1
|
Urbanska M, Ge Y, Winzi M, Abuhattum S, Ali SS, Herbig M, Kräter M, Toepfner N, Durgan J, Florey O, Dori M, Calegari F, Lolo FN, Ángel del Pozo M, Taubenberger A, Cannistraci CV, Guck J. De novo identification of universal cell mechanics gene signatures. eLife 2025; 12:RP87930. [PMID: 39960760 PMCID: PMC11832173 DOI: 10.7554/elife.87930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.
Collapse
Affiliation(s)
- Marta Urbanska
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Yan Ge
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Maria Winzi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Syed Shafat Ali
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science and School of Biomedical Engineering, Tsinghua UniversityBeijingChina
- Department of Computer Science and Department of Economics, Jamia Millia IslamiaNew DelhiIndia
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Nicole Toepfner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Joanne Durgan
- Signalling Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Oliver Florey
- Signalling Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Martina Dori
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Miguel Ángel del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Carlo Vittorio Cannistraci
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science and School of Biomedical Engineering, Tsinghua UniversityBeijingChina
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| |
Collapse
|
2
|
Zemła J, Pabijan J, Kumpfe F, Luty M, Szydlak R, Øvreeide IH, Prot VE, Stokke BT, Lekka M. Entanglement of vimentin shapes the microrheological response of suspended-like melanoma WM35 cells to oscillatory strains induced by different AFM probe geometries. Biochim Biophys Acta Gen Subj 2025:130773. [PMID: 39954968 DOI: 10.1016/j.bbagen.2025.130773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Normal and pathological states of cells can be distinguished by their mechanical properties, which are thought to be determined by the organization of the actin network. In the body, cells exist in both adherent and non-adherent (suspended) states, and studies of the rheological properties of spread and suspended cells are needed to gain more insight into their response to strain. Herein, we show that WM35 melanoma cells in adherent and non-adherent states respond differently to oscillatory strain. We used an atomic force microscopy (AFM)-based microrheological approach to study the elasticity and fluidity of the cells, quantified by the storage (G') and loss (G") moduli and the transition frequency fT (G' = G"). Our results show that spread cells are stiffer than the suspended-like cells (plateau shear modulus of 3.51 ± 0.43 kPa vs 2.67 ± 0.34 kPa). We also found, from measurements made with a conical probe, that suspended-like cells are more tolerant to imposed strains. Combining AFM results and fluorescence microscopy of the cytoskeleton, we conclude that the organization and distribution of actin and vimentin within the cell body strongly influence the rheological properties of spread and suspended-like WM35 cells. The data also suggest that phosphorylated vimentin is predominant in suspended-like cells, whereas in spread cells, vimentin intermittent filaments (VIFs) form an assembled network that contributes to higher G'. The entanglement of the disassembled VIFs in suspended-like WM35 cell influences the rheological properties of such cells.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Joanna Pabijan
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Florian Kumpfe
- Bruker Nano GmbH, JPK BioAFM, Am Studio 2D, 12489 Berlin, Germany
| | - Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ingrid H Øvreeide
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Victorien E Prot
- Biomechanics, Department of Structural Engineering, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland.
| |
Collapse
|
3
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Qiu Y, Gao T, Smith BR. Mechanical deformation and death of circulating tumor cells in the bloodstream. Cancer Metastasis Rev 2024; 43:1489-1510. [PMID: 38980581 DOI: 10.1007/s10555-024-10198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.
Collapse
Affiliation(s)
- Yunxiu Qiu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Lai A, Hinz S, Dong A, Lustig M, LaBarge MA, Sohn LL. Multi-Zone Visco-Node-Pore Sensing: A Microfluidic Platform for Multi-Frequency Viscoelastic Phenotyping of Single Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406013. [PMID: 39308179 DOI: 10.1002/advs.202406013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Indexed: 11/22/2024]
Abstract
This study introduces multi-zone visco-Node-Pore Sensing (mz-visco-NPS), an electronic-based microfluidic platform for single-cell viscoelastic phenotyping. mz-visco-NPS implements a series of sinusoidal-shaped contraction zones that periodically deform a cell at specific strain frequencies, leading to changes in resistance across the zones that correspond to the cell's frequency-dependent elastic G' and viscous G″ moduli. mz-visco-NPS is validated by measuring the viscoelastic changes of MCF-7 cells when their cytoskeleton is disrupted. mz-visco-NPS is also employed to measure the viscoelastic properties of human mammary epithelial cells across the entire continuum of epithelial transformation states, from average- and high-risk primary epithelial cells, to immortal non-malignant (MCF-10A), malignant (MCF-7), and metastatic (MDA-MB-231) cell lines. With a throughput of 600 cells per hour and demonstrated ease-of-use, mz-visco-NPS reveals a remarkable level of single-cell heterogeneity that would otherwise be masked by ensemble averaging.
Collapse
Affiliation(s)
- Andre Lai
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Stefan Hinz
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, 91010, USA
| | - Alan Dong
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 94720, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 94720, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, 91010, USA
| | - Lydia L Sohn
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Mechanical Engineering, University of California, Berkeley, 94720, USA
| |
Collapse
|
6
|
Shioka I, Morita R, Yagasaki R, Wuergezhen D, Yamashita T, Fujiwara H, Okuda S. Ex vivo SIM-AFM measurements reveal the spatial correlation of stiffness and molecular distributions in 3D living tissue. Acta Biomater 2024; 189:351-365. [PMID: 39379233 DOI: 10.1016/j.actbio.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Living tissues each exhibit a distinct stiffness, which provides cells with key environmental cues that regulate their behaviors. Despite this significance, our understanding of the spatiotemporal dynamics and the biological roles of stiffness in three-dimensional tissues is currently limited due to a lack of appropriate measurement techniques. To address this issue, we propose a new method combining upright structured illumination microscopy (USIM) and atomic force microscopy (AFM) to obtain precisely coordinated stiffness maps and biomolecular fluorescence images of thick living tissue slices. Using mouse embryonic and adult skin as a representative tissue with mechanically heterogeneous structures inside, we validate the measurement principle of USIM-AFM. Live measurement of tissue stiffness distributions revealed the highly heterogeneous mechanical nature of skin, including nucleated/enucleated epithelium, mesenchyme, and hair follicle, as well as the role of collagens in maintaining its integrity. Furthermore, quantitative analysis comparing stiffness distributions in live tissue samples with those in preserved tissues, including formalin-fixed and cryopreserved tissue samples, unveiled the distinct impacts of preservation processes on tissue stiffness patterns. This series of experiments highlights the importance of live mechanical testing of tissue-scale samples to accurately capture the true spatiotemporal variations in mechanical properties. Our USIM-AFM technique provides a new methodology to reveal the dynamic nature of tissue stiffness and its correlation with biomolecular distributions in live tissues and thus could serve as a technical basis for exploring tissue-scale mechanobiology. STATEMENT OF SIGNIFICANCE: Stiffness, a simple mechanical parameter, has drawn attention in understanding the mechanobiological principles underlying the homeostasis and pathology of living tissues. To explore tissue-scale mechanobiology, we propose a technique integrating an upright structured illumination microscope and an atomic force microscope. This technique enables live measurements of stiffness distribution and fluorescent observation of thick living tissue slices. Experiments revealed the highly heterogeneous mechanical nature of mouse embryonic and adult skin in three dimensions and the previously unnoticed influences of preservation techniques on the mechanical properties of tissue at microscopic resolution. This study provides a new technical platform for live stiffness measurement and biomolecular observation of tissue-scale samples with micron-scale resolution, thus contributing to future studies of tissue- and organ-scale mechanobiology.
Collapse
Affiliation(s)
- Itsuki Shioka
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ritsuko Morita
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Rei Yagasaki
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Tadahiro Yamashita
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
7
|
Ahmine AN, Bdiri M, Féréol S, Fodil R. A comprehensive study of AFM stiffness measurements on inclined surfaces: theoretical, numerical, and experimental evaluation using a Hertz approach. Sci Rep 2024; 14:25869. [PMID: 39468207 PMCID: PMC11519481 DOI: 10.1038/s41598-024-75958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Atomic Force Microscopy (AFM) is a leading nanoscale technique known for its significant advantages in the analysis of soft materials and biological samples. Traditional AFM data analysis is often based on the Hertz model, which assumes perpendicular indentation of a planar sample. However, this assumption is not always valid due to the varying geometries of soft materials, whether natural, synthetic or biological. In this study, we present a new theoretical model that incorporates correction coefficients into Hertz's model to account for cone-like and spherical probes, and to consider local tilt at the probe-sample interface. We validate our model using finite element analysis (FEA) simulations and experimental AFM measurements on tilted polyacrylamide gels. Our results highlight the need to include local tilt at the probe-sample contact to ensure accurate AFM measurements. This represents a step forward in our understanding of the elastic properties at the surface of soft materials in the broadest sense.
Collapse
Affiliation(s)
- Anis Nassim Ahmine
- INSERM, U955 IMRB, "Biology of the Neuromuscular System" Team, Univ Paris-Est Créteil, 94010, Créteil, France
| | - Myriam Bdiri
- CNRS, UMR 7182, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Univ Paris-Est Créteil, 94320, Thiais, France
| | - Sophie Féréol
- INSERM, U955 IMRB, "Biology of the Neuromuscular System" Team, Univ Paris-Est Créteil, 94010, Créteil, France
| | - Redouane Fodil
- INSERM, U955 IMRB, "Biology of the Neuromuscular System" Team, Univ Paris-Est Créteil, 94010, Créteil, France.
| |
Collapse
|
8
|
Bergamaschi G, Biebricher AS, Witt H, Byfield FJ, Seymonson XMR, Storm C, Janmey PA, Wuite GJL. Heterogeneous force response of chromatin in isolated nuclei. Cell Rep 2024; 43:114852. [PMID: 39412986 DOI: 10.1016/j.celrep.2024.114852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
A quantitative description of nuclear mechanics is crucial for understanding its role in force sensing within eukaryotic cells. Recent studies indicate that the chromatin within the nucleus cannot be treated as a homogeneous material. To elucidate its material properties, we combine optical tweezers manipulation of isolated nuclei with multi-color fluorescence imaging of lamin and chromatin to map the response of nuclei to local deformations. Force spectroscopy reveals nuclear strain stiffening and an exponential force dependence, well described by a hierarchical chain model. Simultaneously, fluorescence data show a higher compliance of chromatin compared to the nuclear envelope at strains <30%. Micrococcal nuclease (MNase) digestion of chromatin results in nuclear softening and can be captured by our model. Additionally, we observe stretching responses showing a lipid tether signature, suggesting that these tethers originate from the nuclear membrane. Our combined approach allows us to elucidate the nuclear force response while mapping the deformation of lamin, (eu)chromatin, and membrane.
Collapse
Affiliation(s)
- Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Xamanie M R Seymonson
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
9
|
Thekkethil N, Köry J, Guo M, Stewart PS, Hill NA, Luo X. Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition. Biomech Model Mechanobiol 2024; 23:1551-1569. [PMID: 38976113 PMCID: PMC11436441 DOI: 10.1007/s10237-024-01854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/17/2024] [Indexed: 07/09/2024]
Abstract
Eukaryotic cell rheology has important consequences for vital processes such as adhesion, migration, and differentiation. Experiments indicate that cell cytoplasm can exhibit both elastic and viscous characteristics in different regimes, while the transport of fluid (cytosol) through the cross-linked filamentous scaffold (cytoskeleton) is reminiscent of mass transfer by diffusion through a porous medium. To gain insights into this complex rheological behaviour, we construct a computational model for the cell cytoplasm as a poroviscoelastic material formulated on the principles of nonlinear continuum mechanics, where we model the cytoplasm as a porous viscoelastic scaffold with an embedded viscous fluid flowing between the pores to model the cytosol. Baseline simulations (neglecting the viscosity of the cytosol) indicate that the system exhibits seven different regimes across the parameter space spanned by the viscoelastic relaxation timescale of the cytoskeleton and the poroelastic diffusion timescale; these regimes agree qualitatively with experimental measurements. Furthermore, the theoretical model also allows us to elucidate the additional role of pore fluid viscosity, which enters the system as a distinct viscous timescale. We show that increasing this viscous timescale hinders the passage of the pore fluid (reducing the poroelastic diffusion) and makes the cytoplasm rheology increasingly incompressible, shifting the phase boundaries between the regimes.
Collapse
Affiliation(s)
- Namshad Thekkethil
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| | - Jakub Köry
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Peter S Stewart
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Nicholas A Hill
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Lan M, Liu Y, Liu J, Zhang J, Haider MA, Zhang Y, Zhang Q. Matrix Viscoelasticity Tunes the Mechanobiological Behavior of Chondrocytes. Cell Biochem Funct 2024; 42:e4126. [PMID: 39324844 DOI: 10.1002/cbf.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
In articular cartilage, the pericellular matrix acting as a specialized mechanical microenvironment modulates environmental signals to chondrocytes through mechanotransduction. Matrix viscoelastic alterations during cartilage development and osteoarthritis (OA) degeneration play an important role in regulating chondrocyte fate and cartilage matrix homeostasis. In recent years, scientists are gradually realizing the importance of matrix viscoelasticity in regulating chondrocyte function and phenotype. Notably, this is an emerging field, and this review summarizes the existing literatures to the best of our knowledge. This review provides an overview of the viscoelastic properties of hydrogels and the role of matrix viscoelasticity in directing chondrocyte behavior. In this review, we elaborated the mechanotransuction mechanisms by which cells sense and respond to the viscoelastic environment and also discussed the underlying signaling pathways. Moreover, emerging insights into the role of matrix viscoelasticity in regulating chondrocyte function and cartilage formation shed light into designing cell-instructive biomaterial. We also describe the potential use of viscoelastic biomaterials in cartilage tissue engineering and regenerative medicine. Future perspectives on mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses, and biomaterial design are highlighted. Finally, this review also highlights recent strategies utilizing viscoelastic hydrogels for designing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Minhua Lan
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanli Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Junjiang Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jing Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Muhammad Adnan Haider
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanjun Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Quanyou Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Rajput SS, Singh SB, Subramanyam D, Patil S. Soft glassy rheology of single cells with pathogenic protein aggregates. SOFT MATTER 2024; 20:6266-6274. [PMID: 39054893 DOI: 10.1039/d4sm00595c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A correlation between the mechanical properties of cells and various diseases has been emerging in recent years. Atomic force microscopy (AFM) has been widely used to measure a single cell's apparent Young's modulus by treating it as a fully elastic object. More recently, quantitative characterization of the complete viscoelasticity of single cells has become possible. We performed AFM-based nano-indentation experiments on hemocytes isolated from third instar larvae to determine their viscoelasticity and found that live hemocytes, like many other cells, follow a scale-free power-law rheology (PLR) akin to soft glasses. Further, we examined the changes in the rheological response of hemocytes in the presence of pathogenic protein aggregates known to cause neurodegenerative diseases such as Huntington's disorder and amyotrophic lateral sclerosis. Our results show that cells lose their fluidity and appear more solid-like in the presence of certain aggregates, in a manner correlated to actin reorganization. More solid-like cells also display reduced intracellular transport through clathrin-mediated endocytosis (CME). However, the cell's rheology remains largely unaffected and is similar to that of wild-type (WT) hemocytes, if aggregates do not perturb the actin organization and CME. Moreover, the fluid-like nature was significantly recovered when actin organization was rescued by overexpressing specific actin interacting proteins or chaperones. Our study, for the first time, underscores a direct correlation between parameters governing glassy dynamics, actin organization and CME.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Surya Bansi Singh
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
- SP Pune University, Pune 411007, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
12
|
López-Alonso J, Eroles M, Janel S, Berardi M, Pellequer JL, Dupres V, Lafont F, Rico F. PyFMLab: Open-source software for atomic force microscopy microrheology data analysis. OPEN RESEARCH EUROPE 2024; 3:187. [PMID: 39118808 PMCID: PMC11308986 DOI: 10.12688/openreseurope.16550.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Background Atomic force microscopy (AFM) is one of the main techniques used to characterize the mechanical properties of soft biological samples and biomaterials at the nanoscale. Despite efforts made by the AFM community to promote open-source data analysis tools, standardization continues to be a significant concern in a field that requires common analysis procedures. AFM-based mechanical measurements involve applying a controlled force to the sample and measure the resulting deformation in the so-called force-distance curves. These may include simple approach and retract or oscillatory cycles at various frequencies (microrheology). To extract quantitative parameters, such as the elastic modulus, from these measurements, AFM measurements are processed using data analysis software. Although open tools exist and allow obtaining the mechanical properties of the sample, most of them only include standard elastic models and do not allow the processing of microrheology data. In this work, we have developed an open-source software package (called PyFMLab, as of python force microscopy laboratory) capable of determining the viscoelastic properties of samples from both conventional force-distance curves and microrheology measurements. Methods PyFMLab has been written in Python, which provides an accessible syntax and sufficient computational efficiency. The software features were divided into separate, self-contained libraries to enhance code organization and modularity and to improve readability, maintainability, testability, and reusability. To validate PyFMLab, two AFM datasets, one composed of simple force curves and another including oscillatory measurements, were collected on HeLa cells. Results The viscoelastic parameters obtained on the two datasets analysed using PyFMLab were validated against data processing proprietary software and against validated MATLAB routines developed before obtaining equivalent results. Conclusions Its open-source nature and versatility makes PyFMLab an open-source solution that paves the way for standardized viscoelastic characterization of biological samples from both force-distance curves and microrheology measurements.
Collapse
Affiliation(s)
- Javier López-Alonso
- Universite de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CILL—Center of Infection and Immunity of Lille, Lille, F-59000, France
| | - Mar Eroles
- Aix-Marseille Univ., CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, 13009, France
| | - Sébastien Janel
- Universite de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CILL—Center of Infection and Immunity of Lille, Lille, F-59000, France
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
- Optics 11 B.V, Amsterdam, 1101BM, The Netherlands
| | | | - Vincent Dupres
- Universite de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CILL—Center of Infection and Immunity of Lille, Lille, F-59000, France
| | - Frank Lafont
- Universite de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CILL—Center of Infection and Immunity of Lille, Lille, F-59000, France
| | - Felix Rico
- Aix-Marseille Univ., CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, 13009, France
| |
Collapse
|
13
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
14
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
15
|
Bergamaschi G, Taris KKH, Biebricher AS, Seymonson XMR, Witt H, Peterman EJG, Wuite GJL. Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR). Commun Biol 2024; 7:683. [PMID: 38834871 PMCID: PMC11150513 DOI: 10.1038/s42003-024-06367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
In the context of soft matter and cellular mechanics, microrheology - the use of micron-sized particles to probe the frequency-dependent viscoelastic response of materials - is widely used to shed light onto the mechanics and dynamics of molecular structures. Here we present the implementation of active microrheology in an Acoustic Force Spectroscopy setup (AFMR), which combines multiplexing with the possibility of probing a wide range of forces ( ~ pN to ~nN) and frequencies (0.01-100 Hz). To demonstrate the potential of this approach, we perform active microrheology on biological samples of increasing complexity and stiffness: collagen gels, red blood cells (RBCs), and human fibroblasts, spanning a viscoelastic modulus range of five orders of magnitude. We show that AFMR can successfully quantify viscoelastic properties by probing many beads with high single-particle precision and reproducibility. Finally, we demonstrate that AFMR to map local sample heterogeneities as well as detect cellular responses to drugs.
Collapse
Affiliation(s)
- Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kees-Karel H Taris
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Xamanie M R Seymonson
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Lima I, Silva A, Sousa F, Ferreira W, Freire R, de Oliveira C, de Sousa J. Measuring the viscoelastic relaxation function of cells with a time-dependent interpretation of the Hertz-Sneddon indentation model. Heliyon 2024; 10:e30623. [PMID: 38770291 PMCID: PMC11103437 DOI: 10.1016/j.heliyon.2024.e30623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
The Hertz-Sneddon elastic indentation model is widely adopted in the biomechanical investigation of living cells and other soft materials using atomic force microscopy despite the explicit viscoelastic nature of these materials. In this work, we demonstrate that an exact analytical viscoelastic force model for power-law materials, can be interpreted as a time-dependent Hertz-Sneddon-like model. Characterizing fibroblasts (L929) and osteoblasts (OFCOLII) demonstrates the model's accuracy. Our results show that the difference between Young's modulus E Y obtained by fitting force curves with the Hertz-Sneddon model and the effective Young's modulus derived from the viscoelastic force model is less than 3%, even when cells are probed at large forces where nonlinear deformation effects become significant. We also propose a measurement protocol that involves probing samples at different indentation speeds and forces, enabling the construction of the average viscoelastic relaxation function of samples by conveniently fitting the force curves with the Hertz-Sneddon model.
Collapse
Affiliation(s)
- I.V.M. Lima
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - A.V.S. Silva
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
- Instituto Federal do Rio Grande do Norte, Pau dos Ferros, 59900-000, Rio Grande do Norte, Brazil
| | - F.D. Sousa
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, 60811-905, Ceará, Brazil
| | - W.P. Ferreira
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - R.S. Freire
- Central Analítica, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - C.L.N. de Oliveira
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| | - J.S. de Sousa
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, 60440-900, Ceará, Brazil
| |
Collapse
|
17
|
Li M. Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology. Microsc Res Tech 2024; 87:631-659. [PMID: 38053519 DOI: 10.1002/jemt.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Single-cell analysis is an emerging and promising frontier in the field of life sciences, which is expected to facilitate the exploration of fundamental laws of physiological and pathological processes. Single-cell analysis allows experimental access to cell-to-cell heterogeneity to reveal the distinctive behaviors of individual cells, offering novel opportunities to dissect the complexity of severe human diseases such as cancers. Among the single-cell analysis tools, atomic force microscopy (AFM) is a powerful and versatile one which is able to nondestructively image the fine topographies and quantitatively measure multiple mechanical properties of single living cancer cells in their native states under aqueous conditions with unprecedented spatiotemporal resolution. Over the past few decades, AFM has been widely utilized to detect the structural and mechanical behaviors of individual cancer cells during the process of tumor formation, invasion, and metastasis, yielding numerous unique insights into tumor pathogenesis from the biomechanical perspective and contributing much to the field of cancer mechanobiology. Here, the achievements of AFM-based analysis of single cancer cells to advance physical oncology are comprehensively summarized, and challenges and future perspectives are also discussed. RESEARCH HIGHLIGHTS: Achievements of AFM in characterizing the structural and mechanical behaviors of single cancer cells are summarized, and future directions are discussed. AFM is not only capable of visualizing cellular fine structures, but can also measure multiple cellular mechanical properties as well as cell-generated mechanical forces. There is still plenty of room for harnessing AFM-based single-cell analysis to advance physical oncology.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Combriat T, Olsen PA, Låstad SB, Malthe-Sørenssen A, Krauss S, Dysthe DK. Acoustic Wave-Induced Stroboscopic Optical Mechanotyping of Adherent Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307929. [PMID: 38417124 DOI: 10.1002/advs.202307929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Indexed: 03/01/2024]
Abstract
In this study, a novel, high content technique using a cylindrical acoustic transducer, stroboscopic fast imaging, and homodyne detection to recover the mechanical properties (dynamic shear modulus) of living adherent cells at low ultrasonic frequencies is presented. By analyzing the micro-oscillations of cells, whole populations are simultaneously mechanotyped with sub-cellular resolution. The technique can be combined with standard fluorescence imaging allowing to further cross-correlate biological and mechanical information. The potential of the technique is demonstrated by mechanotyping co-cultures of different cell types with significantly different mechanical properties.
Collapse
Affiliation(s)
- Thomas Combriat
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Center for Computing in Science Education, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Silja Borring Låstad
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Anders Malthe-Sørenssen
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
- Center for Computing in Science Education, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Stefan Krauss
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Dag Kristian Dysthe
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| |
Collapse
|
19
|
Xie X, Sauer F, Grosser S, Lippoldt J, Warmt E, Das A, Bi D, Fuhs T, Käs JA. Effect of non-linear strain stiffening in eDAH and unjamming. SOFT MATTER 2024; 20:1996-2007. [PMID: 38323652 PMCID: PMC10900305 DOI: 10.1039/d3sm00630a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
In cell clusters, the prominent factors at play encompass contractility-based enhanced tissue surface tension and cell unjamming transition. The former effect pertains to the boundary effect, while the latter constitutes a bulk effect. Both effects share outcomes of inducing significant elongation in cells. This elongation is so substantial that it surpasses the limits of linear elasticity, thereby giving rise to additional effects. To investigate these effects, we employ atomic force microscopy (AFM) to analyze how the mechanical properties of individual cells change under such considerable elongation. Our selection of cell lines includes MCF-10A, chosen for its pronounced demonstration of the extended differential adhesion hypothesis (eDAH), and MDA-MB-436, selected due to its manifestation of cell unjamming behavior. In the AFM analyses, we observe a common trend in both cases: as elongation increases, both cell lines exhibit strain stiffening. Notably, this effect is more prominent in MCF-10A compared to MDA-MB-436. Subsequently, we employ AFM on a dynamic range of 1-200 Hz to probe the mechanical characteristics of cell spheroids, focusing on both surface and bulk mechanics. Our findings align with the results from single cell investigations. Specifically, MCF-10A cells, characterized by strong contractile tissue tension, exhibit the greatest stiffness on their surface. Conversely, MDA-MB-436 cells, which experience significant elongation, showcase their highest stiffness within the bulk region. Consequently, the concept of single cell strain stiffening emerges as a crucial element in understanding the mechanics of multicellular spheroids (MCSs), even in the case of MDA-MB-436 cells, which are comparatively softer in nature.
Collapse
Affiliation(s)
- Xiaofan Xie
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Frank Sauer
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Steffen Grosser
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Jürgen Lippoldt
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Enrico Warmt
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Thomas Fuhs
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| | - Josef A Käs
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, University of Leipzig, Germany.
| |
Collapse
|
20
|
do Nascimento Amorim MDS, Silva França ÁR, Santos-Oliveira R, Rodrigues Sanches J, Marinho Melo T, Araújo Serra Pinto B, Barbosa LRS, Alencar LMR. Atomic Force Microscopy Applied to the Study of Tauopathies. ACS Chem Neurosci 2024; 15:699-715. [PMID: 38305187 DOI: 10.1021/acschemneuro.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do Nascimento Amorim
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Álefe Roger Silva França
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Jonas Rodrigues Sanches
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Leandro R S Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| |
Collapse
|
21
|
Piacenti AR, Adam C, Hawkins N, Wagner R, Seifert J, Taniguchi Y, Proksch R, Contera S. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy. Macromolecules 2024; 57:1118-1127. [PMID: 38370912 PMCID: PMC10867883 DOI: 10.1021/acs.macromol.3c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
Polymeric materials are widely used in industries ranging from automotive to biomedical. Their mechanical properties play a crucial role in their application and function and arise from the nanoscale structures and interactions of their constitutive polymer molecules. Polymeric materials behave viscoelastically, i.e., their mechanical responses depend on the time scale of the measurements; quantifying these time-dependent rheological properties at the nanoscale is relevant to develop, for example, accurate models and simulations of those materials, which are needed for advanced industrial applications. In this paper, an atomic force microscopy (AFM) method based on the photothermal actuation of an AFM cantilever is developed to quantify the nanoscale loss tangent, storage modulus, and loss modulus of polymeric materials. The method is then validated on styrene-butadiene rubber (SBR), demonstrating the method's ability to quantify nanoscale viscoelasticity over a continuous frequency range up to 5 orders of magnitude (0.2-20,200 Hz). Furthermore, this method is combined with AFM viscoelastic mapping obtained with amplitude modulation-frequency modulation (AM-FM) AFM, enabling the extension of viscoelastic quantification over an even broader frequency range and demonstrating that the novel technique synergizes with preexisting AFM techniques for quantitative measurement of viscoelastic properties. The method presented here introduces a way to characterize the viscoelasticity of polymeric materials and soft and biological matter in general at the nanoscale for any application.
Collapse
Affiliation(s)
- Alba R. Piacenti
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| | - Casey Adam
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
- Department
of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
| | - Nicholas Hawkins
- Department
of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
| | - Ryan Wagner
- School
of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacob Seifert
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| | | | - Roger Proksch
- Asylum
Research – An Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Sonia Contera
- Clarendon
Laboratory, Department of Physics, University
of Oxford, OX1 3PU Oxford, U.K.
| |
Collapse
|
22
|
Gisbert VG, Espinosa FM, Sanchez JG, Serrano MC, Garcia R. Nanorheology and Nanoindentation Revealed a Softening and an Increased Viscous Fluidity of Adherent Mammalian Cells upon Increasing the Frequency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304884. [PMID: 37775942 DOI: 10.1002/smll.202304884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Indexed: 10/01/2023]
Abstract
The nanomechanical response of a cell depends on the frequency at which the cell is probed. The components of the cell that contribute to this property and their interplay are not well understood. Here, two force microscopy methods are integrated to characterize the frequency and/or the velocity-dependent properties of living cells. It is shown on HeLa and fibroblasts, that cells soften and fluidize upon increasing the frequency or the velocity of the deformation. This property was independent of the type and values (25 or 1000 nm) of the deformation. At low frequencies (2-10 Hz) or velocities (1-10 µm s-1 ), the response is dominated by the mechanical properties of the cell surface. At higher frequencies (>10 Hz) or velocities (>10 µm s-1 ), the response is dominated by the hydrodynamic drag of the cytosol. Softening and fluidization does not seem to involve any structural remodeling. It reflects a redistribution of the applied stress between the solid and liquid-like elements of the cell as the frequency or the velocity is changed. The data indicates that the quasistatic mechanical properties of a cell featuring a cytoskeleton pathology might be mimicked by the response of a non-pathological cell which is probed at a high frequency.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Francsico M Espinosa
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Juan G Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Maria Concepcion Serrano
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| |
Collapse
|
23
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
24
|
de Pablo PJ, Mateu MG. Mechanical Properties of Viruses. Subcell Biochem 2024; 105:629-691. [PMID: 39738960 DOI: 10.1007/978-3-031-65187-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Structural biology techniques have greatly contributed to unveiling the interplay between molecular structure, physico-chemical properties, and biological function of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical features of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength, and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of some physical properties of viruses and their contribution to virus function. Virus particles are subjected to internal and external forces and they may have adapted to withstand, and even use those forces. This chapter focuses on the mechanical properties of virus particles, their structural determinants, their use to study virus function, and some possible biological implications, of which several examples are provided.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Department of Physics of the Condensed Matter, C03, and IFIMAC (Instituto de Física de la Materia Condensada), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Arce FT, Younger S, Gaber AA, Mascarenhas JB, Rodriguez M, Dudek SM, Garcia JGN. Lamellipodia dynamics and microrheology in endothelial cell paracellular gap closure. Biophys J 2023; 122:4730-4747. [PMID: 37978804 PMCID: PMC10754712 DOI: 10.1016/j.bpj.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Vascular endothelial cells (ECs) form a semipermeable barrier separating vascular contents from the interstitium, thereby regulating the movement of water and molecular solutes across small intercellular gaps, which are continuously forming and closing. Under inflammatory conditions, however, larger EC gaps form resulting in increased vascular leakiness to circulating fluid, proteins, and cells, which results in organ edema and dysfunction responsible for key pathophysiologic findings in numerous inflammatory disorders. In this study, we extend our earlier work examining the biophysical properties of EC gap formation and now address the role of lamellipodia, thin sheet-like membrane projections from the leading edge, in modulating EC spatial-specific contractile properties and gap closure. Micropillars, fabricated by soft lithography, were utilized to form reproducible paracellular gaps in human lung ECs. Using time-lapse imaging via optical microscopy, rates of EC gap closure and motility were measured with and without EC stimulation with the barrier-enhancing sphingolipid, sphingosine-1-phosphate. Peripheral ruffle formation was ubiquitous during gap closure. Kymographs were generated to quantitatively compare the lamellipodia dynamics of sphingosine-1-phosphate-stimulated and -unstimulated ECs. Utilizing atomic force microscopy, we characterized the viscoelastic behavior of EC lamellipodia. Our results indicate decreased stiffness and increased liquid-like behavior of expanding lamellipodia compared with regions away from the cellular edge (lamella and cell body) during EC gap closure, results in sync with the rapid kinetics of protrusion/retraction motion. We hypothesize this dissipative EC behavior during gap closure is linked to actomyosin cytoskeletal rearrangement and decreased cross-linking during lamellipodia expansion. In summary, these studies of the kinetic and mechanical properties of EC lamellipodia and ruffles at gap boundaries yield insights into the mechanisms of vascular barrier restoration and potentially a model system for examining the druggability of lamellipodial protein targets to enhance vascular barrier integrity.
Collapse
Affiliation(s)
- Fernando Teran Arce
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida.
| | - Scott Younger
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Amir A Gaber
- Department of Medicine, University of Arizona, Tucson, Arizona
| | | | - Marisela Rodriguez
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida; Department of Medicine, University of Arizona, Tucson, Arizona
| | - Steven M Dudek
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida.
| |
Collapse
|
26
|
Cho DH, Aguayo S, Cartagena-Rivera AX. Atomic force microscopy-mediated mechanobiological profiling of complex human tissues. Biomaterials 2023; 303:122389. [PMID: 37988897 PMCID: PMC10842832 DOI: 10.1016/j.biomaterials.2023.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Tissue mechanobiology is an emerging field with the overarching goal of understanding the interplay between biophysical and biochemical responses affecting development, physiology, and disease. Changes in mechanical properties including stiffness and viscosity have been shown to describe how cells and tissues respond to mechanical cues and modify critical biological functions. To quantitatively characterize the mechanical properties of tissues at physiologically relevant conditions, atomic force microscopy (AFM) has emerged as a highly versatile biomechanical technology. In this review, we describe the fundamental principles of AFM, typical AFM modalities used for tissue mechanics, and commonly used elastic and viscoelastic contact mechanics models to characterize complex human tissues. Furthermore, we discuss the application of AFM-based mechanobiology to characterize the mechanical responses within complex human tissues to track their developmental, physiological/functional, and diseased states, including oral, hearing, and cancer-related tissues. Finally, we discuss the current outlook and challenges to further advance the field of tissue mechanobiology. Altogether, AFM-based tissue mechanobiology provides a mechanistic understanding of biological processes governing the unique functions of tissues.
Collapse
Affiliation(s)
- David H Cho
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Schools of Engineering, Medicine, and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Van der Meeren L, Efimova I, Demuynck R, Parakhonskiy B, Krysko DV, Skirtach AG. Mechanobiology of Ferroptotic Cancer Cells as a Novel "Eat-Me" Signal: Regulating Efferocytosis through Layer-by-Layer Coating. Adv Healthc Mater 2023; 12:e2301025. [PMID: 37273241 DOI: 10.1002/adhm.202301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Indexed: 06/06/2023]
Abstract
The importance of the clearance of dead cells is shown to have a regulatory role for normal tissue homeostasis and for the modulation of immune responses. However, how mechanobiological properties of dead cells affect efferocytosis remains largely unknown. Here, it is reported that the Young's modulus of cancer cells undergoing ferroptosis is reduced. To modulate their Young's modulus a layer-by-layer (LbL) nanocoating is developed. Scanning electron and fluorescence microscopy confirm coating efficiency of ferroptotic cells while atomic force microscopy reveals encapsulation of the dead cells increases their Young's modulus dependent on the number of applied LbL layers which increases their efferocytosis by primary macrophages. This work demonstrates the crucial role of mechanobiology of dead cells in regulating their efferocytosis by macrophages which can be exploited for the development of novel therapeutic strategies for diseases where modulation of efferocytosis can be potentially beneficial and for the design of drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Louis Van der Meeren
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Iuliia Efimova
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Robin Demuynck
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Bogdan Parakhonskiy
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Andre G Skirtach
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| |
Collapse
|
28
|
Gu Y, Zhang C, Zhang Y, Tan W, Yu X, Zhang T, Liu L, Zhao Y, Hao L. A Review of the Development and Challenges of Cell Mechanical Models. IEEE Trans Nanobioscience 2023; 22:673-684. [PMID: 37018687 DOI: 10.1109/tnb.2023.3235868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell models can express a variety of cell information, including mechanical properties, electrical properties, and chemical properties. Through the analysis of these properties, we can fully understand the physiological state of cells. As such, cell modeling has gradually become a topic of great interest, and a number of cell models have been established over the last few decades. In this paper, the development of various cell mechanical models has been systematically reviewed. First, continuum theoretical models, which were established by ignoring cell structures, are summarized, including the cortical membrane droplet model, solid model, power series structure damping model, multiphase model, and finite element model. Next, microstructural models based on the structure and function of cells are summarized, including the tension integration model, porous solid model, hinged cable net model, porous elastic model, energy dissipation model, and muscle model. What's more, from multiple viewpoints, the strengths and weaknesses of each cell mechanical model have been analyzed in detail. Finally, the potential challenges and applications in the development of cell mechanical models are discussed. This paper contributes to the development of different fields, such as biological cytology, drug therapy, and bio-syncretic robots.
Collapse
|
29
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
30
|
Aufderhorst-Roberts A, Cussons S, Brockwell DJ, Dougan L. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel. SOFT MATTER 2023; 19:3167-3178. [PMID: 37067782 DOI: 10.1039/d2sm01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent β = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of β, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.
Collapse
Affiliation(s)
- Anders Aufderhorst-Roberts
- Department of Physics, Centre for Materials Physics, University of Durham, Durham, DH1 3LE, UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
31
|
Shen L, Tian Z, Zhang J, Zhu H, Yang K, Li T, Rich J, Upreti N, Hao N, Pei Z, Jin G, Yang S, Liang Y, Chaohui W, Huang TJ. Acousto-dielectric tweezers for size-insensitive manipulation and biophysical characterization of single cells. Biosens Bioelectron 2023; 224:115061. [PMID: 36634509 DOI: 10.1016/j.bios.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The intrinsic biophysical properties of cells, such as mechanical, acoustic, and electrical properties, are valuable indicators of a cell's function and state. However, traditional single-cell biophysical characterization methods are hindered by limited measurable properties, time-consuming procedures, and complex system setups. This study presents acousto-dielectric tweezers that leverage the balance between controllable acoustophoretic and dielectrophoretic forces applied on cells through surface acoustic waves and alternating current electric fields, respectively. Particularly, the balanced acoustophoretic and dielectrophoretic forces can trap cells at equilibrium positions independent of the cell size to differentiate between various cell-intrinsic mechanical, acoustic, and electrical properties. Experimental results show our mechanism has the potential for applications in single-cell analysis, size-insensitive cell separation, and cell phenotyping, which are all primarily based on cells' intrinsic biophysical properties. Our results also show the measured equilibrium position of a cell can inversely determine multiple biophysical properties, including membrane capacitance, cytoplasm conductivity, and acoustic contrast factor. With these features, our acousto-dielectric tweezing mechanism is a valuable addition to the resources available for biophysical property-based biological and medical research.
Collapse
Affiliation(s)
- Liang Shen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA; State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Haodong Zhu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhichao Pei
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Geonsoo Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Wang Chaohui
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
32
|
Murashko AV, Frolova AA, Akovantseva AA, Kotova SL, Timashev PS, Efremov YM. The cell softening as a universal indicator of cell damage during cytotoxic effects. Biochim Biophys Acta Gen Subj 2023; 1867:130348. [PMID: 36977439 DOI: 10.1016/j.bbagen.2023.130348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
Cytotoxicity assays are essential tests in studies on the safety and biocompatibility of various substances and on the efficiency of anticancer drugs. The most frequently used assays commonly require application of externally added labels and read only collective response of cells. Recent studies show that the internal biophysical parameters of cells can be associated with the cellular damage. Therefore, using atomic force microscopy, we assessed the changes in the viscoelastic parameters of cells treated with eight different common cytotoxic agents to gain a more systematic view of the occurring mechanical changes. With the robust statistical analysis to account for both the cell-level variability and the experimental reproducibility, we have found that cell softening is a common response after each treatment. More precisely, the combined changes in the viscoelastic parameters of power-law rheology model led to a significant decrease of the apparent elastic modulus. The comparison with the morphological parameters (cytoskeleton and cell shape) demonstrated a higher sensitivity of the mechanical parameters versus the morphological ones. The obtained results support the idea of cell mechanics-based cytotoxicity tests and suggest a common way of a cell responding to damaging actions by softening.
Collapse
|
33
|
Pamplona R, González-Lana S, Romero P, Ochoa I, Martín-Rapún R, Sánchez-Somolinos C. Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for In Vitro Cell Culture Systems. ACS APPLIED POLYMER MATERIALS 2023; 5:1487-1498. [PMID: 36817339 PMCID: PMC9926877 DOI: 10.1021/acsapm.2c01980] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
The mechanical microenvironment plays a crucial role in the evolution of colorectal cancer, a complex disease characterized by heterogeneous tumors with varying elasticity. Toward setting up distinct scenarios, herein, we describe the preparation and characterization of gelatin methacrylamide (GelMA)-based hydrogels via two different mechanisms: free-radical photopolymerization and photo-induced thiol-ene reaction. A precise stiffness modulation of covalently crosslinked scaffolds was achieved through the application of well-defined irradiation times while keeping the intensity constant. Besides, the incorporation of thiol chemistry strongly increased stiffness with low to moderate curing times. This wide range of finely tuned mechanical properties successfully covered from healthy tissue to colorectal cancer stages. Hydrogels prepared in phosphate-buffered saline or Dulbecco's modified Eagle's medium resulted in different mechanical and swelling properties, although a similar trend was observed for both conditions: thiol-ene systems exhibited higher stiffness and, at the same time, higher swelling capacity than free-radical photopolymerized networks. In terms of biological behavior, three of the substrates showed good cell proliferation rates according to the formation of a confluent monolayer of Caco-2 cells after 14 days of cell culture. Likewise, a characteristic apical-basal polarization of cells was observed for these three hydrogels. These results demonstrate the versatility of the presented platform of biomimetic materials as in vitro cell culture scaffolds.
Collapse
Affiliation(s)
- Regina Pamplona
- Aragón
Institute of Nanoscience and Materials (INMA), Department of Organic
Chemistry, CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009Zaragoza, Spain
| | - Sandra González-Lana
- BEONCHIP
S.L., CEMINEM, Campus
Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018Zaragoza, Spain
- Tissue
Microenvironment (TME) Laboratory, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 50018Zaragoza, Spain
| | - Pilar Romero
- Aragón
Institute of Nanoscience and Materials (INMA), Department of Organic
Chemistry, CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue
Microenvironment (TME) Laboratory, Aragón Institute of Engineering
Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 50018Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, 50018Zaragoza, Spain
- Institute
for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica
1-3, 50009Zaragoza, Spain
| | - Rafael Martín-Rapún
- Aragón
Institute of Nanoscience and Materials (INMA), Department of Organic
Chemistry, CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, 50018Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto
de Salud Carlos III, 50018Zaragoza, Spain
- Aragón
Institute of Nanoscience and Materials (INMA), Department of Condensed
Matter Physics (Faculty of Science), CSIC-University
of Zaragoza, C/ Pedro
Cerbuna 12, 50009Zaragoza, Spain
| |
Collapse
|
34
|
Zhang G, Chang Y, Fan N, Yan B, Li X, Yang Z, Yu Z. Study of the Effect of Cell Prestress on the Cell Membrane Penetration Behavior by Atomic Force Microscopy. MICROMACHINES 2023; 14:397. [PMID: 36838097 PMCID: PMC9961200 DOI: 10.3390/mi14020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In recent years, atomic force microscopes have been used for cell transfection because of their high-precision micro-indentation mode; however, the insertion efficiency of the tip of AFM into cells is extremely low. In this study, NIH3T3 mouse fibroblast cells cultured on a flexible dish with micro-groove patterns were subjected to various substrate strains at 5%, 10%, 15%, and 20%. It was found that the cell stiffness depends on the prestress of the cell membrane, and that the insertion rate of AFM tips into the cell membrane is proportional to the stiffness through the AFM indentation experiment. The finite element analysis proves that prestress increases the bending stiffness of the cytoskeleton, allowing it to better support the cell membrane, which realizes the stress concentration in the contact area between the AFM tip and the cell membrane. The results indicate that the prestress contributes to the mechanical properties of the cell and suggest that the insertion efficiency could be greatly improved with an increase of the prestress of the cell membrane.
Collapse
Affiliation(s)
- Guocheng Zhang
- Department of Mechanical Engineering, Anyang Institute of Technology, Yellow River Avenue West, Anyang 455000, China
| | - Yufang Chang
- School of Accountancy, Anyang Institute of Technology, Yellow River Avenue West, Anyang 455000, China
| | - Na Fan
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Hi-Tech West District, Chengdu 611731, China
| | - Bin Yan
- Department of Mechanical Engineering, Anyang Institute of Technology, Yellow River Avenue West, Anyang 455000, China
| | - Xianmeng Li
- Department of Mechanical Engineering, Anyang Institute of Technology, Yellow River Avenue West, Anyang 455000, China
| | - Zihan Yang
- Department of Mechanical Engineering, Anyang Institute of Technology, Yellow River Avenue West, Anyang 455000, China
| | - Zhenyang Yu
- Department of Mechanical Engineering, Anyang Institute of Technology, Yellow River Avenue West, Anyang 455000, China
| |
Collapse
|
35
|
Comparison of Rheological Properties of Healthy versus Dupuytren Fibroblasts When Treated with a Cell Contraction Inhibitor by Atomic Force Microscope. Int J Mol Sci 2023; 24:ijms24032043. [PMID: 36768366 PMCID: PMC9917339 DOI: 10.3390/ijms24032043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Mechanical properties of healthy and Dupuytren fibroblasts were investigated by atomic force microscopy (AFM). In addition to standard force curves, rheological properties were assessed using an oscillatory testing methodology, in which the frequency was swept from 1 Hz to 1 kHz, and data were analyzed using the structural damping model. Dupuytren fibroblasts showed larger apparent Young's modulus values than healthy ones, which is in agreement with previous results. Moreover, cell mechanics were compared before and after ML-7 treatment, which is a myosin light chain kinase inhibitor (MLCK) that reduces myosin activity and hence cell contraction. We employed two different concentrations of ML-7 inhibitor and could observe distinct cell reactions. At 1 µM, healthy and scar fibroblasts did not show measurable changes in stiffness, but Dupuytren fibroblasts displayed a softening and recovery after some time. When increasing ML-7 concentration (3 µM), the majority of cells reacted, Dupuytren fibroblasts were the most susceptible, not being able to recover from the drug and dying. These results suggested that ML-7 is a potent inhibitor for MLCK and that myosin II is essential for cytoskeleton stabilization and cell survival.
Collapse
|
36
|
McCraw MR, Uluutku B, Solomon HD, Anderson MS, Sarkar K, Solares SD. Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains. SOFT MATTER 2023; 19:451-467. [PMID: 36530043 DOI: 10.1039/d2sm01331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori, the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample.
Collapse
Affiliation(s)
- Marshall R McCraw
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Berkin Uluutku
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Halen D Solomon
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Megan S Anderson
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| |
Collapse
|
37
|
Júnior C, Ulldemolins A, Narciso M, Almendros I, Farré R, Navajas D, López J, Eroles M, Rico F, Gavara N. Multi-Step Extracellular Matrix Remodelling and Stiffening in the Development of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:ijms24021708. [PMID: 36675222 PMCID: PMC9865994 DOI: 10.3390/ijms24021708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
The extracellular matrix (ECM) of the lung is a filamentous network composed mainly of collagens, elastin, and proteoglycans that provides structural and physical support to its populating cells. Proliferation, migration and overall behaviour of those cells is greatly determined by micromechanical queues provided by the ECM. Lung fibrosis displays an aberrant increased deposition of ECM which likely changes filament organization and stiffens the ECM, thus upregulating the profibrotic profile of pulmonary cells. We have previously used AFM to assess changes in the Young's Modulus (E) of the ECM in the lung. Here, we perform further ECM topographical, mechanical and viscoelastic analysis at the micro- and nano-scale throughout fibrosis development. Furthermore, we provide nanoscale correlations between topographical and elastic properties of the ECM fibres. Firstly, we identify a softening of the ECM after rats are instilled with media associated with recovery of mechanical homeostasis, which is hindered in bleomycin-instilled lungs. Moreover, we find opposite correlations between fibre stiffness and roughness in PBS- vs bleomycin-treated lung. Our findings suggest that changes in ECM nanoscale organization take place at different stages of fibrosis, with the potential to help identify pharmacological targets to hinder its progression.
Collapse
Affiliation(s)
- Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Javier López
- Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, 59000 Lille, France
| | - Mar Eroles
- Aix-Marseille, CNRS, INSERM, LAI, Centuri Centre for Living Systems, 13009 Marseille, France
| | - Felix Rico
- Aix-Marseille, CNRS, INSERM, LAI, Centuri Centre for Living Systems, 13009 Marseille, France
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
38
|
Kontomaris SV, Stylianou A, Chliveros G, Malamou A. Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM. MICROMACHINES 2023; 14:mi14010182. [PMID: 36677243 PMCID: PMC9862197 DOI: 10.3390/mi14010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 05/29/2023]
Abstract
Measuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis. It is expected that AFM techniques will play a key role in the future in disease diagnosis and modeling using rigorous mathematical criteria (i.e., automated user-independent diagnosis). In this review, AFM techniques and mathematical models for determining the spatial variability of elastic properties of biological materials at the nanoscale are presented and discussed. Significant issues concerning the rationality of the elastic half-space assumption, the possibility of monitoring the depth-dependent mechanical properties, and the construction of 3D Young's modulus maps are also presented.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- BioNanoTec Ltd., Nicosia 2043, Cyprus
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Chliveros
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
39
|
In Situ Measurements of Cell Mechanical Properties Using Force Spectroscopy. Methods Mol Biol 2023; 2600:25-43. [PMID: 36587088 DOI: 10.1007/978-1-0716-2851-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mechanobiology focuses on how physical forces and the mechanical properties of cells and whole tissues affect their function. The mechanical properties of cells are of particular interest to developmental biology and stem cell differentiation, lymphocyte activation and phagocytic action in phagocytes, and development of malignant tumors and metastases. These properties can be measured on whole tissue and cell culture. Advances in instrument sensitivity and design, as well as improved techniques and scientific know-how achieved over the past few decades, allow researchers to study the mechanical properties of single cells and even at the subcellular level. Particularly, nanoindentation measurements using atomic force microscopy (AFM) mechanically probes single cells and even allows mapping of these traits. This chapter discusses these measurements from the experimental design to the analysis.
Collapse
|
40
|
Weber A, Tyrakowski D, Toca-Herrera JL. Power Laws Describe Bacterial Viscoelasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15552-15558. [PMID: 36484724 PMCID: PMC9776528 DOI: 10.1021/acs.langmuir.2c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Bacterial cells survive in a wide range of different environments and actively tune their mechanical properties for purposes of growth, movement, division, and nutrition. In Gram-negative bacteria, the cell envelope with its outer membrane and peptidoglycan are the main determinants of mechanical properties and are common targets for the use of antibiotics. The study of bacterial mechanical properties has shown promise in elucidating a structure-function relationship in bacteria, connecting, shape, mechanics, and biochemistry. In this work, we study frequency and time-dependent viscoelastic properties of E. coli cells by atomic force microscopy (AFM). We perform force cycles, oscillatory microrheology, stress relaxation, and creep experiments, and use power law rheology models to fit the experimental results. All data sets could be fitted with the models and provided power law exponents of 0.01 to 0.1 while showing moduli in the range of a few MPa. We provide evidence for the interchangeability of the properties derived from these four different measurement approaches.
Collapse
|
41
|
Karkali K, Jorba I, Navajas D, Martin-Blanco E. Measuring ventral nerve cord stiffness in live flat-dissected Drosophila embryos by atomic force microscopy. STAR Protoc 2022; 3:101901. [PMID: 36595903 PMCID: PMC9732408 DOI: 10.1016/j.xpro.2022.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Drosophila is an amenable system for addressing the mechanics of morphogenesis. We describe a workflow for characterizing the mechanical properties of its ventral nerve cord (VNC), at different developmental stages, in live, flat-dissected embryos employing atomic force microscopy (AFM). AFM is performed with spherical probes, and stiffness (Young's modulus) is calculated by fitting force curves with Hertz's contact model. For complete details on the use and execution of this protocol, please refer to Karkali et al. (2022).
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain,Corresponding author
| | - Ignasi Jorba
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain,Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain,Corresponding author
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain,Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| |
Collapse
|
42
|
Krömmelbein C, Xie X, Seifert J, Konieczny R, Friebe S, Käs J, Riedel S, Mayr SG. Electron beam treated injectable agarose/alginate beads prepared by electrospraying. Carbohydr Polym 2022; 298:120024. [PMID: 36241257 DOI: 10.1016/j.carbpol.2022.120024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
|
43
|
Discriminating bladder cancer cells through rheological mechanomarkers at cell and spheroid levels. J Biomech 2022; 144:111346. [DOI: 10.1016/j.jbiomech.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
44
|
Brás MM, Cruz TB, Maia AF, Oliveira MJ, Sousa SR, Granja PL, Radmacher M. Mechanical Properties of Colorectal Cancer Cells Determined by Dynamic Atomic Force Microscopy: A Novel Biomarker. Cancers (Basel) 2022; 14:cancers14205053. [PMID: 36291838 PMCID: PMC9600571 DOI: 10.3390/cancers14205053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is presently the third-most abundant and the second-most lethal cancer worldwide. Thus, there is a real and urgent need to investigate the processes behind the appearance, development, and proliferation of CRC cells. Several biochemical pathways have been investigated to understand their role in oncogene activation and tumor-suppressor gene inhibition. Despite the research increase in biochemistry, there is still a need to better understand the biophysical cues that drive the activation of signaling pathways relevant to mechanotransduction and cell transformation. The elucidation of these biological processes may help to hinder oncogenic mechanisms and to find biomarkers that could be used to design more personalized therapeutic strategies. Abstract Colorectal cancer (CRC) has been addressed in the framework of molecular, cellular biology, and biochemical traits. A new approach to studying CRC is focused on the relationship between biochemical pathways and biophysical cues, which may contribute to disease understanding and therapy development. Herein, we investigated the mechanical properties of CRC cells, namely, HCT116, HCT15, and SW620, using static and dynamic methodologies by atomic force microscopy (AFM). The static method quantifies Young’s modulus; the dynamic method allows the determination of elasticity, viscosity, and fluidity. AFM results were correlated with confocal laser scanning microscopy and cell migration assay data. The SW620 metastatic cells presented the highest Young’s and storage moduli, with a defined cortical actin ring with distributed F-actin filaments, scarce vinculin expression, abundant total focal adhesions (FAK), and no filopodia formation, which could explain the lessened migratory behavior. In contrast, HCT15 cells presented lower Young’s and storage moduli, high cortical tubulin, less cortical F-actin and less FAK, and more filopodia formation, probably explaining the higher migratory behavior. HCT116 cells presented Young’s and storage moduli values in between the other cell lines, high cortical F-actin expression, intermediate levels of total FAK, and abundant filopodia formation, possibly explaining the highest migratory behavior.
Collapse
Affiliation(s)
- M. Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Tânia B. Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - André F. Maia
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28334 Bremen, Germany
- Correspondence:
| |
Collapse
|
45
|
Matsumoto M, Tsuru H, Suginobe H, Narita J, Ishii R, Hirose M, Hashimoto K, Wang R, Yoshihara C, Ueyama A, Tanaka R, Ozono K, Okajima T, Ishida H. Atomic force microscopy identifies the alteration of rheological properties of the cardiac fibroblasts in idiopathic restrictive cardiomyopathy. PLoS One 2022; 17:e0275296. [PMID: 36174041 PMCID: PMC9522286 DOI: 10.1371/journal.pone.0275296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare disease characterized by increased ventricular stiffness and preserved ventricular contraction. Various sarcomere gene variants are known to cause RCM; however, more than a half of patients do not harbor such pathogenic variants. We recently demonstrated that cardiac fibroblasts (CFs) play important roles in inhibiting the diastolic function of cardiomyocytes via humoral factors and direct cell–cell contact regardless of sarcomere gene mutations. However, the mechanical properties of CFs that are crucial for intercellular communication and the cardiomyocyte microenvironment remain less understood. In this study, we evaluated the rheological properties of CFs derived from pediatric patients with RCM and healthy control CFs via atomic force microscopy. Then, we estimated the cellular modulus scale factor related to the cell stiffness, fluidity, and Newtonian viscosity of single cells based on the single power-law rheology model and analyzed the comprehensive gene expression profiles via RNA-sequencing. RCM-derived CFs showed significantly higher stiffness and viscosity and lower fluidity compared to healthy control CFs. Furthermore, RNA-sequencing revealed that the signaling pathways associated with cytoskeleton elements were affected in RCM CFs; specifically, cytoskeletal actin-associated genes (ACTN1, ACTA2, and PALLD) were highly expressed in RCM CFs, whereas several tubulin genes (TUBB3, TUBB, TUBA1C, and TUBA1B) were down-regulated. These results implies that the signaling pathways associated with cytoskeletal elements alter the rheological properties of RCM CFs, particularly those related to CF–cardiomyocyte interactions, thereby leading to diastolic cardiac dysfunction in RCM.
Collapse
Affiliation(s)
- Mizuki Matsumoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hirofumi Tsuru
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Niigata University School of Medicine, Niigata, Japan
| | - Hidehiro Suginobe
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Narita
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryo Ishii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Hirose
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhisa Hashimoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Renjie Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chika Yoshihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Ueyama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Tanaka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- * E-mail: (HI); (TO)
| | - Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail: (HI); (TO)
| |
Collapse
|
46
|
Building a tissue: mesenchymal and epithelial cell spheroids' mechanical properties at micro- and nanoscale. Acta Biomater 2022:S1742-7061(22)00621-3. [PMID: 36167239 DOI: 10.1016/j.actbio.2022.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Cell transitions between the epithelial and mesenchymal phenotypes provide the regulated morphogenesis and regeneration throughout the ontogenesis. The tissue mechanics and mechanotransduction play an essential role in these processes. Cell spheroids reproduce the cell density of native tissues and represent simple building blocks for the tissue engineering purposes. The mechanical properties of mesenchymal and epithelial cells have been extensively studied in 2D monolayer cultures, but have not been sufficiently compared in spheroids. Here, we have simultaneously applied several techniques to assess the mechanical parameters of such spheroids. The local surface mechanical properties were measured by AFM, and the bulk properties were analyzed with parallel-plate compression, as well as by observing cut opening after microdissection. The comparison of the collected data allowed us to apply the model of a solid body with surface tension, and estimate the parameters of this model. We found an expectedly higher surface tension in mesenchymal spheroids, as well as a higher bulk modulus and relaxation time. The two latter parameters agree with the bulk poroelastic behavior of spheroids, and with the higher cell density and extracellular matrix content in mesenchymal spheroids. The higher tension of the surface layer cells in mesenchymal cell spheroids was also confirmed by the viscoelastic AFM characterization. The cell phenotype affected the self-organization during the spheroid formation, as well as the structure, biomechanical properties, and spreading of spheroids. The obtained results will contribute to a more detailed description of spheroid and tissue biomechanics, and will help in controlling the tissue regeneration and morphogenesis. STATEMENT OF SIGNIFICANCE: Spheroids are widely used as building blocks for scaffold-based and scaffold-free strategies in tissue engineering. In the majority of the past studies, either the concept of a solid body or a liquid with surface tension was used to describe the biomechanical behavior of spheroids. Here, we have used a model which combines both aspects, a solid body with surface tension. The "solid" aspect was described as a visco-poroelastic material, affected by the liquid redistribution through the cells and ECM at the scale of the whole spheroid. A higher surface tension was found for mesenchymal spheroids than that for epithelial spheroids, observed as a higher stiffness of the spheroid surface, as well as a larger spontaneous opening of the cut edges after microdissection.
Collapse
|
47
|
Lekka M. Applicability of atomic force microscopy to determine cancer-related changes in cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210346. [PMID: 35909354 DOI: 10.1098/rsta.2021.0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
The determination of mechanical properties of living cells as an indicator of cancer progression has become possible with the development of local measurement techniques such as atomic force microscopy (AFM). Its most important advantage is a nanoscopic character, implying that very local alterations can be quantified. The results gathered from AFM measurements of various cancers show that, for most cancers, individual cells are characterized by the lower apparent Young's modulus, denoting higher cell deformability. The measured value depends on various factors, like the properties of substrates used for cell growth, force loading rate or indentation depth. Despite this, the results proved the AFM capability to recognize mechanically altered cells. This can significantly impact the development of methodological approaches toward the precise identification of pathological cells. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
48
|
Naumann J, Koppe N, Thome UH, Laube M, Zink M. Mechanical properties of the premature lung: From tissue deformation under load to mechanosensitivity of alveolar cells. Front Bioeng Biotechnol 2022; 10:964318. [PMID: 36185437 PMCID: PMC9523442 DOI: 10.3389/fbioe.2022.964318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Many preterm infants require mechanical ventilation as life-saving therapy. However, ventilation-induced overpressure can result in lung diseases. Considering the lung as a viscoelastic material, positive pressure inside the lung results in increased hydrostatic pressure and tissue compression. To elucidate the effect of positive pressure on lung tissue mechanics and cell behavior, we mimic the effect of overpressure by employing an uniaxial load onto fetal and adult rat lungs with different deformation rates. Additionally, tissue expansion during tidal breathing due to a negative intrathoracic pressure was addressed by uniaxial tension. We found a hyperelastic deformation behavior of fetal tissues under compression and tension with a remarkable strain stiffening. In contrast, adult lungs exhibited a similar response only during compression. Young’s moduli were always larger during tension compared to compression, while only during compression a strong deformation-rate dependency was found. In fact, fetal lung tissue under compression showed clear viscoelastic features even for small strains. Thus, we propose that the fetal lung is much more vulnerable during inflation by mechanical ventilation compared to normal inspiration. Electrophysiological experiments with different hydrostatic pressure gradients acting on primary fetal distal lung epithelial cells revealed that the activity of the epithelial sodium channel (ENaC) and the sodium-potassium pump (Na,K-ATPase) dropped during pressures of 30 cmH2O. Thus, pressures used during mechanical ventilation might impair alveolar fluid clearance important for normal lung function.
Collapse
Affiliation(s)
- Jonas Naumann
- Research Group Biotechnology and Biomedicine, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Nicklas Koppe
- Research Group Biotechnology and Biomedicine, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Ulrich H. Thome
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, Leipzig University, Leipzig, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Department of Pediatrics, Division of Neonatology, Leipzig University, Leipzig, Germany
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
- *Correspondence: Mareike Zink,
| |
Collapse
|
49
|
Abuhattum S, Kuan HS, Müller P, Guck J, Zaburdaev V. Unbiased retrieval of frequency-dependent mechanical properties from noisy time-dependent signals. BIOPHYSICAL REPORTS 2022; 2:100054. [PMID: 36425327 PMCID: PMC9680806 DOI: 10.1016/j.bpr.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 06/16/2023]
Abstract
The mechanical response of materials to dynamic loading is often quantified by the frequency-dependent complex modulus. Probing materials directly in the frequency domain faces technical challenges such as a limited range of frequencies, long measurement times, or small sample sizes. Furthermore, many biological samples, such as cells or tissues, can change their properties upon repetitive probing at different frequencies. Therefore, it is common practice to extract the material properties by fitting predefined mechanical models to measurements performed in the time domain. This practice, however, precludes the probing of unique and yet unexplored material properties. In this report, we demonstrate that the frequency-dependent complex modulus can be robustly retrieved in a model-independent manner directly from time-dependent stress-strain measurements. While applying a rolling average eliminates random noise and leads to a reliable complex modulus in the lower frequency range, a Fourier transform with a complex frequency helps to recover the material properties at high frequencies. Finally, by properly designing the probing procedure, the recovery of reliable mechanical properties can be extended to an even wider frequency range. Our approach can be used with many state-of-the-art experimental methods to interrogate the mechanical properties of biological and other complex materials.
Collapse
Affiliation(s)
- Shada Abuhattum
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Hui-Shun Kuan
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
50
|
Meleties M, Martineau RL, Gupta MK, Montclare JK. Particle-Based Microrheology As a Tool for Characterizing Protein-Based Materials. ACS Biomater Sci Eng 2022; 8:2747-2763. [PMID: 35678203 DOI: 10.1021/acsbiomaterials.2c00035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microrheology based on video microscopy of embedded tracer particles has the potential to be used for high-throughput protein-based materials characterization. This potential is due to a number of characteristics of the techniques, including the suitability for measurement of low sample volumes, noninvasive and noncontact measurements, and the ability to set up a large number of samples for facile, sequential measurement. In addition to characterization of the bulk rheological properties of proteins in solution, for example, viscosity, microrheology can provide insight into the dynamics and self-assembly of protein-based materials as well as heterogeneities in the microenvironment being probed. Specifically, passive microrheology in the form of multiple particle tracking and differential dynamic microscopy holds promise for applications in high-throughput characterization because of the lack of user interaction required while making measurements. Herein, recent developments in the use of multiple particle tracking and differential dynamic microscopy are reviewed for protein characterization and their potential to be applied in a high-throughput, automatable setting.
Collapse
Affiliation(s)
- Michael Meleties
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States
| | - Rhett L Martineau
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.,Biological and Nanoscale Technologies Division, UES Inc., Dayton, Ohio 45432, United States
| | - Maneesh K Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York 11201, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States.,Department of Biomaterials, College of Dentistry, New York University, New York, New York 10010, United States.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|