaki T, Kondo S, Watanabe M. The minimal gap-junction network among melanophores and xanthophores required for stripe-pattern formation in zebrafish. Development 2019; 146:dev.181065. [DOI: 10.1242/dev.181065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Connexin39.4 (Cx39.4) and Connexin41.8 (Cx41.8), two gap-junction proteins expressed in both melanophores and xanthophores, are critical for the intercellular communication among pigment cells that is necessary for generating the stripe pigment pattern of zebrafish. We previously characterized the gap-junction properties of Cx39.4 and Cx41.8, but how these proteins contribute to stripe formation remains unclear; this is because distinct types of connexins potentially form heteromeric gap junctions, which precludes accurate elucidation of individual connexin functions in vivo. Here, by arranging Cx39.4 and Cx41.8 expression in pigment cells, we identified the simplest gap-junction network required for stripe generation: Cx39.4 expression in melanophores is required but expression in xanthophores is not necessary for stripe patterning, whereas Cx41.8 expression in xanthophores is sufficient for the patterning, and Cx41.8 expression in melanophores might stabilize the stripes. Moreover, patch-clamp recordings revealed that Cx39.4 gap junctions exhibit spermidine-dependent rectification property. Our results suggest that Cx39.4 facilitates the critical cell-cell interactions between melanophores and xanthophores that mediate a unidirectional activation-signal transfer from xanthophores to melanophores, which is essential for melanophore survival.
Collapse
Affiliation(s)
- Yuu Usui
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Agency, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Rimkute L, Kraujalis T, Snipas M, Palacios-Prado N, Jotautis V, Skeberdis VA, Bukauskas FF. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions. Front Physiol 2018; 9:362. [PMID: 29706896 PMCID: PMC5906587 DOI: 10.3389/fphys.2018.00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pHi) and cytosolic magnesium ion concentration ([Mg2+]i), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pHi and [Mg2+]i affect junctional conductance (gj) in an interdependent manner; in other words, intracellular acidification cause increase or decay in gj depending on whether [Mg2+]i is high or low, respectively, and intracellular alkalization cause reduction in gj independently of [Mg2+]i. Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pHi and [Mg2+]i. Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pHi and [Mg2+]i. Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg2+]i, while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36*E8Q lost the initial increase of gj at low [Mg2+]i and double mutation lost the sensitivity to high [Mg2+]i. These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg2+ and H+ ions.
Collapse
Affiliation(s)
- Lina Rimkute
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Applied Informatics, Kaunas University of Technology, Kaunas, Lithuania
| | - Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania
| | - Nicolas Palacios-Prado
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vaidas Jotautis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytenis A. Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
8
|
Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci 2017; 74:3863-3881. [PMID: 28864909 PMCID: PMC11107735 DOI: 10.1007/s00018-017-2609-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 01/27/2023]
Abstract
Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin's chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin's high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicana del Seguro Social, 44340, Guadalajara, Mexico
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Mei Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Neurology, Kee-Lung Medical Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Annia Galano
- Departemento de Quimica, Uninversidad Autonoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Bing Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
9
|
Xu Q, Lin X, Matiukas A, Zhang X, Veenstra RD. Specificity of the connexin W3/4 locus for functional gap junction formation. Channels (Austin) 2016; 10:453-65. [PMID: 27304225 PMCID: PMC5034775 DOI: 10.1080/19336950.2016.1200775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022] Open
Abstract
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K(+)/Cl(-) permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore.
Collapse
Affiliation(s)
- Qin Xu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xianming Lin
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Arvydas Matiukas
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xian Zhang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Richard D. Veenstra
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
10
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Frohnhöfer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein HM, Geisler R, Gehring I, Maderspacher F, Nüsslein-Volhard C, Irion U. Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biol Open 2016; 5:736-44. [PMID: 27215328 PMCID: PMC4920196 DOI: 10.1242/bio.018721] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines. Summary: We show that the polyamine spermidine, but not spermine, in addition to more general functions during early development, also specifically regulates colour pattern formation in adult zebrafish.
Collapse
Affiliation(s)
- Hans Georg Frohnhöfer
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Silke Geiger-Rudolph
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Martin Pattky
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Martin Meixner
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Carolin Huhn
- Institut für Physikalische und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Hans-Martin Maischein
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Robert Geisler
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Ines Gehring
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | - Florian Maderspacher
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| | | | - Uwe Irion
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
12
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
13
|
Irion U, Singh AP, Nüsslein-Volhard C. The Developmental Genetics of Vertebrate Color Pattern Formation. Curr Top Dev Biol 2016; 117:141-69. [DOI: 10.1016/bs.ctdb.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Veenstra RD. Establishment of the Dual Whole Cell Recording Patch Clamp Configuration for the Measurement of Gap Junction Conductance. Methods Mol Biol 2016; 1437:213-231. [PMID: 27207298 DOI: 10.1007/978-1-4939-3664-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of the patch clamp technique has enabled investigators to directly measure gap junction conductance between isolated pairs of small cells with resolution to the single channel level. The dual patch clamp recording technique requires specialized equipment and the acquired skill to reliably establish gigaohm seals and the whole cell recording configuration with high efficiency. This chapter describes the equipment needed and methods required to achieve accurate measurement of macroscopic and single gap junction channel conductances. Inherent limitations with the dual whole cell recording technique and methods to correct for series access resistance errors are defined as well as basic procedures to determine the essential electrical parameters necessary to evaluate the accuracy of gap junction conductance measurements using this approach.
Collapse
Affiliation(s)
- Richard D Veenstra
- Department of Pharmacology, SUNY Upstate Medical University, 3162 Weiskotten Hall, 766 Irving Ave., Syracuse, NY, 13210, USA.
- Department Cell and Developmental Biology, SUNY Upstate Medical University, 3162 Weiskotten Hall, 766 Irving Ave., Syracuse, NY, 13210, USA.
| |
Collapse
|
15
|
Lin X, Xu Q, Veenstra RD. Functional formation of heterotypic gap junction channels by connexins-40 and -43. Channels (Austin) 2015; 8:433-43. [PMID: 25483586 DOI: 10.4161/19336950.2014.949188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance - voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.
Collapse
Key Words
- Connexin40
- Cx37, connexin37
- Cx40, connexin40; Cx43, connexin43
- Cx45, connexin45
- E1, first extracellular loop domain
- EDTA, Ethylenediaminetetraacetic acid
- FITC, fluorescein isothiocyante
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Gj, normalized junctional conductance
- Gj,max, maximum normalized gj
- Gj,min, mimimum normalized gj
- I1 and I2, whole cell currents for cell 1 and cell 2
- Ij, junctional current
- Kon, inactivation on-rate
- N2a, mouse Neuro2a
- NT, N-terminal domain
- Popen, open probability
- RT-PCR, real-time PCR
- Rel1 and Rel2, whole cell patch electrode resistance values for cell 1 and cell 2
- Rin, renal insulinoma
- TBS, Tris buffered saline
- TRITC, tetramethylrhodamine isothiocyanate
- V1 and V2, command voltage clamp potentials for cell 1 and cell 2
- V1/2, half-inactivation voltage
- Vj, transjunctional voltage
- connexin43
- gap junctions
- gj, junctional conductance
- heterotypic
- ij, single gap junction channel current
- mCx30.2/hCx31.9, mouse connexin30.2/human connexin31.9
- pS, picoSiemen
- spermine
- transjunctional voltage gating
- wt, wild-type
- ΔI2, change in I2 in response to an applied Vj gradient produced by changing V1
- γj, single gap junction channel conductance
- τdecay, exponential decay time constant
Collapse
Affiliation(s)
- Xianming Lin
- a Department of Pharmacology ; SUNY Upstate Medical University ; Syracuse , NY USA
| | | | | |
Collapse
|
16
|
Abstract
This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA; Department of Physiology, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Misty Eaton
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA
| |
Collapse
|
17
|
Rash JR, Curti S, Vanderpool KGV, Kamasawa N, Nannapaneni S, Palacios-Prado N, Flores CE, Yasumura T, O’Brien J, Lynn BD, Bukauskas F, Nagy JI, Pereda AE. Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron 2013; 79:957-69. [PMID: 24012008 PMCID: PMC4020187 DOI: 10.1016/j.neuron.2013.06.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 12/20/2022]
Abstract
Electrical synapses are abundant in the vertebrate brain, but their functional and molecular complexities are still poorly understood. We report here that electrical synapses between auditory afferents and goldfish Mauthner cells are constructed by apposition of hemichannels formed by two homologs of mammalian connexin 36 (Cx36) and that, while Cx35 is restricted to presynaptic hemiplaques, Cx34.7 is restricted to postsynaptic hemiplaques, forming heterotypic junctions. This molecular asymmetry is associated with rectification of electrical transmission that may act to promote cooperativity between auditory afferents. Our data suggest that, in similarity to pre- and postsynaptic sites at chemical synapses, one side in electrical synapses should not necessarily be considered the mirror image of the other. While asymmetry based on the presence of two Cx36 homologs is restricted to teleost fish, it might also be based on differences in posttranslational modifications of individual connexins or in the complement of gap junction-associated proteins.
Collapse
Affiliation(s)
- John R. Rash
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - Sebastian Curti
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kimberly G. V. Vanderpool
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | | | - Srikant Nannapaneni
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Nicolas Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Carmen E. Flores
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Yasumura
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - John O’Brien
- University of Texas Health Science Center, Houston, Texas, USA
| | - Bruce D. Lynn
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Feliksas Bukauskas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - James I. Nagy
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
18
|
Beyer EC, Lin X, Veenstra RD. Interfering amino terminal peptides and functional implications for heteromeric gap junction formation. Front Pharmacol 2013; 4:67. [PMID: 23734129 PMCID: PMC3659311 DOI: 10.3389/fphar.2013.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/29/2013] [Indexed: 02/05/2023] Open
Abstract
Connexin43 (Cx43) is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx), including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37, Cx45, Cx46, and Cx50 to function in heteromeric gap junction combinations with Cx43 are well documented. Different studies disagree regarding the ability of Cx43 and Cx40 to produce functional heteromeric gap junctions with each other. We review previous studies regarding the heteromeric interactions of Cx43. The possibility of negative functional interactions between the cytoplasmic pore-forming amino-terminal (NT) domains of these connexins was assessed using pentameric connexin sequence-specific NT domain [interfering NT (iNT)] peptides applied to cells expressing homomeric Cx40, Cx37, Cx45, Cx46, and Cx50 gap junctions. A Cx43 iNT peptide corresponding to amino acids 9–13 (Ac-KLLDK-NH2) specifically inhibited the electrical coupling of Cx40 gap junctions in a transjunctional voltage (Vj)-dependent manner without affecting the function of homologous Cx37, Cx46, Cx50, and Cx45 gap junctions. A Cx40 iNT (Ac-EFLEE-OH) peptide counteracted the Vj-dependent block of Cx40 gap junctions, whereas a similarly charged Cx50 iNT (Ac-EEVNE-OH) peptide did not, suggesting that these NT domain interactions are not solely based on electrostatics. These data are consistent with functional Cx43 heteromeric gap junction formation with Cx37, Cx45, Cx46, and Cx50 and suggest that Cx40 uniquely experiences functional suppressive interactions with a Cx43 NT domain sequence. These findings present unique functional implications about the heteromeric interactions between Cx43 and Cx40 that may influence cardiac conduction in atrial myocardium and the specialized conduction system.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
19
|
Abstract
Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.
Collapse
|
20
|
Verselis VK, Srinivas M. Connexin channel modulators and their mechanisms of action. Neuropharmacology 2013; 75:517-24. [PMID: 23597508 DOI: 10.1016/j.neuropharm.2013.03.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Gap junction channels and hemichannels formed by the connexin family of proteins play important roles in many aspects of tissue homeostasis in the brain and in other organs. In addition, connexin channels have been proposed as pharmacological targets in the treatment of a number of human disorders. In this review, we describe the connexin-subtype selectivity and specificity of pharmacological agents that are commonly used to modulate connexin channels. We also highlight recent progress made toward identifying new agents for connexin channels that act in a selective and specific manner. Finally, we discuss developing insights into possible mechanisms by which these agents modulate connexin channel function. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42nd Street, New York, NY 10036, USA.
| |
Collapse
|
21
|
Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish. Sci Rep 2012; 2:473. [PMID: 22737406 PMCID: PMC3382735 DOI: 10.1038/srep00473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/11/2012] [Indexed: 12/23/2022] Open
Abstract
Gap junctions allow the direct and bidirectional transfer of small molecules between cells. Polyamine sensitivity, which has been observed for a certain gap junction in vitro, confers rectification property to gap junction. Here we report that the polyamine sensitivity of gap junctions in vivo is crucial for skin pattern formation in zebrafish. Transgenic experiments have revealed that several connexin genes were able to rescue the spot phenotype of mutant zebrafish. Mutational analyses of the N-terminal region of connexins revealed that the ExxxE motif, a hypothetical polyamine-binding site, was important for connexin's role in pattern formation. Ectopic expression of spermidine/spermine N(1)-acetyltransferase (SSAT), a polyamine metabolic enzyme, also caused stripe pattern changes, which further indicates that the polyamine sensitivity of gap junctions is crucial. This is the first report to show that polyamine sensitivity has a physiologically relevant function and is related to skin pattern formation in animals.
Collapse
|
22
|
Beyer EC, Lipkind GM, Kyle JW, Berthoud VM. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1823-30. [PMID: 22037495 DOI: 10.1016/j.bbamem.2011.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/07/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
23
|
Lin X, Gemel J, Glass A, Zemlin CW, Beyer EC, Veenstra RD. Connexin40 and connexin43 determine gating properties of atrial gap junction channels. J Mol Cell Cardiol 2009; 48:238-45. [PMID: 19486903 DOI: 10.1016/j.yjmcc.2009.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/22/2009] [Accepted: 05/22/2009] [Indexed: 11/28/2022]
Abstract
While ventricular gap junctions contain only Cx43, atrial gap junctions contain both Cx40 and Cx43; yet the functional consequences of this co-expression remain poorly understood. We quantitated the expression of Cx40 and Cx43 and their contributions to atrial gap junctional conductance (g(j)). Neonatal murine atrial myocytes showed similar abundances of Cx40 and Cx43 proteins, while ventricular myocytes contained at least 20 times more Cx43 than Cx40. Since Cx40 gap junction channels are blocked by 2 mM spermine while Cx43 channels are unaffected, we used spermine block as a functional dual whole cell patch clamp assay to determine Cx40 contributions to cardiac g(j). Slightly more than half of atrial g(j) and <or=20% of ventricular g(j) were inhibited. In myocytes from Cx40 null mice, the inhibition of ventricular g(j) was completely abolished, and the block of atrial g(j) was reduced to <20%. Compared to ventricular gap junctions, the transjunctional voltage (V(j))-dependent inactivation of atrial g(j) was reduced and kinetically slowed, while the V(j)-dependence of fast and slow inactivation was unchanged. We conclude that Cx40 and Cx43 are equally abundant in atrium and make similar contributions to atrial g(j). Co-expression of Cx40 accounts for most, but not all, of the differences in the V(j)-dependent gating properties between atrium and ventricle that may play a role in the genesis of slow myocardial conduction and arrhythmias.
Collapse
Affiliation(s)
- Xianming Lin
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
24
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
25
|
Lin X, Veenstra RD. Effect of transjunctional KCl gradients on the spermine inhibition of connexin40 gap junctions. Biophys J 2007; 93:483-95. [PMID: 17468172 PMCID: PMC1896261 DOI: 10.1529/biophysj.106.098517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 03/19/2007] [Indexed: 01/13/2023] Open
Abstract
Spermine inhibits rat connexin40 (Cx40) gap junctions. Glutamate residues at positions 9 and 13 and a basic amino acid (HKH) motif at positions 15-17 on the amino terminal domain are essential for this inhibitory activity. Questions remain as to whether spermine occludes the channel within the ion permeation pathway. To examine this question, cis or trans [KCl] was systematically lowered and the equilibrium dissociation constants (K(d)) and kinetics of unilateral spermine block on wild-type Cx40 gap junctions were determined. Asymmetric reductions in the trans [KCl] produced noticeable asymmetric shifts in the V(1/2) and G(min) values that progressively resembled G(j)-V(j) relationships observed in heterotypic connexin gap junction combinations. As cis or trans [KCl] was reduced by 25%, 50%, or 75% relative to the spermine-containing side, the transjunctional voltage (V(j))-dependent K(d) values increased or decreased, respectively. The spermine on-rates and off-rates, calculated from the junctional current decay and recovery time constants, were similarly affected. Hill coefficients for the spermine dose-response curves were approximately 0.58, indicative of negative cooperativity and possible multiple spermine inhibitory sites. The equivalent "electrical distance" (delta) ranged from 0.61 at 25% cis [KCl] to 1.4 at 25% trans [KCl], with a Hill coefficient of 1.0. Symmetrical reductions in [KCl] resulted in intermediate decreases in the spermine K(d)s, indicative of a minor electrostatic effect and a more significant effect of the transjunctional KCl electrodiffusion potential on the spermine association and dissociation rates. These data are consistent with a single spermine molecule being sufficient to occlude the Cx40 gap junction channel within the KCl permeation pathway.
Collapse
Affiliation(s)
- Xianming Lin
- Department of Pharmacology, The State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
26
|
Bai D, del Corsso C, Srinivas M, Spray DC. Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB). J Pharmacol Exp Ther 2006; 319:1452-8. [PMID: 16985167 DOI: 10.1124/jpet.106.112045] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
2-Aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor modulator, inhibits capacitive current transients measured in normal rat kidney and human embryonic kidney 293 cells, an indication of blocking gap junction channels between these cells. Here, we used the dual whole-cell patch-clamp method to study the actions of 2-APB on gap junction channels formed by selected connexins expressed in a communication-deficient neuroblastoma cell line (N2A). 2-APB dose-dependently and reversibly blocked junctional currents of connexin (Cx) 50 gap junction channels. The concentration-inhibition curve of 2-APB on the junctional current indicated an IC(50) of 3.7 microM, lower than that of most gap junction inhibitors. At a concentration of 20 microM, 2-APB also significantly blocked junctional conductance in cell pairs coupled by Cx26, Cx30, Cx36, Cx40, and Cx45 but did not appreciably affect coupling in cell pairs expressing Cx32, Cx43, and Cx46. Although concentration inhibition curves of 2-APB on Cx36 channels were similar to Cx50 (Cx36; IC(50), 3.0 microM), IC(50) values were higher for Cx43 (51.6 microM), Cx45 (18.1 microM), and Cx46 (29.4 microM). The blocking action of 2-APB did not substantially alter transjunctional voltage-dependent gating of Cx50 gap junction channels, and recordings from poorly coupled pairs of Cx50-transfected N2A cells indicated that 2-APB reduced gap junction channel open probability without changing the main state single-channel conductance. The differential efficacy of block by 2-APB of gap junction channels formed by different connexins may provide a useful tool that could be exploited in gap junction research to selectively block certain gap junction channel subtypes.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Zhang Y, Niu X, Brelidze TI, Magleby KL. Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics. ACTA ACUST UNITED AC 2006; 128:185-202. [PMID: 16847096 PMCID: PMC2151526 DOI: 10.1085/jgp.200609493] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracellular Mg2+ and natural polyamines block outward currents in BK channels in a highly voltage-dependent manner. Here we investigate the contribution of the ring of eight negatively charged residues (4 x E321/E324) at the entrance to the inner vestibule of BK channels to this block. Channels with or without (E321N/E324N) the ring of negative charge were expressed in oocytes and unitary currents were recorded from inside-out patches over a range of intracellular Mg2+ and polyamine concentrations. Removing the ring of charge greatly decreased the block, increasing K(B)(ap) (0 mV) for Mg2+ block from 48.3 +/- 3.0 to 143 +/- 8 mM, and for spermine block from 8.0 +/- 1.0 to 721 +/- 9 mM (150 mM symmetrical KCl). Polyamines with fewer amine groups blocked less: putrescine < spermidine < spermine. An equation that combined an empirical Hill function for block together with a Boltzmann function for the voltage dependence of K(B)(ap) described the voltage and concentration dependence of the block for channels with and without the ring of charge. The Hill coefficients for these descriptions were <1 for both Mg2+ and spermine block, and were unchanged by removing the ring of charge. When KCl(i) was increased from 150 mM to 3 M, the ring of charge no longer facilitated block, Mg2+ block was reduced, spermine block became negligible, and the Hill coefficients became approximately 1.0. BK channels in cell-attached oocyte patches displayed inward rectification, which was reduced for channels without the ring of charge. Taken together, these observations suggest that the ring of negative charge facilitates block through a preferential electrostatic attraction of Mg2+ and polyamine over K+. This preferential attraction of multivalent blockers over monovalent K+ would decrease the K+ available at the inner vestibule to carry outward current in the presence of Mg2+ or polyamines, while increasing the concentration of blocker available to enter and block the conduction pathway.
Collapse
Affiliation(s)
- Yaxia Zhang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
28
|
Gemel J, Lin X, Veenstra RD, Beyer EC. N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26. J Cell Sci 2006; 119:2258-68. [PMID: 16723732 PMCID: PMC3237058 DOI: 10.1242/jcs.02953] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic N-terminal domain in the connexins (Cx) has been implicated in determining several properties including connexin hetero-oligomerization, channel gating and regulation by polyamines. To elucidate the roles of potentially crucial amino acids, we produced site-directed mutants of connexins Cx40 and Cx43 (Cx40E12S,E13G and Cx43D12S,K13G) in which the charged amino acids at positions 12 and 13 were replaced with serine and glycine as found in Cx32. HeLa, N2a and HEK293 cells were transfected and studied by immunochemistry and double whole-cell patch clamping. Immunoblotting confirmed production of the mutant proteins, and immuno-fluorescence localized them to punctuate distributions along appositional membranes. Cx40E12S,E13G and Cx43D12S,K13G formed homotypic gap junction channels that allowed intercellular passage of Lucifer Yellow and electrical current, but these channels exhibited negligible voltage-dependent gating properties. Unlike wild-type Cx40, Cx40E12S,E13G channels were insensitive to block by 2 mM spermine. Affinity purification of material solubilized by Triton X-100 from cells co-expressing mutant Cx43 or mutant Cx40 with wild-type Cx40, Cx43 or Cx26 showed that introducing the mutations did not affect the compatibility or incompatibility of these proteins for heteromeric mixing. Co-expression of Cx40E12S,E13G with wild-type Cx40 or Cx43 dramatically reduced voltage-dependent gating. Thus, whereas the charged amino acids at positions 12 and 13 of Cx40 or Cx43 are not required for gap junction assembly or the compatibility of oligomerization with each other or with Cx26, they strongly influence several physiological properties including those of heteromeric channels.
Collapse
Affiliation(s)
- Joanna Gemel
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago MC4060, 5841 S. Maryland Ave, Chicago, IL 60637-1470, USA
| | - Xianming Lin
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Richard D. Veenstra
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Eric C. Beyer
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago MC4060, 5841 S. Maryland Ave, Chicago, IL 60637-1470, USA
| |
Collapse
|
29
|
Lin X, Fenn E, Veenstra RD. An amino-terminal lysine residue of rat connexin40 that is required for spermine block. J Physiol 2006; 570:251-69. [PMID: 16284078 PMCID: PMC1464307 DOI: 10.1113/jphysiol.2005.097188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/28/2005] [Accepted: 11/07/2005] [Indexed: 12/19/2022] Open
Abstract
Spermine blocks connexin40 (Cx40) gap junctions, and two cytoplasmic amino-terminal domain glutamate residues are essential for this inhibitory activity. To further examine the molecular basis for block, we mutated a portion of a basic amino acid (HKH) motif on the Cx40 amino-terminal domain. Replacement of the Cx40 H15 + K16 residues with the Q15 + A16 sequence native to spermine-insensitive connexin43 (Cx43) gap junctions increased the equilibrium dissociation constant (K(d)) and reduced the maximum inhibition by spermine. The corresponding electrical distance (delta) approximation was decreased by about 50%. The transjunctional voltage (V(j))-dependent gating of homotypic Cx40 H15Q + K16A mutant gap junctions was also significantly reduced. The minimum normalized steady-state junctional conductance (G(min)) increased from 0.17 to 0.72, with an increase in the half-inactivation voltage from 48 to 60 mV. However, the unitary junctional conductance (gamma(j); 160 pS) was only slightly altered, and the relative cation/anion conductance and permeability ratios were unchanged from wild-type Cx40 gap junction channels. The relative K(+)/Cl(-) permeability (P(K)/P(Cl)) ratio increased from six to ten when [KCl] was reduced to 25% of normal. These data suggest that the HKH motif at positions 15-17 is important to the conformational structure of the putative voltage sensor and spermine receptor of Cx40, without causing significant alteration of the electrostatic surface charge potentials that contribute to the ion selectivity of this gap junction channel.
Collapse
Affiliation(s)
- Xianming Lin
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
30
|
Hu X, Ma M, Dahl G. Conductance of connexin hemichannels segregates with the first transmembrane segment. Biophys J 2006; 90:140-50. [PMID: 16214855 PMCID: PMC1367013 DOI: 10.1529/biophysj.105.066373] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
Gap junction channels are intercellular channels that mediate the gated transfer of molecules between adjacent cells. To identify the domain determining channel conductance, the first transmembrane segment (M1) was reciprocally exchanged between Cx46 and Cx32E(1)43. The resulting chimeras exhibited conductances similar to that of the respective M1 donor. Furthermore, a chimera with the carboxy-terminal half of M1 in Cx46 replaced by that of Cx32 exhibited a conductance similar to that of Cx32E(1)43, whereas the chimera with only the amino-terminal half of M1 replaced retained the unitary conductance of wild-type Cx46. Extending the M1 domain swapping to other connexins by replacing the carboxy-terminal half of M1 in Cx46 with that of Cx37 yielded a chimera channel with increased unitary conductance close to that of Cx37. Furthermore, a point mutant of Cx46, with leucine substituted by glycine in position 35, displayed a conductance much larger than that of the wild type. Thus, the M1 segment, especially the second half, contains important determinants of conductance of the connexin channel.
Collapse
Affiliation(s)
- Xinge Hu
- Department of Physiology and Biophysics, University of Miami, School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
31
|
Bolon ML, Ouellette Y, Li F, Tyml K. Abrupt reoxygenation following hypoxia reduces electrical coupling between endothelial cells of wild-type but not connexin40 null mice in oxidant- and PKA-dependent manner. FASEB J 2005; 19:1725-7. [PMID: 16037099 DOI: 10.1096/fj.04-3446fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although electrical coupling along the arteriolar endothelium is central in arteriolar conducted response and in control of vascular resistance, little is known about the pathophysiological effect of hypoxia and reoxygenation (H/R) on this coupling. We examined this effect in a monolayer of cultured microvascular endothelial cells (ECs) derived from wild-type (WT) or connexin (Cx)40-/- mice (Cx40 is a key gap junction protein in ECs). To assess electrical coupling, we used a current injection technique and Bessel function model to compute the monolayer intercellular resistance. Hypoxia (0.1% O2, 1 h) followed by abrupt reoxygenation (5-90 min) reduced coupling (i.e., increased resistance) in WT but not in Cx40-/- monolayer. H/R increased superoxide production and reduced protein kinase A (PKA) activity in both monolayers. Activation of PKA by 8-bromo-cAMP prevented the reduction in coupling. Preloading of the WT monolayer with the antioxidant ascorbate prevented reductions in both PKA activity and cell coupling. Inhibition of PKA with 6-22 amide during normoxia mimicked the reduction in coupling. Finally, hypoxia followed by slow reoxygenation caused no change in superoxide level, PKA activity, or coupling. Using intravital microscopy, we assessed the physiological relevance of these findings in terms of KCl-induced conducted vasoconstriction in arterioles of WT mouse cremaster muscle in vivo. Ischemia (1 h) followed by abrupt reperfusion (15-30 min) reduced conduction. 8-bromo-cAMP prevented this reduction, while 6-22 amide mimicked this reduction in control nonischemic arterioles. We propose that abrupt reoxygenation reduces interendothelial electrical coupling via oxidant- and PKA-dependent signaling that targets Cx40. We suggest that this mechanism contributes to compromised arteriolar function after H/R.
Collapse
|
32
|
Salameh A, Dhein S. Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:36-58. [PMID: 16216217 DOI: 10.1016/j.bbamem.2005.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/25/2005] [Accepted: 09/06/2005] [Indexed: 11/26/2022]
Abstract
Intercellular communication in many organs is maintained via intercellular gap junction channels composed of connexins, a large protein family with a number of isoforms. This gap junction intercellular communication (GJIC) allows the propagation of action potentials (e.g., in brain, heart), and the transfer of small molecules which may regulate cell growth, differentiation and function. The latter has been shown to be involved in cancer growth: reduced GJIC often is associated with increased tumor growth or with de-differentiation processes. Disturbances of GJIC in the heart can cause arrhythmia, while in brain electrical activity during seizures seems to be propagated via gap junction channels. Many diseases or pathophysiological conditions seem to be associated with alterations of gap junction protein expression. Thus, depending on the target disease opening or closure of gap junctions may be of interest, or alteration of connexin expression. GJIC can be affected acutely by changing gap junction conductance or--more chronic--by altering connexin expression and membrane localisation. This review gives an overview on drugs affecting GJIC.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic I for Internal Medicine, Department of Cardiology, University of Leipzig, Johannisallee 32, 04103 Leipzig, Germany.
| | | |
Collapse
|
33
|
Ramanan SV, Valiunas V, Brink PR. Non-stationary fluctuation analysis of macroscopic gap junction channel records. J Membr Biol 2005; 205:81-8. [PMID: 16283588 PMCID: PMC1440518 DOI: 10.1007/s00232-005-0765-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/04/2005] [Indexed: 10/25/2022]
Abstract
Non-stationary fluctuation analysis was applied to macroscopic records of junctional currents arising from homotypic Cx37 and Cx43 gap junction channels expressed in RIN cells. The data were analyzed by a modification of existing analytical methods that takes endemic uncoupling into account. The results are consistent with both channels having open probabilities ranging from 0.7 to near unity for low transjunctional voltages. The analysis also yielded estimates of single-channel conductances for the two channel types similar to those seen in single-channel recordings. The results presented here show that fluctuation analysis can be used to extract single-channel gap junctional conductances from macroscopic double whole-cell recordings. These results also constitute empirically determined estimates of the open probability that are not model-dependent.
Collapse
Affiliation(s)
- S V Ramanan
- AU-KBC Research Center, MIT, Chromepet, Chennai 600044, India.
| | | | | |
Collapse
|
34
|
Puljung MC, Berthoud VM, Beyer EC, Hanck DA. Polyvalent cations constitute the voltage gating particle in human connexin37 hemichannels. J Gen Physiol 2004; 124:587-603. [PMID: 15504903 PMCID: PMC2234009 DOI: 10.1085/jgp.200409023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 10/04/2004] [Indexed: 11/20/2022] Open
Abstract
Connexins oligomerize to form intercellular channels that gate in response to voltage and chemical agents such as divalent cations. Historically, these are believed to be two independent processes. Here, data for human connexin37 (hCx37) hemichannels indicate that voltage gating can be explained as block/unblock without the necessity for an independent voltage gate. hCx37 hemichannels closed at negative potentials and opened in a time-dependent fashion at positive potentials. In the absence of polyvalent cations, however, the channels were open at relatively negative potentials, passing current linearly with respect to voltage. Current at negative potentials could be inhibited in a concentration-dependent manner by the addition of polyvalent cations to the bathing solution. Inhibition could be explained as voltage-dependent block of hCx37, with the field acting directly on polyvalent cations, driving them through the pore to an intracellular site. At positive potentials, in the presence of polyvalent cations, the field favored polyvalent efflux from the intracellular blocking site, allowing current flow. The rate of appearance of current depended on the species and valence of the polyvalent cation in the bathing solution. The rate of current decay upon repolarization depended on the concentration of polyvalent cations in the bathing solution, consistent with deactivation by polyvalent block, and was rapid (time constants of tens of milliseconds), implying a high local concentration of polyvalents in or near the channel pore. Sustained depolarization slowed deactivation in a flux-dependent, voltage- and time-independent fashion. The model for hCx37 voltage gating as polyvalent block/unblock can be expanded to account for observations in the literature regarding hCx37 gap junction channel behavior.
Collapse
Affiliation(s)
- Michael C Puljung
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
35
|
Musa H, Fenn E, Crye M, Gemel J, Beyer EC, Veenstra RD. Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions. J Physiol 2004; 557:863-78. [PMID: 15107469 PMCID: PMC1665163 DOI: 10.1113/jphysiol.2003.059386] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 04/23/2004] [Indexed: 11/08/2022] Open
Abstract
Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.
Collapse
Affiliation(s)
- Hassan Musa
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
36
|
Locke D, Koreen IV, Liu JY, Harris AL. Reversible pore block of connexin channels by cyclodextrins. J Biol Chem 2004; 279:22883-92. [PMID: 15044473 DOI: 10.1074/jbc.m401980200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclodextrins (CDs), a series of hollow cyclic glucosaccharides, can reversibly block molecular permeation through channels formed by connexin-32 and/or connexin-26 reconstituted into liposomes. The character of the block changes as a function of the size of the CD relative to the connexin pore diameter, suggesting that the block occurs via entry of the CD into the pore lumen and occlusion of the permeability pathway. The block occurs only when the CD is applied to the side of the pore that is normally cytoplasmic and not from the side that is normally extracellular. The block is potentiated when organic analytes are sequestered in the hydrophobic interior of the CDs. CDs may be useful as molecular tools with which to explore the structure of the connexin pore and to alter molecular movement through connexin channels.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Connexin40 (Cx40) is abundantly expressed in the atrial myocardium, ventricular conduction system, and vascular endothelial and smooth muscle cells of the mammalian cardiovascular system. Rapid conduction through cardiac tissues depends on electrotonic transfer of the action potential between neighboring cells. To determine whether transjunctional voltages (Vj) elicited by an action potential can modulate conductance of Cx40 gap junctions, simulated myocardial action potentials were applied as voltage-clamp waveforms to Cx40 gap junctions expressed in mouse neuro2A (N2A) cells. Junctional currents resembled the action potential morphology but declined by >50% from peak to near-constant plateau values. Kinetics of Cx40 voltage gating were examined at peak voltages > or =100 mV, and decay time constants changed e-fold per 17.6 mV for Vj > +/-40 mV. Junctional conductance recovered during phase 3 repolarization and early diastole to initial values. These phasic changes in junctional conductance were due to rapid decay kinetics, increasing to tens of milliseconds at peak Vj of 130 mV, and the increase in the steady-state conductance curve as Vj returned toward 0 mV. Time-dependent conductance curves for Cx40 were modeled with one inactivation and two recovery Vj-dependent components. There was a temporal correlation between development of conduction delay or block and the inactivation phase of junctional conductance. Likewise, recovery of junctional conductance was coincident with recovery from refractoriness, suggesting that gap junctions may play a role in the genesis and propagation of cardiac arrhythmias.
Collapse
Affiliation(s)
- Xianming Lin
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
38
|
Enkvetchakul D, Ebihara L, Nichols CG. Polyamine flux in Xenopus oocytes through hemi-gap junctional channels. J Physiol 2003; 553:95-100. [PMID: 12963797 PMCID: PMC2343493 DOI: 10.1113/jphysiol.2003.047910] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diverse polyamine transport systems have been described in different cells, but the molecular entities that mediate polyamine influx and efflux remain incompletely defined. We have previously demonstrated that spermidine efflux from oocytes is a simple electrodiffusive process, inhibitable by external Ca2+, consistent with permeation through a membrane cation channel. Hemi-gap junctional channels in Xenopus oocytes are formed from connexin 38 (Cx38), and produce a calcium-sensitive (Ic) current that is inhibited by external Ca2+. Spermidine efflux is also calcium sensitive, and removal of external calcium increases both Ic currents and spermidine efflux in Xenopus oocytes. Injection of Cx38 cRNA or Cx38 antisense oligonucleotides (to increase or decrease, respectively, Cx38 expression) also increases or decreases spermidine efflux in parallel. Spermidine efflux has a large voltage-dependent component, which is abolished with injection of Cx38 antisense oligonucleotides. In addition, spermidine uptake is significantly increased in Cx38 cRNA-injected oocytes in the absence of external calcium. The data indicate that hemi-gap junctional channels provide the Ca2+-inhibited pathway for electrodiffusive efflux of polyamines from oocytes, and it is likely that hemi-gap junctional channels provide Ca2+ and metabolism-sensitive polyamine permeation pathways in other cells.
Collapse
Affiliation(s)
- D Enkvetchakul
- Division of Renal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
39
|
Ebihara L. Physiology and biophysics of hemi-gap-junctional channels expressed in Xenopus oocytes. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 179:5-8. [PMID: 12940933 DOI: 10.1046/j.1365-201x.2003.01195.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gap junctional channels are intercellular channels that allow the passage of ions and other small molecules less than about 1 kD in size between neighbouring cells. They are composed of two oligomeric protein subunits called connexons or hemichannels which reside in the plasma membrane of closely opposed cells. Several recent studies suggest that unpaired connexons may be active on the non-junctional plasma membrane of cells. Here I present a short overview of the properties of connexon channels expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- L Ebihara
- Department of Physiology and Biophysics, FUHS/The Chicago Medical School, North Chicago, IL 60064, USA
| |
Collapse
|
40
|
Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK. Pore-lining residues identified by single channel SCAM studies in Cx46 hemichannels. CELL COMMUNICATION & ADHESION 2003; 10:193-9. [PMID: 14681015 PMCID: PMC4516056 DOI: 10.1080/cac.10.4-6.193.199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.
Collapse
Affiliation(s)
- J Kronengold
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
41
|
|